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Abstract

In classical algebraic topology for p a prime andX a finite CW complex with a
Z/p-action there is a theorem of P. A. Smith which states that if the cohomol-
ogy H i(X,Z/p) = 0 for i > 0, then the cohomology H i(XZ/p,Z/p) = 0 of the
fixed points vanishes. This was eventually reformulated with the Borel con-
struction leading to the localization theorem of Borel-Atiyah-Segal-Quillen
and more generally has had many applications in algebraic topology. These
results are often referred to as Smith theory. In [Tre19], Treumann defines
a sheaf theoretic variant of Smith theory appropriately dubbed Smith the-
ory for sheaves. This is accomplished by defining a functor called the Smith
operation from the equivariant derived category of sheaves to a particular
Verdier quotient. This functor commutes with the six operations leading to
similar results as in classical Smith Theory. The goal of this project is to gain
an understanding of this operation, its definition, and the various categories
involved.
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Introduction

The main topic of this thesis is to gain an understanding of the Smith oper-
ation functor defined in Section 4.2 of [Tre19]. The setting for this functor is
the following. Let p be a prime, k a field of characteristic p, and X a space
with G = Z/p action.

There is an equivariant derived category of constructible sheaves of k-
modules, denoted Db

G,c(X, k). Let Perf(XG, kG) denote the subcategory
spanned by complexes of sheaves of kG-modules with stalks complexes of
finitely generated free kG-modules. We may take the Verdier quotient of
Db(XG, kG) by Perf(XG, kG) which we denote by Shv(XG, ktG). The Smith
operation is then a functor

Psm : Db
G,c(X, k)→ Shv(XG, ktG).

Appropriate versions of the six operations for derived categories of sheaves
descend to the category Shv(XG, ktG).

In classical algebraic topology Quillen [Qui71] extends the original result
of Smith [Smi34] relating the cohomology of a finite dimensional space with
Z/p coefficients to the cohomology of XZ/p with Z/p coefficients. Further-
more, in [Bre73, CS72] it is shown that if X satisfies Poincare duality with
Z/p-coefficients, then XZ/p satisfied Poincare duality with Z/p-coefficients.
The fact that the Smith operation commutes with the six operations recovers
these results.

The category Shv(Y, ktG) for which the Smith operation is defined is in-
teresting in that for X = ∗ a point this becomes (the finitely generated part
of) the stable module category of the group ring kG and is in fact also equiv-
alent to the category of compact objects over a particular E∞-ring spectrum
ktG called the Tate spectrum. This spectrum is constructed as the cofiber of
a map khG → khG from the homotopy orbits to the homotopy fixed points of
the Eilenberg-Maclane spectrum for the field k.

We begin by discussing the construction of the stable module category of
a general Frobenius ring R via a model category structure on Mod(R), the
category of modules over R. This construction can also be found in [Hov07].
We then discuss the triangulated structure on the homotopy category as
well as several other properties. We then turn to the construction of this
category as a particular Verdier quotient of the bounded derived category of
finitely generated modules by perfect complexes and conclude by discussing
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the construction of the E∞-ring spectrum ktG. In the case G = Z/p and k a
field of characteristic p all these constructions coincide.

After the stable module category we turn towards the definition of equiv-
ariant sheaves with an eye towards finite groups and the equivariant derived
category. For a G-space with an action by a finite group we construct a
site giving an appropriate definition of equivariant sheaf. We prove several
properties of the corresponding Grothendieck topos. Using this site we define
equivariant sheaves on a space for a finite group in the∞-categorical context
in the hopes of defining the Smith operation with ∞-categories. While we
were unsuccessful in defining the Smith operation in this context include some
discussion of sheaves valued in compactly generated ∞-categories as well as
the relation between the derived ∞-category of sheaves and sheaves valued
in the derived ∞-category. As the definition of our site does not work well
with the six operations we consider the classical construction of the equivari-
ant derived category and the corresponding six operations following [BL06],
providing the necessary definitions for the Smith operation.

In the final section we cover the definition and properties of the Smith
operation as defined in [Tre19, §4]. We conclude by discussing some state-
ments we had hoped to be able to prove or disprove in the course of this
project.
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Notation and Conventions

Here a list of notation and conventions used:
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• We denote a 1-category using bold face C letters while we denote ∞-
categories with calligraphic C letters.

• If C is a 1-category, then N(C) denotes its nerve.

• We let S denote the ∞-category of spaces.

• Given a category C we let PSh(C) denote the 1-category Fun(Cop,Set)
of presheaves of sets on C. If C is an ∞-category, then PSh(C) instead
denotes the ∞-category Fun(Cop, S) of presheaves of spaces. Although
this notation is conflicting it should generally be clear from context
which is being used.

• Similar to the above we let PSh(C,D) denote the functor category
Fun(Cop,D) of D-valued presheaves and PSh(C,D) the functor ∞-
category Fun(Cop,D) of D-valued presheaves.

• Let R be a ring, then mod(R) denotes the category of finitely generated
(left) modules while Mod(R) denotes the category of all (left) modules.
If R is a ring spectrum, then we denote the∞-category of (left) modules
by Mod(R).

• We let Top denote the category of topological spaces and GTop the
category of spaces with G-action.

• If C is a model category we let hC denote the homotopy category.
Similarly, if C is an ∞-category we let hC denote the corresponding
homotopy category.

1 The Stable Module Category

1.1 The Stable Module Category

We begin by constructing a model structure on the category of modules over a
Frobenius ring. This appears in [Hov07, Section. 2.2]. However, our notation
and terminology is that of [MP11] and [Rie14] explanations of which can be
found in Appendix A.

Definition 1.1.1. Let R be a ring, then we say that R is a Frobenius ring
if a (left) R-module M is projective if and only if it is injective.
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Proposition 1.1.2. If G is a finite group and k a field, then the group algebra
kG is a Frobenius ring.

Given a Frobenius ring R we construct a cofibrantly generated model
structure on Mod(R) whose homotopy category is the stable module cate-
gory. We let Mod(R) denote this category with its model structure and
StMod(R) the homotopy category. For R = kG with G a p-group and k a
field of characteristic p this will coincide with the category of modules over
the Tate spectrum ktG.

Definition 1.1.3. Let R be a ring and f, g : M → N maps of R-modules.
We say that f is stably equivalent to g, denoted f ∼ g, if f − g factors
through a projective R-module, that is, there is a projective R-module P
and morphisms p1 : M → P and p2 : P → N making the diagram commute.

M N

P

p1

f−g

p2

We will say that f : M → N is a stable equivalence if there exists
g : N →M such that g ◦ f ∼ 1M and f ◦ g ∼ 1N .

Lemma 1.1.4. Stable equivalence is an equivalence relation on HomR(M,N)
compatible with composition in the sense that if f, g : M → N are stably
equivalent and h : N → L, k : K → M are morphisms, then h ◦ f ∼ h ◦ g
and f ◦ k ∼ g ◦ k.

Proof. We begin by showing that stable equivalence is preserved under com-
positions. Let f, g : M → N be such that f ∼ g and h : N → L. Since
f ∼ g, then we have a commuting diagram

M N

P

p1

f−g

p2

with P projective. Now we claim that h ◦ f ∼ h ◦ g which is clear since
h ◦ (f − g) = h ◦ f − h ◦ g as then the diagram

M L

P

p1

h◦f−h◦g

h◦p2
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commutes. The argument for f ◦ k ∼ g ◦ k is similar.
Now it is clear that stable equivalence is reflexive as the zero module is

projective and f − f = 0. For f ∼ g symmetry follows from the diagram

M N.

P

p1

g−f

−p2

For transitivity let f, g, h ∈ HomR(M,N) with factorizations,

M N M N

P P ′
p1

f−g

p′1

g−h

p2 p′2

then we obtain a factorization of f − h

M L

P ⊕ P ′
p1⊕p′1

f−h=(f−g)+(g−h)

p2⊕p′2

where P ⊕P ′ is projective since direct sums of projectives are projective.

Remark 1.1.5. We make the following two observations:

• Every isomorphism is a stable equivalence.

• If P is a projective, then for anyR-moduleM the inclusion iM : M ↪→M ⊕ P
is a stable equivalence with stable inverse pM : M ⊕ P → M . This is
clear as pM ◦ iM = 1M and iM ◦ pM factors through P .

Definition 1.1.6. Let R be a ring. Define the stable module category for
R to be the category with objects (left) R-modules and morphisms stable
equivalence classes of R-module maps. Denote this category by StMod(R).
Further, let stmod(R) denote the full subcategory of StMod(R) spanned
by finitely generated modules.

Note that the isomorphisms in StMod(R) are the stable equivalences.
We now show that StMod(R) arises as the homotopy category of a cofi-
brantly generated model structure on Mod(R).
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Theorem 1.1.7. There is a cofibrantly generated model structure (W,C,F)
on Mod(R) such that

• (Weak Equivalences) W is the collection of stable equivalences,

• (Cofibrations) C is the collection of injections,

• (Fibrations) F is the collection of surjections.

By the definition of model category (A.0.6) in order to show that (W,C,F)
makes Mod(R) into a cofibrantly generated model category we need to show
that W satisfies the 2-of-3 property and that (C ∩ W,F) and (C,F ∩ W)
form weak factorization systems. However, by the small object argument
(A.0.8) it is sufficient to show that there are small sets I and J of generating
cofibrations and generating trivial fibrations such that

(1) F = J�,

(2) F ∩W = I�,

(3) C =
�

(I�), and

(4) C ∩W =
�

(J�).

where A� denotes the collection of morphisms with the right lifting property
against every element of some collection A and �A denotes the collection
of morphisms with the left lifting property against every element of some
collection A. Hence, we make the following definition.

Definition 1.1.8. Let I denote the set of inclusions a ↪−→ R with a a left
ideal in R. Let J be the set containing the inclusion 0 ↪−→ R. We call I the
generating cofibrations and J the generating trivial fibrations.

We now show that

(C1) W satisfies the 2-of-3 property,

(C2) J� = F: f ∈ J� if and only if f is a surjection,

(C3) F ∩W = I�: f is a surjection and stable equivalence if and only if
f ∈ I�,

(C4)
�

(I�) = C: i ∈ �
(I�) if and only if i is an injection,
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(C5)
�

(J�) = C ∩W: i is an injection and a stable equivalence if and only
if i ∈ �

(J�)

so that by the small object argument (A.0.8) (W,C,F) defines a cofibrantly
generated model structure on Mod(R).

Proposition 1.1.9 (Condition (C1)). The stable equivalences satisfy the 2-
of-3 property.

Proof. This follows directly from the compatibility of stable equivalence with
composition.

Corollary 1.1.10. If i is an injection with projective cokernel, then i is a
stable equivalence. Dually, if f is a surjection with injective kernel, then f
is a stable equivalence.

Proof. For, the first statement we obtain a split short exact sequence

B

0 A coker i 0

coker i⊕ A

p

i

iA

where p is an isomorphism so a stable equivalence and iA is a stable equiva-
lence. Hence, by 2-of-3 for stable equivalences i is a stable equivalence. The
second statement holds similarly.

We now turn to characterizing the fibrations and trivial fibrations as J�

and I�.

Proposition 1.1.11 (Condition (C2)). If f : M → N is a map of R-
modules, then f ∈ J� if and only if f is surjective so J� = F.

Proof. First, if f : M → N is surjective, then we obtain a lift in the diagram

0 M

R N

f

v

∃f̃
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since R is a projective R-module.
Suppose f : M → N is a fibration so that we have a lift f̃ : R → M as

above for any morphism v : R → N . In particular, if y ∈ N , then by the
universal property of free modules we have a map vy : R→ N with v(1) = y
and f(f̃(1)) = y = vy(1) so f is surjective.

Lemma 1.1.12. A map f : M → N of R-modules is in J� ∩W if and only
if f is a surjection with projective kernel.

Proof. First, suppose f is a surjection with projective kernel, then f ∈ J�

by Proposition 1.1.11. Further, since R is Frobenius, then ker f is injective
so the short exact sequence

0→ ker f ↪→M � N → 0

splits. Let h : M → ker f⊕N be the splitting isomorphism so that f = pN ◦ h
where pN : ker f ⊕ N → N is the projection. Then since ker f is projective
pN is a stable equivalence and h is an isomorphism so a stable equivalence.
Therefore, by the 2-of-3 property for stable equivalences f is a stable equiv-
alence.

Now suppose f ∈ J� ∩W, then by Proposition 1.1.11 f is a surjection so
it only remains to show that f has projective kernel. Let g : N → M be a
stable inverse for f so we have a factorization

N N.

P

fg−1N

u v

Consider the diagram of short exact sequences

0 ker f M N 0

0 K M ⊕ P N 0

h

f

iM 1N

jK

(f,v)

where iM : M → M ⊕ P is the inclusion of M and K = ker(f, v). Now
(g,−u) : N →M⊕P is a section of (f, v) as fg−vu = 1N . Hence, we obtain
a splitting of the lower sequence. Further, since iM is a stable equivalence and
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f is a stable equivalence by assumption, then (f, v) is a stable equivalence
by the 2-of-3 property. Thus, the inclusion jK : K ↪→M ⊕P is stably trivial
in the sense that jK is stably equivalent to the zero morphism and so factors
through a projective. By the splitting of the sequence we obtain a retraction
r : M ⊕ P → K from which is follows that 1K factors through a projective.
Therefore, K is projective as it is a retract of a projective. By the Snake
lemma we get that

K/ ker f ∼= cokerh ∼= coker iM ∼= P

so that K/ ker f is projective. Hence, the short exact sequence

0→ ker f → K → K/ ker f → 0

splits so ker f is a retract of the projective K and retracts of projectives are
projective.

We now recall Baer’s criterion for injective modules which we use in the
next result to characterize surjections with injective kernel.

Lemma 1.1.13 (Baer’s Criterion). If Q is an R-module, then Q is injective
if and only if for any left ideal a→ R and any morphism a→ Q there is an
extension

a Q.

R

to all of R.

Proposition 1.1.14. A map f : M → N is in I� if an only if f is a
surjection with injective kernel.

Proof. First, if f ∈ I�, then f ∈ J� = F as J ⊆ I so f is surjective
by Proposition 1.1.11. Hence, it remains to show that ker f is injective for
which we will apply Baer’s criterion (Lemma 1.1.13). Let a ⊆ R be a left
ideal of R, g : a → ker f a map, and j : ker f ↪→ M the inclusion. Then in
the diagram below there is a lift

a M

R N

j◦g

f

0
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since f ∈ I� where such a lift is an extension of g to all of ker f so that ker f
is injective by Baer’s criterion.

Conversely, suppose f is a surjection with injective kernel and there is a
commutative square

a M

R N.

i

h

f

g

(1.1.1)

Since ker f is injective, then the short exact sequence

0→ ker f
j−→M

f−→ N → 0

splits so f has a section s : N →M . Consider the map

sgi− h : a→M

whose image is contained in ker f as f(sgi− h) = gi− fh = 0 by commuta-
tivity of the square. Thus, sgi− h restricts to a map ϕ : a→ ker f

j ◦ ϕ = sgi− h : a→M.

By injectivity of ker f , then Baer’s criterion says we obtain an extension of
ϕ to R

a ker f.

R

i

ϕ

ϕ̃

Now we claim that sg − jϕ̃ : R→M gives a lift in (1.1.1). Indeed we have

sgi− j ϕ̃i
ϕ

= sgi− jϕ

sgi−h

= h

and
fs

1N

g − fjϕ̃ = g − fj
0

ϕ̃ = g

and we are done.

Corollary 1.1.15 (Condition (C3)). If f : M → N is a map of R-modules,
then f is a surjection and stable equivalence if and only if f ∈ I�.
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Proof. By Lemma 1.1.11 J� = F. Further, since R is a Frobenius ring a
module is projective if and only if it is injective so applying Proposition 1.1.14
and Lemma 1.1.12 we get that

f ∈ F ∩W ⇐⇒ f ∈ I�

as desired.

Proposition 1.1.16 (Condition (C4)). If i : M → N is a map of R-modules,
then i is an injection if and only if i ∈ �

(I�).

Proof. First, by Proposition 1.1.14 we have i ∈ �
(I�) if and only if i has

the left lifting property with respect to all surjections with injective kernel.
Hence, to show that i ∈ �

(I�) if and only if i is injective may be shown
identically to the second half of the proof of Proposition 1.1.14.

Now suppose i : A → B is in
�

(I�) so i has the left lifting property
with respect to all surjections with injective kernel. Let j : A ↪→ Q be an
embedding of A into an injective Q. Then we get a commutative diagram

A Q

B 0

i

j

since i has the left lifting property with respect to Q → 0. In particular, it
follows that i is injective since j is injective.

Proposition 1.1.17. If i : A → B is a map of R-modules, then i ∈ �
(J�)

if and only if i is an injection with projective cokernel.

Proof. This is precisely dual to the proof of Proposition 1.1.14.

Lemma 1.1.18. If i : A→ B is a map of R-modules, then i is an injection
and stable equivalence if and only if i is an injection with projective cokernel.

Proof. This follows in a similar manner to Lemma 1.1.12.

