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1 Introduction

In [1], Dwyer and Spalinski construct the so-called homotopy pushout func-
tor, motivated by the following observation. In the category Top of topo-
logical spaces, one can construct the n-dimensional sphere Sn by glueing
together two n-disks Dn along their boundaries Sn−1, i.e. by the pushout
of

Dn Sn−1ioo i // Dn ,

where i denotes the inclusion. Let ∗ be the one point space. Observe, that
one has a commutative diagram

Dn

��

Sn−1ioo i //

idSn−1

��

Dn

��
∗ Sn−1oo // ∗

,

where all vertical maps are homotopy equivalences, but the pushout of the
bottom row is the one-point space ∗ and therefore not homotopy equivalent
to Sn. One probably prefers the homotopy type of Sn. Having this idea
of calculating the prefered homotopy type in mind, they equip the functor
category CD, where C is a model category and D = a← b→ c the category
consisting out of three objects a, b, c and two non-identity morphisms as
indicated, with a suitable model category structure. This enables them to
construct out of the pushout functor colim : CD → C its so-called total
left derived functor Lcolim : Ho(CD) → Ho(C) between the corresponding
homotopy categories, which defines the homotopy pushout functor.

Dwyer and Spalinski further indicate how to generalize this construction
to define the so-called homotopy colimit functor as the total left derived
functor for the colimit functor colim : CD → C in the case, where D is a
so-called very small category. The goal of this paper is to give a proof of this
generalization, since in [1] it is omitted to the reader. The main work lies in
proving our Theorem 2, which equips CD with the suitable model category
structure. For the existence of the total left derived functor for colim, we
will use a result from [1].

The paper contains four sections. In section 2 and 3 we recall some
definitions and results related to colimits and model categories, respectively.
The introduced terminology will be used in section 4, where we construct
the homotopy colimit functor.

I am grateful to my supervisor, Jesper Grodal, and the participants of
the student seminar TopTopics for all the helpful discussions.
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2 Colimits

In this section let C be a category, let D be a small category and F : D→ C
a functor. Mainly to fix notations, we recall some definitions and results
related to colimits.

Definition 2.1. The functor category CD, also called the category of di-
agrams in C with the shape of D, is the category, where the objects are
functors D→ C and the morphisms are natural transformations.

Example 2.2. If D is the category a ← b → c with three objects a, b, c
and two non-identity morphisms a← b, b→ c, then an object X of Ca←b→c

is just a diagram X(a)← X(b)→ X(c) in C and a morphism from X to Y
in Ca←b→c is given by a triple (sa, sb, sc) of morphisms in C making

X(a)

sa

��

X(b)

sb

��

oo // X(c)

sc

��
Y (a) Y (b)oo // Y (c)

commute.

Example 2.3. If D is the category a→ b with two objects a, b and one non-
identity morphism a→ b, then an object of Ca→b is a morphism f : X(a)→
X(b) in C and a morphism from f : X(a) → X(b) to g : Y (a) → Y (b) in
Ca→b is just a pair of morphisms (sa, sb) in C making

X(a)
f //

sa

��

X(b)

sb

��
Y (a)

g // Y (b)

commute. We call Ca→b the category of morphisms in C and denote it by
Mor(C).

Example 2.4. If D is the category 1 consisting only out of one object 1
and one morphism, then CD is isomorphic to C via the functor given by
X 7→ X(1) on objects and f 7→ f1 on morphisms.

Definition 2.5. The constant diagram functor ∆ = ∆D : C → CD is the
functor, which sends an object C of C to the functor ∆(C) given by

d 7→ C on objects and g 7→ idC on morphisms,

and which sends a morphism f of C to the natural transformation ∆(f)
given by ∆(f)d = f in an object d of D.
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Note that a functor j : D′ → D from a small category D′ to D induces
a functor (·) |D′,j = (·) |D′ = (·) |j : CD → CD′ , which sends an object X of
CD to X◦j and a morphism f : X → Y in CD to the natural transformation
f |D′ : X |D′ → Y |D′ given by fj(d′) in an object d′ of D′. Furthermore, if
j′ : D′′ → D′ is a functor from a small category D′′ to D′, then

(·) |j◦j′ = (·) |j′ ◦ (·) |j . (2.1)

Example 2.6. The functor D → 1 induces the functor (·) |1 : CD → CD,
which composed with the isomorphism C ∼= C1 yields ∆D. By (2.1), it
follows that ∆D′ = (·) |j ∆D for any functor j from a small category D′ to
D.

Definition 2.7. A colimit C = (C, t) for F : D → C is an object C of
C together with a natural transformation t : F → ∆(C) such that for any
object X of C and any natural transformation s : F → ∆(X) there exists a
unique morphism s′ : C → X in C satisfying ∆(s′)t = s.

Example 2.8. If D = a← b→ c, then a colimit for an object X of Ca←b→c

is just a pushout of the diagram X(a)← X(b)→ X(c).

Remark 2.9. If a colimit for F exists, we will sometimes speak of the
colimit for F for the following reason. If (C, t) and (C ′, t′) are colimits for
F , then the unique morphism h : C → C ′ in C such that ∆(h)t = t′ holds,
is an isomorphism, which will be called the canonical isomorphism. Given
furthermore an object X of C and a natural transformation s : F → ∆(X),
let s′′ : C ′ → X be the unique morphism in C satisfying ∆(s′′)t′ = s. Then
the unique morphism s′ : C → X satisfying ∆(s′)t = s is given by s′′h.

