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1 Introduction

In [1], Dwyer and Spalinski construct the so-called homotopy pushout func-
tor, motivated by the following observation. In the category Top of topo-
logical spaces, one can construct the n-dimensional sphere S™ by glueing
together two n-disks D™ along their boundaries S”~!, i.e. by the pushout
of

% 7

D" sn—1 D™,

where i denotes the inclusion. Let * be the one point space. Observe, that
one has a commutative diagram

% 7

DTL Sn—l Dn ,
\L J{idsnl
* gn—1 *

where all vertical maps are homotopy equivalences, but the pushout of the
bottom row is the one-point space * and therefore not homotopy equivalent
to S™. One probably prefers the homotopy type of S™. Having this idea
of calculating the prefered homotopy type in mind, they equip the functor
category CP, where C is a model category and D = a « b — ¢ the category
consisting out of three objects a, b, ¢ and two non-identity morphisms as
indicated, with a suitable model category structure. This enables them to
construct out of the pushout functor colim : CP — C its so-called total
left derived functor Leolim : Ho(CP) — Ho(C) between the corresponding
homotopy categories, which defines the homotopy pushout functor.

Dwyer and Spalinski further indicate how to generalize this construction
to define the so-called homotopy colimit functor as the total left derived
functor for the colimit functor colim : CP — C in the case, where D is a
so-called very small category. The goal of this paper is to give a proof of this
generalization, since in [1] it is omitted to the reader. The main work lies in
proving our Theorem 2, which equips CP with the suitable model category
structure. For the existence of the total left derived functor for colim, we
will use a result from [1].

The paper contains four sections. In section 2 and 3 we recall some
definitions and results related to colimits and model categories, respectively.
The introduced terminology will be used in section 4, where we construct
the homotopy colimit functor.

I am grateful to my supervisor, Jesper Grodal, and the participants of
the student seminar TopTopics for all the helpful discussions.



2 Colimits

In this section let C be a category, let D be a small category and F': D — C
a functor. Mainly to fix notations, we recall some definitions and results
related to colimits.

Definition 2.1. The functor category CP, also called the category of di-
agrams in C with the shape of D, is the category, where the objects are
functors D — C and the morphisms are natural transformations.

Example 2.2. If D is the category a « b — ¢ with three objects a, b, ¢
and two non-identity morphisms a < b, b — ¢, then an object X of C*0—¢
is just a diagram X (a) < X(b) — X(c¢) in C and a morphism from X to Y
in C*~¥~¢ is given by a triple (s4, sp, S¢) of morphisms in C making

X(a) =— X(b) — X(¢)

commute.

Example 2.3. If D is the category a — b with two objects a, b and one non-
identity morphism a — b, then an object of C*~? is a morphism f : X (a) —
X (b) in C and a morphism from f : X(a) — X(b) to g : Y(a) — Y (b) in
C%? is just a pair of morphisms (s, s) in C making

commute. We call C*~? the category of morphisms in C and denote it by
Mor(C).

Example 2.4. If D is the category 1 consisting only out of one object 1
and one morphism, then CP is isomorphic to C via the functor given by
X — X (1) on objects and f — f; on morphisms.

Definition 2.5. The constant diagram functor A = Ap : C — CP is the
functor, which sends an object C' of C to the functor A(C) given by

d — C on objects and g +— id¢ on morphisms,

and which sends a morphism f of C to the natural transformation A(f)
given by A(f)q = f in an object d of D.



Note that a functor j : D’ — D from a small category D’ to D induces
a functor ()| ; = () |lpr = ()|, : CP — CP', which sends an object X of
CP to Xoj and a morphism f : X — Y in CP to the natural transformation
flpr : X|pr = Y|ps given by fj(z) in an object d' of D’. Furthermore, if
j': D" — D’ is a functor from a small category D” to D’, then

() ljogr = ()0 ;- (2.1)

Example 2.6. The functor D — 1 induces the functor (-)|; : CP — CP,
which composed with the isomorphism C = C! yields Ap. By (2.1), it

follows that Ap/ = (-)|; Ap for any functor j from a small category D’ to
D.

Definition 2.7. A colimit C = (C,t) for F' : D — C is an object C of
C together with a natural transformation ¢ : ' — A(C') such that for any
object X of C and any natural transformation s : F' — A(X) there exists a
unique morphism s’ : C' — X in C satisfying A(s')t = s.

Example 2.8. If D = a «— b — ¢, then a colimit for an object X of C*~0—¢

is just a pushout of the diagram X (a) < X (b) — X(c).

Remark 2.9. If a colimit for F exists, we will sometimes speak of the
colimit for F' for the following reason. If (C,t) and (C’,t') are colimits for
F, then the unique morphism h : C'— C’ in C such that A(h)t = ¢’ holds,
is an isomorphism, which will be called the canonical isomorphism. Given
furthermore an object X of C and a natural transformation s : F' — A(X),
let s” : C" — X be the unique morphism in C satisfying A(s”)t’ = s. Then
the unique morphism s’ : C' — X satisfying A(s')t = s is given by s”h.