Corollary 1.1.19 (Condition (C5)). If i : M → N is a map of R-modules,
then i is an injection and stable equivalence if and only if i ∈ �

(J�)

Proof. Apply Proposition 1.1.17 and Lemma 1.1.18.
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Having verified conditions (C1), (C2), (C3), (C4), (C5) it immediately
follows that Theorem 1.1.7 holds so we obtain a model structure on Mod(R).
The fact that the homotopy category is equivalent to the stable module
category follows from the fact that every object is both fibrant and cofibrant.

Remark 1.1.20. The category Mod(R) is a stable model category. See [HPS97,
9.6] and [SS03, 2.4(v)].

As every object in Mod(R) is both fibrant and cofibrant following [Lur,
1.3.4.15] we make the following definition.

Definition 1.1.21. The stable module ∞-category is the ∞-category

StMod(R) := N(Mod(R))[W−1].

Let stmod(R) denote the full subcategory spanned by finitely generated mod-
ules.

The∞-category StMod(R) is a stable∞-category as Mod(R) is a stable
model category. In fact more is true. It is a symmetric monoidal model
category so the corresponding stable ∞-category is symmetric monoidal.

1.2 The Triangulated Structure on StMod(R)

We turn to the triangulated structure on the stable module category StMod(R).
Define a functor Ω : StMod(R)→ StMod(R) in the following way. Let

M ∈ StMod(R) be a module, then there is an epimorphism α : P →M for
some projective module P . Set

Ω(M) := ker(α)

This is well-defined in StMod(R) as by Schanuel’s Lemma [Zim14, Lemma

1.8.12] given epimorphisms P1
p1−→M and P2

p2−→M with P1 and P2 projective,
then

ker(p1)⊕ P1
∼= ker(p2)⊕ P2

so ker(p1) ∼= ker(p2) in the stable module category. To see that Ω defines a
functor we must also specify how it behaves on morphisms. Let f : M → N
be a map of R-modules and define Ω(f) : Ω(M) → Ω(N) by the following
construction. Let pM : PM � M and pN : PN � N be epimorphisms
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representing Ω(M) and Ω(N). Then there is a map g : PM → PN obtained
as a lift

PN

PM N

pN

f◦pM

g

since PM is projective. Thus, we obtain a diagram of short exact sequences

0 Ω(M) PM M 0

0 Ω(N) PN N 0

Ω(f) g

pM

f

pN

We claim that Ω(f) := g|Ω(M) is well-defined. Let g, g′ : PM → PN provide
lifts of pM ◦ f against pN , then g − g′ provides a lift

PN

PM N

pN

0◦pM

g−g′

through the zero map in Hom(M,N). Hence, since pN ◦(g−g′) = 0 it follows
that g − g′ factors through Ω(N) = ker(pN)

PM PN

ker(pN)

h

g−g′

h′

so g|Ω(M) − g′|Ω(M) factors as

Ω(M) PN

PM

g|Ω(M)−g′|Ω(M)

where PM is projective so g|Ω(M) ∼ g′|Ω(M) in StMod(R) and Ω(f) is well-
defined.
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Remark 1.2.1. If the ring R is Noetherian, then Ω restricts to a functor
on stmod(R) as then we may choose a map PM → M with PM finitely
generated projective and since R is Noetherian, then the kernel is finitely
generated.

We define Σ : stmod(R) → stmod(R) on the finitely generated part.
Let M be a finitely generated R-module and Homk(M,k) the k-dual of M .
This fits into an exact sequence

0→ ker(p)→ P
p−→ Homk(M,k)→ 0

with P projective and p an epimorphism. Now the functor Homk(−, k) is
exact so we obtain

0→ Homk(Homk(M,k))→ Homk(P, k)→ Homk(ker(p), k)→ 0

where Homk(P, k) is injective and so projective. Furthermore, we have an
isomorphism

Homk(Homk(M,k), k) ∼= M

induced by the evaluation map as k is a field and M is finitely generated.
Thus, the above sequence reduces to an exact sequence

0→M → Homk(P, k)→ Homk(ker(p), k)→ 0 (1.2.1)

with Homk(P, k) projective. We define Σ by setting

Σ(M) := Homk(ker(p), k).

This defines a functor for the same reasons as for Ω. Furthermore, we have

Ω ◦ Σ = 1stmod(R) = Σ ◦ Ω.

This follows by construction from the exact sequence 1.2.1. We note that
the fact that Σ extends to a self-equivalence on StMod(R) follows from the
fact that StMod(R) ' Ind(stmod(R)).

Remark 1.2.2. An alternative construction of Σ may be done in the fol-
lowing way. Since R is a Frobenius ring, then every projective module is

injective. Let M
i
↪−→ Q be an injective hull of M , that is, an embedding of M

into an injective module M . Then set Σ(M) := coker(i). Then Σ becomes a
well-defined functor by similar arguments as for Ω.
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Now we have obtained a translation functor so to define the triangulated
structure on StMod(R) we must specify the distinguished triangles. These
are defined as coming from short exact sequences

0→M → N → L→ 0.

More precisely, given such a short exact sequence define a map Ω(L) → M
which by applying Σ gives a map L → Σ(M) and then the distinguished
triangles are defined to be any sequence

M → N → L→ Σ(M)

coming from a short exact exact sequence

0→M → N → L→ 0.

We define the map Ω(L)→M which is done by contemplating the diagram

0 M N L 0

0 Ω(L) PL L 0.

f

pL

1

Here PL → L is a surjective map with PN projective defining Ω(L). A lift
PL → N exists making the diagram commute as PN is projective and N � L
is surjective. Thus, we obtain a map Ω(L)→M . To see that this map is well-
defined in StMod(R) suppose we have two lifts g, g′ : PL → N of f : N → L.
Then g − g′ provides a lift of 0 ∈ Hom(PL, L). Thus, f ◦ (g − g′) = 0 and so
g − g′ factors as

PL N.

M
h

g−g′

h′

as M = ker(f). It follows that the induced map (g − g′)|Ω(L) : Ω(L) → M
factors through PL which is projective and so g|Ω(L) ∼ g′|Ω(L) in StMod(R).

Remark 1.2.3. In [HD88, Chp. 2] the distinguished triangles

M → N → L→ Σ(M)
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arise via diagrams

0 M Q Σ(M) 0

0 N L Σ(M) 0

i

where i exhibits Q as an injective hull of M , the rows are exact, and the left
hand square is a pushout. We will take advantage of this in the next section.

1.3 Alternative Constructions of the Stable Module
Category

We given an alternative construction of the stable module category as a
Verdier quotient of the (bounded) derived ∞-category of the Frobenius ring
R by the perfect complexes.

Let k be a field and R be a finite dimensional k-algebra which is Frobe-
nius. Let D(Mod(R)) denote the (unbounded) derived ∞-category of all
R-modules. We let Db(Mod(R)) denote the full subcategory of D(Mod(R))
spanned by bounded complex which is a stable subcategory.

Definition 1.3.1. Let R be a ring. A complex M ∈ D(Mod(R)) is perfect if
it is a compact object in D(Mod(R)). Equivalently, a complex M is perfect
if it is quasi-isomorphic to a bounded complex of finitely generated projective
modules. Denote by Perf(R) the full subcategory D(Mod(R)) spanned by
perfect objects.

Lemma 1.3.2. The inclusion i : Perf(R) ⊆ Db(mod(R)) exhibits Perf(R)
as a stable subcategory of Perf(R).

Proof. By [Lur, Lemma. 1.1.3.3] a full subcategory of a stable∞-category is
a stable subcategory if it is closed under cofibers and translations. Hence, it
is clear that Perf(R) is a full subcategory as cofibers are given by mapping
cones and translations by shifting.

Theorem 1.3.3 ( [Ric89, Thm. 2.1]). There is an equivalence of stable ∞-
categories between the Verdier quotient Db(mod(R))/Perf(R) and stmod(R)
the finitely generated part of the stable module ∞-category.
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Proof. By Proposition B.0.3 it is sufficient to give a functor of stable ∞-
categories and check it induces an equivalence on the triangulated homotopy
categories. Furthermore, by Proposition B.0.2 the homotopy category of
the Verdier quotient Db(mod(R))/Perf(R) is the usual Verdier quotient of
triangulated categories.

Let F denote the composition

N(mod(R))
i−→ Db(mod(R))

Q−→ Db(mod(R))/Perf(R).

of the inclusion of (the nerve of) finitely generatedR-modules into Db(mod(R))
followed by the Verdier quotient functor. If P ∈ N(mod(R)) is projective,
then F (P ) ∼= 0 by definition of Perf(R). Thus, by the universal property of
the localization defining stmod(R) it follows that F factors as

N(mod(R)) Db(mod(R))/Perf(R).

stmod(R)

F

F̃

The claim is that F̃ is the desired equivalence.
We first show that F̃ is exact. Let

M → N → L→ Σ(M)

be a distinguished triangle in stmod(R). By Remark 1.2.3 this arises via a
diagram

0 M Q Σ(M) 0

0 N L Σ(M) 0

i

with M ↪→ Q an injective hull of Q and the left hand square a pushout.
Thus, in Db(mod(R)) we have distinguished triangles

M → Q→ Σ(M)→M [1]

and
N → L→ Σ(M)→ N [1].

18



Since Q is injective it is projective and so F (Q) ∼= 0 in the quotient. Hence,
in the Verdier quotient we have a distinguished triangle

FM → 0→ FΣ(M)→ FM [1]

so that FΣ(M) ∼= FM [1] in the Verdier quotient. It follows that

FN → FL→ FM [1]→ FN [1]

is a distinguished triangle in the Verdier quotient as it is isomorphic to

FN → FL→ FΣ(M)→ FN [1]

which is distinguished. Thus, by shifting

FM → FN → FL→ FM [1]

is distinguished and the result follows.
Now we claim that F̃ is full. This follows as F is full and no non-projective

finitely generated module M is mapped to zero since the only modules with
finite projective resolutions over R are projective.

The functor F̃ is faithful. Indeed suppose f : M → N is the class of a
map in stmod(R) such that F̃ (f) = 0. Let

M
f−→ N

h−→ L→M [1]

be an extension of f to a distinguished triangle. Now since F̃ f = 0, then by
considering the morphism of distinguished triangles

F̃M F̃N F̃L

0 F̃N F̃N

0

F̃ f=0

1

F̃ h

F̃h′

0 1

where the dotted arrow exists by TR3 for triangulated categories. Thus, the
identity map for F̃N factors through the map F̃ h : F̃N → F̃L. Hence, since
F̃ is full there is a map g : Y → Y such that g factors through h

Y Y

Z
h

g

h′
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and F̃ g is an equivalence. As previously seen if M ∈ stmod(R) is non-
zero, then F̃M 6∼= 0 since no finitely generated non-projective module has
a finite projective resolution. Hence, since F̃ (g) is an isomorphism, then
F̃ cofib(g) ∼= cofib(F̃ g) ∼= 0 so by the previous observation cofib(g) ∼= 0.
Therefore, g is an isomorphism and we see that h is a split monomorphism
as 1N = g−1g = (g−1h′)h. It follows that we obtain a morphism

M N L M [1]

0 N N 0

f

1

h̃

g−1h′

1

of cofiber sequences which implies f = 0 as desired.
Now we claim that F̃ is essentially surjective. Let C• ∈ Db(mod(R))/Perf(R)

which as an object of Db(mod(R)) is equivalent to a complex

P• : · · · → Pr+1 → Pr → · · · → Ps → 0

with homology bounded above r. Consider the chain map f• below

P• · · · Pr+1 Pr Pr−1 · · ·

P̃• · · · Pr+1 Pr 0 · · ·

1 1

to the complex P̃•. We claim that cofib(f) lies in Perf(R). Indeed the kernel
of f is the complex

· · · → 0→ Pr−1 → · · · → Ps → 0

which lies in Perf(R)) and by a general result since f is surjective, then
ker(p)[1] is quasi-isomorphic to cofib(f) and so cofib(f) ∈ Perf(R). Now we
have a complex

Q• : · · · → Pr+1 → Pr → Qr−1 → · · · → Q0 → 0

which is the projective resolution of some module M in stmod(R) with the
obvious map from Q• → P̃• an isomorphism in Db(mod(R))/Perf(R) and
therefore, F̃M ∼= P• ∼= C•.

Corollary 1.3.4. The categories StMod(R) and Ind(Db(mod(R))/Perf(R))
are equivalent.
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1.4 The Tate Construction

In this section we give a third construction of the stable module category in
the case that R = kG for G a finite p-group and k a field of characteristic p.

If G is a finite group and A a G-module, then we have G-fixed points AG

and G-orbits. There is a map

NmG : AG → AG

[a] 7→ Na

which sends a class [a] to multiplication by the norm element N =
∑

g∈G g of
kG. Using this map we are able to splice group homology and cohomology
together into a single object, Tate cohomology, defined by setting

Ĥn(G;A) :=


Hn(G;A), n ≥ 1,

cokerNmG, n = 0,

kerNmG, n = −1,

H−n−1(G;A), n ≤ −2

so we have an exact sequence

0→ Ĥ−1(G;A)→ AG
NmG−−−→ AG → Ĥ0(G;A)→ 0.

In this section we discuss this construction in the setting of spectra with
G-action to obtain a norm map

NmG : XhG → XhG

from the homotopy orbits to the homotopy fixed points. Taking the cofiber
of this map we obtain a spectrum X tG called the Tate construction. We
follow [NS+18, I.1] although this material appears in [Lur, 6.1.6].

Let Sp denote the stable ∞-category of spectra and let SpBG denote the
∞-category Fun(BG, Sp) where BG is a classifying space for G. We call this
∞-category spectra with G-action.

Remark 1.4.1. We call SpBG spectra withG-action rather thanG-equivariant
spectra in order to distinguish this category from the category of genuine
equivariant spectra. Although by [NS+18, Thm. II.2.7] the category SpBG

may be realized as a full subcategory of the∞-category of genuine G-spectra
spanned by those genuine spectra whose genuine fixed points and homotopy
fixed points agree for all subgroups H of G.
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Consider the map f : BG → ∗ which gives rise to a precomposition
functor f ∗ : Sp → SpBG. Note that this simply gives a spectrum X the
trivial action. Since f ∗ is a precomposition functor and Sp is complete and
cocomplete we make take Kan extensions

Sp SpBG
f∗

f!

f∗

by [Lur09b, 4.3.3.7]. Observe since these are Kan extensions they are pre-
cisely the (homotopy) orbit

f! = (−)hG : SpBG → Sp

X 7→ lim−→
BG

X

functor and a (homotopy) fixed point functor

f∗ = (−)hG : SpBG → Sp

X 7→ lim←−
BG

X.

Now we wish to construct a natural transformation

NmG : (−)hG → (−)hG

just as in the case of G-modules.

Remark 1.4.2. Given a map f : X → Y of Kan complexes and an ∞-
category C which is complete and cocomplete. We always let f ∗ : CY → CX

denote the precomposition with f functor, f! its left adjoint, and f∗ its right
adjoint obtained via Kan extension.

Construction 1.4.3. Consider the pullback of spaces

BG×BG BG

BG ∗

p2

p1

f

f

(1.4.1)
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where p1 and p2 are the projection maps onto the first and second coordinates,
respectively. Let δ : BG → BG × BG be the diagonal map, then by Kan
extension we obtain functors

SpBG×BG SpBGδ∗

δ!

δ∗

where there is a map Nmδ : δ! → δ∗ which is an equivalence by [Lur, Con-
struction. 6.1.6.19] as the map f : BG → ∗ has fiber BG. Now we may
combine the unit map 1 → δ∗δ

∗ and the counit map δ!δ
∗ → 1 to obtain a

map

p∗1 → δ∗δ
∗p∗1 ' δ∗

Nm−1
δ−−−→
'

δ! ' δ!δ
∗p∗2 → p∗2.

From the pullback diagram (1.4.1) consider the transformation

f ∗f∗ → 1 → p1∗p
∗
2.

It follows from [Lur, Lemma. 6.1.6.3] that this map is in fact an equivalence
so we obtain a map 1 → f ∗f∗ from the map 1 → p1∗p

∗
2. Thus, as f! is left

adjoint to f ∗ there is a map

NmG : f! = (−)hG → (−)hG = f∗

which is the desired transformation.

Definition 1.4.4. The Tate Construction for SpBG is the cofiber

(−)tG = cofib(NmG : (−)hG → (−)hG)

of the norm map.

For k a ring we let ktG denote the Tate construction on its Eilenberg-
Maclane spectrum with trivial action.

Remark 1.4.5. If M is a G-module, then the homotopy groups of HM tG

are the Tate cohomology

πn(HM tG) ∼= Ĥ−n(G;M)

of G with coefficients in M where HM denotes the Eilenberg-Maclane spec-
trum of M .
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Remark 1.4.6. It is shown in [NS+18, Thm. I.3.1] that the functor (−)tG)
has a unique (in a suitable ∞-categorical sense) lax symmetric monoidal
structure.

Theorem 1.4.7 ( [Kel94, 4.3]). Let k denote a field of characteristic p and
G be a finite p-group, then there is an equivalence of ∞-categories

Mod(ktG) ' StMod(kG)

between the ∞-category of modules over the E∞-ring ktG.

