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Preface

Abstract

This thesis consists of three main parts, prefaced by a general introduction.

The first part is based on a paper joint with Richard Wong. We exhibit an ∞-categorical decom-

position of the stable module category of a general finite group, and we show that, in the case of

certain particularly simple finite p-groups, this decomposition can be interpreted as an instance of

Galois descent. We then use this perspective to produce proof-of-concept calculations of the group of

endotrivial modules for these p-groups.

In the second part, we move on to computations for more complicated groups. Of particular

interest will be the case of the extraspecial groups, which have traditionally played a fundamental

role in the theory of endotrivial modules. We analyse the Picard spectral sequence for the extraspecial

groups and show that the E2-page inherits a great deal of structure from a certain Tits building of

isotropic subspaces with respect to a quadratic form.

In the third and final part, we move on to study the Dade group of endopermutation modules. We

investigate how it can be realised as the Picard group of a certain ∞-category of genuine equivariant

spectra. On our way, we produce a general framework for studying modules whose endomorphisms

are trivial up to a specified subcategory of the representation category. This produces invariants that

interpolate between the group of endotrivial modules and the Dade group, as well as other more

exotic invariants that are of independent interest.

Resumé

Denne ph.d.-afhandling består af tre hoveddele samt en generel indledning.

Den første del er baseret på en artikel, som er skrevet i samarbejde med Richard Wong. Vi

fremlægger en ∞-kategorisk dekomposition af stabile modul-∞-kategorier af en generel endelig

gruppe, og vi viser, at i tilfælde af visse enkle endelige p-grupper, kan denne dekomposition fortolkes

som et eksempel på ‘Galois-nedstigning’. Vi bruger derefter dette perspektiv til at producere proof-

of-concept-beregninger af gruppen af endotrivielle moduler til disse p-grupper.

I den anden del fortsætter vi med beregninger for mere komplicerede grupper. Af særlig interesse

vil være tilfældet med de ekstraspeciale grupper, der traditionelt har spillet en grundlæggende rolle

i teorien om endotrivielle moduler. Vi analyserer Picard-spektralsekvensen for de ekstraspeciale

grupper og viser, at E2-siden har en struktur, der nedarves fra en Tits-bygning af isotrope underrum

med hensyn til en kvadratisk form.
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I den tredje og sidste del går vi videre for at studere Dade-gruppen af endopermutationsmoduler.

Vi undersøger, hvordan den kan realiseres som Picard-gruppen af en bestemt ∞-kategori af ægte

ækvivariante spektre. Undervejs producerer vi en teoretisk ramme til undersøgelse af moduler, hvis

endomorfismer er trivielle op til en specificeret underkategori af repræsentationskategorien. Dette

producerer invarianter, der interpolerer mellem gruppen af endotrivielle moduler og Dade-gruppen,

såvel som andre mere eksotiske invarianter, der er af uafhængig interesse.
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Chapter 0

Introduction

The origin of representation theory as a subject traces back to a now-famous correspondence between

Ferdinand Georg Frobenius and Richard Dedekind, which took place in 1896. Dedekind proposed to

Frobenius a conjecture on the factoring of a homogeneous polynomial arising as a certain determinant.

In modern language, let G be a finite group with elements g1, . . . , gn, and introduce a variable xgi for

every element gi. Define the n× n matrix X with entries Xij = xgi gj , and take its determinant, viewed

as a complex homogeneous polynomial in n variables. What can we say about the splitting behaviour

of this polynomial? In the case that G is abelian, Dedekind was able to prove that the determinant

splits into linear factors, but he was unable to tackle the nonabelian case. Fascinated by the problem,

Frobenius invented what is now known as character theory of finite groups to solve the factorisation

problem in the general case, and reported his findings to Dedekind. After this, it wouldn’t take long

for Frobenius to undertake the first systematic study of the representation theory of finite groups.

With the advent of linear algebra, we have come to understand that a representation of a finite

group G merely means a linear action of G onto a complex vector space V. Methods from linear

algebra allow us to infer, with relative ease, various structural results about the representation theory

of finite groups. Most notably, all representations split up uniquely into irreducible ones. As such, in

order to fully understand the representation theory of a given group, the following two goals must

be met.

• Classify all the irreducible representations.

• Devise an algorithm which finds the irreducible components of a given representation.

As it turns out, character theory leads us to both goals. It allows us to deduce that all irreducible

representations may be found lying inside the regular representations. Moreover, characters exhibit

orthogonality relations, which yield an efficient way of finding the irreducible components of a given

reprsentations using only its character.

As the abstract concept of a field solidified, it would have become clear that representations

can be made sense of for any base field. Whether the aforementioned structural results carry over,

depends on the field. For algebraically closed fields of characteristic 0, essentially all results carry

over verbatim. If you drop the assumption that your field is algebraically closed, representations

sometimes struggle splitting up into their smallest pieces, but the general structural behaviour
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of representation theory remains unaffected. This is not the case, however, if you change your

characteristic of your field.

If the characteristic of the field is coprime to the order of the group, the structural changes are

manageable. We still have our semisimple splitting, and the consequent reduction to the aforemen-

tioned two goals. The prominent change occurs in character theory, where many important results,

such as the orthogonality relations, simply break down. As such, we must devise a different way

to find the irreducibles, and to decompose a given representation. Luckily, although some different

methods are required, the representation theory tends to not behave all that much different from the

characteristic-zero case.

All hell breaks loose, however, when when the characteristic of the field divides the order of the

group. These so-called modular representations no longer decompose into irreducible components.

Instead, we have to make do with a more crude decomposition, governed by the Krull–Schmidt

theorem, which tells us that our representations split up uniquely into indecomposable summands. As

such, to understand the modular representation theory of a group, our two goalposts are as follows.

• Classify all the indecomposable modular representations.

• Devise an algorithm which finds the indecomposable components of a given representation.

Since the decomposition is more crude, one may suspect that there may be many more in-

decomposable pieces to classify — and one’s suspicion would be correct. In general, finding the

indecomposable modular representations of a given group is an insurmountable task. Nonetheless,

starting in the 1930s, Richard Brauer was the first to make serious progress towards both goals.

In an attempt to emulate the character theory of characteristic zero, he introduced what are now

known as Brauer characters. When k is an algebraically closed field of characteristic p, there’s a

bijection between roots of unity in k and complex roots of unity of order coprime to p. Upon fixing

such a bijection, the Brauer character of a characteristic-p representation assigns to each group element

of order coprime to p the sum of complex roots of unity corresponding to the eigenvalues of that

element in the given representation. The Brauer character of a representation is not quite as powerful

as the classical character. For instance, representations are not determined uniquely by their Brauer

characters. Nonetheless, the Brauer character manages to extract a great deal of structure from a given

representation, and as such has become a powerful asset in the study of modular representations.

When defining the Brauer character, we specifically referred to elements of order coprime to p.

What happens to the remaining elements? The answer is nothing. The Brauer character is defined

only on those elements of G whose order is coprime to p. This defect becomes particularly striking

when G is a p-group, since in that case, none of the elements of G (except the unit) have this property.

As such, the modular representation theory of p-groups has no Brauer character theory at its disposal.

Correspondingly, the modular representation theory is ‘wild’ — there is no hope of getting a good

grasp on it in its entirety.

If we want to say something concrete about p-group representations over a field k of character-

istic p, our best bet at this point is to forcibly simplify the world of modular representation theory

to the point that it is no longer wild. Granted that we will never be able to understand modular

representation up to isomorphism, we may still be able to understand them up to a more crude notion

of equivalence. One particularly successful result of this line of thinking is the stable module category,

which aims to classify modular representations ‘up to projective summands’. Introduced in the 1970s,
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the stable module category was actively studied in the ensuing decade. Now, new developments in

an entirely separate mathematical field have put it back to the forefront.

This mathematical field is called homotopy theory. Historically, homotopy theory arose as

a branch of algebraic topology, and aimed to study spaces ‘up to continuous deformation’. As

time progressed, however, it became clear that the resulting ‘homotopy-coherent’ structures are

in fact pervasive throughout mathematics; as such, homotopy theory soon grew out of its native

environment into a field of its own. Ever since, it has proved itself to be spectacularly useful in many

other areas of mathematics.

Homotopy-coherent structures have been found in various guises in representation theory,

including in the stable module category. Post-hoc evidence of this was the existence of a triangulated

structure on the stable module category. This triangulated structure can be enhanced to something

homotopy-coherent, bringing the stable module category into the range of powerful homotopical

machinery. Applying this machinery to produce new results is where the thesis you’re currently

reading ultimately fits in.

Let’s highlight one such application. It had been understood for a long time that a great deal

of representation-theoretic information of a group can be inferred from that of some or all of its

subgroups. However, a global and quantitative statement was lacking, until the advent of homotopy

theory, which has taught us that the representation category of a group admits a functorial, ∞-

categorical decomposition into representation categories of subgroups. We will see in the first two

chapters how this decomposition can lead to computatonal insights.
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Chapter 1

Endotrivial modules for small

p-groups via Galois descent

Abstract. We investigate the group of endotrivial modules for certain p-groups. Such groups were

already been computed by Carlson–Thévenaz using the theory of support varieties; however, we

provide novel homotopical proofs of their results for cyclic p-groups, the quaternion group of order 8,

and for generalised quaternion groups using Galois descent and Picard spectral sequences.

This chapter is a modified version of [MW21], which has been written joint with Richard Wong.

The contents of this chapter also appear in Wong’s PhD thesis, cf. [Won21].

1.1 Overview

Throughout this paper, let G denote a finite group, and let k be a field of characteristic p, where p

divides the order of G (i.e. the characteristic is modular). In this setting, one can study the representa-

tion theory of G over k. As p divides |G|, Maschke’s theorem fails, which infamously implies that

the structural phenomena of representation theory over modular characteristics are wildly different

than the usual theory over other characteristics. Central to modular representation theory, then, is the

study of the structural property of the category of kG-modules.

One particular instance of this is the problem of computing the group of endotrivial modules

T(G) :=
{

M ∈ Modfin(kG) : Endk(M) ≃ k⊕ (projective)
}

.

That is, the (finite-dimensional) kG-modules M such that the endomorphism module decomposes

as the direct sum of k, the trivial kG-module, and a projective kG-module. Notice that this forms a

group under tensor product.