Remark 2.10. Assume that for any functor G : D — C the colimit
(colim(G), tg) exists. Then the chosen colimits yield a functor

colim : CP — C,

called colimit functor, which maps a morphism s : G — G’ in CP to the
unique morphism s’ : colim(G) — colim(G’) in C such that A(s')tg =
ters. Furthermore, we have an adjunction (colim, A, «), where the natural
equivalence « is given in an object (G, X) of (CP)°P x C by the bijection

a = ag,x : Homg(colim(G), X) — Homep (G, A(X)),

s — A(s)ta. (22)

In particular, any two colimit functors CP — C are naturally isomorphic
and therefore, we will sometimes speak of the colimit functor.



Remark 2.11. Let D’ be a small category such that there exists an isomor-
phism J : CP — CP' with Jo Ap = Apr. Assume there exists a colimit
functor colim : CP" — C. Then the composition colimo J : CP — C
is a colimit functor. Furthermore, for any object X of C and any natu-
ral transformation s : I — Ap(X) the induced morphism from the col-
imit of F to X is given by the morphism colim(J(F)) — X induced by
J(s): J(F) — Ap/(X).

In the definition of a model category we will use both, the notion of
colimit and limit.

Definition 2.12. A limit L = (L,t) for F : D — C is an object L of C
together with a natural transformation t : A(L) — F such that for any
object X of C and any natural transformation s : A(X) — F' there exists a
unique morphism s’ : X — L in C satisfying tA(s") = s.

The following result is proved on page 115 in [3].

Proposition 2.13. Let D' be a small category and G : D' — CP a functor.
Denote by evg : CP — C the evaluation functor in the object d of D. Assume
that for all objects d of D a limit for the composition evqoG : DY — C exists.
Then there exists a limit for G.

The notion of colimit is dual to the notion of limit:

Remark 2.14. A colimit for F' is the same as a limit for the dual functor
F°P : D°? — C°P. More precisely, sending a colimit (C,t) for F to (C,t'),
where the natural transformation ¢’ : Aper(C) — F°P is given by (¢4)°P in
an object d of D defines a one-to-one correspondence between colimits
for F' and limits for F°P.

We conclude this section with a result about pushouts.

Proposition 2.15. Assume that

X—">W ady-—">p

b e
/ ill

y —+>p 7.0

are pushout squares in C. Then so is

X—W

(2
k] k/j/
,[://

Z—Q



Proof. From the commutativity of the first two squares one concludes that
k'j'i = i"kj, thus the third one commutes too. Given now any commutative
square

XAW;
kj lr
Z—=V

one has to show, that there is a unique morphism ¢ : ) — V such that
tk'’ = r and ti” = s. Using that P is a pushout, let ¢’ : P — V be the
unique morphism such that ¢/ = r and ¢'7/ = sk. Using that also Q is a
pushout, define t : Q — V to be the unique morphism such that tk' = t/
and ti” = s. This gives the desired morphism ¢. To show the uniqueness, let
t" : Q — V be a morphism with t"k'j’ = r and t"i” = s. By the universal
property of P, one concludes ¢k’ = t/. Hence, by the universal property of
Q follows t" = t. O

3 Model categories and homotopy categories

3.1 Model categories

The following terms will be used in the definition of a model category.

Definition 3.1. A morphism f : X — X’ of a category C is called a retract
of a morphism g : Y — Y’ of C, if there exists a commutative diagram

X—>y—">X,
P,k
X/ L> Y/ L> X/
such that ri = idx and ¢/ = idx-.
Definition 3.2. Let C be a category.

i) Given a commutative diagram in C of the form

A—1sx (3.1)
b
g
B——Y
a lift in the diagram is a morphism h : B — X such that hi = f and
ph=y.
ii) Let i : A — B, p: X — Y be morphisms in C. We say that i has the
left lifting property (LLP) with respect to p and that p has the right

lifting property (RLP) with respect to i, if there exists a lift in any
commutative diagram of the form (3.1).



Now we are ready for the definition of a model category.

Definition 3.3. A model category is a category C together with three classes
of morphisms of C, the class of weak equivalences W = W (C), of fibrations
Fib = Fib(C) and of cofibrations Cof = Cof(C), each of which is closed
under composition and contains all identity morphisms of C, such that the
following five conditions hold:

MC1: Every functor from a finite category to C has a limit and a
colimit.

MC2: If f and g are morphisms of C such that gf is defined and if two
out of the three morphisms f, g and gf are weak equivalences, then so is
the third.

MC3: If f is a retract of a morphism g of C and ¢ is a weak equivalence,
a fibration or a cofibration, then so is f.

MC4:

i) Every cofibration has the LLP with respect to all p € W N Fib.

ii) Every fibration has the RLP with respect to all i € W N Cof.
MC5: Any morphism f of C can be factored as

i) f = pi, where i € Cof, p € W N Fib, and as

ii) f=pi, wherei € Cof "W, p € Fib.

By a model category structure for a category C we mean a choice of
three classes of morphisms of C such that C together with these classes is a
model category. Let C be a model category until the end of this subsection.
The following two remarks follow immediately from the definition of a model
category.

Remark 3.4. Since any isomorphism f : X — Y of C is a retract of idy and
since idy € WNFibNCof, it follows by MC3 that also f € WNFibNCof.

Remark 3.5. The opposite category C°P is a model category by defining a
morphism f°P in C°P to be in W(CP) if f is in W(C), to be in Fib(C°P) if
fisin Cof(C) and to be in Cof(CP) if f is in F'ib(C).