Remark 1.4.8. Another proof appears in [Mat15, Section 2].

1.5 Properties of the Stable Module Category

We discuss some additional structure and properties of the stable module
category in the case that R = kG for G a finite group and k a field.

Proposition 1.5.1 ( [Hov07, Prop. 4.2.15]). The model category Mod(kG)
is a symmetric monoidal model category. In particular, the underlying ∞-
category StMod(kG) is a symmetric monoidal ∞-category.

Proof. The category Mod(kG) with the model structure of Section 1.1 is a
closed symmetric monoidal model category in the sense of [Hov07, Def. 4.2.6]
(See also [Lur09b, A.3.1]). The tensor product is the tensor product M ⊗kN
of k-vector spaces with diagonal G-action. The internal hom is the usual
internal hom for the category of representations. Namely, for kG-modules
M and N we give Hom(M,N) the conjugation action so for f : M → N ,
then g.f is the map

g.f : x 7→ gf(g−1x).

It follows from [Lur, Example 4.1.7.6] that the underlying∞-category of the
model category is a symmetric monoidal ∞-category.

Recall, that every finitely generated kG-module is dualizable via the dual
representation Homk(−, k). This descends to a functor on stmod(kG) by
the following proposition.

Proposition 1.5.2. Let M and N be finitely generated kG-modules. If
f : M → N is a stable equivalence with stable inverse g : N → M , then
Homk(−, k) sends f and g to isomorphisms.
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Proof. This follows from the fact that if P is projective, then Homk(P, k)
is injective, but kG is Frobenius so it is projective. Thus, if g ◦ f − 1M
factors through a projective P , then the dual of g ◦ f − 1M factors through
Homk(P, k) which is projective. A similar argument applies to f ◦ g and so
since Homk(−, k) respects the stable equivalences it descends to a duality
functor on stmod(kG).

By definition an object in an∞-category is dualizable if it is dualizable as
an object in the homotopy category. Hence, we obtain the following corollary.

Corollary 1.5.3. Every finitely generated module in the stable module ∞-
category is dualizable using the k-linear dual functor Homk(−, k).

Remark 1.5.4. In the ∞-category Db(mod(kG))/Perf(kG) the symmet-
ric monoidal structure is induced by the tensor product of chain complexes
M• ⊗k N• over k with diagonal G-action. The duality functor is similarly
described by applying Homk(−, k) to the chain complex.

2 Sheaves and Equivariant Sheaves

In this section we begin by discussing the definition of sheaves on a site in
order to fix some notation. Then given a topological space X with an action
by a group G we define the category of equivariant sheaves on the G-space X.
We do this by constructing a particular site UG(X) and define the category of
equivariant sheaves to be the sheaves on this site. We prove a few properties
of this category.

2.1 Sheaves

In order to fix notation we begin with the basic definitions of sheaves on a
site with a Grothendieck topology. Our primary source is [MM12]. Although
we also consulted [KS06] and the Stacks project [Sta21].

Given a category C we let PSh(C) = Fun(Cop,Set) denote the category
of Set-valued presheaves.

Definition 2.1.1. Let C be a (small) category. A sieve on C is a full
subcategory S ⊆ C such that if f : C → C ′ is a morphism in C and C ′ ∈ S,
then C ∈ S. If C ∈ C is an object in C, then a sieve on C is a sieve on the
over category C/C .
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In other words a sieve on an object C ∈ C is a collection of morphisms
S = {fi : Ci → C}i∈I with codomain C such that if f ∈ S and g : D → Ci
is a morphism in C, then f ◦ g ∈ S. Observe that if S = {fi : Ci → C} is a
sieve on C ∈ C and h : D → C is any morphism, then

h∗(S) = {g : D′ → D | h ◦ g ∈ S}

defines a sieve on D.

Remark 2.1.2. We make an important observation that a sieve S on an ob-
ject C ∈ C is the same as a subfunctor S ↪→ Hom(−, C) of the representable
functor corresponding to C. In other words sieves on an object C corre-
spond to equivalence class of monomorphisms into the representable functor
Hom(−, C).

Definition 2.1.3. Let C be a category. A (Grothendieck) topology on C is
a map J which to each C ∈ C associates a collection of sieves, J(C), on C,
called covering sieves such that

(T1) (Maximality) The sieve C/C is in J(C).

(T2) (Stability) if f : D → D is a morphism in C and S ∈ J(C), then f ∗(S)
is in J(D).

(T3) (Transitivity) If S ∈ J(C) and S ′ is any sieve on C such that for all
f : D → C in S we have f ∗(S ′) ∈ J(D), then S ′ is in J(C).

Definition 2.1.4. A site is a pair (C, J) where C is a category and J a
Grothendieck topology on C.

Example 2.1.5. Let X be a topological space and U(X) the poset of open
subsets of X. Let U ⊆ X be an open subset. Observe that since a sieve S on
U is a full subcategory of U(X)/U it is simply a collection of open subsets of
X contained in U . Define a topology on U(X) by declaring a sieve S on U to
be a covering sieve if U = ∪V ∈SV , that is, if U is covered by the elements of
S. It is an easy exercise to check that this defines a Grothendieck topology
on U(X).

In order to define a topology on a set X one often does not define a topol-
ogy on X, but rather gives a basis for a topology on X and then considers the
topology generated by this basis. It follows that properties of the topology
on X may then be checked on the basis elements. A similar idea applies to
Grothendieck topologies.
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Definition 2.1.6. Let C be a category with pullbacks. A basis for a (Grothendieck)
topology on C is a map K which for each C ∈ C gives a collection

K(C) = {{fij : Cij → C}j∈J}i∈I

of families of morphisms of the form f : C ′ → C, called covering families
such that

(B1) If f : C ′ → C is an isomorphism, then f ∈ K(C).

(B2) If {fi : Ci → C}i∈I ∈ K(C), then for any g : D → C the pullback
family

{pr2 : Ci ×C D → D}i∈I
is in K(D).

(B3) If {fi : Ci → C}i∈I is in K(C) and for each i ∈ I there is a collection
{gij : Dij → Ci}j∈Ii in K(Ci), then

{fi ◦ gij : Dij → C}(i,j)∈I×Ii

lies in K(C).

Remark 2.1.7. Given a basis K we obtain a Grothendieck topology J gen-
erated by K by a declaring a sieve S on C to be a covering sieve of C if
and only if there exists some covering family S ′ ∈ K(C) such that S ′ ⊆ S.
In other words the topology generated by K consists of those sieves which
contain a K-covering family.

Conversely, given a Grothendieck topology J on C there is a maximal
basis K which generates J by taking S to be a covering family for C if and
only if S contains the sieve {f ◦g | f ∈ S} for any g with the same codomain
as f .

Example 2.1.8. We note a few more examples of Grothendieck topologies.
Let

(1) The indiscrete topology, sometimes also called the chaotic or trivial
topology, is the topology with the only sieve being the maximal one.
In other words J(C) = {C/C} for all objects C in C.

(2) The discrete topology is the topology such that any (non-empty) sieve
is declared to be a covering sieve.
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We now turn to defining sheaves on a site (C, J). For simplicity we will
assume that C has pullbacks.

Definition 2.1.9. Let (C, J) be a site where C has pullbacks. A presheaf
F : Cop → Set is said to be a J-sheaf or simply a sheaf if for every covering
family {fi : Ci → C} the diagram

F (C)
∏

i F (Ci)
∏

i,j F (Ci ×C Cj)
∏
i f
∗
i ∏

j pr
∗
2,i,j

∏
i pr
∗
1,i,j

(2.1.1)

is an equalizer. Here the maps

f ∗i : F (C)→ F(Ci)

pr∗1,i,j : F(Ci)→ F(Ci ×C Cj)
pr∗2,i,j : F(Cj)→ F(Ci ×C Cj)

are those obtained after applying F to fi and the projections in C. We let
ShvJ(C) denote the full subcategory of PSh(C) spanned by the J-sheaves.

Remark 2.1.10. In other words F is a sheaf if given any family si ∈ F(Ci)
such that for all i, j we have pr∗1,i,j(si) = pr∗2,i,j(sj) in F(Ci ×C Cj), then
there exists a unique s ∈ F(C) such that f ∗i (s) = si for all i.

Remark 2.1.11. We have the following important alternative version of the
sheaf condition. Let j : C → PSh(C) denote the Yoneda embedding. Re-
call, by Remark 2.1.2 a sieve S on C ∈ C is the same as a subfunctor of
j(C) := Hom(−, C). Let iS : S ↪→ j(C) denote the monomorphism corre-
sponding to S. A presheaf F : Cop → Set is a sheaf if and only if for all
covering sieves S of an object C the inclusion iS induces an isomorphism

HomPSh(C)(j(C), F )
−◦iS−−−→∼= HomPSh(C)(S, F ).

Definition 2.1.12. A category X is a (Grothendieck) topos if there exists a
site (C, J) such that X ' ShvJ(C).

Example 2.1.13. (1) Let X = {∗} denote the one point space. Then
Shv(X) = Set is a topos.

(2) If X is a topological space, then Shv(U(X)) is the usual category of
sheaves on X and we simply denote this category Shv(X).

28



(3) Let C be a category. Then PSh(C) is a Grothendieck topos by endow-
ing C with the indiscrete topology as then PSh(C) = Shv(C).

Example 2.1.14. A basis for a topology on C is said to be subcanonical if
every representable presheaf is a sheaf. The canonical topology on C is the
largest subcanonical topology on C.

If (C, J) is a site, then there is an equivalence of categories

ShvJ(C) ' Shvcan(ShvJ(C))

between the category of sheaves on C and the sheaves on ShvJ(C) with
respect to the canonical topology. See [J+02, Prop. C.2.2.7]. Note that one
can describe the covering sieves for the canonical topology on a Grothendieck
topos concretely. They are precisely the covering families consisting of jointly
epimorphic maps.

We now briefly discuss morphisms of topoi. This discussion will be helpful
for defining functors of equivariant sheaves induced by continuous equivariant
maps f : X → Y .

Definition 2.1.15. Let X = Shv(C) and Y = Shv(D) be (Grothendieck)
topos. A geometric morphism of topoi f : X → Y is a pair f = (f ∗, f∗) of
adjoint functors

X Y
f∗

f∗

such that f ∗ a f∗ and f ∗ is left exact. We call the right adjoint f∗ the direct
image or pushforward functor and we call the left adjoint f ∗ the inverse
image or pullback functor.

Given geometric morphisms

f = (f ∗, f∗) : X→ Y

g = (g∗, g∗) : Y → Z

of topoi the composition g ◦ f is defined as

g ◦ f = (f ∗ ◦ g∗, g∗ ◦ f∗) : X→ Z

as in the diagram

X Y Z.
f∗

f∗

g∗

g∗
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Remark 2.1.16. Every Grothendieck topos is locally presentable (See [Bor94,
Prop. 3.4.16]). In particular, we may apply the adjoint functor theorem so
to give a geometric morphism f = (f ∗, f∗) it is sufficient to give either f∗
and show it respects limits or give f ∗ and show it is left exact and respects
colimits.

Definition 2.1.17. Let X be a topos, then a point of the topos X is a
geometric morphism x = (x∗, x∗) : Set→ X.

Definition 2.1.18. Let X be a topos and x = (x∗, x∗) a point of X, then
the stalk of a sheaf F at x is x∗F the inverse image of F. If A is a set, then
x∗A is the skyscraper sheaf of A at X.

We now describe a few important properties of the category ShvJ(C).

Proposition 2.1.19. Let (C, J) be a site. If I → PSh(C) is a diagram and
every presheaf Fi in the diagram is a sheaf, then lim←−Fi is a sheaf.

Proof. See [MM12, Prop. III.4.4].

Proposition 2.1.20. The inclusion functor i : ShvJ(C) ↪→ PSh(C) has
a left exact left adjoint a : PSh(C) → ShvJ(C) called the associated sheaf
or sheafification functor. In particular a commutes with finite limits and
colimits.

Proof. See [MM12, Thm. III.5.1].

Note that if F is a presheaf, then the unit map η of the adjunction a a i
gives a canonical map of presheaves F

ηF−→ a(F). This map has the following
universal property. If α : F → G is a map of presheaves where G is a sheaf,
then α factors uniquely through ηF as in

F G

a(F)

ηF

α

Remark 2.1.21. The above proposition tells us that the category ShvJ(C)
is a reflective localization of PSh(C). In particular, we may realize ShvJ(C)
as the full subcategory of PSh(C) of S-local objects where S is collection of

all monomorphisms P
iP
↪−→ Hom(−, C) which correspond to covering sieves in

the topology J .
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Corollary 2.1.22. If (C, J) is a site, then the category ShvJ(C) has all
limits and colimits. Furthermore, colimits in ShvJ(C) may be calculated in
PSh(C) followed by applying the sheafification functor a.

Example 2.1.23. This appears in [Sta21, Tag 09VK]. Let X• : ∆op → Top
be a simplicial topological space. Then we may associate a site XZar to X•
in the following way. The objects of XZar are the open subsets U of Xn for
some n. A morphism U → V in XZar is induced by ϕ : [m] → [n] where
U ⊆ Xn and V ⊆ Xm are open and ϕ is such that X•(ϕ)(U) ⊆ V . We define
{fi : Ui → U}i∈I to be a covering family in XZar if

(1) the Ui ⊆ Xn are open,

(2) all the morphisms fi = X•(1[n]) are induced by the identity for [n], and

(3) ∪i∈IUi = U the Ui cover U .

A sheaf F on XZar consists of a pair ({Fn}n≥0, {F(ϕ)}ϕ∈Mor(∆)) such that:

(1) Each Fn is a sheaf on Xn.

(2) If ϕ : [m]→ [n] is a morphism in ∆, then ϕ induces a continuous map
fϕ := X(ϕ) : Xn → Xm. Then F(ϕ) is a map

F(ϕ) : f ∗ϕFm → Fn.

Furthermore, the structure maps F(ϕ) must be functorial in the fol-
lowing sense: if ϕ : [m] → [n] and ψ : [l] → [m] are morphisms in ∆,
then the maps F(ϕ) and F(ψ) satisfy

F(ψ ◦ ϕ) = F(ϕ) ◦ f ∗ϕF(ψ)

as in the diagram

f ∗ψϕFl Fn

f ∗ϕFm

f∗ϕF(ψ)

F(ψ◦ϕ)

F(ϕ)

We conclude this section with a brief discussion of sheaves valued in other
categories.
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Definition 2.1.24. Let A be a category with (small) limits and X := ShvJ(C)
a Grothendieck topos.

(1) A functor F : Cop → A is an A-valued sheaf on C if for every C ∈
C and every covering sieve S ⊆ C/C of C that F satisfies the sheaf
condition of Definition 2.1.9 or Remark 2.1.11 as an A-valued functor.
Let Shv(C,A) denote the full subcategory of PSh(C,A) that are A-
valued sheaves.

(2) An A-valued sheaf on X is a functor F : Xop → C which preserves
small limits. Let Shv(X,A) denote the full subcategory of PSh(X,A)
spanned by functors which preserves small limits.

Proposition 2.1.25. Let A be a category with (small) limits and X = ShvJ(C)
be a Grothendieck topos. Then the categories Shv(C,A) and Shv(X,A) are
equivalent.

Proof. Let j : C → PSh(C) denote the Yoneda embedding. The universal
property of the Yoneda embedding tells us that precomposition with j induces
an equivalence

FunL(PSh(C),D)
−◦j−−→ Fun(C,D)

where D is any category with all colimits and FunL denotes the full subcat-
egory spanned by functors PSh(C)→ D which preserve colimits. Hence, by
duality composition with j : Cop → PSh(C)op induces and equivalence

FunR(PSh(C)op,D)
−◦j−−→ Fun(Cop,D)

where D is any category with all limits and FunR consists of those functors
PSh(C)op → D which preserve limits. Let a : PSh(C)→ Shv(C) denote the
sheafification functor. Recall this is a localization at the class of monomor-
phisms S ↪→ j(C) which correspond to covering sieves of C ∈ C. Hence,
a has the following universal property: composition with a induces a fully
faithful embedding

FunL(X,A)→ FunL(PSh(C),A)

with essential image those functors F : PSh(C) → A such that for every
monomorphism S → j(C) which corresponds to a covering sieve, then the
induced map F (S) → F (j(C)) is an isomorphism in A. Again by duality

32



we have that composition with a : Xop → PSh(C)op induces a fully faithful
embedding

FunR(Xop,A)
−◦a−−→ FunR(PSh(C)op,A)

from the limit preserving functors Xop → A to the limit preserving functors
PSh(C)op → A such that for every monomorphism S → j(C) corresponding
to a covering sieve the induced map F (j(C))→ F (S) is an equivalence, but
this is precisely the sheaf condition from 2.1.11. Thus, the precomposition
functor

Shv(X,A)
(a◦j)∗−−−→ Shv(C,A)

is an equivalence.

For sheaves of algebraic structures we have some additional useful prop-
erties which we list here. Let (C, J) be a site and A a category.