The group of endotrivial modules was first studied by Dade for the elementary abelian

groups (Cp)n [Dad78], who regarded endotrivial modules as a stepping stone towards the study of

the more general endopermutation modules. Endotrivial modules over p-groups were later classified

in its entirety by Carlson and Thévenaz in [CT04] using purely representation-theoretic techniques,

such as the theory of support varieties.
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The group of endotrivial modules can be approached through homotopy theory — something

we will make profound use of in this chapter. In Section 1.2, we realise the group of endotrivial

modules as the Picard group of the stable module ∞-category. In fact, we obtain a Picard space, which

admits a decomposition coming from a limit decomposition of the stable module ∞-category. This

decomposition is then shown to be amenable to spectral sequence techniques.

In certain cases, the decomposition of the stable module ∞-category can be viewed through the

lens of Galois theory. We take up this topic in Section 1.3 and we use a result of Rognes to give new

proofs of the decomposition for cyclic p-groups and quaternion groups.

Finally, in Section 1.4 we evaluate the limit spectral sequences associated to the decomposition of

the stable module category to explicitly compute the group of endotrivial modules for cyclic p-groups

and generalised quaternion groups. Although these groups have already been computed, the method

given here is entirely new. In particular, our approach allows for a new interpretation of the fact that

the group of endotrivial modules over Q8 depends on the arithmetic structure of the base field; we

shall see that it arises naturally from a certain nonlinear differential in the limit spectral sequence.

Furthermore, our approach to T(Q2n) is independent of the computation for T(Q8), whereas this was

a crucial step in the classical approach.

1.2 Endotrivial modules and Picard spectra

Let G denote a finite group, and let k be a field of modular characteristic. As mentioned in Section 1.1

we define the group of endotrivial modules T(G) as

T(G) :=
{

M ∈ Modfin(kG) : Endk(M) ≃ k⊕ (projective)
}

.

Endotrivial modules form a group under tensor product. The group of endotrivial modules can be

approached through homotopy theory, and the goal of this section is to illustrate how this can be

done.

The failure of Maschke’s theorem implies that not all kG-modules are projective. One can

therefore additively localise the category of kG-modules Mod(kG) at the maps that factor through

projective modules. The resulting localization is called the stable module category StMod(kG). It

carries the structure of a tensor-triangulated category.

Given a symmetric monoidal category (C,⊗, 1C), one can study the Picard group Pic(C) of

⊗-invertible object in C. When taking C to be StMod(kG), we claim that the Picard group of C recovers

the group of endotrivial modules. Certainly this has been known for a while, but we haven’t been

able to find a proof of this fact in the literature, so we digress for a moment to verify it.

Lemma 1.2.1. Two kG-modules M and N are equivalent in StMod(kG) if and only if there exist

projective modules P and Q such that M⊕ P ≃ N ⊕Q.

Proof. If M and N are projectively equivalent, then the natural maps f : M ↪→ M⊕ P ∼−→ N⊕Q ↠ N

and g : N ↪→ N⊕Q ∼−→ M⊕ P ↠ M form the desired equivalence, in that g ◦ f − Id factors through Q,

and f ◦ g− Id factors through P.
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Conversely, suppose we have maps f : M→ N and g : N → M with

g ◦ f − Id = M
ϕ1−→ P

ϕ2−→ M

f ◦ g− Id = N
ψ1−→ Q

ψ2−→ N

Define f ′ : M → N ⊕ P as ( f , ϕ1), and g′ : N ⊕ P → M as g − ϕ2. Then g′ ◦ f ′ = Id, so that

M⊕Ker g′ ≃ N ⊕ P. We’re done if we show that Ker g′ is projective. This follows once we verify

that f ′ ◦ g′ − Id factors through a projective: indeed once we know this, we may observe that the

map becomes − Id when restricted to Ker g′ but after this restriction it of course still passes through

this projective, so Ker g′ becomes a summand thereof. So let’s verify the claim. Simply observe that

f ′ ◦ g′ − Id factors as

N ⊕ P N ⊕ P

Q⊕ P⊕ P

(ψ1,p,ϕ1◦g−ϕ1◦ϕ2)

f ′◦g′−Id

(ψ2− f ◦ϕ2,p2−p1)

and Q⊕ P⊕ P is projective.

From this lemma, we learn that a module M is ⊗-invertible if there exists a module N such that

M⊗ N ⊕Q ≃ k⊕ P for some projective modules P and Q. By applying the Krull–Schmidt theorem

to this, we deduce two observations:

• The Q is not needed and we can simply write M⊗ N ≃ k⊕ P for some projective module P;

• M and N split up as M0 ⊕ (proj) and N0 ⊕ (proj) where ‘(proj)’ will henceforth be shorthand

for ‘some projective module which doesn’t deserve its own symbol’.

Lemma 1.2.2. The Picard group of StMod(kG) is isomorphic to T(G).

We generalise this result in Lemma 3.2.4, where we give a more systematic proof.

Proof. Suppose first that M is endotrivial. As M is finitely generated, we have Endk(M) ≃ M⊗M∗,

and so M is ⊗-invertible with inverse M∗. Conversely, suppose M is a kG-module with ⊗-inverse N.

By the discussion above we may write M⊗ N ≃ k⊕ P, and we have M ≃ M0 ⊕ (proj) where M0 is

indecomposable.

Have a look at the commutative diagram

M⊗ N k⊕ P

M⊗M∗ k

∼

1⊗ f π

ev

Here π is the projection map, ev the evaluation map on M⊗M∗, and f is the map N → M∗ sending n

to ϕ : m 7→ π(m⊗ n), where ‘m⊗ n’ really refers to its isomorphic image in k⊕ P. As π admits a

section, so does ev, which means k is a summand of M⊗M∗. By tensoring with N we see that N is a

summand of M⊗ N ⊗M∗. Now write

M⊗ N ⊗M∗ ≃ (k⊕ P)⊗
(

M∗0 ⊕ (proj)
)

≃ M∗0 ⊕ (proj)
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This tells us that N is either projective or M∗0 plus something projective. In the former case, M was

trivial and there was nothing to prove anyway, and in the latter case, we’ve found that M⊗M∗ ⊕
(proj) ≃ k⊕ P, and by the discussion above this lemma, this implies the desired result.

The stable module category is in fact the homotopy category of a stable symmetric monoidal

∞-category, which can be seen from the fact that StMod(kG) can be described as the Verdier quotient

of the bounded derived category of kG-modules by the perfect complexes — a result first proved

in [Ric89], and generalised in Section 3.C. This observation is what makes the study of endotrivial

modules amenable to homotopical techniques.

To any symmetric monoidal ∞-category we can in fact associate a Picard space Pic(C), defined

as the ∞-groupoid underlying the full subcategory on the ⊗-invertible objects in C. This is an

enhancement of the classical Picard group.

Lemma 1.2.3. The homotopy groups of the Picard space are as follows:

πt Pic(C) ≃


Pic(C) if t = 0;

π0(ΩC)× if t = 1;

πt−1(ΩC) if t ≥ 2.

Here ΩC is shorthand for the E∞-ring End(1C) of endomorphisms of the ⊗-unit.

Proof sketch. Tensoring with a ⊗-invertible object tautologically describes an automorphism of Pic(C).

From this we observe that the Picard space decomposes as Pic(C)× B Aut(1C).

Remark 1.2.4. In the literature the stable module ∞-category is often defined as the Ind-completion

of the aforementioned Verdier quotient. For the purposes of finding the Picard group, the difference

is irrelevant, as we will now show. A ⊗-invertible object in Ind(C) is clearly compact. By [Lur09,

Lemma 5.4.2.4] the natural map C→ Ind(C)ω identifies with the idempotent completion of C. Now

StMod(kG) is idempotent-complete (but see Remark 3.5.1) hence the Picard group doesn’t change

upon passage to Ind-completion.

Associating a Picard space to a stable symmetric monoidal ∞-category is functorial under exact

symmetric monoidal functors, and so we have a functor Pic : Cat⊗ → S∗. This functor commutes

with limits, cf. [MS16, Proposition 2.2.3], which means that, whenever we have a limit decomposition

of ∞-categories, we have a corresponding limit decomposition of Picard spaces.

In view of this, it is natural to recall the following. Whenever we have a diagram F : Iop → S∗ of

pointed spaces, there is a spectral sequence

Est
2 ≃ Hs(I, πt F)⇒ πt−s lim←−I

F

whose E2-page is given by the cohomology of the Ab-valued presheaf πt F over the diagram I. The

spectral sequence dates back to the work of Bousfield–Kan, cf. [BK72]. Unfortunately, the Bousfield–

Kan spectral sequence suffers from convergence issues and exhibits fringe phenomena, which makes

it unreliable from a computational perspective.

We may circumvent this convergence issue by passing to spectra. More precisely, whenever we

have a diagram F : Iop → Sp of spectra, there is a completely analogous spectral sequence (see [Lur12,

Section 1.2.2]) but which does not exhibit fringe effects.
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Now, if C is a symmetric monoidal stable ∞-category, then the Picard space is a grouplike

E∞-space, and can thus be viewed as a connective spectrum, which we call the Picard spectrum

of C, denoted picC. The functor pic : Cat⊗st → Sp≥0 commutes with limits as well, and so any limit

decomposition of categories yields a limit decomposition of connective Picard spectra.

It is worth pointing out here that the limit spectral sequence lives in nonconnective spectra,

whereas the Picard spectra are connective spectra. This is more than just a superficial difference, since

the inclusion functor Sp≥0 → Sp does not commute with limits. However, a limit of connective

spectra can be computed by taking a limit in the category of nonconnective spectra and then passing

to the connective cover. Consequently, the discrepancy between a limit of connective spectra taken

in Sp≥0 and taken in Sp is concentrated in negative degrees. In view of our main goal, which is to

compute π0 of Picard spectra, this discrepancy will never pose issues.

Let’s summarise our findings into a lemma.

Lemma 1.2.5. Let C be a symmetric monoidal stable ∞-category, and suppose that C is realised as the

limit over a diagram Iop → Cat⊗st . Then there is a spectral sequence

Est
2 ≃ Hs(I, πt picCi)⇒ πt−s lim←−I

picCi,

and for ∗ ≥ 0, π∗ lim←−I
picCi may be identified with π∗ picC.

Remark 1.2.6. The Picard spectrum admits a delooping by the Brauer spectrum. Brauer spectra ought

to admit descent as well — cf. for instance [Mat16, Prop. 3.45] — and so the (−1)-line for our limit

spectral sequence of Picard spectra reveals information about the Brauer groups as well. We will find

that the (−1)-line is often significantly more complicated than the nonnegative lines.