The proofs of the following two propositions can be found on page 87
and 88 of [1].

Proposition 3.6. A morphism i of C is
i) in Cof, if and only if it has the LLP with respect to all p € W N Fib,

it) in W N Cof, if and only if it has the LLP with respect to all p € Fib.



Proposition 3.7. Let X 157 bea pushout square in C.

ok

y—L-p

i) If i is in Cof(C), then so is i
ii) Ifi is in Cof(C)NW(C), then so is i'.

The next two results are concerned with cofibrations and pushouts and
will be used in the proof of Theorem 2.

Lemma 3.8. Given a commutative square in C of the form
A——>B. (3.2)
C——=D

Let P, Q be pushouts of C « A — B and letip : P — D, ig : Q — D
be the morphisms induced by (3.2). Then ip is a cofibration [resp. weak
equivalence] if and only if ig is a cofibration [resp. weak equivalence].

Proof. Let j : P — @ be the canonical isomorphism, then ip = igj by
Remark 2.9. Now, since Cof(C) [resp. W(C)] is closed under composition,
Lemma 3.8 follows from Remark 3.4. 0

Proposition 3.9. Given a commutative cube in C of the form

A B (3.3)
NN
Al l B
C——|—>D_
Nt Y
c’ D'

where the back face and the front face are pushout squares. Let P denote the
pushout of the diagram C «— A — A’ and let ip : P — C' be the morphism
induced by the left-hand face of (3.3). Ifip and ip are cofibrations, then so
18 iD-

Proof. By Proposition 3.6i), it’s enough to find a lift in any given commu-
tative diagram

D——X ,
iiD p

D ——=Y



where p is in W N Fib. Since ip is a cofibration, there exists a lift hg : B’ —
X in

B—D—X .

\LiB \LP

B —D —Y

hgr . . .
Defining h 4 as the composition A’ — B’ £ X yields a commutative dia-
gram

A A
l lhA/
C—D—X

and hence an induced morphism P — X. This morphism makes the diagram

P X (3.4)
-
C/ — D/ — Y

commute, as one checks using the universal property of the pushout P. Since
ip is a cofibration by assumption, there exists a lift her : €' — X in (3.4).
It makes the square

Al —— B

hgr

C'—X

commute. This square induces a morphism h from the pushout D’ to X.
One checks that h is the desired lift, using the universal property of the
pushouts D and D’. O

3.2 The homotopy category of a model category

Definition 3.10. Let C be a category and W a class of morphisms of C. A
localization of C with respect to W is a category D together with a functor
F : C — D such that the following two conditions hold:

i) F(f) is an isomorphism for every f in W.

ii) If G is a functor from C to a category D’, such that G(f) is an isomor-
phism for every f in W, then there exists a unique functor G’ : D — D’
with G'F = G.

Remark 3.11. Let C be a category and W a class of morphisms of C.
If (D, F) and (D', F’) are localizations of C with respect to W, then the
unique functor G’ such that G’F = F’ is an isomorphism. Therefore, if a
localization exists, we will sometimes speak of the localization.



Let C be a model category until the end of this subsection. The lo-
calization (Ho(C),~c) of C with respect to the class of weak equivalences
W exists by Theorem 6.2 of [1]. This fact makes the following definition
possible.

Definition 3.12. The homotopy category of the model category C is the
localization of C with respect to W.

Until the end of this subsection let F' be a functor from C to another
model category D . The homotopy colimit functor will be defined as a total
left derived functor, which is defined as follows.

Definition 3.13. A total left derived functor LEF for the functor F' is a
functor LF' : Ho(C) — Ho(D) together with a natural transformation ¢ :
(LF)yc — ~pF such that for any pair (G,s) of a functor G : Ho(C) —
Ho(D) and a natural transformation s : Gyc — ypF, there exists a unique
natural transformation s’ : G — LF satisfying

tos'Hc =s,

where the natural transformation s'[,  : Gyc — (LF)yc is given by sfy o(X)
in an object X of C.

Remark 3.14. Assume that (LF,t) and (L'F,t') are total left derived func-
tors for F. Then the unique natural transformation s’ : L'F — LF such
that t o §'| "o = t' is a natural equivalence. Therefore, if a total left derived
functor for F' exists, we will sometimes speak of the left derived functor.

The proof of the following theorem is given on page 114 in [1].

Theorem 1. Assume G : D — C is a functor, which is right adjoint to
F and which carries morphisms of Fib(D) to Fib(C) and morphisms of
Fib(D) N W (D) to Fib(C) N W(C). Then the total left derived functor
LF : Ho(C) — Ho(D) for F exists.

4 Homotopy colimits

In this section let C be a model category. We want to define the homotopy
colimit functor as the total left derived functor for the functor colim : CP —
C. Therefore, we have to equip the functor category CP with a suitable
model category structure, which can be done under the assumption that D
is as in the next definition.

Definition 4.1. A non-empty, finite category D is said to be very small
if there exists an integer NV > 1 such that for any composition fy...fsf1 of
morphisms (f;)1<i<n in D, at least one morphism f; is an identity morphism.