Remark 2.10. Assume that for any functor G : D → C the colimit
(colim(G), tG) exists. Then the chosen colimits yield a functor

colim : CD → C,

called colimit functor, which maps a morphism s : G → G′ in CD to the
unique morphism s′ : colim(G) → colim(G′) in C such that ∆(s′)tG =
tG′s. Furthermore, we have an adjunction (colim,∆, α), where the natural
equivalence α is given in an object (G,X) of (CD)op ×C by the bijection

α = αG,X : HomC(colim(G), X)→ HomCD(G,∆(X)),
s′ 7→ ∆(s′)tG.

(2.2)

In particular, any two colimit functors CD → C are naturally isomorphic
and therefore, we will sometimes speak of the colimit functor.
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Remark 2.11. Let D′ be a small category such that there exists an isomor-
phism J : CD → CD′ with J ◦ ∆D = ∆D′ . Assume there exists a colimit
functor colim : CD′ → C. Then the composition colim ◦ J : CD → C
is a colimit functor. Furthermore, for any object X of C and any natu-
ral transformation s : F → ∆D(X) the induced morphism from the col-
imit of F to X is given by the morphism colim(J(F )) → X induced by
J(s) : J(F )→ ∆D′(X).

In the definition of a model category we will use both, the notion of
colimit and limit.

Definition 2.12. A limit L = (L, t) for F : D → C is an object L of C
together with a natural transformation t : ∆(L) → F such that for any
object X of C and any natural transformation s : ∆(X)→ F there exists a
unique morphism s′ : X → L in C satisfying t∆(s′) = s.

The following result is proved on page 115 in [3].

Proposition 2.13. Let D′ be a small category and G : D′ → CD a functor.
Denote by evd : CD → C the evaluation functor in the object d of D. Assume
that for all objects d of D a limit for the composition evd◦G : D′ → C exists.
Then there exists a limit for G.

The notion of colimit is dual to the notion of limit:

Remark 2.14. A colimit for F is the same as a limit for the dual functor
F op : Dop → Cop. More precisely, sending a colimit (C, t) for F to (C, t′),
where the natural transformation t′ : ∆Dop(C) → F op is given by (td)op in
an object d of Dop, defines a one-to-one correspondence between colimits
for F and limits for F op.

We conclude this section with a result about pushouts.

Proposition 2.15. Assume that

X
i //

j

��

W

j′

��
Y

i′ // P

and Y
i′ //

k
��

P

k′

��
Z

i′′ // Q

are pushout squares in C. Then so is

X
i //

kj

��

W

k′j′

��
Z

i′′ // Q

.
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Proof. From the commutativity of the first two squares one concludes that
k′j′i = i′′kj, thus the third one commutes too. Given now any commutative
square

X
i //

kj
��

W

r

��
Z

s // V

,

one has to show, that there is a unique morphism t : Q → V such that
tk′j′ = r and ti′′ = s. Using that P is a pushout, let t′ : P → V be the
unique morphism such that t′j′ = r and t′i′ = sk. Using that also Q is a
pushout, define t : Q → V to be the unique morphism such that tk′ = t′

and ti′′ = s. This gives the desired morphism t. To show the uniqueness, let
t′′ : Q → V be a morphism with t′′k′j′ = r and t′′i′′ = s. By the universal
property of P , one concludes t′′k′ = t′. Hence, by the universal property of
Q follows t′′ = t.

3 Model categories and homotopy categories

3.1 Model categories

The following terms will be used in the definition of a model category.

Definition 3.1. A morphism f : X → X ′ of a category C is called a retract
of a morphism g : Y → Y ′ of C, if there exists a commutative diagram

X
i //

f
��

Y
r //

g

��

X

f
��

X ′
i′ // Y ′

r′ // X ′

,

such that ri = idX and r′i′ = idX′ .

Definition 3.2. Let C be a category.

i) Given a commutative diagram in C of the form

A
f //

i
��

X

p

��
B

g // Y

, (3.1)

a lift in the diagram is a morphism h : B → X such that hi = f and
ph = g.

ii) Let i : A → B, p : X → Y be morphisms in C. We say that i has the
left lifting property (LLP) with respect to p and that p has the right
lifting property (RLP) with respect to i, if there exists a lift in any
commutative diagram of the form (3.1).
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Now we are ready for the definition of a model category.

Definition 3.3. A model category is a category C together with three classes
of morphisms of C, the class of weak equivalences W = W (C), of fibrations
Fib = Fib(C) and of cofibrations Cof = Cof(C), each of which is closed
under composition and contains all identity morphisms of C, such that the
following five conditions hold:

MC1: Every functor from a finite category to C has a limit and a
colimit.

MC2: If f and g are morphisms of C such that gf is defined and if two
out of the three morphisms f , g and gf are weak equivalences, then so is
the third.

MC3: If f is a retract of a morphism g of C and g is a weak equivalence,
a fibration or a cofibration, then so is f .

MC4:

i) Every cofibration has the LLP with respect to all p ∈W ∩ Fib.

ii) Every fibration has the RLP with respect to all i ∈W ∩ Cof .

MC5: Any morphism f of C can be factored as

i) f = pi, where i ∈ Cof , p ∈W ∩ Fib, and as

ii) f = pi, where i ∈ Cof ∩W , p ∈ Fib.

By a model category structure for a category C we mean a choice of
three classes of morphisms of C such that C together with these classes is a
model category. Let C be a model category until the end of this subsection.
The following two remarks follow immediately from the definition of a model
category.

Remark 3.4. Since any isomorphism f : X → Y of C is a retract of idY and
since idY ∈W ∩Fib∩Cof , it follows by MC3 that also f ∈W ∩Fib∩Cof .

Remark 3.5. The opposite category Cop is a model category by defining a
morphism fop in Cop to be in W (Cop) if f is in W (C), to be in Fib(Cop) if
f is in Cof(C) and to be in Cof(Cop) if f is in Fib(C).

The proofs of the following two propositions can be found on page 87
and 88 of [1].