(F1) Let A denote the category of abelian groups Ab, rings Ring, or com-
mutative rings CRing. There is a canonical equivalence (isomorphism
even) between the categories

A(ShvJ(C)) ' ShvJ(C,A)

between the categories of A-objects in ShvJ(C) and A-valued sheaves
on C.

(F2) Let R be a fixed ring and R denote the sheafification of the constant
presheaf of rings C 7→ R. This is a sheaf of rings. There is an equiva-
lence

ShvJ(C,Mod(R)) 'Mod(ShvJ(C, R)

between the categories of sheaves with values in the category of (left)
R-modules and the category of (left) modules over the ring object R.

(F3) LetR be a ring and A denote any of the categories Ab,Ring,CRing,Mod(R).
Let F : A→ Set denote the obvious forgetful functor. Then a presheaf
F : Cop → A is a sheaf if and only if FF : Cop → Set is a sheaf.

(F4) Let A be as in (F3). Then there is a sheafification functor

a : PSh(C,A)→ ShvJ(C,A)
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which is a left exact left adjoint to the inclusion

i : ShvJ(C,A) ↪→ PSh(C,A).

Moreover, we have a commuting diagram

PSh(C,A) ShvJ(C,A)

PSh(C) ShvJ(C)

F

a

F
a

where F denote the obvious forgetful functor.

(F5) Let A denote any of the categories Ab, Ring, CRing, Mod(R), then
a geometric morphism f = (f ∗, f∗) from Shv(C) to Shv(D) induces an
adjoint pair of functors

Shv(C,A) Shv(D,A)
f∗

f∗

compatible with the forgetful functor and the above results.

(F6) Let O be a ring object in ShvJ(C), then the category of modules over
O is a Grothendieck abelian category.

We defer to [Sta21, Section 00YR] for details.

2.2 Sheaves on Spaces

In this section we recall the construction of the direct image f∗ and inverse
image functors f ∗ giving rise to a geometric morphism f : Shv(X)→ Shv(Y )
for a continuous map f : X → Y of topological spaces. Additionally, we dis-
cuss the equivalence between sheaves on a space and local homeomorphisms
over the space. We then conclude with a second construction of the in-
verse image functor f ∗ using this equivalence. These ideas extend essentially
directly to our definition of equivariant sheaves. A much more thorough
discussion can be found in [MM12, II].

Let f : X → Y be a continuous map, then there is an obvious induced
map f−1 : U(Y )→ U(X) of posets. Moreover, this functor respects intersec-
tions and unions. In particular, it respects the Grothendieck topology in the
following sense:
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(G1) If {Ui → U} is a cover of U in Y , then {f−1(Ui)→ f−1(U)} is a cover
of f−1(U) in X.

(G2) For any V → U in U(Y ) we have f−1(V ∩ Ui) = f−1(V ) ∩ f−1(Ui).

In other words f−1 sends covering families to covering families and intersec-
tions (pullbacks) to intersections (pullbacks). Thus, we obtain a functor

PSh(X)
(f−1)∗−−−−→ PSh(Y )

F 7→ F ◦ f−1

given by precomposition with f−1. It follows from the fact that the functor
f−1 respects covering families and pullbacks that (f−1)∗ sends sheaves to
sheaves. Hence, we obtain a functor.

f∗ : Shv(X)→ Shv(Y ).

Now since the category of sets is complete and cocomplete we may take
(pointwise) left (f−1)!and right (f−1)∗ Kan extension of the functor (f−1)∗

PSh(X) PSh(Y )
(f−1)∗

(f−1)!

(f−1)∗

Note that in this case the left Kan extension may be explicitly described as

(f−1)!F : U 7→ lim−→
f(U)⊆V

F(V )

Consider the composition

f ∗ : Shv(Y ) ⊆ PSh(Y )
(f−1)!−−−→ PSh(X)

a−→ Shv(X).

Lemma 2.2.1. The functor f ∗ is a left exact left adjoint to f∗.

Proof. The functor f ∗ is a left adjoint by the series of adjunctions:

HomShv(Y )(G, f∗F) ∼= HomPSh(Y )(G, f∗F)
∼= HomPSh(X)((f

−1)!G,F)
∼= HomShv(X)(a(f−1)!G,F)

= HomShv(X)(f
∗G,F). (2.2.1)
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For left exactness observe that the functor f ∗ is a composition of the right
adjoint Shv(Y ) ⊆ PSh(Y ) and a left exact functor a : PSh(X) → Shv(X)
so it is sufficient to show that the functor (f−1)! is left exact. The left
Kan extension (f−1)! may be defined via a colimit over the comma category
f−1 ↓ V or equivalently the category of elements of the functor

HomU(X)op(f
−1(−), V ) : U(Y )→ Set

for V ∈ U(X) an open subset of X ( [Rie17, Thm. 6.2.1, Cor. 6.2.6]). These
categories are filtered and filtered colimits commute with finite limits so the
functor (f−1)! is left exact.

Thus, given a continuous map f : X → Y we have obtained a geometric
morphism f = (f ∗, f∗) : Shv(X)→ Shv(Y ).

Remark 2.2.2. The construction of the inverse image functor f ∗ above
gives us a definition of the stalk of a sheaf F at a point x ∈ X. Namely, let
x : {∗} ↪→ X denote the inclusion of x into X. Then since Shv(∗) ' Set we
obtain a point of the topos Shv(X) and by definition the stalk of F at x is
the inverse image x∗F. Since x∗ is constructed as left Kan extension we see
that

Fx := x∗F = lim−→
x∈U

F(U)

where the colimit is taken over the full subcategory of U(X)op spanned by
opens containing x.

Remark 2.2.3. Much of the discussion above holds in a much more gen-
eral setting. Specifically, suppose we have a functor f : D → C where
C and D have Grothendieck topologies. Furthermore, suppose f respects
the Grothendieck topology in the following sense: for every covering family
{Ui → U}i∈I in D

(1) {f(Ui)→ f(Ui}i∈I) is a covering family of f(Ui) in C

(2) for any V → U the canonical map f(V ×U Ui) → f(T ) ×f(U) f(Ui) is
an isomorphism for all i ∈ I.

Then the precomposition functor

PSh(C)
f∗−→ PSh(D)

F 7→ F ◦ f
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restricts to a functor f∗ : Shv(C)→ Shv(D). Additionally, if f! : PSh(D)→ PSh(C)
denotes the (pointwise) left Kan extension of the precomposition with f func-
tor, then the composition

f ∗ : Shv(Y ) ⊆ PSh(Y )
(f−1)!−−−→ PSh(X)

a−→ Shv(X)

defines a left adjoint to f∗ by the same argument as in 2.2.1.
In order to obtain left exactness of f ∗ additional assumptions are needed.

For example, if the left Kan extension is defined over filtered categories or if
C has fiber products and a final object which f respects. See [Sta21, Section
00X0] or [KS06, Thm. 17.5.2].

We now recall the equivalence

Λ : Shv(X) ' Etale(X) : Γ

between sheaves on a topological space X and etale maps p : E → X. For a
more thorough discussion of this see [MM12, Chp. II]. We will have a similar
equivalence in the case of equivariant sheaves.

Construction 2.2.4. LetX be a topological space and let Bund(X) := Top/X
the category of spaces (or bundles) over X. We say that a bundle p : E → X
is etale over X if it is a local homeomorphism in the sense that for each e ∈ E
there is an open neighborhood V ⊆ E of e such that p(V ) ⊆ X is open and
the restriction, p|V : V → p(V ), is a homeomorphism. Let Etale(X) denote
the full subcategory of Bund(X) spanned by the etale maps. Then there is
an adjoint pair of functors

PSh(X) Bund(X)
Λ

Γ

which restrict to an equivalence

Shv(X) Etale(X).
Λ

Γ

Given a bundle p : Y → X the functor Γ is defined by setting for each
U ⊆ X open

Γ(p)(U) = {s : U → Y | p ◦ s = 1U : U ⊆ X}.
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That is, Γ(p)(U) is the set of sections of p over U . For each map V ⊆ U in
U(X) we simply map a section s over V to its restriction to V

Γ(p)(U)
ρUV−−→ Γ(p)(V )

s 7→ s|V .

The functor Λ is defined in the following way. Let F be a presheaf and

Fx := lim−→
x∈U

F(U)

be the stalk of F at x. We denote an equivalence class of elements of Fx by
germxs. Let

Λ(F) =
∐
x∈X

Fx

and define pF : Λ(F) → X by Λ(F)(germxs) = x. Each s ∈ F(U) defines a
section

s̃ : U → Λ(F)

x 7→ germxs.

Finally, topologize Λ(F) with the initial topology for pF and s̃, that is, the
minimal topology which makes pF and all sections s̃ continuous. A basis for
this topology is given by the images s̃(U) ⊆ Λ(F).

The unit, η : 1 → ΓΛ, of the adjunction is

ηU : F(U)→ ΓΛ(F)(U)

s 7→ s̃.

For the counit, ε : ΛΓ → 1 we observe that for p : Y → X a bundle ΛΓ(p)
consists of pairs (s̃, x) where s : U → Y is a section and x ∈ X. Hence, the
counit is defined as

εY : ΛΓ(p)→ Y

(s̃, x) 7→ s(x).

Using the equivalence Etale(X) ' Shv(X) of Construction 2.2.4 there is
an alternative definition for the inverse image functor f ∗ : Shv(Y )→ Shv(X).
Let f : X → Y be continuous and p : E → Y a map. Then there is a functor
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f ∗ : Etale(Y ) → Etale(X) defined by pullback of p along f . Then the
composition

Shv(Y )
Λ−→ Etale(Y )

f∗−→ Etale(X)
Γ−→ Shv(X) (2.2.2)

is left adjoint to the direct image f∗ : Shv(X) → Shv(Y ). We will use a
similar definition for equivariant sheaves. See [MM12, II.9] for details.

2.3 Equivariant Sheaves

We now turn to defining equivariant sheaves in the case of a discrete group.
Our first definition is via etale bundles over a G-space X analogously to
sheaves on spaces. We then give a site of definition for this category so
that it becomes a Grothendieck topos. This notion of equivariant sheaf was
considered in [Gro57, Section. 5]. We will additionally state the alternative
definitions of equivariant sheaf in the case of a non-discrete group.

For a discrete group we consider the category of G-spaces as the cat-
egory of functors GTop := Fun(BG,Top) where BG is the category with
a single object with morphism set G. Let X ∈ Fun(BG,Top) be a G-
space, then a G-space over X is simply an object in the over category
BundG(X) := GTop/X . In other words a G-space over X consists of a
continuous map p : E → X of topological spaces such that p is G-equivariant
as in

G× E E

G×X X

1G×p

µ

p

µ

where the horizontal maps are the action maps. We say that p is etale if it
is a local homeomorphism as defined in Construction 2.2.4.

Definition 2.3.1. Let G be a (discrete) group and X a G-space. The cat-
egory of G-sheaves or G-equivariant sheaves on X is the category of etale
G-spaces over X, denoted EtaleG(X).

We now give an equivalent definition in terms of sheaves on a site.

Definition 2.3.2. Let G be a (discrete) group and X a G-space. Define a
category UG(X) with objects the open subsets of X and morphisms

Hom(U, V ) := {g̃ : U → V | g ∈ G, g · U ⊆ V }.
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Define a Grothendieck topology J on UG(X) by declaring a sieve S = {g̃i : Ui → V }i∈I
to be a covering sieve if and only if⋃

i∈I

gi · Ui = V.

Remark 2.3.3. We use the notation g̃ : U → V for the morphisms in
UG(X) to emphasize the fact that a morphism is a triple (g, U, V ) where
g ∈ G, U, V ⊆ X are open, and g · U ⊆ V .

Additionally, observe that ifX has a trivialG-action, then Hom(U, V ) = G
and every g̃ ∈ Hom(U,U) is an isomorphism with inverse g̃−1.

Remark 2.3.4. For a topological group G acting continuously, that is, so
the action map µ : G × X → X is continuous the etale space definition of
equivariant sheaf is still correct with the requirement that the action map
µ : G×E → E is continuous for an etale space p : E → X. This category is a
Grothendieck topos by [MM12, Appendix Prop. 4]. Since it is a Grothendieck
topos it has a site of definition. However, we are not aware of any site of
definition for this topos which is as simple as the one in Definition 2.3.2.

Proposition 2.3.5. The covering sieves of Definition 2.3.2 form a basis for
a Grothendieck topology on UG(X).

Proof. Pullbacks U1×U U2 in UG(X) along g̃1 : U1 → U and g̃2 : U2 → U are
given by

P U1

U2 U

g̃−1
2

g̃−1
1

g̃1

g̃2

where P = g1U1 ∩ g2U2 and g̃−1
i : P → Ui indicates the morphism induced

by g−1
i .

If g̃ : U → V is an isomorphism, then it has an inverse h̃ : V → U
where in particular g̃ ◦ h̃ = 1V is the identity function on V so g̃ : U → V is
surjective and (B1) is satisfied.

For (B2), by definition of the pullback and projection maps, we need to
show that ⋃

i∈I

h−1(giUi ∩ hV ) = V
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which is clear as

h−1(giUi ∩ hV ) = {x ∈ X | x = h−1giui = h−1hv = v, v ∈ V }

and ∪i∈IgiUi covers U .
Finally, (B3) follows since if ∪i∈IgiUi = U and ∪j∈JihijVij = Ui for each

i ∈ I, then certainly ∪i,jgihijVij = U .

Definition 2.3.6. Let X be a G-space. Denote the category of presheaves on
UG(X) by PShG(X). The category of G-sheaves or G-equivariant sheaves on
X is the category of sheaves on (UG(X), J). Denote this category ShvG(X).

Remark 2.3.7. In order to distinguish the above definition of equivariant
sheaf from the definition of equivariant sheaf for a topological group we will
usually refer to the definition of sheaf in 2.3.6 as G-sheaves rather than as
G-equivariant sheaves.

Remark 2.3.8. Just as Shv(∗) = Set is the category of sets we have that
ShvG(∗) is the category of G-sets where ∗ is the one-point space with neces-
sarily trivial G-action. This follows since for a point the category UG(∗) has
Hom(∗, ∗) = G.

Theorem 2.3.9. If X is a G-space, then there is an equivalence of categories
EtaleG(X) ' ShvG(X)

Proof. Recall from Construction 2.2.4 the adjoint functors

PSh(X) Bund(X)
Λ

Γ

which restrict to an equivalence between the category, Shv(X) of sheaves on
X, and the category, Etale(X) of etale spaces over X. We claim that this
directly generalizes to the desired equivalence.

Namely, let p : E → X denote a G-equivariant continuous map of G-
spaces. Then using Γ we obtain an assignment

Γ(p) : U 7→ Γ(p)(U) = {s : U → E | p ◦ s = 1U : U ⊆ X}.

We extend Γ(p) to a functor on UG(X)op by defining

Γ(p)(g̃) : Γ(p)(U)→ Γ(p)(V )

s 7→ sg.
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Here sg denotes the composite

sg : V
µV U (g)−−−−→ U

s−→ E
µE(g−1)−−−−−→ E

where µE(g−1) is the automorphism of E corresponding to g−1 and µV U(g)
is the map from V → U induced by the action of g on E as gV ⊆ U by
assumption. It follows that sg is a section of V as p is equivariant. Given
a G-equivariant map f : X → Y the functor Γ induces a map Γ(p) → Γ(q)
defined as precomposition with f . It follows by definition of sg that if f is
equivariant then the induced map is a natural transformation of presheaves.
Thus, we have a functor ΓG : BundG(X) → PShG(X). The functor ΓG
is in fact valued in sheaves as the sheaf condition holds for ΓG(p). Indeed
given si ∈ ΓG(p)(Ui) for some covering family {g̃i : Ui → U}i∈I such that

s
g−1
i
i = s

g−1
j

j for all (i, j) ∈ I × I. Then we need a unique section s : U → Y
such that ΓG(p)(g̃i)(s) = si for all i ∈ I. Now for any u ∈ U we have u ∈ giUi
for some i. Hence, consider

s : U → E

u 7→ gisi(g
−1
i u).

which is well-defined, a section, and continuous.
For the functor ΛG : PShG(X) → BundG(X) we simply extend the

functor Λ from Construction 2.2.4. Given a presheaf F ∈ PShG(X) we may
apply Λ to obtain a map pF : Λ(F) → X which is etale if F is a sheaf.
Now we give Λ(F) a G-action in the following way. For g ∈ G we let g̃−1

U

denote the corresponding map from gU → U in UG(X). Note that this is
an isomorphism with inverse g̃ : U → gU . If s ∈ F(U) is a section, then let
gs := F(g̃−1

U )(s). This allows us to define an action on Λ(F) in the following
way:

µ : G× Λ(F)→ Λ(F)

(g, germxs) 7→ germgxgs.