More geometrically, note that a non-empty, finite category D is very
small if and only if it has no cycles, i.e. given any integer n > 1 and
any composition f,...faf1 : d — d of morphisms (f;)i<i<n in D, then each
morphism f; is the identity morphism id4y. The advantage of a very small
category is that it enables us to do induction involving the degree, which is
defined as follows.

Definition 4.2. Let D be a very small category and d any object of D.
The degree deg(d) of d is defined by

deg(d) := max({0} U {n > 1; there exists a composition f,...faf1 : e — d of
morphisms (f; # idg)i1<i<p in D}),

the total degree deg(D) of D by deg(D) := max({deg(d);d an object of D}).

Remark 4.3. Let e,d be objects of a very small category D and assume,
there exists a non-identity morphism e — d. Then deg(e) < deg(d).

4.1 A model category structure for CP

Let D be a very small category. The functor category CP can be given a
model category structure in the following way.

Let d be an object of D. Recall that an object m of the over category
D | d is given by a morphism m : e — d in D and that a morphism k& in
D|dfromm:e — dtom' :e — dis a morphism k : e — ¢ in D such
that m’k = m. Denote by dd the full subcategory of D | d which contains
all objects of D | d except idy. Let the functor jg : dd — D be given by
(m : e — d) — e on objects and k +— k on morphisms. Composing the
induced functor (-) |y, : CP — C with colim : C% — C gives a functor

g := colim o (-) [, : CP — C.

Let X be an object of CP. The natural transformation sé( s X gy —
A(X(d)) given in an object m : e — d of dd by X (m), induces the morphism

a_l(sfl() 1 0g(X) — X(d),

where the bijection « comes from the adjunction (colim, Ayg, ). This in-
duced morphism is natural. Indeed, given any morphism f : X — Y in CP,
we show that the diagram

da(X) — X (d) (4.1)

\Lad(f) \Lfd

9a(Y) —=Y (d)

10



commutes or equivalently, that

ala™ (s7)0a(f)) = a(faa™ (s7)) (4.2)

holds. Using the naturality of «, one concludes that the left-hand side of
(4.2) equals s o f|,,, which is Y/(m) o f in an object m : e — d, and that
the right-hand side equals A(fy) o s, which is fy0 X(m) in m : e — d.
Finally, the equation Y (m) o fo = f; 0 X(m) holds, since f is a natural
transformation by assumption. Define the functor §4 as the composition

0q : Mor(CD) __, Qa—b—c colim C.
where the first functor is given by

(F: X = V) 0a(Y) 22 94(X) — X(d)) on objects,

(5,8") — (04(5"),04(s), 84) on morphisms.

Given any morphism f : X — Y in CP, consider that d4(f) is a pushout
by definition and that therefore the commutative square (4.1) induces a
morphism

ia(f) : 6a(f) — Y (d),
which is natural. Indeed, given any morphism (s, s’) in Mor(CP) from
f:X — X tog:Y — Y’ one checks that

da(f) alf)

84(s,s") s
a(9)

commutes using the universal property of pushouts, the equation s/, fg = gasq
which holds by assumption and the naturality of the morphism 9y(X’) —
X'(d). Using the above constructed morphisms (ig(f))q for a morphism f
in CP, we give CP a model category structure.

X'(d)

Theorem 2. Define a morphism f of CP to be in

i) W(CP), if f4 is in W(C) for all objects d of D,

ii) Fib(CP), if f4 is in Fib(C) for all objects d of D, and to be in
iii) Cof(CP), ifig(f) is in Cof(C) for all objects d of D.
Then CP together with these three classes is a model category.

Remark 4.4. One can check directly, that the property of a morphism f in
CP to be in Cof(CP) doesn’t depend on the choices of colimits involved in
the construction of the morphisms (ig4(f))q. However, this fact follows from
Proposition 3.6i) after having proved Theorem 2.

11



Proof of Theorem 2. Since W (C) and Fib(C) are closed under composition
and contain all identity morphisms, it follows immediately that W (CP) and
Fib(CP) share the same properties.

To show that Cof (CD) is closed under composition, let two morphisms
f:X—=Y,g:Y — Zin Cof(CP) be given. We have to prove, that iz(gf)
is in Cof(C) for all objects d of D. By Lemma 3.8, it’s enough to show that
for any pushout @ of 94(Z) «+ 04(X) — X (d), the morphism i : Q — Z(d)
induced by the diagram

04(X) — X(d)
8(9)3(f)8(9f)i
(

i(gf)dgdfd
04 (

Z) —— 7(d)

is a cofibration in C. Using Proposition 2.15, define such a @) as the pushout
of 04(Z) «— 94(Y) — d4(f). To show that the induced morphism i : @ —
Z(d) is in Cof(C), let Q@ — d4(g) be the unique morphism such that

3d(Y)\1 5d(f)\(f) (4.3)
9a(Y') Y(d)

|

94(Z)

a(9)

commutes. The pushout P of 94(Z) « 94(Y) = 04(Y) is just 94(Z) and
the morphism P — 94(Z) induced by the left-hand face of (4.3) is idg,(z)
and therefore in Cof(C). Applying Proposition 3.9, we get that @ — d,4(g)
is in Cof(C). Finally, using the universal property of the pushout @ of
04(Z) «— 94(X) — X (d), one checks that i equals the composition

Q — dalg) 'Y z(a)

and therefore is in Cof(C) as a composition of two cofibrations in C.