Proposition 3.6. A morphism i of C is

i) in Cof , if and only if it has the LLP with respect to all p ∈W ∩ Fib,

ii) in W ∩ Cof , if and only if it has the LLP with respect to all p ∈ Fib.
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Proposition 3.7. Let X
j //

i
��

Z

i′

��
Y

j′ // P

be a pushout square in C.

i) If i is in Cof(C), then so is i′.

ii) If i is in Cof(C) ∩W (C), then so is i′.

The next two results are concerned with cofibrations and pushouts and
will be used in the proof of Theorem 2.

Lemma 3.8. Given a commutative square in C of the form

A //

��

B

��
C // D

. (3.2)

Let P , Q be pushouts of C ← A → B and let iP : P → D, iQ : Q → D
be the morphisms induced by (3.2). Then iP is a cofibration [resp. weak
equivalence] if and only if iQ is a cofibration [resp. weak equivalence].

Proof. Let j : P → Q be the canonical isomorphism, then iP = iQj by
Remark 2.9. Now, since Cof(C) [resp. W (C)] is closed under composition,
Lemma 3.8 follows from Remark 3.4.

Proposition 3.9. Given a commutative cube in C of the form

A //

��

��?
??

??
??

B

��

iB

��?
??

??
??

A′ //

��

B′

��

C //

��?
??

??
??

D
iD

��?
??

??
??

C ′ // D′

, (3.3)

where the back face and the front face are pushout squares. Let P denote the
pushout of the diagram C ← A → A′ and let iP : P → C ′ be the morphism
induced by the left-hand face of (3.3). If iB and iP are cofibrations, then so
is iD.

Proof. By Proposition 3.6i), it’s enough to find a lift in any given commu-
tative diagram

D //

iD
��

X

p

��
D′ // Y

,
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where p is in W ∩Fib. Since iB is a cofibration, there exists a lift hB′ : B′ →
X in

B //

iB
��

D // X

p

��
B′ // D′ // Y

.

Defining hA′ as the composition A′ → B′
hB′→ X yields a commutative dia-

gram
A //

��

A′

hA′
��

C // D // X

and hence an induced morphism P → X. This morphism makes the diagram

P //

iP
��

X

p

��
C ′ // D′ // Y

(3.4)

commute, as one checks using the universal property of the pushout P . Since
iP is a cofibration by assumption, there exists a lift hC′ : C ′ → X in (3.4).
It makes the square

A′ //

��

B′

hB′

��
C ′

hC′ // X

commute. This square induces a morphism h from the pushout D′ to X.
One checks that h is the desired lift, using the universal property of the
pushouts D and D′.

3.2 The homotopy category of a model category

Definition 3.10. Let C be a category and W a class of morphisms of C. A
localization of C with respect to W is a category D together with a functor
F : C→ D such that the following two conditions hold:

i) F (f) is an isomorphism for every f in W .

ii) If G is a functor from C to a category D′, such that G(f) is an isomor-
phism for every f in W , then there exists a unique functor G′ : D→ D′

with G′F = G.

Remark 3.11. Let C be a category and W a class of morphisms of C.
If (D, F ) and (D′, F ′) are localizations of C with respect to W , then the
unique functor G′ such that G′F = F ′ is an isomorphism. Therefore, if a
localization exists, we will sometimes speak of the localization.

8



Let C be a model category until the end of this subsection. The lo-
calization (Ho(C), γC) of C with respect to the class of weak equivalences
W exists by Theorem 6.2 of [1]. This fact makes the following definition
possible.

Definition 3.12. The homotopy category of the model category C is the
localization of C with respect to W .

Until the end of this subsection let F be a functor from C to another
model category D . The homotopy colimit functor will be defined as a total
left derived functor, which is defined as follows.

Definition 3.13. A total left derived functor LF for the functor F is a
functor LF : Ho(C) → Ho(D) together with a natural transformation t :
(LF )γC → γDF such that for any pair (G, s) of a functor G : Ho(C) →
Ho(D) and a natural transformation s : GγC → γDF , there exists a unique
natural transformation s′ : G→ LF satisfying

t ◦ s′ |γC = s,

where the natural transformation s′ |γC : GγC → (LF )γC is given by s′γC(X)
in an object X of C.

Remark 3.14. Assume that (LF, t) and (L′F, t′) are total left derived func-
tors for F . Then the unique natural transformation s′ : L′F → LF such
that t ◦ s′ |γC = t′ is a natural equivalence. Therefore, if a total left derived
functor for F exists, we will sometimes speak of the left derived functor.

The proof of the following theorem is given on page 114 in [1].

Theorem 1. Assume G : D → C is a functor, which is right adjoint to
F and which carries morphisms of Fib(D) to Fib(C) and morphisms of
Fib(D) ∩ W (D) to Fib(C) ∩ W (C). Then the total left derived functor
LF : Ho(C)→ Ho(D) for F exists.

4 Homotopy colimits

In this section let C be a model category. We want to define the homotopy
colimit functor as the total left derived functor for the functor colim : CD →
C. Therefore, we have to equip the functor category CD with a suitable
model category structure, which can be done under the assumption that D
is as in the next definition.

Definition 4.1. A non-empty, finite category D is said to be very small
if there exists an integer N ≥ 1 such that for any composition fN ...f2f1 of
morphisms (fi)1≤i≤N in D, at least one morphism fi is an identity morphism.
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More geometrically, note that a non-empty, finite category D is very
small if and only if it has no cycles, i.e. given any integer n ≥ 1 and
any composition fn...f2f1 : d → d of morphisms (fi)1≤i≤n in D, then each
morphism fi is the identity morphism idd. The advantage of a very small
category is that it enables us to do induction involving the degree, which is
defined as follows.