In view of Lemma 1.2.5, it would be beneficial to exhibit a limit decomposition for stable module

categories, which is what we will now turn our attention to.

Let G be a finite group, and let A be a collection of subgroups of G satisfying the following

properties.

• A is closed under finite intersections;

• A is closed under conjugation by elements of G;

• every elementary abelian p-subgroup of G is contained in a member of A.

For any such collection A, we define OA to be the full subcategory of the orbit category OG spanned

by the transitive G-sets with isotropy in A, or in other words, the objects G/H for which H is in A.

We have the following result, which can be found in [Mat16, Corollary 9.16], and which is effectively

a higher-categorical elaboration of Quillen’s stratification theorem.

Theorem 1.2.7. If G, k and A are as above, then the stable module category of G decomposes as

StMod(kG) ≃ lim←−G/H∈Oop
A

StMod(kH).

The functoriality becomes apparent by noting that StMod(kH) can be identified as the category

of module objects over the commutative algebra object k(G/H) in StMod(kG).

As discussed in the previous subsection, any limit decomposition of stable symmetric monoidal

∞-categories yields a corresponding decomposition of Picard spectra

picStMod(kG) ≃ lim←−G/H∈Oop
A

picStMod(kH), (1.2.8)
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and hence a corresponding limit spectral sequence

Est
2 ≃ Hs(OA, G/H 7→ πt picStMod(kH)

)
⇒ πt−s picStMod(kG). (1.2.9)

To evaluate this spectral sequence, it is necessary to study both the objects and the differentials of

this spectral sequence. To understand the differentials in the spectral sequence, we make use of the

computational tools developed in [MS16, Part II]. We summarise their results here. We start with a

symmetric monoidal stable ∞-category C.

Lemma 1.2.10 ([MS16, Corollary 5.2.3]). For all t ≥ 2, one has a functorial equivalence

τ[t,2t−1] Aut(1C) ≃ τ[t,2t−1]1C, where τ[ · , · ] denotes the truncation functor with homotopy groups in

the specified range. This induces a functorial equivalence τ[t+1,2t] picC ≃ Στ[t,2t−1] ΩC.

Recall that Ω was taken to be shorthand for the endomorphism spectrum of the⊗-unit of C. Now,

Ω, too, commutes with limits, yielding a decomposition of Ω StMod(kG) analogous to Eq. (1.2.8), and

hence a limit spectral sequence analogous to Eq. (1.2.9). Lemma 1.2.10 then allows one to import

differentials from the limit spectral sequence for Ω into the limit spectral sequence for Picard spectra.

Theorem 1.2.11 ([MS16, Comparison Tool 5.2.4]). Suppose we have a diagram Iop → Cat⊗st of

symmetric monoidal stable ∞-categories. Consider the limit spectral sequences

Est
2 (pic) = Hs(I, πt picCi

)
⇒ πt−s pic lim←−I

Ci,

Est
2 (Ω) = Hs(I, πt ΩCi)

)
⇒ πt−s Ω lim←−I

Ci.

Then we have an equality of differentials dst
r (pic) = ds,t−1

r (Ω) for all (s, t) such that either t− s > 0 or

t ≥ r + 1.

As it turns out, the spectral sequence for Ω is easier to understand, because the endomorphism

spectra are E∞-rings, which imbue the limit spectral sequence with a multiplicative structure. We

will make frequent use of this advantage throughout our computations.

Let us now take a closer look at the endomorphism spectrum Ω StMod(kG). This spectrum can

be described explicitly, but before we are able to give the description, we need to recall some relevant

definitions.

If X is a spectrum admitting a G-action, then we can capture the G-action in terms of a functor

BG → Sp. We then associate to X its homotopy orbits XhG and homotopy fixed points XhG, defined

as the colimit and limit, respectively, of the aforementioned functor. There is a norm map XhG → XhG

whose cofibre is called the Tate construction, denoted XtG.

As we’ve seen, any limit of spectra has an associated limit spectral sequence. Applied to XhG,

we obtain what is commonly called the homotopy fixed point spectral sequence (HFPSS). A dual

spectral sequence, called the homotopy orbit spectral sequence, exists for XhG, as does a four-quadrant

spectral sequence for XtG, called the Tate spectral sequence, which we’ll encounter in Section 1.3.

If X is the Eilenberg–MacLane spectrum of a G-module M, then the homotopy groups of MtG

carry classical arithmetic information. To see this, note first that the homotopy groups of MhG are

given by

πt MhG =

Ht(G; M) if t ≥ 0,

0 otherwise,
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and that the homotopy groups of MhG are given by

π−t MhG =

Ht(G; M) if t ≥ 0,

0 otherwise.

Notice that π0 MhG is the classical set MG of G-orbits while π0 MhG is the set MG of fixed points. The

norm map MhG → MhG is necessarily zero on nonzero homotopy groups, while the map on π0 is

the classical norm map N : MhG → MhG sending an orbit {gm} to the sum ∑g gm. Through the long

exact sequence of homotopy groups associated to the fibre sequence MhG → MhG → MtG, one then

infers that

πt MtG ≃ Ĥ−t(G; M),

where Ĥ denotes Tate cohomology, which is classically defined as

Ĥ∗(G; M) =



H∗(G; M) if ∗ ≥ 1;

Coker N if ∗ = 0;

Ker N if ∗ = −1;

H−∗−1(G; M) if ∗ ≤ −2.

If X is an E∞-ring, then so is XtG. In particular, if R is a classical ring with a G-action, then π∗ RtG

admits a cup product, which coincides with the ring structure on Tate cohomology. We refer the

reader to Section 1.A for some explicit computations of Tate cohomology rings.

Lemma 1.2.12. There exists an equivalence of E∞-rings

Ω StMod(kG) ≃ ktG,

where the G-action on k is taken to be the trivial one.

On the level of homotopy groups, this is reflected by the classical fact that, in the triangulated

stable module category,

HomkG(Ω
tk, k) ≃ Ĥt(G; k).

Remark 1.2.13. If G is in fact a p-group, then StMod(kG) is in fact equivalent to Mod(ktG). We digress

for a while to verify that this is the case.

Proof. By the Schwede–Shipley theorem ([Lur12, Theorem 7.1.2.1]), it suffices to show that the

category has a compact generator, which we claim is k. Let us first see why k is nontrivial object in

Modω
G(k)/Perf(kG) to begin with. This is true so long as k isn’t a perfect complex. Indeed this is the

case: k is not compact on Modω
G(k), effectively because H−∗(G; k) = π∗MapModω

G(k)
(k, k) fails to be

bounded in modular characteristic.

In general, if C is an ∞-category, then any object in C is compact in Ind(C) for formal reasons, so k

defines a compact object. So then why does k generate StMod(kG)? By definition, one must verify

that, for any object M, if Hom(k, Σi M) = 0 for all i ∈ Z, then M ≃ 0. We may represent the Σi M

as kG-representations, so that the existence of a nonzero map k→ Σi M may be identified with the

existence of a fixed vector in the kG-representation Σi M. However, such nonzero maps always exist

because kG-representations have a nonzero fixed vector. To see this, reduce to the case k = Fp by

inspecting the underlying Fp-vector space, and then apply a counting argument. This concludes the

claim.
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Let us go back to Eq. (1.2.9) again. In all examples of interest, we will take A to be a family of ele-

mentary abelian subgroups. In view of Lemma 1.2.3 and Lemma 1.2.12, the higher homotopy groups

of picStMod(kH) are well understood: they are given by Tate cohomology groups of elementary

abelian groups. But what about the 0-th homotopy groups of picStMod(kH), i.e. the Picard groups?

The endotrivial modules of elementary abelian groups are understood via a result by a theorem of

Dade, which states that the Picard group is necessarily generated by the suspension of the unit. We

will take the computation of the Picard group for elementary abelians as a starting point, working

our way up from there. Let’s capture it as a lemma.

Lemma 1.2.14 ([Dad78]). The Picard group of the stable module category of elementary abelian

groups is described as follows:

π0 picStMod
(
k(Cp)

n) ≃


0 if p = 2 and n = 1;

Z/2Z if p is odd and n = 1;

Z if n ≥ 2.

Let us revisit what we know so far. We have our spectral sequence Eq. (1.2.9), and we can

compare this spectral sequence functorially with an analogous spectral sequence for Ω StMod(kG).

The latter has a multiplicative structure, and the E2-page can be described in terms of Tate cohomology

groups. In fact, the spectral sequence may be recognised as a rather classical one. To see this, let’s

suppose we may take G to be a finite p-group with a single normal elementary abelian p-subgroup H.

Then OA ≃ B(G/H), and the limit spectral sequence for Ω StMod(kG) reads

Est
2 ≃ Hs(G/H; Ĥ−t(H; k)

)
⇒ Ĥs−t(G; k).

For nonpositive t, the spectral sequence is indeed isomorphic to the Hochschild–Serre spectral

sequence associated to the extension H → G → G/H. This spectral sequence is sufficiently well

studied that the differentials are known in all examples of interest. Via the Tate duality pairing (cf.

Section 1.A) this allows us to deduce the differentials for positive t as well.

From a homotopical viewpoint, the comparison with the Hochschild–Serre spectral sequence can

be seen by considering the natural map khH → ktH . The map is WG(H)- i.e. G/H-equivariant and

induces an isomorphism on nonnegative homotopy groups, so that their limit spectral sequence may

be compared. Applied to khH , this is the homotopy fixed points spectral sequence, and it converges

to the homotopy groups of (khH)hG/H , which is naturally isomorphic to khG.

Although a large swathe of differentials can now be understood using Theorem 1.2.11 and the

comparison with the Hochschild–Serre spectral sequence, we will often find that there’s a particular

differential which strongly influences the development of the 0-line but which just barely falls outside

the range of Theorem 1.2.11. For these differentials, we use an elegant formula of Mathew–Stojanoska.

To match their statement with ours, let’s assume that the diagram I consists of a single object so that

the limit spectral sequences becomes an HFPSS.

Theorem 1.2.15 ([MS16, Theorem 6.1.1]). Let the notation be as in Theorem 1.2.11. Assume that I

has a single object so that we may identify the limit spectral sequences with homotopy fixed point

spectral sequences. Then we have the formula

drr
r (pic)(x) = dr,r−1

r (Ω)(x) + x2,
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where the square refers to the multiplicative structure in the limit spectral sequence for Ω.