To prove that Cof(CP) contains all identity morphisms of CP, one has
to show the following claim. For any object d of D and any object X of
CP, the morphism ig(idx) : d4(idx) — X (d) is a cofibration in C. Since
04(idx) = idg,(x), it follows that X(d) is a pushout of 94(X) « 94(X) —
X(d). The claim is now a consequence of Lemma 3.8.



4.1.1 Proof of MC1-MC3

By MC1 in C and Proposition 2.13, it follows that any functor F' from a
finite category to CP has a limit. We want to show that F has a colimit
or equivalently by Remark 2.14 that F°P has a limit. Note that (CP)°P is
isomorphic to (C°P)P*” and conclude from Proposition 2.13 and MC1 in
C°P that F°P has a limit. Hence, MCC1 holds in CP.

From MC2 for C, we will deduce MC2 for CP. Let f, g be morphisms
in CP such that ¢f is defined and such that two of the three morphisms
f, g, gf are in W(CP). Then for all objects d of D, two of the three
morphisms fg, 94, gafq are in W(C). Thus by MC2 for C and the equality
gafa = (gf)a, all three morphisms fy, gq4, (9f)q are in W(C) and hence f,
g, gf are in W(CP).

To show MC3, let f: X — X', g: Y — Y’ be morphisms in CP such
that f is a retract of g, i.e. there exists a commutative diagram

X—sy—"sx,

bk

X’L>Y’L>X’

such that ri = idx and r’#’ = idx,. Note that therefore f,; is a retract of g4
for all objects d of D. Thus the part of MC3 dealing with fibrations [resp.
weak equivalences| is a direct consequence of MIC3 for C. Assume that g is
a cofibration, i.e. for all objects d of D the morphism i4(g) is in Cof(C).
We will deduce that f is a cofibration by showing that i4(f) is a retract of
i4(g) and hence is in Cof(C) by MC3 for C. Consider the diagram

5a(F) 22 51(9) 22 54 £)

\Lid(f) lid(g) lid(f)

X'(d) —>Y'(d) —> X'(d)

5d (,r7,,,l)

The morphism i4(f) is natural as already shown, so the diagram commutes.
By functoriality and since ri = idx, r’7’ = idx/, it follows that the com-
position in the top row is the identity morphism. The equation r'i’ = idx
implies that the composition in the bottom row equals id x/(4). Hence, i4(f)
is a retract of i4(g).

4.1.2 Proof of MC4 and MC5

We will use induction over the total degree deg(D) of D to prove MC4,
MC5 and the following proposition.

Proposition 4.5. Let i : A — B be a morphism in CP. Then i is in
Cof(CPYNW(CP), if and only if iq(i) is in Cof(C)NW (C) for all objects
d of D.

13



Remark 4.6. Note that to prove any direction of Proposition 4.5, it’s
enough to show that 9,(i) is in Cof(C) N W(C) for all objects d of D
by Proposition 3.7ii) and MC2 in C.

For the proof of the initial case deg(D) = 0, we will use the following
lemma.

Lemma 4.7. Assume deg(D) = 0. Let d be any object of D andi: A — B
a morphism in CP. Then 94(7) is an isomorphism in C. Furthermore, the
morphism iq(i) is in Cof(C), if and only if iq is in Cof(C).

Proof of Lemma 4.7. Since deg(D) = 0 implies deg(d) = 0, it follows by
Remark 4.3 that dd is the empty category. Hence, the colimits 94(A4) and
04(B) are initial objects and 04() is an isomorphism. A pushout of 94(B) «—
04(A) — A(d) is given by A(d) and the morphism A(d) — B(d) induced by
the commutative square

9a(A) — A(d)

o

84(B) —— B(d)

is 74. Hence, the second statement of Lemma 4.7 follows from Lemma 3.8.

O]

We show Proposition 4.5, MC4 and MCS5 in the initial case. By Remark
4.6, Lemma 4.7 implies Proposition 4.5, since any isomorphism in C is in
Cof(C)NW(C) by Remark 3.4.

To prove MC4, let a commutative diagram

f

HX

A
i
9

HY

in CP be given, such that i is in Cof(CP) and p is in Fib(CP). We have
to find a lift h : B — X, whenever p is in W (CP) [resp. i is in W(CP)]. By
Lemma 4.7, it follows that iy is in Cof(C) for all objects d of D. If p is in
W (CP) [resp. if i is in W(CP)], then applying MC4i) [resp. MC4ii)] in
C yields an objectwise lift hg : B(d) — X(d). These objectwise lifts (hq)q
fit together to give the desired lift h: B — X.

To prove MC5i) [resp. MCS5ii)], let f : A — B be a morphism in
CP. Using MC5i) [resp. MC5ii)] in C, factor for every object d of D the
morphism f; as f4 = pgiq, where ig is in Cof(C) [resp. Cof(C) N W (C)]
and pg is in W(C) N Fib(C) [resp. Fib(C)]. By construction and Lemma
4.7, the morphisms (ig)g fit together to give a morphism i in Cof(CP)

14



[resp. Cof(CP) N W(CP)] and the morphisms (pg)g define a morphism p
in W(CP)N Fib(CP) [resp. Fib(CP)]. The factorization f = pi shows that
MCS5i) [resp. MCS5ii)] holds.