Definition 4.2. Let D be a very small category and d any object of D.
The degree deg(d) of d is defined by

deg(d) := max({0} ∪ {n ≥ 1; there exists a composition fn...f2f1 : e→ d of
morphisms (fi 6= idd)1≤i≤n in D}),

the total degree deg(D) of D by deg(D) := max({deg(d); d an object of D}).

Remark 4.3. Let e, d be objects of a very small category D and assume,
there exists a non-identity morphism e→ d. Then deg(e) < deg(d).

4.1 A model category structure for CD

Let D be a very small category. The functor category CD can be given a
model category structure in the following way.

Let d be an object of D. Recall that an object m of the over category
D ↓ d is given by a morphism m : e → d in D and that a morphism k in
D ↓ d from m : e → d to m′ : e′ → d is a morphism k : e → e′ in D such
that m′k = m. Denote by ∂d the full subcategory of D ↓ d which contains
all objects of D ↓ d except idd. Let the functor jd : ∂d → D be given by
(m : e → d) 7→ e on objects and k 7→ k on morphisms. Composing the
induced functor (·) |∂d : CD → C∂d with colim : C∂d → C gives a functor

∂d := colim ◦ (·) |∂d : CD → C.

Let X be an object of CD. The natural transformation sXd : X |∂d →
∆(X(d)) given in an object m : e→ d of ∂d by X(m), induces the morphism

α−1(sXd ) : ∂d(X) −→ X(d),

where the bijection α comes from the adjunction (colim,∆∂d, α). This in-
duced morphism is natural. Indeed, given any morphism f : X → Y in CD,
we show that the diagram

∂d(X) //

∂d(f)
��

X(d)

fd

��
∂d(Y ) // Y (d)

(4.1)
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commutes or equivalently, that

α(α−1(sYd )∂d(f)) = α(fdα−1(sXd )) (4.2)

holds. Using the naturality of α, one concludes that the left-hand side of
(4.2) equals sYd ◦ f |∂d, which is Y (m) ◦ fe in an object m : e→ d, and that
the right-hand side equals ∆(fd) ◦ sXd , which is fd ◦ X(m) in m : e → d.
Finally, the equation Y (m) ◦ fe = fd ◦ X(m) holds, since f is a natural
transformation by assumption. Define the functor δd as the composition

δd : Mor(CD) −→ Ca←b→c colim−→ C,

where the first functor is given by

(f : X → Y ) 7→ (∂d(Y )
∂d(f)←− ∂d(X) −→ X(d)) on objects,

(s, s′) 7→ (∂d(s′), ∂d(s), sd) on morphisms.

Given any morphism f : X → Y in CD, consider that δd(f) is a pushout
by definition and that therefore the commutative square (4.1) induces a
morphism

id(f) : δd(f)→ Y (d),

which is natural. Indeed, given any morphism (s, s′) in Mor(CD) from
f : X → X ′ to g : Y → Y ′, one checks that

δd(f)
id(f) //

δd(s,s′)
��

X ′(d)

s′d
��

δd(g)
id(g) // Y ′(d)

commutes using the universal property of pushouts, the equation s′dfd = gdsd
which holds by assumption and the naturality of the morphism ∂d(X ′) →
X ′(d). Using the above constructed morphisms (id(f))d for a morphism f
in CD, we give CD a model category structure.

Theorem 2. Define a morphism f of CD to be in

i) W (CD), if fd is in W (C) for all objects d of D,

ii) Fib(CD), if fd is in Fib(C) for all objects d of D, and to be in

iii) Cof(CD), if id(f) is in Cof(C) for all objects d of D.

Then CD together with these three classes is a model category.

Remark 4.4. One can check directly, that the property of a morphism f in
CD to be in Cof(CD) doesn’t depend on the choices of colimits involved in
the construction of the morphisms (id(f))d. However, this fact follows from
Proposition 3.6i) after having proved Theorem 2.
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Proof of Theorem 2. Since W (C) and Fib(C) are closed under composition
and contain all identity morphisms, it follows immediately that W (CD) and
Fib(CD) share the same properties.

To show that Cof(CD) is closed under composition, let two morphisms
f : X → Y , g : Y → Z in Cof(CD) be given. We have to prove, that id(gf)
is in Cof(C) for all objects d of D. By Lemma 3.8, it’s enough to show that
for any pushout Q of ∂d(Z)← ∂d(X)→ X(d), the morphism i : Q→ Z(d)
induced by the diagram

∂d(X) //

∂(g)∂(f)=∂(gf)

��

X(d)

(gf)d=gdfd

��
∂d(Z) // Z(d)

is a cofibration in C. Using Proposition 2.15, define such a Q as the pushout
of ∂d(Z) ← ∂d(Y ) → δd(f). To show that the induced morphism i : Q →
Z(d) is in Cof(C), let Q→ δd(g) be the unique morphism such that

∂d(Y ) //

��

=

��?
??

??
??

δd(f)

��

id(f)

��?
??

??
??

∂d(Y ) //

��

Y (d)

��

∂d(Z) //

=

��?
??

??
??

Q

��?
??

??
??