Remark 1.2.16. The classes of p-groups that are considered in this paper (cyclic p-groups and

generalised quaternion groups) have a single elementary abelian p-subgroup. As a result, we

can identify the limit spectral sequence with the homotopy fixed point spectral sequence and use

Theorem 1.2.15. However, analogous methods apply to more complicated groups as well, as we’ll see

in Chapter 2.

1.3 Galois descent

Theorem 1.2.7 becomes especially simple when we may take the family A to consist of a single

(necessarily normal) subgroup H. In such examples, the decomposition reduces to the much simpler

StMod(kG) ≃ StMod(kH)hG/H . (1.3.1)

Throughout this paper, we will consider the two families of p-groups where this phenomenon occurs:

• The cyclic p-groups Cpn , and

• the generalised quaternion groups Q2n .

The cyclic p-groups obviously have a single elementary abelian subgroup H, which is isomorphic

to Cp. As for the generalised quaternion groups, we recall that these may be defined e.g. algebraically

as the groups

Q2n ≃ ⟨θ, τ | θ2n−1
= τ4 = 1, θ2n−2

= τ2, τθτ−1 = θ−1⟩

The centre H = Z(Q2n) is the only nontrivial elementary abelian subgroup, being isomorphic to C2,

and the quotient is isomorphic to the Klein four group (C2)
2 or the dihedral group D2n−1 .

As it happens, we may re-interpret the decomposition as an instance of (faithful) Galois descent.

The goal of this section is to give a new proof that Galois descent holds for StMod(kG), where G is any

of the aforementioned groups. We will use a result of Rognes, along with a base-change argument, to

prove that we have G/H-Galois extensions ktG → ktH , and then proceed to prove that these Galois

extensions are faithful, using a criterion involving the contractibility of a certain Tate construction.

We begin with the relevant definitions. Let f : R→ S be a map of E∞-ring spectra. We call it a

G-Galois extension if there is a G-action on S such that the natural maps R → ShG and S⊗R S →
map(G+, S) are weak equivalences. We say that the Galois extension is faithful if S is faithful as an

R-module. That is, if M is an R-module such that S⊗R M is contractible, then so is M itself.

Whenever we have a faithful Galois extension, we have a good theory of descent called Galois

descent:

Theorem 1.3.2. If f : R → S is a faithful G-Galois extension of E∞-rings, then we have a natural

equivalence of ∞-categories

Mod(R) ≃ Mod(S)hG.

In the case of interest, this is of course in line with Eq. (1.3.1).
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Remark 1.3.3. Lemma 1.2.14 is also known to have a proof using Galois descent, or rather, reverse

Galois descent; see [Mat15]. Briefly, if A is an abelian p-group of p-rank n, then one can construct a

fibre sequence of classifying spaces

BZn → BA→ B2Zn ≃ BTn,

where Tn denotes the n-torus, which Mathew uses to prove that there exist faithful Tn-Galois

extensions of ring spectra

khTn → khA and ktTn → ktA.

In this case, it is the source rather than the target which is understood well, and Mathew proves

conditions for an element in the Picard group of ktTn
to descend to the Picard group of ktA. This,

along with a computation of Pic(ktTn
), shows that Pic(ktA) is cyclic.

We start off by proving that we have Galois extensions khG → khH on homotopy fixed points —

the analogous result on Tate fixed points will then follow from a base-change argument. Our main

tool is the following result of Rognes.

Theorem 1.3.4 ([Rog08, Prop. 5.6.3]). Let Γ be a finite discrete group, and P→ X a principal Γ-bundle.

Suppose that X is path-connected and π1(X) acts nilpotently on H∗(Γ; k). Then the map of cochain

k-algebras map(X+, k)→ map(P+, k) is a Γ-Galois extension.

Proof sketch. We sketch the idea of the proof. To see that map(X+, k) ≃ map(P+, k)hΓ follows from

properties of principal Γ-bundles. Namely, we have that the (right) action of Γ on P induces a left

Γ-action on map(P+, k), which is compatible with the identification of X as the homotopy orbits of

the action of Γ on P.

The interesting part is showing that

map(P+, k)⊗map(X+ ,k) map(P+, k) ≃ map
(
Γ+, map(P+, k)

)
.

As a tensor product of ring spectra, the homotopy groups of the left-hand side may be computed

using the Künneth spectral sequence

E2
s,t ≃ Torπ∗(A)

s,t
(

π∗(B), π∗(B)
)
⇒ πs+t(B⊗A B).

Meanwhile, via the identification map
(
Γ+, map(P+, k)

)
≃ map

(
(Γ× P)+, k

)
, the homotopy groups

of the right-hand side can be computed using the Eilenberg–Moore spectral sequence,

E2
s,t ≃ TorH∗(X;k)

s,t
(

H∗(P; k), H∗(P; k)
)
⇒ H−(s+t)(P×X P; k).

Notice that the E2-pages of these spectral sequences agree. Moreover, the filtrations are identified as

well, as both can be viewed as being derived from the cobar construction. Therefore, if both spectral

sequences converge strongly, then we obtain an equivalence between their targets, which is what

we desire. Luckily, the Künneth spectral sequence is always strongly convergent, and a theorem of

Shipley [Shi96] guarantees convergence of the Eilenberg–Moore spectral sequence if the hypotheses

of Theorem 1.3.4 are satisfied.

We apply Theorem 1.3.4 to the fibre sequence G/H → BH → BG, where G is a cyclic p-group

or a generalised quaternion group, and H is its elementary abelian p-subgroup. Notice that BG is

13



path-connected, and G, as a p-group, acts nilpotently on H∗(G/H; k). We deduce that we have a

G/H-Galois extension map(BG+, k)→ map(BH+, k). Now since G acts trivially on k, these function

spectra are naturally identified with homotopy fixed points, and the result follows.

We proceed to use this to show that we have Galois extensions ktG → ktH for all aforementioned G

and H. First, observe that given a Galois extension R→ S and a map of ring spectra R→ Q, we can

take the pushout along these maps to form the base-change Q → S⊗R Q. The following result of

Rognes provides conditions for this map to be a Galois extension.

Lemma 1.3.5 ([Rog08, Section 7.1]). G-Galois extensions are stable under dualisable base change.

Faithful G-Galois extensions are stable under arbitrary base change.

From material that we discuss in the appendix, it turns out that in the cases we consider, one can

identify the Tate constructions ktG → ktH as a (dualisable) base change of khG → khH . Indeed, work of

Greenlees (Theorem 1.A.4) allows us to view ktG as a localization of khG away from the augmentation

ideal I. This construction depends only on the radical of the ideal I. Now, since the groups Cp, Cpn ,

and Q2n are Cohen–Macaulay, π∗ khG is free over a polynomial subalgebra A ≃ k[x]. The radical

of the ideal (x) is the same as the radical of the augmentation ideal I, and so we obtain pushout

diagrams

khCpn khCp

ktCpn ktCp
⌜

and

khQ2n khC2

ktQ2n ktC2
⌜

in the category CAlg(Sp) of ring spectra. In both cases the Tate constructions ktG and ktH are both

formed by the same finite localizations (away from the ideal (x)). Since ktG can be identified as a

finite localization of khG, it is therefore dualisable. This yields the following theorem:

Theorem 1.3.6. If G is either a cyclic group of prime power order or a generalised quaternion group,

and H is its unique subgroup of order Cp, then the natural map ktG → ktH is a G/H-Galois extension

of E∞-rings.

Remark 1.3.7. It is interesting to compare these results to Mathew’s [Mat16, Thm. 9.17], where it’s

proved that the étale fundamental group of StMod(kG) identifies with the profinite completion of

π1 |OA|, which of course simplifies to G/H if A = ⟨H⟩. In particular, ktG → ktH can be viewed as the

universal cover of ktG.

Our next goal is to prove that the Galois extensions of Theorem 1.3.6 are faithful. We will

repeatedly invoke the following criterion of Rognes to show that our Galois extensions are faithful.

Lemma 1.3.8 ([Rog08, Prop. 6.3.3]). A G-Galois extension f : R→ S is faithful if and only if the Tate

construction StG is contractible.

This is especially useful because of the existence of the multiplicative Tate spectral sequence: if X

is a spectrum with a G-action for some group G, then there is a spectral sequence

Est
2 ≃ Ĥs(G; πt X)⇒ πt−s XtG,

with differentials dr : Es,t
r → Es+r,t+r−1

r , which lets us compute the homotopy groups of XtG in terms

of more readily accessible Tate cohomology groups. Moreover, we can leverage naturality and
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the cofibre sequence XhG → XhG → XtG to compare and import many differentials between the

homotopy orbit spectral sequence, the homotopy fixed point spectral sequence, and the Tate spectral

sequence.

Remark 1.3.9. We remark that it suffices to show that the extension on the level of homotopy fixed

points khG → khH is faithful. Indeed, by Lemma 1.3.5, this implies that faithful Galois descent holds

for ktCpn → ktCp and ktQ2n → ktC2 . However, the proof would proceed in exactly the same way (i.e.

computing the Tate spectral sequence). Furthermore, we require the HFPSS calculations involving

ktCpn → ktCp and ktQ2n → ktC2 in our Picard spectral sequence calculations anyway, so we will not

make this reduction.

Theorem 1.3.10. The Cpn−1 -Galois extension ktCpn → ktCp of E∞-rings is faithful.

Proof. Our goal is to compute the Tate spectral sequence

Est
2 ≃ Ĥs(Cpn−1 ; πt ktCp)⇒ πt−s(ktCp)

tCpn−1

and show that the Tate spectrum (ktCp)
tCpn−1 is contractible. To do so, we recall that the natural map

khG → ktG from homotopy fixed points to Tate fixed points allows us to import differentials from the

HFPSS

Est
2 ≃ Hs(Cpn−1 ; πt khCp

)
⇒ πt−s(khCp)

hCpn−1 .

Note that (khCp)
hCpn−1 ≃ khCpn . In fact, this spectral sequence can be identified with the Lyndon–

Hochschild–Serre spectral sequence associated to the (central) extension Cp → Cpn → Cpn−1 , which is

well understood. We review this spectral sequence, distinguishing between the cases where p = 2

and p is odd.

If p = 2, then the E2-page of the Hochschild–Serre spectral sequence, depicted in Fig. 1.1, is of

the form

Est
2 ≃ Hs(C2n−1 ; k)⊗ H−t(C2; k) ≃

k[x1]⊗ k[t1] if n = 2;

k[x2]⊗Λ(x1)⊗ k[t1] if n ≥ 3.