To show the induction step, assume that n := deg(D) > 1. We prove
Proposition 4.5. Let a morphism i : A — B in CP and any object d of D
be given. For the proof of any direction, it’s enough to show that d4(7) is in
Cof(C) N W(C) or equivalently by Proposition 3.6ii), to find a lift in any
commutative diagram

8a(4) L ¢ (4.4)
iad(’i) ip
04(B) =D
in C, where p is in Fib(C). From the commutativity of the diagram (4.4)
and the definition of 94(i), it follows that also the diagram

Al —= A0(4)) 2 A(C) (4.5)

iiad iA(ad(i)) lA(I’)
Bl —> A0a(B)) “2- A(D)
in C% commutes. In any of the two directions of Proposition 4.5 we will
apply the induction hypothesis to find a lift h : B|,; — A(C) in (4.5), which
will induce the desired lift 94(B) — C in (4.4). Indeed, assume h is a lift
n (4.5) and let b/ : 93(B) — C be the induced morphism, i.e. A’ = a~1(h),
where the bijection o comes from the adjunction (colim, Ay, ). Note that
by the naturality of o the equations a(h'04(2)) = a(h')i|y, and a(ph’) =
A(p)a(h') hold. Since h = a(h') is a lift, deduce that a(f) = a(h/d4(i))
and «a(g) = a(ph’). This shows that h’ is a lift in (4.4). To find a lift
h in (4.5), note that the category 9d is very small with deg(dd) < n and
that A(p) is in Fib(C??). Hence, using the induction hypothesis to apply
MC4ii) in C%, it’s enough to show that i|,, is in Cof(C%?) N W (C%?),
that is by definition that i,,(i|,) is in Cof(C) and that (i|z;)m is in W(C)
for every object m : e — d of 0d. We calculate i,,(i|;,). Recall that an
object of the subcategory 0m of dd | m is given by a non-identity morphism
k:(m' :e — d) — m in dd, which by definition of dd is a non-identity
morphism k : ¢ — e in D such that mk = m/. Furthermore, a morphism
g:k—1lindmfromk:(m :¢ -d -mtol:(m":e" —d) —m
is a morphism g : m’ — m/ in dd such that lg = k, which is a morphism
g:e¢ — ¢ in D with m”"g=m' and lg = k : ¢ — e. Hence, we can define
a functor j' : e — Om by

(k:e —e)— (k:mk — m) on objects and

(g:k—1)—(g9:7 (k) — j'(1)) on morphisms,
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which is an isomorphism. Using (2.1), one concludes that the induced func-
tor ()| : C9™ — C% is an isomorphism. Since Ag, = (1) 1;: Aom by
Example 2.6, it follows by Remark 2.11 that the composition colim o (-)| !
of colim : C% — C with ()| j 1s the colimit functor C9™ — C. Hence, the

functor 9, : C?? — C is the composition colim o (-) |70 ()9 The compo-
sition jg o jm 0 4" of the functors j' : de — dm, jp, : Om — 0d, jq : dd — D
equals je. It follows by (2.1) that (-)[; (-)|gm ()log = ()]s, and hence
am(A‘ad) = colim(A |y, ) = 0c(A), Om(Bly,) = 0e(B) and Om(ilaq) = Oe(i)-
Note that |y, : Algy — Blgg is just ic in the object m : e — d of dd. It
follows that the diagram

Om(Algg) — (Algg)(m)
l&n(iad) l(ilc’}d)m
O (B |pg) — (Blag)(m)

is just

0c(A) — A(e)

iae(i) lia

Oe(B) — B(e)
by Remark 2.11, since for any ¥ in CP, the natural transformation

Y
51 2 (Y o) lgm — Bam(Y | (m)

is in an object k : m' — m of Om given by Y |5, (k) = Y (ja(k)) = Y (k)

and hence the equation (sz;l@d) | = sY holds. It follows that i, (i|,,) equals

ic(i). Assuming now first, that i is in Cof(CP) N W(CP), one concludes
that for every object m : e — d of dd the morphism iy, (i) is in Cof(C)
and that (i|y;)m = i is in W(C). This shows one direction of Proposition
4.5. For the other direction, assume that iy (i) is in Cof(C) N W(C) for
all objects d’ of D. It follows that for any object m : e — d in dd the
morphism i, (7]y,) is in Cof(C) N W(C). Using the induction hypothesis
to apply Proposition 4.5 one deduces that i|,, is in Cof(C%) N W (C%),
which completes the proof of Proposition 4.5.

In the proof of MC4 and MC5 we will use the following notation. Let
D"~ ! be the full subcategory of D which contains precisely the objects e of
D with deg(e) < n — 1. It is very small and has total degree n — 1. The
inclusion functor j : D"~ — D induces the functor (-)|pn-1 : CP — cP"
which carries weak equivalences [resp. fibrations] in CP to weak equivalences
[resp. fibrations| in CP"'. Note that D" 1 le =D | e for any object e
of D with deg(e) < n. One concludes that for any morphism f of CP the
equation

ie(flpn-1) = ie(f) (4.6)
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holds and in particular that (-)|pn-1 carries cofibrations in CP to cofibra-
tions in CP" .