The action is well-defined since if germxs = germxt for s ∈ F(U) and
t ∈ F(V ), then there exists a neighborhood W of x with W ⊆ U ∩ V such
that s|W = t|W . Now we have compositions

F(U) F(gU) F(gW )
F(g̃−1

U ) F(ẽ)
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and similarly for V . In particular, the composition is precisely the restriction
of F(g̃−1

U )(s) = gs and F(g̃−1
V )(t) = gt to F(gW ). Now the claim is that

gs|gW = gt|gW . This follows from the fact that F(g̃W ) is an isomorphism and

F(g̃W )(gs|gW ) = F(g̃W ) ◦ F(ẽ) ◦ F(g̃−1
U )(s) = s|W

and similarly for t. It is easily checked that this defines a group action using
the fact that F is contravariant and composition in UG(X) is induced by
composition in G. It follows that we have bijections µ(g) : Λ(F)→ Λ(F) for
all g ∈ G. One readily checks that the maps µ(g) are all homeomorphisms
of Λ(F) and that pF is equivariant.

We now check that this defines a functor ΛG : PShG(X) → BundG(X).
Namely, for a map of sheaves α : F → G we need only ensure that the induced
map fα : Λ(F) → Λ(G) is equivariant. This follows from the fact that fα is
the disjoint union of the stalk maps for α and α is a natural transformation
of functors on PShG(X). In other words α commutes with the maps F(g̃)
and taking stalks. Thus, we have a functor

ΛG : PShG(X)→ BundG(X)

and if F is already a sheaf then Λ(F) is etale over X.
We finally check that we have unit and counit maps so that we obtain an

adjunction ΓG a ΛG which will restrict to an equivalence between ShvG(X)
and EtaleG(X). For the unit map η : 1 → ΓG ◦ ΛG we simply use the same
map as in Construction 2.2.4. Namely, we have maps

ηU : F(U)→ ΓGΛG(F)(U)

s 7→ (s̃ : x 7→ germxs).

From the definitions it is easily checked that these form a natural transforma-
tion of functors on UG(X)op. Further, if F is already a sheaf, then this map
is an isomorphism since it is an isomorphism in the non-equivariant setting.
Similar reasoning applies in defining the counit map for a bundle Y → X

εY : ΛGΓGY → Y

s̃x 7→ s(x).
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Corollary 2.3.10. The inclusion ShvG(X) ⊆ PShG(X) has a left adjoint
(the subcategory is reflective) and the inclusion EtaleG(X) ⊆ BundG(X)
has a right adjoint (is a coreflective subcategory).

Proof. This follows from a general fact about adjunctions restricting to equiv-
alences. See [MM12, Lemma. II.6.4].

2.4 Equivariant Sheaves and Geometric Morphisms

We now define direct and inverse image functors given a continuous G-
equivariant map f : X → Y of G-spaces. First, observe that the induced
functor f−1 : U(Y )→ U(X) is equivariant in the sense that gf−1(U) = f−1(gU).

Hence, if gU ⊆ V , then gf−1(U) = f−1(gU) ⊆ f−1(V ). It follows we
obtain an extension of the functor f−1 to a functor

f−1 : UG(Y )→ UG(X)

U 7→ f−1(U).

As in Remark 2.2.3 this functor f−1 respects the Grothendieck topology in
the following sense:

(1) If {Vi
g̃i−→ V }i∈I is a cover of V on Y , then {f−1(Vi)

g̃i−→ f−1(V )}i∈I is a
cover of f−1(V ) in X.

(2) f−1 respects pullbacks: since f−1 is equivariant, then

gf−1(U) ∩ gif−1(Vi) = f−1(gU) ∩ f−1(giVi) = f−1(gU ∩ giVi).

So we may define the direct image functor f∗ by precomposition with f−1.

Definition 2.4.1. Let f : X → Y be a continuous equivariant map of
G-spaces. The equivariant direct image or equivariant pushforward is the
functor

f∗ : ShvG(X)→ ShvG(Y )

F 7→ F ◦ f−1

For the inverse image sheaf we may define it through a left Kan extension.
However, due to the lack of certain properties of the category UG(X), for
example it has no terminal object, the general theorems which imply that
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the left Kan extension (f−1)! of (f−1)∗ is left exact do not apply. Hence,
using the equivalence

ShvG(X) ' EtaleG(X)

from Theorem 2.3.9 we instead define the inverse image via a composition

f ∗ : ShvG(Y )
ΛG−−→ EtaleG(Y )

f∗−→ EtaleG(X)
ΓG−→ ShvG(X)

as in 2.2.2. Once we see that this functor is a left adjoint to the usual
definition of inverse image via left Kan extension it follows that they are
naturally isomorphic.

We now make this precise. The category GTop has pullbacks and these
may be calculated in Top with the obvious action. Namely,

A×X B = {(a, b) ⊆ A×B | f(a) = g(b)}
g(a, b) = (ga, gb)

with the initial topology with respect to the projection maps. It follows that
given f : X → Y an equivariant map we obtain a base change functor

f ∗ : BundG(Y )→ BundG(X)

which always has a left adjoint ( [MM12, Thm. I.9.4]) so in particular respects
limits. Further, by Lemma [MM12, II.9.1] if p : E → Y is etale, then the
induced map f ∗E → X is etale over X so f ∗ restricts to a functor

f ∗ : EtaleG(Y )→ EtaleG(X).

Define a functor

f ∗ : ShvG(Y )
ΛG−−→ EtaleG(Y )

f∗−→ EtaleG(X)
ΓG−→ ShvG(X).

Proposition 2.4.2. The functor f ∗ : ShvG(Y ) → ShvG(X) is a left exact
left adjoint to the equivariant direct image functor f∗ : ShvG(X)→ ShvG(Y ).

Proof. We begin with left exactness. To show this it is sufficient to show
that f ∗ : EtaleG(Y ) → EtaleG(X) commutes with products and equalizers
in EtaleG(X). However, the inverse image functor f ∗ is simply the restriction
of the base change functor f ∗ which is a right adjoint so it is sufficient to
show that EtaleG(X) ⊆ BundG(X) is closed under finite limits. Now if
p : A → X and q : B → X are etale over X, then their pullback is their
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product in BundG(X). However, the pullback of an etale map is etale so
EtaleG(X) is closed under products. The equalizer in Bund(X) is simply the
equalizer in Top and it follows that the equalizer in BundG(X) is simply the
equalizer in Bund(X) with the obvious action. By [MM12, Prop. II.9.3] this
is etale and so we are done as the inclusion EtaleG(X) ⊆ BundG(X)) clearly
also preserves the terminal object given by the identity map 1X : X → X.

The fact that the composition

f ∗ : ShvG(Y )
ΛG−−→ EtaleG(Y )

f∗−→ EtaleG(X)
ΓG−→ ShvG(X).

is left adjoint to f∗ may be shown in precisely the same way as for the non-
equivariant case. For details see [MM12, Thm. II.9].

Corollary 2.4.3. If f : X → Y is an equivariant map, then f induces a
geometric morphism f = (f ∗, f∗) : ShvG(X)→ ShvG(Y ).

Proposition 2.4.4. Let X be a G-space and let π∗ : ShvG(X) → Shv(X)
denote the obvious forgetful functor. Then π∗ determines a geometric mor-
phism

π = (π∗, π∗) : Shv(X)→ ShvG(X).

Proof. Per Remark 2.1.16 a topos is locally presentable so it is sufficient
to show that π∗ is left exact and respects colimits. By the equivalence
of Theorem 2.3.9 it will be sufficient to show that the forgetful functor

EtaleG(X)
π∗−→ Etale(X) satisfies these properties. This functor is clearly

left exact as the terminal object in EtaleG(X) is the identity map 1X which
is the terminal object in Etale(X). An equalizer in EtaleG(X) is simply
the equalizer in Etale(X) with the obvious action so is clearly the equalizer
in Etale(X) after forgetting. Finally, products in EtaleG(X) and Etale(X)
are calculated the same way. Thus, the forgetful functor respects the terminal
object, equalizers, and products so it respects all finite limits.

By Corollary 2.3.10 since EtaleG(X) is a coreflective subcategory of
BundG(X), then a colimit in EtaleG(X) is simply a colimit in BundG(X).
However, a colimit in BundG(X) = GTop/X is simply a colimit in GTop
with the induced map to X and colimits in GTop are simply the colimit in
Top with an induced action. The result follows.

Corollary 2.4.5. Let X be a G-space. Then every x ∈ X determines a point
of the topos ShvG(X).
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Proof. Let x ∈ X, then the inclusion x : {x} ↪→ X determines a geometric
morphism

x = (x∗, x∗) : ShvG({x})→ ShvG(X)

where {x} is the space with trivial action. Using Proposition 2.4.4 we obtain
a geometric morphism

Set = Shv({x}) π=(π∗,π∗)−−−−−−→ ShvG({x}) x=(x∗,x∗)−−−−−→ ShvG(X).

Proposition 2.4.6. Let X be a G-space and let x : ShvG({x})→ ShvG(X)
the geometric morphism corresponding to a point x ∈ X. If F

α−→ G is
a map of sheaves in ShvG(X), then α is an isomorphism if and only if
x∗α : x∗F → x∗G is an isomorphism for all x ∈ X.

Proof. This holds for the same reasons it holds for sheaves of spaces.

Corollary 2.4.7. The topos ShvG(X) has enough points.

Proof. We need to show that if for any f : F → G in ShvG(X) it holds that
for every (topos) point x : Set → ShvG(X) that the morphism of stalks
x∗f : x∗F → x∗G is an isomorphism, then f is an isomorphism. The result
follows from Proposition 2.4.6 as this holds for the (topos) points which arise
from points x ∈ X.

Proposition 2.4.8. If k is a commutative ring, G a finite group, and Y a
space with trivial G-action, then there is an equivalence of categories

Shv(Y, kG) ' ShvG(Y, k)

between G-equivariant sheaves of k-modules and sheaves of kG-modules.

Remark 2.4.9. In fact in [Gro57, 5.1] a stronger claim is made. Namely,
that for O a G-sheaf of rings on Y such that the group acts trivially on O,
then

Mod(ShvG(Y ),O) 'Mod(Shv(Y ),O′)

where O′ = O⊗Z ZG is the sheaf with R denoting the constant sheaf associ-
ated to a ring R. One should be able to prove this using the same method
here, but we have not checked all the details.

47



Proof. We construct a pair of functors

Shv(Y, kG) ShvG(Y, k)
Ψ

Φ

along with natural isomorphisms η : 1Shv(Y,kG)

∼=−→ ΦΨ and ε : ΨΦ
∼=−→ 1ShvG(Y,k).

We begin with the functor Φ. Let F ∈ ShvG(Y ), then there is an obvious
forgetful functor to Shv(Y ) by letting Φ(F)(U) := F(U) and restriction maps

ρV U := F(ẽ) : Φ(F)(U)→ Φ(F)(V )

for e the identity element of G. If F ∈ ShvG(Y, k), then this is also a sheaf
of k-modules so it remains only to ensure that we have a G-action on each
Φ(F)(U) and that the restriction maps are G-equivariant. Using the isomor-

phisms F(U)
g̃−→ F(U) define a G-action

µU : G× Φ(F)(U)→ Φ(F)(U)

(g, s) 7→ F(g̃−1)(s). (2.4.1)

It follows that the restriction maps are equivariant. Explicitly, let µU(g)
denote the automorphism of Φ(F)(U) induced by g ∈ G, then

µU(g) ◦ ρUV = F(g̃−1) ◦ F(ẽ) = F(ẽ ◦ g̃−1) = F(g̃−1 ◦ ẽ)
= F(ẽ) ◦ F(g̃−1) = ρUV ◦ µV (g).

On morphisms, α : F → G, in ShvG(Y, k) define

Φ(α) := α (2.4.2)

Since α is a natural transformation ofG-sheaves it follows that the component
maps are equivariant by definition of the action. Hence, we obtain a functor

ShvG(Y, k)
Φ−→ Shv(Y, kG).

Now for a functor Ψ : Shv(Y, kG)→ ShvG(Y, k). Let F ∈ Shv(Y, kG) be
a sheaf. We must extend F from U(Y ) to UG(Y ). Let µU denote the G-action
map and µU(g) the corresponding automorphism for F(U). Define a functor
Ψ(F) : UG(Y )op → Mod(k) by Ψ(F)(U) = F(U) and for g̃ : U → V the
structure maps Ψ(F)(g̃) are the composition

F(V )
ρV U−−→ F(U)

µU (g−1)−−−−−→ F(U). (2.4.3)
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This defines an extension of F to UG(Y ) since the restriction maps are equiv-
ariant. Explicitly, let g̃ : U → V and h̃ : V → W , then

Ψ(F)(h̃ ◦ g̃) = µU((hg)−1) ◦ ρWU = µU(g−1) ◦ ρV U ◦ µV (h−1) ◦ ρWV .

For a natural transformation η : F → G of sheaves in Shv(Y, kG) we define

Ψ(η) = η. (2.4.4)

Note that this defines a natural transformation of functors Ψ(F) → Ψ(G)
as the component maps, ηU : F(U) → G(U), are maps of kG-modules so
equivariant.

We now construct the natural isomorphisms η : 1Shv(Y,kG)
∼= ΦΨ and

ε : ΨΦ ∼= 1. Let F ∈ Shv(Y, kG) and define ηF : F → (ΦΨ)(F) by

ηF(U) : F(U)
identity−−−−→ (ΦΨ)(F)(U) = F(U). (2.4.5)

This is an isomorphism of k-modules so it remains only to check that ηF(U) is
equivariant, that is, by definition of Ψ and Φ we need to show that for g ∈ G

Ψ(F)(g̃−1) ◦ ηF(U) = ηF(U) ◦ µU(g).

Indeed this holds as ηF(U) is the identity and by (2.4.3), Ψ(F)(g̃−1) = µU(g).
Let α : F → G be a map of sheaves, then the square

F(U) (ΦΨ)(F)(U)

G(U) (ΦΨ)(G)(U)

αU

ηF(U)

(ΦΨ)(α)U

ηG(U)

commutes by definition of η and (ΦΨ)(α)U so η is natural. Therefore, η is
natural isomorphism 1 → ΦΨ.

For
ε : ΨΦ→ 1ShvG(Y,k)

given F ∈ ShvG(Y, k) define εF(U) as

εF(U) : (ΨΦ)(F)(U)
identity−−−−→ F(U)
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which is an isomorphism of k-modules. Let g̃ : V → U be a morphism in
UG(Y ), then the square

(ΨΦ)(F)(U) F(U)

(ΨΦ)(F)(V ) F(U)

(ΨΦ)(F)(g̃)

εF(U)

F(g̃)

εF(U)

commutes since

(ΨΦ)(F)(g̃) = µU(g−1) ◦ ρUV = F((g̃−1)−1) ◦ F(ẽ) = F(g̃).

Finally, ε is natural since for a map α : F → G of G-sheaves we have
(ΨΦ)(α) = α so

(ΨΦ)(F)(U) F(U)

(ΨΦ)(G)(U) G(U)

(ΨΦ)(α)U

εF(U)

αU

εG(U)

commutes. Therefore, ε : ΨΦ → 1ShvG(Y,k) is a natural isomorphism and it
follows that ShvG(Y, k) and Shv(Y, kG) are equivalent for a space Y with
trivial G-action.

Corollary 2.4.10. For G a finite group there is an equivalence ShvG(∗, k) '
Mod(kG).

We conclude this section by discussing two other definitions of the cate-
gory of equivariant sheaves. If the group G is a topological group, then these
definitions may not agree with the earlier definition. However, in the case
of a discrete group all three definitions agree. For this material our primary
source is [BL06] while the material on simplicial spaces and sites comes from
the stacks project [Sta21, Tag 09VI].

Let G be a group and X a G-space. Consider the simplicial space X//G
where (X//G)n = Gn ×X with face maps

di(g1, . . . , gn, x) =


(g2, . . . , gn, g

−1
1 x), i = 0

(g1, . . . , gigi+1, . . . , gn, x) , 1 ≤ i ≤ n− 1

(g1, . . . , gn−1, x), i = n

(2.4.6)
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and degeneracy maps

si(g1, . . . , gn, x) = (g1, . . . , gi, e, gi+1, . . . , gn, x).

where e denotes the identity element of G. Consider the truncation of this
diagram to the following

G×G×X G×X X
d1

d0

d2

d0

d1

s0

diagram. Observe that d0 is the action map for X while dn is projection.

Definition 2.4.11. AG-equivariant sheaf onX is a pair (F, θ) where F ∈ Shv(X)
is a sheaf on X and θ is an isomorphism

θ : d∗0F
∼=−→ d∗1F

which satisfies the cocycle condition

d∗0θ ◦ d∗2θ = d∗1θ = d∗1θ, s
∗
0θ = 1F.

A morphism of equivariant sheaves f : (F, θF) → (G, θG) is a morphism
f : F → G of sheaves such that

d∗1f ◦ θF = θG ◦ d∗0f.

We denote this category ShvG(X).

Proposition 2.4.12. If G is a discrete group, then the category Shv(UG(X))
of G-sheaves on X and the category ShvG(X) of G-equivariant sheaves on X
are equivalent.