Here, x1 is of Adams degree (−1, 1), x2 is of degree (−2, 2), and t1 is of Adams degree (−1, 0). A

standard argument shows that d2(t1) is nontrivial, whereas d2 vanishes on the remaining generators

for degree reasons. By multiplicativity, this determines the remaining differentials. The E3-page has

been illustrated in Fig. 1.2, and the spectral sequence collapses.

We can now leverage this information to the HFPSS computing π∗ ktC2n . Recall from Section 1.A

that the ring π∗ ktC2 is isomorphic to k[t±1
1 ], so the E2-page, illustrated in Fig. 1.3, is now given by

Es,t
2 ≃ Hs(C2n−1 ; πt ktC2) ≃

k[x1]⊗ k[t±1
1 ] if n = 2;

k[x2]⊗Λ(x1)⊗ k[t±1
1 ] if n ≥ 3.

By multiplicativity, we can simply extend the differentials of Fig. 1.1 to negative powers of t1 using

the Leibniz rule. The E3-page has been drawn out in Fig. 1.4, where it collapses.

We now use this information to compute the Tate spectral sequence. From Section 1.A we see

that passing to Tate cohomology again amounts to inverting the relevant generators on cohomology

(namely, x1), and so we simply take the differentials of the HPFSS, and extend to negative s-degree by

multiplicativity. The E2-page has been drawn in Fig. 1.5. We see that every summand is now killed
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Figure 1.1: The Adams-graded E2-page of the Hochschild–Serre spectral sequence associated to the

extension C2 → C2n → C2n−1 . The circles denote a k-summand, and the nonzero differentials have

been drawn.
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Figure 1.2: The E3-page of the Hochschild–Serre spectral sequence associated to the extension

C2 → C2n → C2n−1 . There are no remaining differentials, and the spectral sequence collapses.
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Figure 1.3: The Adams-graded E2-page of the HFPSS computing the homotopy groups π∗ ktC2n for

n ≥ 2. It is effectively just Fig. 1.1 extended to another quadrant.
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Figure 1.4: The E3-page of the HFPSS computing π∗ ktC2n . There are no remaining differentials, and

the spectral sequence collapses.
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Figure 1.5: The Adams-graded E2-page of the Tate spectral sequence computing the homotopy groups

π∗(ktCp)
tCpn−1 for p odd.
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Figure 1.6: E2-page of the Hochschild–Serre spectral sequence, or equivalently, the (C2)
2-HFPSS,

associated to the extension C2 → Q8 → (C2)
2. To prevent cluttering, we have only illustrated the

nonzero differentials for small s. Each circle represents a k-summand.

by a nontrivial differential. The E3-page is therefore empty, and the Tate construction is contractible.

By Lemma 1.3.8, we have therefore shown that ktC2n → ktC2 is a faithful Galois extension.

If p is odd, the proof technique is the same, though the multiplicative structure of the Hochschild–

Serre spectral sequence changes. One now has

Est
2 ≃ Hs(Cpn−1 ; k)⊗ H−t(Cp; k) ≃ k[x2]⊗Λ(x1)⊗ k[t2]⊗Λ(t1),

with nontrivial differential d2(t1) = x2. The E2-page looks identical to Fig. 1.1, and the E3-page to

Fig. 1.2.

As before, by multiplicativity we can extend this to positive (t− s)-degree into the HFPSS for

Tate spectra. Similarly, we can then further extend to negative s-degree into the Tate spectral sequence.

The E2-page of the latter looks identical to Fig. 1.5, and we conclude that the Tate construction is

again contractible. Therefore, ktCpn → ktCp is a faithful Galois extension.

We now consider the case of the classical quaternion group Q8. The reason we treat the case

of Q8 separately from the generalised quaternion case Q2n is because the group cohomology and Tate

cohomology rings differ between these two cases, as do the resulting differentials.

Theorem 1.3.11. The (C2)
2-Galois extension ktQ8 → ktC2 is faithful.

Proof. Our method is the same as in the cyclic p-group case: we first study the Hochschild–Serre

spectral sequence associated to the extension C2 → Q8 → (C2)
2, which can be identified with the

HFPSS computing π∗ khQ8 . We then leverage multiplicativity twice to compute the Tate spectral

sequence

Est
2 ≃ Ĥs((C2)

2; πt ktC2
)
⇒ πt−s(ktC2)t(C2)

2
.

The Hochschild–Serre spectral sequence, regraded to match with the grading conventions of the

HFPSS, has E2-page of the form

Es,t
2 ≃ Hs((C2)

2; k
)
⊗ πt(khC2) ≃ k[x1, y1]⊗ k[t1].
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Figure 1.7: E3-page of the Hochschild–Serre spectral sequence for C2 → Q8 → (C2)
2.
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Figure 1.8: E4-page of the Hochschild–Serre spectral sequence for C2 → Q8 → (C2)
2. There are no

remaining differentials, and the spectral sequence collapses.

where x1 and y1 are in Adams degree (−1, 1) and t1 is in Adams degree (−1, 0). To understand the

differentials, one can restrict to appropriate subgroups of Q8, which yield natural maps of extensions.

For example, one has a map of extensions

1 C2 C4 C2 1

1 C2 Q8 C2 × C2 1

These extentions induce comparison maps of Hochschild–Serre spectral sequences for Q8 and for C4.

The spectral sequence for C4 had been outlined in the previous section, and we infer that d2(t1) =

x2
1 + x1y1 + y2

1. The E2-page has been drawn out in Fig. 1.6. By e.g. Kudo transgression one then

finds that d3(t2
1) = Sq1(d2(t1)

)
= x2

1y1 + x1y2
1. The E3-page and E4-page have been drawn in Fig. 1.7

and Fig. 1.8, respectively. Observe that the spectral sequence collapses on the E4-page.
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Figure 1.9: E2-page of the (C2)
2-HFPSS computing π∗ ktQ8 . It is obtained from Fig. 1.6 by inverting t.
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Figure 1.10: E3-page of the (C2)
2-HFPSS computing π∗ ktQ8 .

We can now again compute π∗ ktQ8 via the HFPSS. Since the ring structure of π∗ ktC2 is given

simply by k[t±1
1 ], we may again import all differentials from the Hochschild–Serre spectral sequence

and extend using multiplicativity. The E2-page is illustrated in Fig. 1.9. It develops in the expected

way: the E3-page is outlined in Fig. 1.10, and the E4-page in Fig. 1.11.

We further extend to negative s-degree so as to obtain the Tate spectral sequence

Est
2 ≃ Ĥ−s((C2)

2, πt−s ktC2
)
⇒ πt−s(ktC2)t(C2)

2
.

Here, some care must be taken in extending to the Tate spectral sequence, as the Tate cohomology

ring of (C2)
2 isn’t just given by a naive Laurent polynomial ring. As computed in Section 1.A, the

multiplicative structure in nonnegative degree is identified with that of the cohomology ring. But in

negative degrees, we have the following. There is a distinguished element α in Ĥ−1((C2)
2; k
)
, and

the cup product yields a perfect pairing Ĥr((C2)
2; k
)
⊗ Ĥ−r−1((C2)

2; k
)
→ Ĥ−1((C2)

2; k) ≃ ⟨α⟩. The

remaining cup products, in particular all products of negative-degree elements, are zero. In view of
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Figure 1.11: E4-page of the (C2)
2-HFPSS computing π∗ ktQ8 . Compare with Fig. 1.8.

the perfect pairing, we denote the negative-degree classes by αx−a
1 y−b

1 , though it is not a cup product

of α by some element x−a
1 y−b

1 .

It is thanks to the pairing that we can extend the differentials to negative s-degree. For instance,

we have

d2(αx−a
1 y−b

1 ⊗ t−1
1 ) = d2(t−1

1 ) · αx−a
1 y−b

1

= αx2−a
1 x−b

2 + αx1−a
1 x1−b

2 + αx−a
1 x2−b

2

We’ve drawn the E2-page on Fig. 1.12. The E3-page and E4-page of the Tate spectral sequence have

been drawn in Fig. 1.13 and Fig. 1.14.

In the HFPSS, the spectral sequence collapses at the E4-page for degree reasons, but in the Tate

spectral sequence, there’s room for nontrivial d4-differentials. We claim that these differentials are

indeed nontrivial. We begin with the following square of cofibre sequences.

(ktC2)h(C2)2 (ktC2)h(C2)
2

(ktC2)t(C2)
2

(khC2)h(C2)2 (khC2)h(C2)
2

(khC2)t(C2)
2

(khC2)h(C2)2 (khC2)
h(C2)

2
(khC2)

t(C2)
2

We can identify the middle term as khQ8 and the bottom left term as khQ8 . Moreover, thanks to

Theorem 1.3.6 we can identify the top middle term with ktQ8 . This simplifies the diagram to

(ktC2)h(C2)2 ktQ8 (ktC2)t(C2)
2

(khC2)h(C2)2 khQ8 (khC2)t(C2)
2

khQ8 khQ8 0
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Figure 1.12: E2-page of the Tate spectral sequence computing the homotopy groups π∗(ktC2)t(C2)
2
. To

prevent cluttering, only the nonzero differentials for small s are drawn.

t− s

s

−4 −2 0 2 4

−5

−4

−3

−2

−1

0

1

2

3

4

Figure 1.13: E3-page of the Tate spectral sequence computing the homotopy groups π∗
(
(ktC2)t(C2)

2)
.

All nonzero differentials have been illustrated.
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Figure 1.14: E4-page of the Tate spectral sequence computing the homotopy groups π∗(ktC2)t(C2)
2
.

These nontrivial differentials do not come from the HFPSS.

This forces the map (khC2)t(C2)
2 → (ktC2)t(C2)

2
to be an isomorphism. Now, to both we may functori-

ally asssociate a Tate spectral sequence. The E4-page of (ktC2)t(C2)
2

has been illustrated in Fig. 1.14,

and that of (khC2)t(C2)
2

is the same but truncated so as to live in t-degree ≤ 0. The comparison map

of spectral sequences is the obvious one. This comparison forces the d4-differentials in Fig. 1.14

for t − s > 1 to be nontrivial, and by multiplicativity, this nontriviality propagates to negative

(t− s)-degree. Thus, the E∞-page is empty and the Tate construction (ktC2)t(C2)
2

is contractible.