To show MC4i) [resp. MC4ii)], let a commutative diagram

At x

i, b

B—>v

in CP be given, such that i is in Cof(CP) and p is in Fib(CP). Assuming
that p is in W(CP) [resp. i is in W (CP)], one has to find a lift h: B — X.
Use the induction hypothesis to apply MC4i) [resp. MC4ii)] to find a lift
"1 Blpn-1 — X |pn-1 in the commutative square

f _
A |Dn71 i} X ’anl

i‘anl \L lpDnl
ngnfl
B ’anl —_— Y |Dn71

Now, the strategy is to find for each object d of degree n of D an objectwise
lift B(d) — X(d), such that these lifts and h"~! fit together to give the
desired lift h : B — X. Let the natural transformation

Blgq — Aoa(X(d))

n—1 m
be given by the composition B(e) (e X(e) ) (d) in an object

m : e — d of dd. The induced morphism 9y4(B) — X (d) makes the diagram

a ! (sg)

Ba(A) —L A(d) (4.7)

3d(i)l J/fd

04(B) —— X (d)

commute. Indeed, by the naturality of a, one conludes that a(fsa=1(s7)) =
A(fd)sg‘, which is fyjA(m) in an object m : e — d of dd, and that a of
the composition 94(A) — 04(B) — X(d) equals the composition A[, —
Bly, — A(X(d)), which is X(m)(h" )eic in m : e — d. Finally, the
equation fgA(m) = X (m)(h"!)ci. holds, since h" Yi|pn-1 = f|pn-1 and
since f is a natural transformation by assumption. Let d4(7) — X (d) be the
morphism induced by the commutative diagram (4.7). Using the universal
property of pushouts, one checks that it makes

5a(i) — X (d) (4.8)
1q(1) Pd

B(d) > Y (d)
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commute. Apply MC4i) in C [resp. apply MC4ii) in C and Proposition
4.5] to find a lift hg : B(d) — X(d) in (4.8). One checks that any lift
B(d) — X(d) in (4.8) is also a lift in

A(d) 1% X (d) .

id Pa

B(d) —2*~ Y (d)

The desired lift  : B — X can now be defined as (h"~!), in an object e of D
with deg(e) < n and as the constructed lift hg of (4.8) in an object d of degree
n of D. To show that h is a natural transformation, note that by Remark
4.3 and since h"~! is a natural transformation, one only has to consider
morphisms m : e — d in D, where deg(e) < n, deg(d) = n, and to check that
X (m)(h" 1), = hgB(m) holds. Denoting colim(B|y,) = (9d(B),t), this is
done by the following sequence of equations of compositions of morphisms:

B(e) 2™ B(d) 4 X (d) = B(e) ™ 94(B) — B(d) 4 X (d)
— B(e) s 9,(B) — 64(1) “2 B(d) 4 x(a)
= B(e) ™ 84(B) — da(i) — X(d)
= B(e) 2 0a(B) — X(d)
B(e)

To prove MC5, we have to factor a given morphism f : A — B in CP
in the two ways i) and ii). Use the induction hypothesis to factor f|pn-1 as

n—1 n—1
Alpn-t 25 X" Bl (4.9)

as in MC5i) [resp. MC5ii)]. Let d be an object of degree n of D. Note
that the functor j; : 9d — D carries any object m of dd to an object jg(m)
with deg(js(m)) < n. It therefore induces a functor j/, : 9d — D", which
composed with the inclusion functor j : D" ! — D equals j;. For the
induced functors follows

(Maa = )y 0 () lpr—s (4.10)

by (2.1). Hence, applying the composition colim o (-) | il of colim : CP — C
with (-) |J'fi to (4.9) yields a factorization

D4(A) — colim(X™ 1 1) — Oa(B) (4.11)
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of 94(f). Now define X (d) and hy through the pushout square

9a(A) A(d) . (4.12)

o

colim(X "1 ‘j{i) —— X (d)

Denote colim(X"? ’jfz) = (colim(X" 1 ]j:i),td) and for a non-identity mor-
phism m : e — d define the morphism X(m) : X" !(e) — X(d) as the
composition
tDm .. e

X e) X colim(X™ 1) — X(d). (4.13)
Furthermore, set X(idg) = idx(g. Then these choices, X! and p"!
fit together to give a functor X : D — C and a natural transformation
h: A — X. Indeed, let m : e — d be a non-identity morphism in D with
deg(d) =n. If m’' : ¢/ — e is another non-identity morphism in D, then one
deduces by the naturality of t¢ that (t%),, X" 1 (m’) = (t%);m holds and
therefore X (mm’) = X (m)X(m'). To prove the naturality of h, check that

Ale) (WeX (e)

Ald) - X(d)
commutes by noting that (h"~1), = (h"~! \j:i)m and by using the commuta-
tivity of the diagram (4.12) and of the diagram

B dm
Ale) (X" ];,)(m)

L \L(td)m

d4(A colim(X "1 |j;)

colim(h”’1|j&)