The third and final definition of G-equivariant sheaf makes use of the en-
tire simplicial space X//G rather than just the truncation to degree two.
However, this definition requires a bit more work. Recall, from Exam-
ple 2.1.23 given a simplicial space X• : ∆op → Top we may construct a
site XZar for the simplicial space X//G. Then a sheaf F on XZar is given
by:

(1) A collection {Fn}n≥0 with each Fn a sheaf on Xn.
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(2) A collection {F(ϕ)}ϕ∈Mor(∆) where F(ϕ) for ϕ : [m]→ [n] is a map

F(ϕ) : f ∗ϕFm → Fn

satisfying the composition condition

f ∗ψϕFl Fn

f ∗ϕFm

f∗ϕF(ψ)

F(ψ◦ϕ)

F(ϕ)

for ψ : [l] → [m] and ϕ : [m] → [n] and where fϕ : Xn → Xm is the
associated continuous map.

Definition 2.4.13. Let X• : ∆op → Top be a simplicial space. A sheaf
F on XZar is said to be cartesian if for all morphisms ϕ : [m] → [n] in ∆
the structure maps F(ϕ) : f ∗ϕFm → Fn are isomorphisms. Denote the full
subcategory of Shv(XZar) spanned by Cartesian sheaves by Shveq(X

Zar).

Lemma 2.4.14 ( [Sta21, Lemma 07TG]). Let di : Xn → Xn−1 denote the ith

face map. If F is a sheaf on XZar for X• a simplicial space, then F is carte-
sian if and only if the structure maps F(δi) : d∗iFn−1 → Fn are isomorphisms
for all i and n.

Proof. Recall, that ∆ is generated by the coface and codegeneracy maps
δi : [n − 1] → [n] and σj : [n] → [n − 1]. Hence, the only if direction is
clear and we need only check that the structure maps F(δi) : d∗iFn−1 → Fn
and F(σj) : s∗jFn → Fn−1 are isomorphisms. Now since σjδi = 1[n] for i = j
and i = j + 1 we get that that F(σj ◦ δj) is the identity. Therefore, if
F(δi) are all isomorphisms the result follows by the 2-of-3 for property for
isomorphisms.

Proposition 2.4.15. Let X be a G-space and X//G the corresponding sim-
plicial space. The category ShvG(X) of G-equivariant sheaves on X is equiv-
alent to the category Shveq(X//G) of cartesian sheaves on X//G.

Proof. See [Sta21, Lemma 0D7I, Lemma 0D7J] or [Del74, 6.1.2(b)].
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2.5 Constructible Sheaves

We briefly discuss constructible sheaves which will be used to define the
equivariant constructible derived category. Let X be a space and k a ring.
Let Shv(C, k) denote the category of sheaves of k-modules on a site (C, J)
and Shv(X, k) the category of sheaves of k-modules on X.

Definition 2.5.1. A sheaf F ∈ Shv(C, k) is said to be constant if F is
equivalent to the sheafification of a constant presheaf P : U 7→ A.

Remark 2.5.2. Let p : X → ∗ denote the map to the terminal object, then
a sheaf F on X is constant if and only if F lies in the essential image of the
inverse image functor p∗.

Let j : U ⊆ X be a subspace, then the restriction of a sheaf F on X to
U is F|U := j∗F the inverse image of the inclusion.

Definition 2.5.3. Let X be a topological space. A sheaf F ∈ Shv(X, k) is
said to be locally constant if for every U ⊆ X open there is a cover {Ui → U}
of U such that F|Ui is a constant sheaf.

Definition 2.5.4. Let X be a compact Hausdorff space, then the open cone
on X is defined to be the space

c̊X = X × [0, 1)/(X × {0}).

We define topologically stratified pseudomanifolds spaces inductively.

Definition 2.5.5. Let X be a topological space. Then:

• X is a 0-dimensional topologically stratified space if it is a countable set
of points with the discrete topology.

• X is a n-dimensional topological stratified pseudomanifold if it is a para-
compact Hausdorff space with a filtration

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊆ Xn = X

by closed subspaces Xj such that the local normal triviality condition
holds: For each x ∈ SJ there is a neighborhood U of x ∈ X and a
compact topological stratified pseudomanifold L of dimension n− j−1
with stratification

∅ = L−1 ⊂ L0 ⊂ L1 ⊂ · · · ⊂ Li−3 ⊂ Li−1 = L
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and a homeomorphism

φ : U
∼=−→ Rj × c̊L

such that φ is a homeomorphism of U ∩Xi+j+1 onto Rj × c̊Li for 0 ≤
i ≤ n− j − 1 and

φ : U ∩Xj

∼=−→ Rj × {x}
is a homeomorphism.

If the filtration on X also satisfies the condition Xn−1 = Xn−2 so X \Xn−2

is dense in X, then X is said to be a topologically stratified pseudomanifold.

Example 2.5.6. • Every manifold is a topologically stratified pseudo-
manifold.

• The wedge sum of two spheres is a topologically stratified pseudoman-
ifold.

• All irreducible complex algebraic or analytic varieties may be consid-
ered as topological stratified pseudomanifolds.

• Complex algebraic varieties are topologically stratified spaces with a
Whitney stratification.

• A non-example would be the open cone on three points.

Remark 2.5.7. Stratifications of spaces may be considered in much more
general contexts as in [Lur, §A]. However, for our purposes the above defini-
tion is the one most commonly considered for constructible sheaves.

Definition 2.5.8. Let X and Y be stratified topological pseudomanifolds.
A continuous map f : X → Y is stratified if

(1) For any connected component S of any stratum Yk \Yk−1, then f−1(S)
is a union of connected components of strata of X.

(2) For each y in a stratum Yi \ Yi−1 there is a neighborhood U of y in Yi,
a topologically stratified space

∅ = F−1 ⊂ · · · ⊂ Fk−1 ⊂ Fk = F

and a stratum preserving homeomorphism

F × U
∼=−→ f−1(U).
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The stratification on F × U is simply the product of U with the stratifi-
cation of F .

Remark 2.5.9. For more on stratified spaces see [Bor09, Max19, Ban07,
GM83].

Definition 2.5.10. Let X be a topological space with a stratification S
with strata {Si}i∈I . We say that a sheaf F on X is S-constructible or just
constructible if F|Si is a locally constant sheaf for all i ∈ I.

If F ∈ Shv(X,R) is a sheaf of R-modules, then we will say that F is
constructible if

(1) F|Si is a locally constant sheaf of R-modules

(2) the stalks Fx for all x ∈ X are all finitely generated k-modules.

Remark 2.5.11. Let X be a stratified space with stratification S. Let
k be a ring and Shvc(X, k) denote the full subcategory spanned by con-
structible sheaves of k-modules. Then Shvc(X, k) is a weak Serre subcategory
of Shv(X, k) in the sense of [Sta21, Definition 02MO].

Definition 2.5.12. Let X be a G-space with a stratification S and F ∈
ShvG(X, k), then we say that F is constructible if F is constructible as a sheaf
in Shv(X, k). Let ShvG,c(X, k) denote the full subcategory of constructible
sheaves.

Lemma 2.5.13. The category ShvG,c(X, k) is a weak Serre subcategory of
ShvG(X, k).

Proof. A sheaf F is constructible by definition if it is constructible after
applying the forgetful functor which is exact and the result follows.

2.6 ∞-Sheaves

We now turn to discussing some basic theory of sheaves on a site in the
∞-categorical setting. Here the main source is [Lur09b, Chapter 6]. The
definitions and properties here are essentially the same as those of Section 2.1
with some slight modifications for the ∞-categorical setting.

Definition 2.6.1. Let C be an∞-category. A sieve on C is a full subcategory
S ⊆ C such that if f : C → C ′ is a morphism in C and C ′ ∈ S, then C ∈ S.

If C ∈ C is an object in C, then a sieve on C is a sieve on the over
∞-category C/C .
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Remark 2.6.2. In the above definition if C ' N(C) is the nerve of a 1-
category, then this is precisely the same as the usual definition of a sieve
on a 1-category. In fact something stronger is true. Namely, for any ∞-
category there is a bijection between the sieves on the homotopy category
h(C/C) and (hC)/C . This is essentially due to the fact that a full subcategory
is determined by its objects (See [Lur09b, Rem. 6.2.2.3]).

We now turn to defining Grothendieck topologies on an ∞-category C.
If C is an ∞-category with pullbacks, then we have projection functor t :
Fun(∆1,C) → C given by evaluation at 1. This is a biCartesian fibration.
Let f : C → D be morpism in C, then taking the pullback along f : ∆1 → C

and t gives a biCartesian fibration t̃ : P → ∆1 as Cartesian and coCartesian
fibrations are closed under pullback by [Lur09b, Prop. 2.4.2.3]. This is
precisely the data of a pair of adjoint functors

C/C C/D
f!

f∗

where we may consider the functor f! as composition with f and f ∗ as pull-
back along f .

Now if f : C → D is a morphism in an ∞-category C with pullbacks.
Then given a sieve S on C ∈ C we let f ∗S denote the unique sieve on D ∈ D

such that the full subcategory f ∗S ⊆ C/D and the sieve S determine the
same sieve on C/f .

Definition 2.6.3. A Grothendieck topology, J , on C is for each C ∈ C a
collection of sieves J(C) on C which we call covering sieves such that

(1) (Maximality) The sieve C/C is in J(C).

(2) (Stability) if f : D → C is a morphism in C and S ∈ J(C), then f ∗S
is in J(D).

(3) (Transitivity) If S ∈ J(C) and S ′ is any sieve on C such that for all
f : D → C in S we have f ∗S ′ ∈ J(D), then S ′ is in J(C).

Remark 2.6.4. In light of Remark 2.6.2 it follows that to give a Grothendieck
topology on an ∞-category C is the same as giving a Grothendieck topology
on the homotopy category hC.
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Definition 2.6.5. Let C be an∞-category with a Grothendieck topology J .
If F : Cop → S is a presheaf on C, then we say that F is a sheaf if for every
C ∈ C and every covering sieve S of C the composition

SC ⊆ (C/C)C → C
Fop−−→ Sop

is a colimit diagram in Sop. We denote this category by ShvJ(C).

Remark 2.6.6. The notation for S-valued sheaves and Set-valued sheaves
is the same. Given our differing notation for 1-categories and ∞-categories
it should be clear from context which we are referring to.

Remark 2.6.7. According to [Lur09b, Prop. 6.2.2.5] there is bijection be-
tween sieves on an object C ∈ C and monomorphisms into the representable
functor j(C) just as in the 1-categorical setting.

The category ShvJ(C) is a left exact localization of PSh(C just as in the
1-categorical setting so we have adjoint functors

PSh(C) ShvJ(C)
L

i

where L is left exact. In particular, ShvJ(C) is an ∞-topos and presentable.

2.7 C-valued ∞-Sheaves

Definition 2.7.1. Let C be a compactly generated ∞-category and (T, J)
a (small) ∞-category with a Grothendieck topology and let X := ShvJ(T)
denote the corresponding ∞-topos.

(1) A functor F : Top → C is a C-valued sheaf on T if for every U ∈ T and
every covering sieve S ⊆ T/U the composition

SC ⊆ (T/U)C → T
Fop−−→ Cop

is a colimit diagram in Cop. Let Shv(T,C) denote the full subcategory
of Fun(Top,C) spanned by C-valued sheaves.

(2) A C-valued sheaf on X is a functor F : Xop → C which preserves
small limits. Let Shv(X,C) denote the full subcategory of Fun(Xop,C)
spanned by such functors.
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Informally, a functor F : Top → C is a C-valued sheaf if for every U ∈ T

and every covering sieve S/U of U the canonical map

F(U)→ lim←−
V ∈S

F(V )

is an equivalence in C.

Remark 2.7.2. For ∞-categories C and D we let FunR(C,D) denote the
full subcategory of Fun(C,D) spanned by functors which admit left adjoints
(are right adjoints). Similarly, FunL(C,D) denotes the full subcategory of
functors which admit right adjoints (are left adjoints). By [Lur09b, Prop.
5.2.6.2] there is a canonical equivalence

FunR(C,D) ' FunL(D,C)op.

In particular, we get an equivalence

FunR(Cop,D) ' FunR(Dop,C)

using the fact that FunR(Cop,D) ' FunL(C,Dop)op.
Using the adjoint functor theorem [Lur09b, Cor. 5.5.2.9] and [Lur09b,

Rem. 5.5.2.10] it follows that for C presentable we obtain an equivalence

Shv(X,C) ' FunR(Xop,C). (2.7.1)

Indeed a functor F : Xop → C which has a right adjoint preserves small limits
and if F : Xop → C preserve small limits, then Fop : X→ Cop preserves small
colimits and so has a right adjoint, that is, lies in FunL(D,Cop). From which
it follows that F ∈ FunR(Dop,C) as

FunL(X,Cop)op ' FunR(Cop,D) ' FunR(Dop,C)

by the above discussion.

Since C is presentable it has all small limits. From this one is able to
deduce that the two definitions in 2.7.1 are equivalent. This equivalence arises
in the same way as for 1-categories. Let X denote the∞-topos ShvJ(T). Let
j : T → PSh(T) denote the Yoneda embedding and L : PSh(T)→ ShvJ(T) a
left adjoint to the inclusion. Then the functor

Shv(X,C)
(L◦j)∗−−−→ Shv(T,C)

F 7→ F ◦ L ◦ j

given by precomposition with L ◦ j induces the desired equivalence. This
is [Lur09a, Prop. 1.1.12].
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Lemma 2.7.3. Let C = Ind(C0) be a compactly generated ∞-category and
j : Cop0 → Ind(Cop0 )op the Yoneda embedding. If X is an ∞-topos, then there
is a canonical equivalence

Shv(X, Ind(C0)) ' Funlex(Cop0 ,X).

Proof. First, by [Lur09b, 5.3.5.10] and [Lur09b, 5.4.1.9] composition with the
Yoneda embedding j : Cop0 → Ind(Cop0 )op induces an equivalence

FunR(Ind(Cop0 )op,X)
−◦j−−→ Funlex(Cop0 ,X).

Hence, we obtain

FunR(Ind(Cop0 )op,X) ' FunR(Xop, Ind(C0)) = Shv(X,C).

Now suppose we have an ∞-topos X and C = Ind(C0) a compactly gen-
erated ∞-category. Then the above lemma gives equivalences

ShvJ(T,C) ' Shv(X,C) ' Funlex(Cop0 ,X).

Let f = (f ∗, f∗) : X→ Y be a geometric morphism of ∞-topoi. Then we
obtain a commuting diagram

Shv(X,C) Shv(Y,C)

Funlex(Cop0 ,X) Funlex(Cop0 ,Y)

'

−◦f∗

'

f∗◦−

The functor f∗ ◦ − given by postcomposition has a left adjoint given by
postcomposition with f ∗.

We conclude by defining constant, locally constant, and constructible
sheaves on a space. These may be defined in precisely the same way as in
the 1-categorical case.

Definition 2.7.4. Let X be a topological space with a stratification {Si}
and C a compactly generated ∞-category. Let F ∈ Shv(X,C) be a sheaf,
then:
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(1) F is constant if F is equivalent to the sheafification of a constant
presheaf. Equivalently, if F lies in the essential image of the pullback
map p : X → ∗.

(2) F is locally constant if there exists a cover {Ui} of X such that FUi the
restriction of F to each Ui is constant.

(3) F is constructible if for each strata Si of X the restriction F|Si of F to
each stratum is locally constant.

Let Shvc(X,C) denote the full subcategory of constructible sheaves.

Lemma 2.7.5. If X is a stratitifed space and C compactly generated, then
there is an equivalence

Shvc(X,C)
'−→ Funlex(Cop0 , Shvc(X, S)).

Proof. The equivalence of Lemma 2.7.3 commutes with the pullback functor
and the result follows.

Definition 2.7.6. If F ∈ Shv(X,C) and C is compactly generated, then
we say that F is compact-valued if all the stalks Fx of F are valued in C0

the compact objects of C. Let Shvcpt(X,C)) denote the full subcategory of
Shv(X,C) spanned by compact-valued sheaves.

2.8 Digression: The Derived Category of Sheaves

Suppose we have a site T = N(T) which is the nerve of a 1-category. Let
R be a ring, then there are two ways we might consider the (unbounded)
derived ∞-category of sheaves.

(1) We can consider D(Shv(T, R)) the unbounded derived ∞-category of
1-sheaves of R-modules.

(2) We can consider Shv(T,D(R)) the∞-category of sheaves valued in the
derived ∞-category of R-modules.

Note that the ∞-category D(R) is equivalently the ∞-category Mod(R) of
modules over the Eilenberg-Maclane ring spectrum associated to R by [Lur,
Ex. 7.1.1.16]. In particular, by [Lur, Prop. 7.2.4.2] this is a compactly
generated stable ∞-category and the subcategory of compact objects are
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precisely the perfect modules which correspond to complexes which are quasi-
isomorphic to bounded chain complexes of finitely generated projective mod-
ules (See [Lur, Ex. 7.2.4.25]). Now the categories D(Shv(T, R)) and Shv(T,D(R))
are not necessarily equivalent. However, we have the following theorem
from [Lur18], which we record here as [Lur18] is subject to change, which
gives sufficient conditions for them to be equivalent.

Theorem 2.8.1 ( [Lur18, Thm. 2.1.2.2]). Let (X,O) be a spectrally ringed
∞-topos such that:

(1) The structure sheaf O is discrete.