∂d(Z) // δd(g)

(4.3)

commutes. The pushout P of ∂d(Z) ← ∂d(Y ) =→ ∂d(Y ) is just ∂d(Z) and
the morphism P → ∂d(Z) induced by the left-hand face of (4.3) is id∂d(Z)

and therefore in Cof(C). Applying Proposition 3.9, we get that Q→ δd(g)
is in Cof(C). Finally, using the universal property of the pushout Q of
∂d(Z)← ∂d(X)→ X(d), one checks that i equals the composition

Q→ δd(g)
id(g)→ Z(d)

and therefore is in Cof(C) as a composition of two cofibrations in C.
To prove that Cof(CD) contains all identity morphisms of CD, one has

to show the following claim. For any object d of D and any object X of
CD, the morphism id(idX) : δd(idX) → X(d) is a cofibration in C. Since
∂d(idX) = id∂d(X), it follows that X(d) is a pushout of ∂d(X) ← ∂d(X) →
X(d). The claim is now a consequence of Lemma 3.8.
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4.1.1 Proof of MC1-MC3

By MC1 in C and Proposition 2.13, it follows that any functor F from a
finite category to CD has a limit. We want to show that F has a colimit
or equivalently by Remark 2.14 that F op has a limit. Note that (CD)op is
isomorphic to (Cop)D

op
and conclude from Proposition 2.13 and MC1 in

Cop, that F op has a limit. Hence, MC1 holds in CD.
From MC2 for C, we will deduce MC2 for CD. Let f , g be morphisms

in CD such that gf is defined and such that two of the three morphisms
f , g, gf are in W (CD). Then for all objects d of D, two of the three
morphisms fd, gd, gdfd are in W (C). Thus by MC2 for C and the equality
gdfd = (gf)d, all three morphisms fd, gd, (gf)d are in W (C) and hence f ,
g, gf are in W (CD).

To show MC3, let f : X → X ′, g : Y → Y ′ be morphisms in CD such
that f is a retract of g, i.e. there exists a commutative diagram

X
i //

f
��

Y
r //

g

��

X

f
��

X ′
i′ // Y ′

r′ // X ′

,

such that ri = idX and r′i′ = idX′ . Note that therefore fd is a retract of gd
for all objects d of D. Thus the part of MC3 dealing with fibrations [resp.
weak equivalences] is a direct consequence of MC3 for C. Assume that g is
a cofibration, i.e. for all objects d of D the morphism id(g) is in Cof(C).
We will deduce that f is a cofibration by showing that id(f) is a retract of
id(g) and hence is in Cof(C) by MC3 for C. Consider the diagram

δd(f)
δd(i,i′) //

id(f)
��

δd(g)
δd(r,r′)//

id(g)
��

δd(f)

id(f)
��

X ′(d)
i′d // Y ′(d)

r′d // X ′(d)

.

The morphism id(f) is natural as already shown, so the diagram commutes.
By functoriality and since ri = idX , r′i′ = idX′ , it follows that the com-
position in the top row is the identity morphism. The equation r′i′ = idX′
implies that the composition in the bottom row equals idX′(d). Hence, id(f)
is a retract of id(g).

4.1.2 Proof of MC4 and MC5

We will use induction over the total degree deg(D) of D to prove MC4,
MC5 and the following proposition.

Proposition 4.5. Let i : A → B be a morphism in CD. Then i is in
Cof(CD)∩W (CD), if and only if id(i) is in Cof(C)∩W (C) for all objects
d of D.
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Remark 4.6. Note that to prove any direction of Proposition 4.5, it’s
enough to show that ∂d(i) is in Cof(C) ∩ W (C) for all objects d of D
by Proposition 3.7ii) and MC2 in C.

For the proof of the initial case deg(D) = 0, we will use the following
lemma.

Lemma 4.7. Assume deg(D) = 0. Let d be any object of D and i : A→ B
a morphism in CD. Then ∂d(i) is an isomorphism in C. Furthermore, the
morphism id(i) is in Cof(C), if and only if id is in Cof(C).

Proof of Lemma 4.7. Since deg(D) = 0 implies deg(d) = 0, it follows by
Remark 4.3 that ∂d is the empty category. Hence, the colimits ∂d(A) and
∂d(B) are initial objects and ∂d(i) is an isomorphism. A pushout of ∂d(B)←
∂d(A)→ A(d) is given by A(d) and the morphism A(d)→ B(d) induced by
the commutative square

∂d(A) //

��

A(d)

id
��

∂d(B) // B(d)

is id. Hence, the second statement of Lemma 4.7 follows from Lemma 3.8.

We show Proposition 4.5, MC4 and MC5 in the initial case. By Remark
4.6, Lemma 4.7 implies Proposition 4.5, since any isomorphism in C is in
Cof(C) ∩W (C) by Remark 3.4.

To prove MC4, let a commutative diagram

A
f //

i
��

X

p

��
B

g // Y

in CD be given, such that i is in Cof(CD) and p is in Fib(CD). We have
to find a lift h : B → X, whenever p is in W (CD) [resp. i is in W (CD)]. By
Lemma 4.7, it follows that id is in Cof(C) for all objects d of D. If p is in
W (CD) [resp. if i is in W (CD)], then applying MC4i) [resp. MC4ii)] in
C yields an objectwise lift hd : B(d) → X(d). These objectwise lifts (hd)d
fit together to give the desired lift h : B → X.

To prove MC5i) [resp. MC5ii)], let f : A → B be a morphism in
CD. Using MC5i) [resp. MC5ii)] in C, factor for every object d of D the
morphism fd as fd = pdid, where id is in Cof(C) [resp. Cof(C) ∩W (C)]
and pd is in W (C) ∩ Fib(C) [resp. Fib(C)]. By construction and Lemma
4.7, the morphisms (id)d fit together to give a morphism i in Cof(CD)

14



[resp. Cof(CD) ∩W (CD)] and the morphisms (pd)d define a morphism p
in W (CD)∩Fib(CD) [resp. Fib(CD)]. The factorization f = pi shows that
MC5i) [resp. MC5ii)] holds.