We want to show that h is in Cof(CP) [resp. h is in Cof(CP) N W (CP)].
Note that X |pn-1 = X" ! and h|pn1 = A"~ by definition. In case i),
since by construction h"~! is in Cof(CDn_l), it follows by (4.6) that i.(h)
is in Cof(C) for every object e of D with deg(e) < m. Similarly, in case
ii), since by construction h"~! is in Cof(CDnil) N W(CDnil), it follows
by Proposition 4.5 and by (4.6) that i.(h) is in Cof(C) N W(C) for every
object e of D with deg(e) < n. Let d be an object of degree n of D. By
(4.10), deduce the equations X |5, = X! |j{i’ hlyy = h"1 \j& and therefore
04(X) = colim(Xx"1 |J}§)’ 94(h) = colim(h™~! ’Jé)' Recall that the morphism
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d4(X) — X(d) is induced by the natural transformation s which is given
in an object m : e — d of dd by X(m). Since X(m) is the composition
(4.13), it follows that 94(X) — X (d) is just colim(X"~! |j£z) — X (d). Hence,
d4(h) = X (d) and i4(h) equals id x(q) and in particular is in Cof(C)NW (C).
Thus in case i) we have shown that A is in Cof(CP) and by Proposition
4.5, it follows in case ii) that h is in Cof(CP) N W (CP).

Using ¢" !
that f = gh. Let d be an object of degree n of D. The natural transformation
X|pg — A(B(d)) given by B(m)(¢g" 1) in an object m : e — d of ad,
induces a morphism 9;(X) — B(d) in C. One checks that this morphism
makes the square

, we want to define a natural transformation g : X — B such

94(A) — A(d)

8d(h)i ifd

94(X) — B(d)

commute. This gives an induced morphism g4 from the pushout X(d) to
B(d) such that f; = gghg. The constructed morphisms (gq)q and ¢g"~! fit
together to give a natural transformation ¢ : X — B. Indeed, if m : e — d
is a non-identity morphism in D with deg(d) = n, then B(m)g. = g4 X (m)
holds, as is shown by the following sequence of equations of compositions of
morphisms:

X(e) S Ble) ™2 = x(e) "2 au(x) — B(a)
— x(e) “D 94(X) = X(d) £ B(d)

We have factored f as gh, such that h is in Cof(CP) [resp. Cof(CP)nN
W(CP)]. Thus to prove MC5i) and MCS5ii), it’s enough to factor g as pi
in CP such that respectively, i € Cof(CP), p € W(CP) n Fib(CP) and
i € Cof(CP)NW(CP), p € Fib(CP). Set Z"~ ! := X |pn1 : D" ! — C,
let i"1: X lpn-1 — Z"=1 be the identity morphism and define the natural
transformation p"~! := ¢! .zl - B|pn-1. Let d be any object of
degree n of D. Using MC5 in C, factor g4 as

X(d) 4 z(d) 24 B(d),

as in MC5i) [resp. MC5ii)]. For any non-identity morphism m : e — d in
D set Z(m) := 14X (m) : Z(e) — Z(d) and let the morphism Z(id;) in C be
given by idz(g). Then these choices and Z"~1 fit together to give a functor
Z :D — C. Indeed, if m’ : € — e, m : e — d are non-identity morphisms
in D such that deg(d) = n, then

Z(mm') = igX (mm') = ig X (m)X(m') = Z(m)Z(m').
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The constructed morphisms (ig)g and "' fit together to give a natural
transformation i : X — Z. Indeed, given a non-identity morphism m : e — d
in D with deg(d) = n, one has i, = idy() and thus Z(m)i. = iz X (m).
The morphisms (pg)q and p"~! yield a natural transformation p : Z — B.
Indeed, for a non-identity morphism m : e — d in D with deg(d) = n holds

B(m)pe = B(m)ge = gaX (m) = paiaX (m) = paZ(m).

Note that for an object d of arbitrary degree of D, the functor X |,, equals
Z|pq and that iy, = idx), . Hence a pushout of 94(Z) — 0y(X) — X(d) is
given by X (d) and the morphism X (d) — Z(d) induced by the commutative
square

Og(X) — X (d)

s

0u(Z) — Z(d)

is just ¢4. By Lemma 3.8, it follows that i4(7) is a cofibration [resp. weak
equivalence] if and only if i4 is a cofibration [resp. weak equivalence].
Furthermore, note that if deg(d) < n, then iy = idy) and hence is in
Cof(C)NnW(C).

In case i), since by construction for any object d of degree n of D the
morphism i4 is in Cof(C), it follows that i is in Cof(CP). One checks
that by construction p is in Fib(CP) N W (CP). Similarly, in case ii), the
morphism i4 is in Cof(C) N W(C) for every object d of degree n of D. By
Proposition 4.5, it follows that i € Cof(CP) N W (CP). One checks that
p € Fib(CP). This completes the proof of MC5 and hence the induction
step.

We have shown Theorem 2. O

4.2 The homotopy colimit functor

Let D be a very small category. Let CP be the model category of Theorem
2. Recall that by Remark 2.10 the functor A : C — CP is right adjoint to
colim : CP — C and note that it carries morphisms of Fib(C) and mor-
phisms of Fib(C) NW(C) to Fib(CP) and Fib(CP) N W (CP) respectively.
By Theorem 1 we are finally in position to define homotopy colimits or more
precisely, the homotopy colimit functor.

Definition 4.8. The homotopy colimit functor is the total left derived func-
tor Leolim : Ho(CP) — Ho(C) for the functor colim : CP — C.
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