Remark 1.3.12. This argument also implies that khQ8 → khC2 is a faithful Galois extension. Also, by the

commutative squares above, we may observe the equivalences of spectra (khC2)h(C2)2 ≃ (khC2)h(C2)
2

and (ktC2)h(C2)2 ≃ (ktC2)h(C2)
2
.

Finally, we consider the generalised quaternion groups beyond Q8.

Theorem 1.3.13. The Q2n /C2-Galois extension ktQ2n → ktC2 is faithful.

Proof. Our method is the same as in the previous cases. In fact, the associated spectral sequence

diagrams look exactly the same as in the case of Q8; the only difference is that the multiplicative

structure changes.

We first study the Hochschild–Serre spectral sequence associated to the extension C2 → Q2n →
D2n−1 , and then we extend this spectral sequence to produce the four-quadrant Tate spectral sequence

Est
2 ≃ Ĥs(D2n−1 ; πt ktC2

)
⇒ πt−s(ktC2)tD2n−1 .
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For all n ≥ 4, the cohomology ring H∗(D2n−1 ; k) is given by k[x1, y1, z2]/(x1y1), where |x1| = |y1| = 1

and |z2| = 2. Moreover, Sq1(z2) = (x1 + y1)z2. It is convenient to set u1 = x1 + y1 and write the

cohomology ring as k[x1, u1, z2]/(u1x1 + x2
1).

Since C2 is central in Q2n , the E2-page of the Hochschild–Serre spectral sequence has the form

Est
2 ≃ Hs(D2n−1 ; k)⊗ πt(khC2) ≃ k[x1, u1, z2]/(u1x1 + x2

1)⊗ k[t1].

We have a nontrivial d2-differential d2(t1) = u2
1 + z2, as can be computed by restricting to appropriate

subgroups of Q2n , and by Kudo transgression, we have d3(t2
1) = u1z2. These again spawn all the

other differentials via the Leibniz rule. Although the multiplicative generators are different, the E2-,

E3-, and E4-page look exactly the same as those for Q8 — cf. Fig. 1.6, Fig. 1.7, and Fig. 1.8.

We extend the spectral sequence using multiplicativity to the HFPSS computing π∗ ktQ2n . Again,

since π∗ ktC2 is simply k[t±1
1 ], we can extend without much issue. The pages are again identical to Q8,

and are illustrated in Fig. 1.9, Fig. 1.10, and Fig. 1.11. We then further extend to the Tate spectral

sequence. As in the Q8 case, some care must be taken when extending, because the multiplicative

structure of Ĥ∗(D2n−1 ; k) is nontrivial. As shown in Section 1.A, the Tate cohomology ring is the usual

cohomology ring in positive degrees, and there’s again a perfect pairing onto Ĥ−1(D2n−1 ; k) ≃ ⟨α⟩,
and we use the perfect pairing to extend the differentials to negative s-degree. The E2- and E3-page

look the same as in Fig. 1.12 and Fig. 1.13.

For the same reason as in Q8, there is room for nontrivial differentials on the E4-page of the Tate

spectral sequence. The proof that they are indeed nontrivial is exactly the same: one has the square of

cofibre sequences

(ktC2)hD2n−1 ktQ2n (ktC2)tD2n−1

(khC2)hD2n−1 khQ2n (khC2)tD2n−1

khQ2n khQ2n 0

which implies that the map (khC2)tD2n−1 → (ktC2)tD2n−1 is an equivalence. This forces the nontriviality

of some d4-differentials, and the nontriviality of all other differentials then follows by multiplicativity.

Thus the Tate construction is again contractible.

1.4 Computation of endotrivial modules

In this chapter, we will evaluate the limit spectral sequence for the Picard spectrum to compute the

group of endotrivial modules for the cyclic p-groups and generalised quaternion groups. We use the

comparison tool of Theorem 1.2.11 to compare most differentials to the limit spectral sequence for Ω.

For the groups that we consider, the limit decomposition can be re-interpreted as an instance

of Galois descent. Accordingly, the limit spectral sequence for Ω is a familiar object. Indeed, by

Lemma 1.2.12, Ω StMod(kG) is simply ktG, and the limit spectral sequence is simply an extension of

the Hochschild–Serre spectral sequence to two quadrants. We have already evaluated this spectral
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Figure 1.15: E2-page of the limit spectral sequence for the Picard spectrum of StMod(kCpn). The

circles denote a k-summand again. The black square is 0 if p = 2 and Z/2Z if p is odd. The black

diamond is the group k×/(k×)pn−1
. The known nonzero differentials have been illustrated. The

dashed differential is of special interest, as it falls within the range of Theorem 1.2.15.

sequence in Section 1.3, under the guise of an HFPSS computing π∗ ktG. In view of this, we will see

that most of the work which remains will be to compute some unstable differentials.

In this section, our aim is to compute the Picard group of StMod(kCpn). The limit spectral

sequence of Eq. (1.2.9) reads

Est
2 ≃ Hs(Cpn−1 ; πt picStMod(kCp)

)
⇒ πt−s picStMod(kCpn).

Because the groups involved are abelian, all conjugation actions are trivial, hence so is the action

of Cpn−1 on the πt. The E2-page has been sketched in Fig. 1.15. Let’s take a look at the differentials,

distinguishing between the cases p = 2 and odd p.

We start with the case p = 2. Differentials in the stable range may be compared with the

differentials of the multiplicative spectral sequence

Est
2 ≃ Hs(Cpn−1 ; πt Ω StMod(kCp)

)
⇒ πt−s Ω StMod(kCpn)

using Theorem 1.2.11. We have evaluated this spectral sequence in the proof of Theorem 1.3.10.

The relevant differentials in the unstable range are d01
2 and d22

2 . The former is zero, because k× has

no 2-torsion. (In addition, we know that the 1-line should have a surviving k× anyhow.) The latter may

be understood via Theorem 1.2.15. The corresponding differential d21
2 (Ω) of the spectral sequence

for Ω StMod(kC2n) was the linear map ⟨t−1
1 x2

1⟩ → ⟨t
−2
1 x4

1⟩ sending t−1
1 x2

1 to t−2
1 x4

1. Consequently,

Theorem 1.2.15 tells us d22
2 in the limit spectral sequence for Picard spectra is the map sending a scalar α

in k to α + α2. The kernel of this map is given by the elements α such that α + α2 = α(α + 1) = 0, of

which there’s only two, namely 0 and 1. Therefore the kernel is Z/2Z, irrespective of the underlying

field k.

The E3-page is now summarised in Fig. 1.16. It’s easily seen that, from the 0-line upward, no

nontrivial differentials can exist, and we deduce the following.
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Figure 1.16: E3-page of the limit spectral sequence for StMod(kC2n). Notice that the 0-line has only

one nonzero group remaining. The black diamond is the group E43
3 , which is the quotient of k by the

subgroup of those c for which the equation x2 + x + c has a root in k. Classes indicated by a question

mark have unknown value, as they fall outside the range where we can understand the differentials.

Theorem 1.4.1. For all fields k of characteristic 2, and all n ≥ 2, the Picard group of StMod(kC2n) is

isomorphic to Z/2Z.

Remark 1.4.2. The appearance of k×/(k×)pn−1
on the (−1)-line of the E2-page is somewhat curious.

If k is perfect, then this group vanishes; in contrast, if say k = Fp(x), then x represents a nontrivial

element in the quotient. In view of Remark 1.2.6, would it be fair to conjecture whether perfect-ness

of k influences the Brauer group of ktCpn ?

We now turn to the case where p is odd. Several minor differences arise.

• The Picard group of StMod(kCp) is Z/2Z rather than 0 if the prime p is odd.

• As we already observed in Section 1.3, the cup product structure on H∗(Cpn−1 ; k) is different.

• The squaring operation in Theorem 1.2.15 dies in the context of odd characteristic, which alters

the outcome of the Adams-graded (0, 2)-position of the spectral sequence.

The second point causes the odd-prime analogue of the E2-page of the Hochschild–Serre spectral

sequence to have different multiplicative generators, but as we found in Section 1.3, both the E2-page

and E3-pages of the Hochschild–Serre spectral sequence look exactly the same as the p = 2 case.

To compute the Picard spectral sequence for p odd in Fig. 1.15, we can again import differentials

in the stable range. It remains to study the unstable differentials. As before, d01
2 is necessarily trivial.

d00
2 is trivial as well, because k×/(k×)pn−1

has no 2-torsion, and so the Z/2Z in E00
2 survives. The

differential d22
2 is again governed by Theorem 1.2.15. Since we’re in odd characteristic, the squaring

operation vanishes, and the differential d22
2 is identified with the corresponding differential d21

2 (Ω) of

Fig. 1.3, which is seen to be an isomorphism k→ k, and hence E22
3 is 0 rather than Z/2Z.

The E3-page is summarised in Fig. 1.17. As before, there are no more nontrivial differentials that

can alter the outcome, and we deduce the following result.

Theorem 1.4.3. For all fields k of odd characteristic p and all n ≥ 2, the Picard group of StMod(kCpn)

is isomorphic to Z/2Z.
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Figure 1.17: E3-page of the limit spectral sequence for StMod(kCpn) for p odd. Compare with Fig. 1.16.

The only differential with possibly nontrivial domain and codomain is d0,0
3 , but this differential must

be 0, as E3,2
3 , arising as a subgroup of E2,2

2 ≃ k, has no 2-torsion.

Remark 1.4.4. For varying n, the Tate cohomology rings of Cpn are isomorphic (with the exception of

the case p = 2 and n = 1). Nonetheless, the Tate fixed points ktCpn are inequivalent, as they can be

distinguished via e.g. Sq1. Can distinct p-groups have equivalent Tate constructions?

We will now turn our attention to Q8, and calculate the Picard spectral sequence

Est
2 = Hs((C2)

2; πt picStMod(kC2)
)
⇒ πt−s picStMod(kQ8).

The E2-page has been illustrated in Fig. 1.18. The terms for t ≥ 2 are cohomology groups, which

we have also encountered in Theorem 1.3.11. As for t = 1, we notice that the crucial term E11
2 =

H1((C2)
2; k×

)
is zero; indeed, there are no nontrivial maps (C2)

2 → k× because k× never has any

2-torsion.

Using Theorem 1.2.11, the differentials in the stable range may be directly imported from the

HFPSS computing π∗ ktQ8 . The E2-page, illustrated in Fig. 1.9, was given by

Est
2 ≃ k[x1, y1]⊗ k[t1],

with d2(t1) = x2
1 + x1y1 + y2

1 and d3(t2
1) = x2

1y1 + x1y2
1.