To show the induction step, assume that n := deg(D) ≥ 1. We prove
Proposition 4.5. Let a morphism i : A → B in CD and any object d of D
be given. For the proof of any direction, it’s enough to show that ∂d(i) is in
Cof(C) ∩W (C) or equivalently by Proposition 3.6ii), to find a lift in any
commutative diagram

∂d(A)
f //

∂d(i)
��

C

p

��
∂d(B)

g // D

(4.4)

in C, where p is in Fib(C). From the commutativity of the diagram (4.4)
and the definition of ∂d(i), it follows that also the diagram

A |∂d //

i|∂d

��

∆(∂d(A))
∆(f) //

∆(∂d(i))

��

∆(C)

∆(p)

��
B |∂d // ∆(∂d(B))

∆(g) // ∆(D)

(4.5)

in C∂d commutes. In any of the two directions of Proposition 4.5 we will
apply the induction hypothesis to find a lift h : B |∂d → ∆(C) in (4.5), which
will induce the desired lift ∂d(B) → C in (4.4). Indeed, assume h is a lift
in (4.5) and let h′ : ∂d(B)→ C be the induced morphism, i.e. h′ = α−1(h),
where the bijection α comes from the adjunction (colim,∆∂d, α). Note that
by the naturality of α the equations α(h′∂d(i)) = α(h′)i |∂d and α(ph′) =
∆(p)α(h′) hold. Since h = α(h′) is a lift, deduce that α(f) = α(h′∂d(i))
and α(g) = α(ph′). This shows that h′ is a lift in (4.4). To find a lift
h in (4.5), note that the category ∂d is very small with deg(∂d) < n and
that ∆(p) is in Fib(C∂d). Hence, using the induction hypothesis to apply
MC4ii) in C∂d, it’s enough to show that i |∂d is in Cof(C∂d) ∩W (C∂d),
that is by definition that im(i |∂d) is in Cof(C) and that (i |∂d)m is in W (C)
for every object m : e → d of ∂d. We calculate im(i |∂d). Recall that an
object of the subcategory ∂m of ∂d↓m is given by a non-identity morphism
k : (m′ : e′ → d) → m in ∂d, which by definition of ∂d is a non-identity
morphism k : e′ → e in D such that mk = m′. Furthermore, a morphism
g : k → l in ∂m from k : (m′ : e′ → d) → m to l : (m′′ : e′′ → d) → m
is a morphism g : m′ → m′′ in ∂d such that lg = k, which is a morphism
g : e′ → e′′ in D with m′′g = m′ and lg = k : e′ → e. Hence, we can define
a functor j′ : ∂e→ ∂m by

(k : e′ → e) 7→ (k : mk → m) on objects and
(g : k → l) 7→ (g : j′(k)→ j′(l)) on morphisms,
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which is an isomorphism. Using (2.1), one concludes that the induced func-
tor (·) |j′ : C∂m → C∂e is an isomorphism. Since ∆∂e = (·) |j′ ∆∂m by
Example 2.6, it follows by Remark 2.11 that the composition colim ◦ (·) |j′
of colim : C∂e → C with (·) |j′ is the colimit functor C∂m → C. Hence, the
functor ∂m : C∂d → C is the composition colim ◦ (·) |j′ ◦ (·) |∂m. The compo-
sition jd ◦ jm ◦ j′ of the functors j′ : ∂e→ ∂m, jm : ∂m→ ∂d, jd : ∂d→ D
equals je. It follows by (2.1) that (·) |j′ (·) |∂m (·) |∂d = (·) |∂e and hence
∂m(A |∂d

) = colim(A |∂e
) = ∂e(A), ∂m(B |∂d

) = ∂e(B) and ∂m(i |∂d) = ∂e(i).
Note that i |∂d : A |∂d → B |∂d is just ie in the object m : e → d of ∂d. It
follows that the diagram

∂m(A |∂d) //

∂m(i|∂d)

��

(A |∂d)(m)

(i|∂d)m

��
∂m(B |∂d) // (B |∂d)(m)

is just
∂e(A) //

∂e(i)
��

A(e)

ie
��

∂e(B) // B(e)

by Remark 2.11, since for any Y in CD, the natural transformation

s
Y |∂d
m : (Y |∂d) |∂m → ∆∂m(Y |∂d (m))

is in an object k : m′ → m of ∂m given by Y |∂d (k) = Y (jd(k)) = Y (k)
and hence the equation (sY |∂d

m ) |j′ = sYe holds. It follows that im(i |∂d) equals
ie(i). Assuming now first, that i is in Cof(CD) ∩W (CD), one concludes
that for every object m : e → d of ∂d the morphism im(i |∂d) is in Cof(C)
and that (i |∂d)m = ie is in W (C). This shows one direction of Proposition
4.5. For the other direction, assume that id′(i) is in Cof(C) ∩W (C) for
all objects d′ of D. It follows that for any object m : e → d in ∂d the
morphism im(i |∂d) is in Cof(C) ∩W (C). Using the induction hypothesis
to apply Proposition 4.5 one deduces that i |∂d is in Cof(C∂d) ∩W (C∂d),
which completes the proof of Proposition 4.5.

In the proof of MC4 and MC5 we will use the following notation. Let
Dn−1 be the full subcategory of D which contains precisely the objects e of
D with deg(e) ≤ n − 1. It is very small and has total degree n − 1. The
inclusion functor j : Dn−1 → D induces the functor (·) |Dn−1 : CD → CDn−1

,
which carries weak equivalences [resp. fibrations] in CD to weak equivalences
[resp. fibrations] in CDn−1

. Note that Dn−1 ↓ e = D ↓ e for any object e
of D with deg(e) < n. One concludes that for any morphism f of CD the
equation

ie(f |Dn−1) = ie(f) (4.6)
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holds and in particular that (·) |Dn−1 carries cofibrations in CD to cofibra-
tions in CDn−1

.
To show MC4i) [resp. MC4ii)], let a commutative diagram

A
f //

i
��

X

p

��
B

g // Y

in CD be given, such that i is in Cof(CD) and p is in Fib(CD). Assuming
that p is in W (CD) [resp. i is in W (CD)], one has to find a lift h : B → X.
Use the induction hypothesis to apply MC4i) [resp. MC4ii)] to find a lift
hn−1 : B |Dn−1 → X |Dn−1 in the commutative square

A |Dn−1

f|Dn−1//

i|Dn−1

��

X |Dn−1

p|Dn−1

��
B |Dn−1

g|Dn−1// Y |Dn−1

.