(2) For each object X ∈ X there is an effective epimorphism U → X where
U is a discrete object of X.

(3) The ∞-topos X is hypercomplete.

Then there is an canonical equivalence D(Mod(O)♥) 'Mod(O).

Here O is a sheaf of E∞-rings on X and Mod(O)♥ denotes the heart of a
particular t-structure on Mod(O).

The hypercomplete sheaves in an ∞-topos are precisely those which sat-
isfy descent for all hypercovers. See [Lur09b, §6.5.2, 6.5.3]. A few facts about
hypercomplete sheaves for our purposes are:

(1) The hypercomplete sheaves Xhyp ⊆ X form an ∞-topos which is a left
exact Bousfield localization of X [Lur09b, Cor. 6.5.3.13].

(2) The hypercomplete sheaves Xhyp contain all the n-truncated objects in
X [Lur09b, Lemma 6.5.2.9].

(3) If X = Shv(N(T) is an ∞-topos on a 1-site, then Xhyp is presented by
the local model structure on the model category of simplicial presheaves
on T [Lur09b, Prop. 6.5.2.14]. In particular, this is a Bousfield localiza-
tion of the injective model structure on the model category of simplicial
presheaves on T which present the ∞-category PSh(N(T)).

See also [Jar87] and [DHI04] for detailed treatments of these model struc-
tures.
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Remark 2.8.2. In the case of Shv(T,D(R)) where T = N(T), then we
always have a map

D(Shv(T, R))→ Shv(T,D(R))

taking a complex of sheaves to the sheaf valued in complexes and the theorem
above may be viewed as saying this map is fully faithful and has essential
image the hypercomplete sheaves.

We claim that the above theorem tells us that if T = N(T) is a Grothendieck
site for a 1-category. Then we have an equivalence

D(Shv(T, R)) ' Shvhyp(T,D(R))

where the right hand side denotes hypercomplete sheaves. Since R is a dis-
crete E∞-ring and we are considering D(R)-valued sheaves on Xhyp = Shvhyp(T)
the only condition that needs to be checked is (2). Thus, for every X ∈ Xhyp

we need a discrete object U ∈ Xhyp along with a morphism U → X which
is an effective epimorphism. Let τ≤n : X → τ≤nX denote the truncation
functor [Lur09b, §5.5.6]. This functor is a localization functor in the sense
that it has a fully faithful right adjoint. We note that the full subcategory
τ≤0X ⊆ X of discrete objects is precisely the 1-topos Shv(T), that is,

τ≤0X ' N(Shv(T)).

By [Lur09b, Prop. 7.2.1.14] a morphism U
φ−→ X in an ∞-topos X is an

effective epimorphism if and only if τ≤0(φ) is an effective epimorphism the
1-topos h(τ≤0(X)) = Shv(T). Furthermore, by [MM12, Thm. IV.7.8] we
have that every epimorphism in a 1-topos is an effective epimorphism. It

follows that for each X ∈ Xhyp we need only provide a map U
φ−→ X with U

discrete such that the τ≤0(φ) is an epimorphism in Shv(T). By [Lur09b, Prop.
5.5.6.16] left exact functors between ∞-categories with finite limits respect
truncated objects. Hence, since X is a left exact localization of PSh(T) and
Xhyp is a left exact localization of X it follows that the result holds if it holds
in PSh(T). The result follows.

As a consequence of the above discussion. Let X be a topological space
and R a ring. Let Mod(R) denote the ∞-category of module spectra over
the Eilenberg-Maclane spectrum for R. As constructible sheaves are hyper-
complete by [Lur, Prop. A.5.9] we get that the subcategory

Shvc(X,D(R)) ⊆ Shvhyp(X,D(R))
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corresponds to the full subcategory Dc(Shv(X,R)) ⊆ D(Shv(X,R)) of sheaves
which are homologically constructible. Similarly, the full subcategory of con-
structible compact-valued sheaves

Shvc,cpt(X,D(R)) ⊆ Shvc(X,D(R))

corresponds to the subcategory Dc,cpt(Shv(X,R)) ⊆ Dcpt(Shv(X,R)) of sheaves
with constructible homology and perfect stalk complex.

For additional discussion of this section see [mat] and [Jan20, §2.4, Ap-
pendix B].

2.9 Equivariant ∞-Sheaves

We conclude the discussion of sheaves by discussing equivariant ∞-sheaves
and the equivariant derived category.

Definition 2.9.1. Let G be a discrete group and X a G-space. The ∞-
category of G-sheaves or G-equivariant sheaves is the ∞-category

ShvG(X) := Shv(N(UG(X)), S).

Given an equivariant map f : X → Y we obtain a map

f−1 : N(UG(Y ))→ N(UG(X))

as in the 1-categorical case. This induces a functor of ∞-categories

PShG(X)
(f−1)∗−−−−→ PShG(Y )

by precomposition with f−1. Using [Lur09b, Prop. 4.3.3.7] we obtain left
and right Kan extensions of (f−1)∗

PShG(X) PShG(Y ).
(f−1)∗

(f−1)!

(f−1)∗

Now since a Grothendieck topology on C is the same as a Grothendieck topol-
ogy on hC we get that f−1 : NUG(Y )→ NUG(X) respects the Grothendieck
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topology. It follows that if F ∈ PShG(X) is already a sheaf, then (f−1)∗F
lies in ShvG(Y ). Hence, we obtain a pushforward functor.

f∗ : Shv(X)→ Shv(Y ).

For the inverse image functor f ∗ : ShvG(Y )→ ShvG(X) observe that the
composition

ShvG(Y ) ⊆ PShG(Y )
(f−1)!−−−→ PShG(X)

aX−→ ShvG(X)

is a left adjoint to f∗ by precisely the same argument as in the 1-categorical
case. Thus, we have a pair of adjoint functors

ShvG(X) ShvG(Y )
f∗

f∗

which define a geometric morphism f = (f ∗, f∗) : ShvG(X) → ShvG(Y )
provided f ∗ is left exact.

Unfortunatley, the author is unsure how to show that the functor f ∗ :
ShvG(Y ) → ShvG(X) is left exact in the ∞-categorical setting for similar
reasons to why we were not able to show the left Kan extension is left ex-
act in the 1-categorical case. A potential approach would be to somehow
use [Lur09b, Prop. 6.2.3.20] which characterizes the inverse image functors
of geometric morphisms.

Definition 2.9.2. LetG be a discrete group andX aG-space. Let C = Ind(C0)
be a compactly generated ∞-category. The ∞-category of G-sheaves or G-
equivariant C-valued sheaves on X is the ∞-category

ShvG(X,C) := Shv(N(UG(X)),C).

Or equivalently either of the categories FunR(ShvG(X)op,C) or Funlex(Cop0 , ShvG(X))
by Definition 2.7.1 or Lemma 2.7.3.

2.10 The Equivariant Derived Category

We conclude by defining the G-equivariant derived category for a finite group
G over a commutative ring k. We then discuss the alternative definitions
which must be used in the case the group G is not finite following [BL06]. In
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this setting we assume all spaces are sufficiently nice. Specifically, we assume
X is Hausdorff and locally homeomorphic to a pseudomanifold of bounded
dimension. Note that such a space is locally compact of finite cohomological
dimension and is also locally completely paracompact. A space is said to be
locally completely paracompact if every point has an open neighborhood all
of whose open subsets are paracompact.

Definition 2.10.1. Let G be a finite group and X a G-space. The equiv-
ariant derived category is the unbounded derived stable ∞-category of the
G-equivariant sheaves on X, denoted

DG(X, k) := D(ShvG(X, k)).

IfX has a stratification, then the constructible equivariant derived∞-category
is

DG,c(X, k) := Dc(ShvG(X))

the full subcategory spanned by complexes which are homologically con-
structible.

Remark 2.10.2. Following the discussion in the digression this is equiva-
lently the ∞-category ShvhypG (X,D(k)) of hypercomplete sheaves valued in
the derived∞-category of k and the constructible sheaves in ShvhypG (X,D(k))
correspond to the homologically constructible sheaves.

By [BL06, §8] given a continuous equivariant map we may simply define
the functors

f∗ : D+
G(X, k)→ D+

G(X, k)

f ∗ : Db
G(X, k)→ Db

G(X, k)

as the usual derived functors. Furthermore, as an equivariant sheaf is con-
structible if it is constructible after applying the forgetful functor it follows
that these functors descend to functors of constructible sheaves. In this con-
text we are not entirely sure how to define the functors f !.

As we are unable to define the six operations for the definition of the
equivariant derived ∞-category above. We give the definition of the equiv-
ariant derived 1-category in the case of a non-finite group for which the
six operations are defined. For the six operations themselves we simply list
their properties which will be used in Section 3. For more details on these
constructions see [BL06]. In particular sections 2.1, 2.7, 2.8, and 3.
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We still consider a finite group G and G-space X. Let EG be a the
total space for the classifying space BG of G. Let P = EG × X and
P = (EG×X)/G be the quotient by the G-action. We have a diagram

X
p←− P

q−→ P

where p is the projection to X and q is the quotient map. Let Db(X) denote
the bounded derived category of sheaves of k-modules. Define a category
Db
G(X,P ) with objects triples (FX ,F, β) such that FX ∈ Db(X), F ∈ Db(P ),

and β : p∗(FX) ∼= q∗(F ) is an isomorphism in Db(P ). Note that there is an
obvious forgetful functor sending an object (FX ,F, β) to FX ∈ Db(X).

Definition 2.10.3. The equivariant derived category is the category

Db
G(X) := Db(X,P ).

The equivariant constructible derived category Db
G,c(X) is the full subcat-

egory of Db
G(X) spanned by F = (FX ,F, β) such that FX is homologically

constructible in Db(X).

Remark 2.10.4. The definition above works for any group G with a suffi-
ciently nice space EG. For a precise statement see [BL06, Def. 1.9.1].

Remark 2.10.5. The category above may also be defined as a fibered cat-
egory. The definition as a fibered category is used to define the t-structure,
triangulated structure, and the six operations. See [BL06, §2.4].

We now turn to the equivariant six operations for Db
G(X).

V1. Let F,G ∈ Db
G(X), then there exist objects F ⊗ G and Hom(F,G) in

Db
G(X) induced by bifunctors −⊗− and Hom(−,−) such that

Hom(F ⊗ G,H) ∼= Hom(F,Hom(G,H))

V2. For f : X → Y an equivariant map there are functors

f∗, f! : Db
G(X)→ Db

G(Y )

f ∗, f ! : Db
G(Y )→ Db

G(X)

such that:
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V2.1. The assignment is functorial, that is, for f : X → Y and g : Y →
Z we have natural isomorphisms

(fg)∗ ∼= g∗f ∗, (fg)! ∼= g!f !

(fg)∗ ∼= f∗g∗, (fg)!
∼= f!g!.

V2.2. f ∗ is naturally left adjoint to f∗ and f! is naturally left adjoint to
f !.

V3. For F,G,H ∈ Db
G(X) there are natural functorial isomorphisms

Hom(F ⊗ G,H) ∼= Hom(F,Hom(G,H))

f ∗(F ⊗ G) ∼= f ∗(F)⊗ f ∗(G).

V4. There is a canonical map f! → f∗ which is an isomorphism when f is
proper.

V5. For Y ⊂ X a closed G-subspace, U = X \ Y let i : Y ↪→ X and
j : U ↪→ X denote the inclusions, then for F ∈ Db

G(X) we have exact
triangles

i!i
!(F)→ F → j∗j

∗(F)

j!j
!(F)→ F → i∗i

∗(F)

functorial in F and compatible with the forgetful functor to Db(X).

V6. (Equivariant Verdier Duality) There is an object ωG,X ∈ Db
G(X) which

defines a dualizing functor DG,X := Hom(−, ωG,X) on Db
G(X) where

the functor DG,X is such that:

V6.1. There is a canonical map

F → D(D(F)))

in Db
G(X).

V6.2. For a G-equivariant map f : X → Y there are canonical isomor-
phisms

Df!
∼= f∗D

f !D ∼= Df ∗.
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V6.3. The functor DG,X commutes with the forgetul functor to Db(X).
More precisely if DX denotes the Verdier duality functor forDb(X),
then the square

Db
G(X) Db

G(X)

Db(X) Db(X)

DG,X

DX

commutes where the vertical maps are the forgetful functor.

If X is a G-space which is a stratified pseudomanifold, then we have the
following:

(C1) The full subcategory Db
G,c(X) ⊆ Db

G(X) of constructible sheaves is
preserved by ⊗, Hom, and DG,X .

(C2) The canonical morphism F → D(D(F)) is an isomorphism for F ∈ Db
G,c(X)

(C3) If f : X → Y is a stratified G-equivariant map of stratified pseudoman-
ifolds with G-action, then f ∗, f !, f∗, and f! all preserve constructibility.

Remark 2.10.6. As observed in [BL06, §2.7] the equivariant derived cate-
gory above is the 2-limit of the diagram

Db(X)
p∗−→ Db(P )

q∗←− Db(P ).

This suggests defining the equivariant derived ∞-category as a limit of the
diagram

Db(X)
p∗−→ Db(P )

q∗←− Db(P )

in CatEx
∞ the∞-category of stable∞-categories. We note that following [BL06,

§2.7] on can instead take a 2-limit over a larger diagram to obtain the equiv-
ariant derived category. One would modify the limit in CatEx

∞ in a corre-
sponding fashion. We say more on this in Section 4.

3 Smith-Treumann Theory for Sheaves

This section is essentially just material in [Tre19, §4] with a few of our own
remarks.
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3.1 The Smith Operation

This is essentially [Tre19, §4]. Let G = Z/p be the cyclic group of order p and
k a field of characteristic p. Let kG denote the corresponding group algebra.
Let X be a G-space and let i : XG ↪→ X denote the inclusion of the fixed
points. We assume that all spaces are sufficiently nice to define constructible
sheaves, that is, X should be a stratified pseudomanifold.

Let Y be a G-space with trivial G-action and let Db
c(Y, kG) denote the

full subcategory of Db(Y, kG) spanned by complexes with constructible ho-
mology. Let Perf(Y, kG) denote the full subcategory of Db(Y, kG) spanned
by sheaves of kG-modules whose stalk complexes are perfect, that is, the
stalk complexes are finitely generated (bounded) complexes of projective kG-
modules. Note that kG is a local ring and so these are simply complexes of
finitely generated free kG-modules. Let Perf(Y, ktG) denote the Verdier quo-
tient Db

c(Y, kG)/Perf(Y, kG) and let Q : Db
c(Y, kG) → Perf(Y, ktG) denote

the Verdier quotient map.

Remark 3.1.1. If Y = ∗ is a point, then this is precisely the stable mod-
ule category stmod(kG) by Theorem 1.3.3. We would like to think of the
Verdier quotient Db

c(Y, kG)/Perf(Y, kG) as an appropriate ∞-category of
sheaves valued in the stable module ∞-category of kG or equivalently, by
Theorem 1.4.7 the category of modules over the Tate spectrum ktG.

Recall, if G acts trivially on a space Y , then we have and equivalence

ShvG(Y, k) ' Shv(Y, kG).

which induces an equivalence Db
G(Y, k) ' Db(Y, kG). Let X be a G-space

and let i : XG → X denote the inclusion of the fixed points.

Definition 3.1.2 ( [Tre19, Def. 4.2]). The Smith operation is the composi-
tion

Psm : Db
G(X, k)

i∗−→ Db
G(XG, k) ' Db(XG, kG)

Q−→ Perf(XG, ktG).

3.2 Six Operations for The Smith Operation

We now show that Perf(Y, ktG) obtains a symmetric monoidal structure,
duality functor, and functors f∗, f

∗, f!, and f ! for a map f : Y → Y ′ of
spaces with trivial action.
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Lemma 3.2.1. Let X be a finite dimensional space with free G action, then
the global sections functor

ΓG : Db
G,c(X, k)→ Db

G,c(∗, k) = Db(mod(kG))

is valued in Perf(kG).

Proof. Note that the category Db
G,c(X, k) is generated (as a triangulated

category) by the constant sheaves on G-invariant closed subsets. Hence, let
Y be a G-invariant closed subset of X with a G-invariant triangulation. The
global sections ΓG are quasi-isomorphic to the simplicial cochain complex
with coefficients in k of the triangulation along with the natural G-action.
As X is finite dimensional this is a bounded complex. As G acts freely on Y
it acts freely on the i-simplices and so this complex is a bounded complex of
free kG-modules and we are done.

Let i : XG ↪→ X denote the inclusion, then this is a proper map. In
particular we get that i∗ ∼= i! and i∗ is fully faithful. It follows that the unit

1
∼=−→ i!i∗ is an isomorphism so we get an isomorphism i!i∗i

∗ ∼= i∗. Hence,
applying i! to the unit map 1 → i∗i

∗ there is a natural map i! → i∗.

Lemma 3.2.2 ( [Tre19, Thm. 4.1]). Let X be a G-space and let i : XG ↪→ X
the inclusion. The cone on the natural map i! → i∗ lies in Perf(XG, kG).

Remark 3.2.3. Lemma 3.2.2 implies that the Smith operation Psm may
equivalently be defined as the composition

Db
G(X, k)

i!−→ Db
G(XG, k) ' Db(XG, kG)

Q−→ Perf(XG, ktG).