There is an unstable differential d22
2 (pic), which by Theorem 1.2.15 we may compare to d21

2 (Ω).

The differential d21
2 (Ω) of the Hochschild–Serre spectral sequence is a k-linear map k3 → k5 defined

by

d21
2 (Ω) :


t−1
1 x2

1 7→ t−2
1 (x2

1 + x1y1 + y2
1)x2

1

t−1
1 x1y1 7→ t−2

1 (x2
1 + x1y1 + y2

1)x1y1

t−1
1 y2

1 7→ t−2
1 (x2

1 + x1y1 + y2
1)y

2
1

The resulting differential d22
2 (pic) may now be computed by hand. It has been described diagramati-

cally in Table 1.19. We easily see that there’s only one possible nonzero element in the kernel, namely

x2
1 + x1y1 + y2

1, and hence the kernel is Z/2Z regardless of the field k.
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Figure 1.18: E2-page of the limit spectral sequence computing the Picard group of StMod(kQ8). The

nontrivial differential has been illustrated. The group indicated by the black diamond is trivial if k is

a perfect field. Known nonzero diagonals have been illustrated only for small s to prevent cluttering.

The dashed diagonal is governed by Theorem 1.2.15.

t−2
1 x4

1 t−2
1 x3

1y1 t−2
1 x2

1y2
1 t−2

1 x1y3
1 t−2

1 y4
1

λt−1
1 x2

1 7→ λ + λ2 λ λ

µt−1
1 x1y1 7→ µ µ + µ2 µ

νt−1
1 y2

1 7→ ν ν ν + ν2

Table 1.19: Behaviour of d22
2 (pic) in the limit spectral sequence for Q8. Here λ and µ denote a scalar in

k. Notice that the differential is not k-linear, although it is F2-linear.
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Figure 1.20: E3-page of the limit spectral sequence computing the Picard group of StMod(kQ8). The

nontrivial differentials have been illustrated. The group illustrated by the black diamond is the

cokernel of the nonlinear map described by Table 1.19.

On the E3-page, which has been illustrated in Fig. 1.20, a similar situation arises: the stable

differentials are imported from Fig. 1.10, but there’s a possibly nontrivial unstable differential d33
3 (pic).

The corresponding differential d32
3 (Ω) from the Hochschild–Serre spectral sequence is the k-linear

map

d32
3 (Ω) :

t−2
1 [x1y2

1] 7→ t−4
1 ([x3

1y3
1] + [x2

1y4
1])

t−2
1 [x2

1y1] 7→ t−4
1 ([x4

1y2
1] + [x3

1y3
1])

Using this, we readily compute to find that the behavior of the d33
3 (pic) differential is described by

d33
3 (pic) :

λt−2
1 [x1y2

1] 7→ λt−4
1 [x2

1y4
1] + λ2t−4

1 [x4
1y2

1]

µt−2
1 [x2

1y1] 7→ µ2t−4
1 [x2

1y4
1] + µt−4

1 [x4
1y2

1]

Elements in the kernel of this differential correspond to pairs (λ, µ) such that λ + µ2 = 0 and

λ2 + µ = 0. Since k is of characteristic 2, this corresponds to pairs (λ, λ2) such that λ + λ4 = 0.

Clearly, there are trivial solutions λ = 0 and λ = 1, but if k contains a primitive cube root of unity ω,

then we may also take λ = ω and λ = ω2. We thus find that

Ker d33
3 ≃

Z/2Z⊕Z/2Z if k has a third root of unity;

Z/2Z otherwise.

We’re now ready to write out the E4-page of the limit spectral sequence. A portion of it has been

illustrated in Fig. 1.21. The spectral sequence collapses — at least in the relevant range t− s ≥ 0 —

and we find that the line t− s = 0 depends on the structure of the field. If k has a third root of unity,
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Figure 1.21: E4-page of the limit spectral sequence for computing the Picard group of StMod(kQ8).

There are no remaining differentials, and the spectral sequence collapses. The black square is E33
3 ,

and it depends on the structure of the field k. It is either Z/2Z or (Z/2Z)2. The groups illustrated

by the black diamonds are the cokernels of the nonlinear maps d22
2 and d33

3 .

then there’s a copy of Z/2Z and a copy of Z/2Z⊕Z/2Z on the 0-line, while if k does not have a

third root of unity, there are two surviving copies of Z/2Z.

In both cases, there’s room for nontrivial extension problems. Nonetheless it’s easy to overcome

these problems: The 4-fold periodicity of the homotopy groups of ktQ8 implies that the unit is an

element of order 4 in the Picard group. The only groups with the indicated extensions and an element

of order 4 are Z/4Z and Z/4Z⊕Z/2Z, hence we deduce the following result.

Theorem 1.4.5. Let k a field of characteristic 2. Then

Pic
(
StMod(kQ8)

)
≃

Z/4Z⊕Z/2Z if k has a primitive cube root of unity;

Z/4Z otherwise.

Remark 1.4.6. The exotic generator of the Picard group of StMod(kQ8) has a known explicit descrip-

tion as a G-representation. Following [CT00], we find that it is captured by the associations

i 7→


1 0 0

1 1 0

0 1 1

 and j 7→


1 0 0

ω 1 0

0 ω2 1

 ,

where ω denotes a principal cube root of unity. It would be interesting to have a homotopical

construction of this object.

Remark 1.4.7. This method of computing the group of endotrivial modules differs dramatically from

the work of Carlson, Thévenaz and others, who used representation-theoretic techniques (namely,

the theory of support varieties). In the case of the quaternion group, they explicitly construct the

endotrivial modules above, and prove that no other endotrivial modules exist.
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Figure 1.22: E2-page of the limit spectral sequence for computing the Picard group of StMod(kQ2n).

The nontrivial differential has been illustrated. Terms indicated by a question mark are the higher

cohomology of D2n−1 with coefficients in k×, and are likely well behaved when k is perfect. The

dashed diagonal is governed by Theorem 1.2.15.

Finally, we consider the Picard spectral sequence

Est
2 = Hs(D2n−1 ; πt picStMod(kC2)

)
⇒ πt−s picStMod(kQ2n).

The E2-page, illustrated on Fig. 1.22, looks effectively the same as that of Q8, and indeed is computed

in the same way. The differentials in the stable range are imported from the associated HFPSS

Est
2 ≃ Hs(D2n−1 ; k)⊗ πt(ktC2)

≃ k[x1, u1, z2]/(u1x1 + x2
1)⊗ k[t±1

1 ]⇒ π∗ ktQ2n

which we computed in the proof of Theorem 1.3.13. We found that d2(t1) = u2
1 + z2 and d3(t2

1) = u1z2,

and that the pages looked identical to the analogous spectral sequences for Q8, which were illustrated

in Fig. 1.9 and Fig. 1.10.

The crucial unstable differential is again d22
2 (pic), which we compute through Theorem 1.2.15.

The differential d21
2 (Ω) is the k-linear map k3 → k5 defined by

d21
2 (Ω) :


t−1
1 u2

1 7→ t−2
1 (u2

1 + z2)u2

t−1
1 z2 7→ t−2

1 (u2
1 + z2)z2

t−1
1 u1x1 7→ t−2

1 (u2
1 + z2)u1x1

We use this to compute d22
2 by hand; the result has been indicated in Table 1.23. The only nonzero

element in the kernel is t−1
1 (u2

1 + z2), so the kernel is Z/2Z regardless of the field k. This brings us to

the E3-page, illustrated in Fig. 1.24.

On the E3-page there’s again an unstable differential, d33
3 (pic). In the analaysis of the HFPSS, the

differential d32
3 (Ω) was determined to be the map k2 → k2 defined by

d32
3 (Ω) :

t−2
1 [u1z2] 7→ t−4

1 [u2
1z2

2]

t−2
1 [z2x1] 7→ t−4

1 [u1z2
2x1]
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t−2
1 u4 t−2

1 u2
1z2 t−2

1 z2
2 t−2

1 u3
1x1 t−2

1 u1z2x1

λt−1
1 u2

1 7→ λ + λ2 λ

λt−1
1 z2 7→ λ λ + λ2

λt−1
1 u1x1 7→ λ + λ2 λ

Table 1.23: Behaviour of d22
2 (pic) in the limit spectral sequence for Q2n . Here λ denotes a scalar in k.

Compare with Table 1.19.
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Figure 1.24: E3-page of the limit spectral sequence for computing the Picard group of StMod(kQ2n).

The nontrivial differentials have been illustrated. The group illustrated by the black diamond is the

cokernel of the nonlinear map described by Table 1.23.
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Figure 1.25: E4-page of the limit spectral sequence for computing the Picard group of StMod(kQ2n).

There are no remaining differentials, and the spectral sequence collapses. The groups illustrated by

the black diamonds are the cokernels of the nonlinear maps d22
2 and d33

3 .

Using Theorem 1.2.15 again, we compute d33
3 (pic) by hand again to find that

d33
3 (pic) :

λt−2
1 [u1z2] 7→ λt−4

1 [u2
1z2

2] + λt−4
1 [u1z2

2x1]

µt−2
1 [z2x1] 7→ µ2t−4

1 [u2
1z2

2] + µ2t−4
1 [u1z2

2x1]

We see that for an element to be in the kernel of d33
3 , we need λ + λ2 and µ + µ2 to be 0. Therefore,

both λ and µ can be either 0 or 1, so that the kernel is isomorphic to (Z/2Z)2, irrespective of k.

The relevant portion of E4-page is now in Fig. 1.25. There are no further differentials which may

influence the line t− s = 0. As in the case of Q8, there’s room for a nontrivial extension problem,

which is resolved by observing the 4-fold periodicity of the Tate cohomology of Q2n . We thus conclude

the following result.

Theorem 1.4.8. The Picard group of StMod(kQ2n), where n ≥ 4, is given by Z/4Z⊕Z/2Z for all

fields k of characteristic 2.