Now, the strategy is to find for each object d of degree n of D an objectwise
lift B(d) → X(d), such that these lifts and hn−1 fit together to give the
desired lift h : B → X. Let the natural transformation

B |∂d → ∆∂d(X(d))

be given by the composition B(e)
(hn−1)e−→ X(e)

X(m)−→ X(d) in an object
m : e→ d of ∂d. The induced morphism ∂d(B)→ X(d) makes the diagram

∂d(A)
α−1(sA

d )
//

∂d(i)

��

A(d)

fd

��
∂d(B) // X(d)

(4.7)

commute. Indeed, by the naturality of α, one conludes that α(fdα−1(sAd )) =
∆(fd)sAd , which is fdA(m) in an object m : e → d of ∂d, and that α of
the composition ∂d(A) → ∂d(B) → X(d) equals the composition A |∂d

→
B |∂d

→ ∆(X(d)), which is X(m)(hn−1)eie in m : e → d. Finally, the
equation fdA(m) = X(m)(hn−1)eie holds, since hn−1i |Dn−1 = f |Dn−1 and
since f is a natural transformation by assumption. Let δd(i)→ X(d) be the
morphism induced by the commutative diagram (4.7). Using the universal
property of pushouts, one checks that it makes

δd(i) //

id(i)

��

X(d)

pd

��
B(d)

gd // Y (d)

(4.8)

17



commute. Apply MC4i) in C [resp. apply MC4ii) in C and Proposition
4.5] to find a lift hd : B(d) → X(d) in (4.8). One checks that any lift
B(d)→ X(d) in (4.8) is also a lift in

A(d)
fd //

id
��

X(d)

pd

��
B(d)

gd // Y (d)

.

The desired lift h : B → X can now be defined as (hn−1)e in an object e of D
with deg(e) < n and as the constructed lift hd of (4.8) in an object d of degree
n of D. To show that h is a natural transformation, note that by Remark
4.3 and since hn−1 is a natural transformation, one only has to consider
morphisms m : e→ d in D, where deg(e) < n, deg(d) = n, and to check that
X(m)(hn−1)e = hdB(m) holds. Denoting colim(B |∂d

) = (∂d(B), t), this is
done by the following sequence of equations of compositions of morphisms:

B(e)
B(m)−→ B(d) hd−→ X(d) = B(e) tm−→ ∂d(B) −→ B(d) hd−→ X(d)

= B(e) tm−→ ∂d(B) −→ δd(i)
id(i)−→ B(d) hd−→ X(d)

= B(e) tm−→ ∂d(B) −→ δd(i) −→ X(d)

= B(e) tm−→ ∂d(B) −→ X(d)

= B(e)
(hn−1)e−→ X(e)

X(m)−→ X(d).

To prove MC5, we have to factor a given morphism f : A → B in CD

in the two ways i) and ii). Use the induction hypothesis to factor f |Dn−1 as

A |Dn−1
hn−1

−→ Xn−1 gn−1

−→ B |Dn−1 (4.9)

as in MC5i) [resp. MC5ii)]. Let d be an object of degree n of D. Note
that the functor jd : ∂d→ D carries any object m of ∂d to an object jd(m)
with deg(jd(m)) < n. It therefore induces a functor j′d : ∂d→ Dn−1, which
composed with the inclusion functor j : Dn−1 → D equals jd. For the
induced functors follows

(·) |∂d = (·) |j′d ◦ (·) |Dn−1 (4.10)

by (2.1). Hence, applying the composition colim ◦ (·) |j′d of colim : CD → C
with (·) |j′d to (4.9) yields a factorization

∂d(A)→ colim(Xn−1 |j′d)→ ∂d(B) (4.11)
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of ∂d(f). Now define X(d) and hd through the pushout square

∂d(A) //

��

A(d)

hd

��
colim(Xn−1 |j′d) // X(d)

. (4.12)

Denote colim(Xn−1 |j′d) = (colim(Xn−1 |j′d), td) and for a non-identity mor-
phism m : e → d define the morphism X(m) : Xn−1(e) → X(d) as the
composition

Xn−1(e)
(td)m→ colim(Xn−1 |j′d)→ X(d). (4.13)

Furthermore, set X(idd) = idX(d). Then these choices, Xn−1 and hn−1

fit together to give a functor X : D → C and a natural transformation
h : A → X. Indeed, let m : e → d be a non-identity morphism in D with
deg(d) = n. If m′ : e′ → e is another non-identity morphism in D, then one
deduces by the naturality of td that (td)mXn−1(m′) = (td)mm′ holds and
therefore X(mm′) = X(m)X(m′). To prove the naturality of h, check that

A(e)
(hn−1)e

//

A(m)
��

X(e)

X(m)
��

A(d)
hd // X(d)

commutes by noting that (hn−1)e = (hn−1 |j′d)m and by using the commuta-
tivity of the diagram (4.12) and of the diagram

A(e)
(hn−1|j′

d
)m

//

��

(Xn−1 |j′d)(m)

(td)m

��
∂d(A)

colim(hn−1|j′
d

)
// colim(Xn−1 |j′d)

.