The G-equivariant Verdier duality operation from V6. is defined using a
fibered category definition of Db

G(X). For a space Y with trivial action under
the equivalence

Db
G(Y, k) ' Db(ShvG(Y, k)) ' Db(Shv(Y, kG))

that the G-equivariant Verdier duality operation becomes like the k-linear
dual operation Homk(−, k) for stmod(kG). In essence the duality operation
becomes

Hom(−, p!CBG)
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where CBG denotes the constant sheaf of k-vector spaces on the classifying
space BG of G concentrated in degree 0 and

p : (EG×X)/G→ EG/G = BG

is induced by the projection from EG ×X → EG. It follows in particular,
that on stalks it becomes the k-linear duality operation on mod(kG). It fol-
lows that since F ∈ Perf(Y, kG) if and only if each stalk lies in Perf(kG) that
the duality operation descends to an operation on Perf(XG, ktG) which we
denote DktG . Similarly, a symmetric monoidal structure may be constructed
on Db

c(Y, kG) by taking the tensor product over k.
Let f : Y → Y ′ be a morphism of spaces with trivial G-action. Then

for the functors f ∗, f∗, f
!, f! to descend to functors on Perf(Y, ktG) and

Perf(Y ′, ktG) it is sufficient to check on f ∗ and f! as Verdier duality preserves
perfect sheaves. Let F′ ∈ Db

c(Y
′, kG), then the stalk of f ∗F′ at y ∈ Y ′ is

equivalently the stalk of F′ at f(y). Thus, since f ∗ preserves stalks it follows
that it descends to a functor f ∗ : Perf(Y ′, ktG) → Perf(Y, ktG). For the
functor f! the result follows from the following lemma.

Lemma 3.2.4 ( [Tre19, Prop. 4.3]). If F lies in Perf(Y, kG), then f!F lies
in Perf(Y ′, kG).

Proposition 3.2.5 ( [Tre19, Thm. 4.2]). Let X and Y be G-spaces. Let
f : X → Y be a G-equivariant map. Then the square

Db
G,c(Y, k) Db

G,c(X, k)

Shv(Y G, ktG) Perf(XG, ktG)

PsmY

f∗

PsmX

f∗
XG

commutes up to natural isomorphism.

Proof. Let iX : XG ↪→ X and iY : Y G ↪→ Y be the inclusions and fXG : XG → Y G

denote the restriction of f to XG. Clearly f ◦ iX = iY ◦ fXG so there is a
natural isomorphism i∗X ◦ f ∗ ∼= f ∗XG ◦ i∗Y of functors

Db
G,c(Y, k)→ Db

G,c(X
G, k)

which induces a natural isomorphism PsmY ◦f ∗XG and f ∗◦PsmX of functors

Db
G,c(Y, k)→ Perf(XG, ktG).
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Proposition 3.2.6 ( [Tre19, Thm. 4.3]). Let X be a G-space. The square

Db
G,c(X, k) Db

G,c(X, k)

Perf(XG, ktG) Perf(XG, ktG)

DX,G

Psm Psm

D
ktG

commutes up to natural isomorphism.

Proof. We want to show there is a natural isomorphism Psm ◦ DX
∼= DktG ◦Psm.

To show this it is sufficient to have a natural map

DXGi∗F → i∗DXF

in Db
G,c(X

G, k) which becomes an isomorphism in Perf(XG, ktG). Consider
the natural isomorphism of functors

DXGi∗
∼=−→ i!DX

which exists by V6.2.. We have a natural map i! → i∗ which gives natural
map i!DX → i∗DX . Thus, we obtain a natural map

DXGi∗F
∼=−→ i!DXF → i∗DXF

which we claim becomes an isomorphism in Perf(XG, ktG). As the map

DXGi∗F
∼=−→ i!DXF is already an isomorphism it is sufficient that i!DXF → i∗DXF

becomes an isomorphism which holds if the cone lies in Perf(XG, kG). This
holds by Lemma 3.2.2 and we are done.

Proposition 3.2.7 ( [Tre19, Thm. 4.4]). Let X and Y be G-spaces. Let
f : X → Y be G-equivariant. The squares

Db
G,c(X, k) Db

G,c(Y, k) Db
G,c(X, k) Db

G,c(Y, k)

Perf(XG, ktG) Shv(Y G, ktG) Perf(XG, ktG) Shv(Y G, ktG)

f!

Psm Psm Psm

f∗

Psm

(f|XG )! (f|XG )∗

commute up to natural isomorphism.
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Proof. First, by V6.2. we have a natural isomorphism D ◦ f! ◦ D ∼= f∗ so it
is sufficient to consider the case of f!. Let iX : XG ↪→ X and iY : Y G ↪→ Y
denote the inclusions. Note that these maps are proper so by V4. the canon-
ical map (iX)! → (iX)∗ is an isomorphism. In particular (iX)! is right adjoint
to i∗X and similarly for iY . Let fXG : XG → Y G denote the restriction of f to
XG, then f ◦ iX = iY ◦ fXG . Thus, by V2.1. (−)! is functorial so we obtain
a sequence of natural isomorphisms

i∗Y f!(iX)!i
∗
X
∼= i∗Y (fiX)i∗X = i∗Y (iY fXG)i∗X

∼= i∗Y (iY )!(fXG)!i
∗
X .

Since i∗X is left adjoint to (iX)!, then we obtain a natural transformation

i∗Y f! = i∗Y f!1 → i∗Y f!(iX)!i
∗
X .

Similarly, we have a natural transformation

i∗Y (iY )!(fXG)!i
∗
X → 1(fXG)!i

∗
X = (fXG)!i

∗
X .

Stringing these together we obtain a natural transformation

i∗Y f!
α−→ (fXG)!i

∗
X

of functors Db
G,c(X, k) → Db

G,c(Y
G, k). It follows we obtain an induced nat-

ural transformation

PsmY ◦ f!
α̃−→ (fktG)! ◦PsmX .

We claim that this is a natural isomorphism for which it is sufficient to show
that the cone on

i∗Y f!F
αF−→ (fXG)!i

∗
XF

lies in Perf(Y G, kG). Since this may be checked on stalks we may assume
without loss of generality that Y is a point. Thus, we are reduced to showing
that

Db
G,c(X, k)

p!−→ Db
G,c(∗, k) ' Db(mod(kG))

is valued in Perf(kG). However, as in Lemma 3.2.1 we may further reduce
to the case of a constant sheaf on a closed G-invariant subset Z since these
sheaves generate Db

G,c(X, k). As in Lemma 3.2.1 we may further reduce to
the case of F a constant sheaf on a closed G-invariant subset Z since these
sheaves generate Db

G,c(X, k). The result follows by a similar argument to
Lemma 3.2.1 since for F the constant sheaf p!(F) is quasi-isomorphic to the
simplicial cohomology with compact support of Z with coefficients in F with
the obvious G-action.
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4 Remarks

This final section contains conjectural statements we had hoped to be able to
show, at least in part, in the course of this project. Due to time constraints
and several wrong turns we were not able to show much of any of these
statements. We believe that these statements are either known or at least
easily proven (or disproven) by experts. Some may even follow directly from
the 1-categorical counterparts.

Following Remark 2.10.6. Let G be a topological group and M an ∞-
acyclic locally connected free G-space (See [BL06, §1.9] for terminology).
Let X be a G-space and D(X) denote the unbounded derived ∞-category
of sheaves of k-modules for some ring k. Let P = M × X and P be the
quotient. We have the diagram

X
p←− P

q−→ P

where p is the projection and q the quotient map. We obtain a corresponding
diagram

D(X)
p−→ D(P )

q←− D(P ) (4.0.1)

of presentable stable ∞-categories of sheaves of k-modules. Let DG(X) de-
note the limit of this diagram in the category CatEx

∞ of stable ∞-categories.
Similarly, we may consider the pullback of

Db(X)
p−→ Db(P )

q←− Db(P )

which we denote Db
G(X).

Conjecture 4.0.1. (1) The stable ∞-categories DG(X) and Db
G(X) ad-

mit t-structures.

(2) The stable ∞-category Db
G(X) may be viewed as the bounded part of

the t-structure on DG(X).

(3) The homotopy category of Db
G(X) is the equivariant derived 1-category

Db
G(X).

(4) There are obvious forgetful functors to D(X) and Db(X) the derived
∞-categories of sheaves of k-modules.

(5) The categories DG(X) and Db
G(X) support a full six functor formalism

as described in Section 2.10.
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(6) In [BL06, §2.6] for a subgroup H ⊆ G restriction, induction, and quo-
tient (for normal subgroup) functors are defined. Such functors should
also exist and satisfy similar properties.

Recalling from Section 2.8 for a site (C, J) we have an equivalence

D(Shv(C, k))
'−→ Shvhyp(N(C),D(k))

between the derived ∞-category of sheaves and the hypercomplete sheaves
with values in the derived ∞-category. Using this equivalence we have that
the limit over the diagram

D(X)
p∗−→ D(P )

q∗←− D(P )

which we may instead consider as

Shvhyp(X,D(k))
p∗−→ Shvhyp(P,D(k))

q∗←− Shvhyp(P ,D(k)).

Furthermore, if the space is stratified, then a constructible sheaf Shvhypc (X,D(k))
may be identified with a complex of homologically constructible sheaves. Let
ShvhypG (X,D(k)) denote the corresponding limit and ShvhypG,c (X,D(k)) in the

case of constructible sheaves. Let Shvhyp(X,D(kG)) be the ∞-category of
hypercomplete sheaves and Shvhypc (X,D(kG)) the constructible sheaves. Let
Perf(X, kG) denote the full subcategory of sheaves which are compact-valued,
that is, whose stalks are perfect complexes of kG-modules. We may then con-
sider the Verdier quotient Shvhypc (X,D(kG))/Perf(X, kG) which we denote
Perf(X, ktG).

Conjecture 4.0.2. There is a variant of the Smith operation

Psm : ShvhypG,c (X,D(k))
i∗−→ ShvhypG,c (X,D(k)) ' Shvhypc (X,D(kG))→ Perf(X, ktG).

Moreover, we believe it may be possible to realize the Verdier quotient
Shvhypc (X,D(kG))/Perf(X, kG) as a subcategory of Shv(X,Mod(ktG)) the
∞-category of sheaves of modules over the Tate spectrum.

Finally, we conclude with some statements about equivariant sheaves of
spaces. In [Lur09b, 6.3] ∞-categories LTOP and RTOP of ∞-topoi are de-
fined. The ∞-category LTOP has objects ∞-topoi and functors f ∗ : X→ Y

if and only if f ∗ preserves small colimits and finite limits. The ∞-category
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RTOP has objects ∞-topoi and functors f∗ : X→ Y between ∞-topoi if and
only if f∗ has a left adjoint which is left exact. In other words LTOP consists
of the left adjoints of geometric morphisms of ∞-topoi while RTOP has the
right adjoints to geometric morphisms. Let G be a finite group and X a G-

space we may consider it as a functor BG
A−→ RTOP where BG is the nerve of

the category with a single object an morphisms G (cf. [ES21]). This functor
sends the object to Shv(X) and each g ∈ G to g∗ : Shv(X)→ Shv(X).

Conjecture 4.0.3. There is an equivalence of ∞-topoi

Shv(N(UG(X))) ' lim←−
BG

A =: XBG.

Remark 4.0.4. If the group G is not discrete, then we may resolve the space
using the simplicial space X//G from 2.4.6. The corresponding limit should
give the correct notion of G-equivariant ∞-sheaves on X for a topological
group.

A Model Categories

In this appendix we fix some terminology for model categories following [Rie14]
and [MP11].

Definition A.0.1. Let M be a category and i : A → B and f : X → Y be
morphisms in M. A lifting problem for i and f is a commutative square

A X

B Y.

i

u

f

v

f̃

A lift is a map f̃ : B → X making the triangles commute. If any lifting
problem between i and f has a solution we say that i has the left lifting
property with respect to f (LLP) and f has the right lifting property with
respect to i (RLP). In either equivalent case we denote this i� f .

Definition A.0.2. If I is a collection of morphisms in a category M write I�

for the collection of morphisms which have the right lifting property against
each i ∈ I. Similarly, write �I for the collection of morphisms which have
the left lifting property again I.
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Definition A.0.3 (Weak Factorization System). Let M be a category and
(L,R) a pair of morphism classes in M. We say that (L,R) is a weak fac-
torization system if

1. (factorization) every morphism f : M → N in M may be factored as a
morphism in L followed by a morphism in R,

2. (lifting) L � R, and

3. (closure) L = �R and R = L�.

If there is a set J such that R = J� and L = �J�, then the weak
factorization system is said to be cofibrantly generated.

Remark A.0.4. If the first two axioms hold, then the closure axiom may be
replaced by the requirement that L and R are closed under retracts ( [Rie14,
Lemma 11.2.3]).

Let σi : [1]→ [2] denote the map in ∆ which misses the ith element.

Definition A.0.5. Let M be a category. A functorial factorization on M is
a section of the precomposition wiht σ1 functor

Fun([2],M)
(σ1)∗−−−→ Fun([1],M)

([2]
F−→M) 7→ ([1]

F◦σ1−−−→M).

Given two objects A,B ∈ M[1] and a morphism (u, v) : A → B (a
commutative square)

A0 B0

A1 B1,

f

u

g

v

then a functorial factorization produces a pair of commutative squares fitting
into the diagram

A0 B0

Ef Eg

A1 B1.

Lf

u

f

Lg

g
E(u,v)

Rf Rg

v
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Definition A.0.6. Let M be category. A model structure on M is a triple
(W,C,F) of collections of morphisms in M called weak equivalences, cofibra-
tions, and fibrations, such that

(1) W satisfies the 2-of-3 property,

(2) (C,F ∩W) is a weak factorization system,

(3) (C ∩W,F) is a weak factorization system.

Call the collection F ∩W trivial fibrations and the collection C ∩W trivial
cofibrations.

Definition A.0.7. The homotopy category of a model category M is the
localization hM := M[W−1] at the class of weak equivalences.

Theorem A.0.8 (The Small Object Argument [MP11,Rie14, Prop. 15.1.11,
Thm 12.2.2]). If I is a small set of maps in a category M, then there exists a
functorial factorization which makes (

�
(I�), I�) a weak factorization system.

B Verdier Quotients

We briefly record some results on Verdier quotients of stable ∞-categories
for reference. This material can be found in [BGT13, Section. 5] and [Mat16,
Section 2].

Following [Lur, 1.1.4] we let CatEx
∞ denote the ∞-category of stable ∞-

categories and exact functors. This is a presentable ∞-category.

Definition B.0.1. Let C be a stable ∞-category and D ⊆ C a stable sub-
category. The Verdier quotient C/D is the cofiber (pushout)

D C

0 C/D

in CatEx
∞ .

The above construction gives a universal property. Namely, for E an ∞-
category in CatEx

∞ to give an exact functor C/D → E is the same as giving

an exact functor C
F−→ E such that F (D) ' 0 for all D ∈ D.
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Recall, that for C an ∞-category and W a collection of morphisms,
then the localization C[W−1] has the universal property that any functor
F : C→ D such that F (f) is an isomorphism for all f ∈ W , then F factors
(uniquely) through C[W−1]. We note that this construction is compatible
with Ind-completion in the sense that the canonical map Ind(C[W−1]) →
Ind(C)[S−1] is an equivalence where S is the image of W under the Yoneda
embedding C ↪→ Ind(C).

Proposition B.0.2. Let i : D ↪→ C denote the inclusion of a stable subcat-
egory into a stable ∞-category C and S the collection of morphisms f in C

such that cofib(f) ∈ D. Then there is a canonical equivalence C[S−1]→ C/D.

Proof. Observe the canonical map C → C/D sends each element f of S to
an equivalence. This follows as every map of S has cofiber in D so F (f)
has trivial cofiber and is therefore an equivalence in C/D. Hence, by the
universal property of C[S−1] we obtain a factorization

C C/D.

C[S−1]

F

F̃

We claim that F̃ is the desired canonical equivalence. There is a commutative
diagram

C[S−1] C/D

Ind(C[S−1] Ind(C/D)

F̃

'

with the vertical maps the Yoneda embedding. The bottom horizontal map
is the map induced by F̃ and is an equivalence by the discussion preceding
the proposition as well as [BGT13, Prop. 5.7, 5.13]. It follows F̃ is fully
faithful and F̃ is essentially surjective as F is essentially surjective and factors
through F̃ .

Proposition B.0.3 ( [BGT13, 5.10, 5.11]). A functor F : C → D of stable

∞-categories is an equivalence, if and only if hC
hF−→ hD is an equivalence.

In other words we may check equivalence of stable ∞-categories at the
level of triangulated categories.
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Proposition B.0.4. Let (C,⊗,1) be a stable symmetric monoidal∞-category
and i : D ↪→ C the inclusion of a stable subcategory such that if X ∈ C and
Y ∈ D, then X ⊗ Y ∈ D. Then C/D is naturally a symmetric monoidal
∞-category.

Proof. See [Mat16, 2.16].
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