We want to show that h is in Cof(CD) [resp. h is in Cof(CD) ∩W (CD)].
Note that X |Dn−1 = Xn−1 and h |Dn−1 = hn−1 by definition. In case i),
since by construction hn−1 is in Cof(CDn−1

), it follows by (4.6) that ie(h)
is in Cof(C) for every object e of D with deg(e) < n. Similarly, in case
ii), since by construction hn−1 is in Cof(CDn−1

) ∩ W (CDn−1
), it follows

by Proposition 4.5 and by (4.6) that ie(h) is in Cof(C) ∩W (C) for every
object e of D with deg(e) < n. Let d be an object of degree n of D. By
(4.10), deduce the equations X |∂d = Xn−1 |j′d , h |∂d = hn−1 |j′d and therefore
∂d(X) = colim(Xn−1 |j′d), ∂d(h) = colim(hn−1 |j′d). Recall that the morphism
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∂d(X) → X(d) is induced by the natural transformation sXd which is given
in an object m : e → d of ∂d by X(m). Since X(m) is the composition
(4.13), it follows that ∂d(X)→ X(d) is just colim(Xn−1 |j′d)→ X(d). Hence,
δd(h) = X(d) and id(h) equals idX(d) and in particular is in Cof(C)∩W (C).
Thus in case i) we have shown that h is in Cof(CD) and by Proposition
4.5, it follows in case ii) that h is in Cof(CD) ∩W (CD).

Using gn−1, we want to define a natural transformation g : X → B such
that f = gh. Let d be an object of degree n of D. The natural transformation
X |∂d → ∆(B(d)) given by B(m)(gn−1)e in an object m : e → d of ∂d,
induces a morphism ∂d(X) → B(d) in C. One checks that this morphism
makes the square

∂d(A) //

∂d(h)

��

A(d)

fd

��
∂d(X) // B(d)

commute. This gives an induced morphism gd from the pushout X(d) to
B(d) such that fd = gdhd. The constructed morphisms (gd)d and gn−1 fit
together to give a natural transformation g : X → B. Indeed, if m : e → d
is a non-identity morphism in D with deg(d) = n, then B(m)ge = gdX(m)
holds, as is shown by the following sequence of equations of compositions of
morphisms:

X(e)
(gn−1)e→ B(e)

B(m)→ = X(e)
(td)m→ ∂d(X)→ B(d)

= X(e)
(td)m→ ∂d(X)→ X(d)

gd→ B(d)

= X(e)
X(m)→ X(d)

gd→ B(d).

We have factored f as gh, such that h is in Cof(CD) [resp. Cof(CD) ∩
W (CD)]. Thus to prove MC5i) and MC5ii), it’s enough to factor g as pi
in CD such that respectively, i ∈ Cof(CD), p ∈ W (CD) ∩ Fib(CD) and
i ∈ Cof(CD) ∩W (CD), p ∈ Fib(CD). Set Zn−1 := X |Dn−1 : Dn−1 → C,
let in−1 : X |Dn−1 → Zn−1 be the identity morphism and define the natural
transformation pn−1 := gn−1 : Zn−1 → B |Dn−1 . Let d be any object of
degree n of D. Using MC5 in C, factor gd as

X(d) id→ Z(d)
pd→ B(d),

as in MC5i) [resp. MC5ii)]. For any non-identity morphism m : e → d in
D set Z(m) := idX(m) : Z(e)→ Z(d) and let the morphism Z(idd) in C be
given by idZ(d). Then these choices and Zn−1 fit together to give a functor
Z : D → C. Indeed, if m′ : e′ → e, m : e → d are non-identity morphisms
in D such that deg(d) = n, then

Z(mm′) = idX(mm′) = idX(m)X(m′) = Z(m)Z(m′).
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The constructed morphisms (id)d and in−1 fit together to give a natural
transformation i : X → Z. Indeed, given a non-identity morphism m : e→ d
in D with deg(d) = n, one has ie = idZ(e) and thus Z(m)ie = idX(m).
The morphisms (pd)d and pn−1 yield a natural transformation p : Z → B.
Indeed, for a non-identity morphism m : e→ d in D with deg(d) = n holds

B(m)pe = B(m)ge = gdX(m) = pdidX(m) = pdZ(m).

Note that for an object d of arbitrary degree of D, the functor X |∂d equals
Z |∂d and that i |∂d = idX|∂d

. Hence a pushout of ∂d(Z) =← ∂d(X)→ X(d) is
given by X(d) and the morphism X(d)→ Z(d) induced by the commutative
square

∂d(X)

��

// X(d)

id
��

∂d(Z) // Z(d)

is just id. By Lemma 3.8, it follows that id(i) is a cofibration [resp. weak
equivalence] if and only if id is a cofibration [resp. weak equivalence].
Furthermore, note that if deg(d) < n, then id = idZ(d) and hence is in
Cof(C) ∩W (C).

In case i), since by construction for any object d of degree n of D the
morphism id is in Cof(C), it follows that i is in Cof(CD). One checks
that by construction p is in Fib(CD) ∩W (CD). Similarly, in case ii), the
morphism id is in Cof(C) ∩W (C) for every object d of degree n of D. By
Proposition 4.5, it follows that i ∈ Cof(CD) ∩W (CD). One checks that
p ∈ Fib(CD). This completes the proof of MC5 and hence the induction
step.

We have shown Theorem 2.

4.2 The homotopy colimit functor

Let D be a very small category. Let CD be the model category of Theorem
2. Recall that by Remark 2.10 the functor ∆ : C → CD is right adjoint to
colim : CD → C and note that it carries morphisms of Fib(C) and mor-
phisms of Fib(C)∩W (C) to Fib(CD) and Fib(CD)∩W (CD) respectively.
By Theorem 1 we are finally in position to define homotopy colimits or more
precisely, the homotopy colimit functor.

Definition 4.8. The homotopy colimit functor is the total left derived func-
tor Lcolim : Ho(CD)→ Ho(C) for the functor colim : CD → C.
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