Remark 1.4.9. To compute the group of endotrivial modules of the generalised quaternion groups,

Carlson–Thévenaz rely on the computation for Q8. More precisely, they prove the following result:

Let G be a non-cyclic p-group, and let E denote the family of subgroups H such that H is an

extraspecial 2-group that is not isomorphic to D8, or an almost extraspecial 2-group, or an elementary

abelian group of rank 2. Then the restriction map

Res : Pic StMod(kG)→ ∏
H∈E

PicStMod(kH)

is injective. They then apply it to Q2n : noting that Q8 naturally sits in Q2n as a subgroup, they study

this restriction map to explicitly construct the endotrivial modules for Q2n . In contrast, with our

method, the computations for the generalised quaternion groups are independent of the computations

for Q8.
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1.A Tate cohomology of Cohen–Macaulay groups

The goal of this section is to describe the multiplicative structure of the Tate cohomology groups

Ĥ∗(G; k) for a class of p-groups G that we call Cohen–Macaulay groups. We will specifically be

interested in the case that G is elementary abelian or a dihedral 2-group. The methods presented in

this section are certainly not new or original, but are necessary for our spectral sequence calculations.

Recall that a Noetherian local ring R is called Cohen–Macaulay if its depth and Krull dimension

coincide. Upon globalising, a Noetherian ring R is called Cohen–Macaulay if its localisations are

Cohen–Macaulay. We shall say that a p-group G is Cohen–Macaulay if its cohomology ring H∗(G; k)

is a Cohen–Macaulay ring.

Let G be a Cohen–Macaulay group. By Noether normalisation, there exists a graded polynomial

subring A = k[x1, . . . , xn] of R = H∗(G; k) such that R is finitely generated over A. By Hironaka’s

criterion, also known as miracle flatness [Vak17, Thm. 26.2.10], R is flat, and hence free, over A. The

converse holds as well: if we can realise R as a free module over a polynomial ring k[x1, . . . , xn], then

G is Cohen–Macaulay.

Example 1.A.1. The elementary abelian p-groups and the dihedral 2-groups are Cohen–Macaulay.

This can be seen simply by inspecting their cohomology rings, which we had computed in Section 1.4,

Remark 1.A.2. The depth and dimension of H∗(G; k) are closely related to the structure of the

elementary abelian p-subgroups of G. For instance, a famous theorem of Quillen says that the Krull

dimension of H∗(G; k) is equal to the maximal p-rank of any elementary abelian p-subgroup of G,

and a theorem of Duflot says that the depth of H∗(G; k) is greater than or equal to the largest p-rank

of any central elementary abelian p-subgroup. This need not imply that the p-rank and the central

p-rank coincide, even when G is Cohen–Macaulay: the dihedral 2-groups have p-rank 2 but central

p-rank 1.

To study the Tate cohomology rings of Cohen–Macaulay groups, we will interpret the Tate

fixed points ktG as a Čech spectrum, which allows us to do computations using the so-called Čech

cohomology spectral sequence. By the Cohen–Macaulay condition, this spectral sequence will then

drastically simplify.

We start off with some definitions. Let R be an E∞-ring spectrum. Given x1 ∈ π∗ R, we define

the Koszul spectrum K(x1) as the fibre of the inclusion map R → R[x−1
1 ]. If I = (x1, . . . , xn) in

π∗ R is a finitely generated ideal, then we define the Koszul spectrum K(I) as a tensor product

K(x1)⊗R · · · ⊗R K(xn). Up to homotopy, this construction depends only on the radical of the ideal I.

We also define the Čech spectrum R[I−1] to be the cofibre K(I)→ R→ R[I−1].

Remark 1.A.3. We may regard R[I−1] as the localisation away from the ideal I. Note that if I =

(x1) is principal, then the Čech spectrum R[I−1] is precisely R[x−1
1 ]. However, for an arbitrary

finitely generated ideal I = (x1, . . . , xn), R[I−1] is generally not the same as the localization at a

multiplicatively closed subset of π∗ R, cf. [GM95, Thm. 5.1].

The Tate fixed points ktG of a p-group G may be identified with a Čech spectrum, thanks to the

following theorem of Greenlees.

Theorem 1.A.4 ([Gre95, Thm. 4.1]). Let G be a p-group acting trivially on the Eilenberg–MacLane

spectrum k. Let R = khG be the homotopy fixed points, so that π−∗(R) ≃ H∗(G; k). Define I to be the
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augmentation ideal I = ker(H∗(G; k)→ k). Then there is a homotopy equivalence between R[I−1]

and ktG.

For a Čech spectrum R[I−1] there exists a Čech cohomology spectral sequence

E2 ≃ ČH−s,−t
I (π∗ R)⇒ πs+t R[I−1],

which allows us to compute the homotopy groups of R[I−1] using methods of commutative algebra.

Together with Theorem 1.A.4 this produces a spectral sequence computing the Tate cohomology, as

well as the cup product, of a p-group G.

If H∗(G; k) is Cohen–Macaulay, then by miracle flatness it is free over a polynomial subalgebra

A ⊆ H∗(G; k), say A = k[ζ1, . . . , ζn]. Note that the radical of the ideal J = (ζ1, . . . , ζn) is the ideal I

of elements in positive degrees. Since the Čech spectrum of an ideal depends only on the radical,

we may identify ktG with R[J−1]. Moreover, since R is free over A, it suffices to study the Čech

cohomology spectral sequence

E2 ≃ ČH∗(ζ1,...,ζn)

(
k[ζ1, . . . , ζn]

)
⇒ π∗ A[J−1].

It is easy to calculate the E2-page of this spectral sequence, as we have induced long exact sequences

relating Čech cohomology to local cohomology coming from the fibre sequence K(I)→ R→ R[I−1]:

Lemma 1.A.5 ([GM95]). For an R-module M, we have an exact sequence

0 H0
I (M) M ČH0

I (M) H1
I (M) 0

and an isomorphism

Hs
I (M) ≃ ČHs−1

I (M) for all s ≥ 1.

Since the (ζ1, . . . , ζn) form a regular sequence in A = k[ζ1, . . . , ζn], the local cohomology groups

H j
J(A) vanish for all j away from 0 and n = dim A. Therefore the E2-page of our spectral sequence is

concentrated in the two rows s = 0 and s = n− 1, where we have ČH0
J (A) ≃ A, and ČHn−1

J (A) ≃
k[x−1

1 , . . . , x−1
n ]. Moreover, the multiplication in the spectral sequence allows us to recover the

multiplication structure on π∗ A[J−1]. Finally, to compute the cohomology ring of R[I−1], notice that

π∗ ktG is free over π∗ A[J−1] so we may tensor up the spectral sequence to π∗ ktG without exactness

issues.

Now let’s see these principles in action, starting with the elementary abelian groups. Recall that

H∗
(
(Cp)

n; k
)
≃

k[x1, . . . , xn] if p = 2;

k[x1, . . . , xn]⊗Λ(y1, . . . , yn) if p is odd.

If p = 2 then the generators have degree 1, while if p is odd then |xi| = 2 and |yi| = 1. Notice that the

cohomology ring is free over the polynomial ring A = k[x1, . . . , xn]; in fact the cohomology ring A

identifies with π∗ khTn
, and the Čech cohomology spectral sequence may be expressed as

E2 ≃ ČH∗I (π∗ khTn
)⇒ π∗ ktTn

.

As before, the E2-page of this spectral sequence is concentrated in two rows, at s = 0 and s = n− 1.

In these rows, we have ČH0
I (π∗ khTn

) ≃ π∗ khTn
and ČHn−1

I (π∗ khTn
) ≃ k[x−1

1 , . . . , x−1
n ], shifted in

t-degree by n for p = 2 (Fig. 1.26), or 2n for p odd (Fig. 1.27).

35



t− s
s

−2 0 2 4

0

...

n− 1

kkd1kd2kd3

k kd1 kd2 kd3

Figure 1.26: The Adams-graded E2-page of the Čech cohomology spectral sequence computing

π∗ ktTn
, with p = 2. Here di = dim πi khTn

= (n−1+i
n−1 ).

t− s

s

−4 −2 0 · · · n n + 2 n + 4

0

...

n− 1

kkd1kd2

k kd1 kd2

Figure 1.27: The Adams-graded E2-page of the Čech cohomology spectral sequence computing

π∗ ktTn
, with p odd. Here di = dim π2i khTn

= (n−1+i
n−1 ).

The spectral sequence collapses for degree reasons. Note that, unless p = 2 and n = 1, there is

nowhere for the product of two elements in positive degree to land, and so all products must be zero.

This determines the multiplicative structure on π∗ ktTn
.

In turn, this allows us to infer what the multiplication in Ĥ∗
(
(Cp)n; k

)
should be. For p = 2, there

is nothing to do, since the group cohomology ring is isomorphic to the polynomial algebra π−∗ khTn
.

For concreteness, we illustrate the cup product structure of the Tate cohomology of (C2)
2 in Fig. 1.28.

For p odd, we need to tensor the Čech cohomology spectral sequence computing π∗ ktTn
with the

exterior algebra Λ(y1, . . . , yn) where yi is represented in Adams degree (−1, 0) so as to obtain the

multiplication in Ĥ∗
(
(Cp)n; k

)
.

Now let’s turn our attention to the dihedral 2-groups. Recall that for n ≥ 3, H∗(D2n ; k) ≃
k[x1, x2, z]/(x1x2), where |xi| = 1 and |z| = 2. Moreover, Sq1(z) = (x1 + x2)z. Writing u = x1 + x2,

we observe that H∗(D2n ; k) is Cohen–Macaulay with ideal I = (u, z). We take A to be k[u, z], and we

therefore obtain the Čech cohomology spectral sequence as illustrated in Fig. 1.29. Notice that the

spectral sequence has no differentials. As such, the multiplication in π∗ A[I−1] may be described as

follows. In negative degrees, multiplication in π∗ A[I−1] is the same as multiplication in k[u, z]. In

positive degrees, we have a class α which generates the algebra ČHn−1
J (A) ≃ k[u−1, z−1]. One has

α ∪ u = α ∪ z = 0 and α ∪ α = 0.

To calculate the multiplicative structure of Ĥ∗(D2n ; k), we tensor the spectral sequence with

the exterior algebra Λ(x1), where x1 is represented in Adams degree (−1, 0). The resulting spectral

sequence has been illustrated in Fig. 1.30.
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Figure 1.28: The Adams-graded E2-page of the Čech cohomology spectral sequence computing

π∗ kt(C2)
2
. All multiplicative generators have been labelled explicitly.
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Figure 1.29: The Adams-graded E2-page of the Čech cohomology spectral sequence computing

π∗ A[I−1], where A ≃ k[u, z]. There are no differentials and the spectral sequence collapses.
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Figure 1.30: The Adams-graded E2-page of the Čech cohomology spectral sequence computing

π∗
(
ktD2n

)
. There are no differentials again.
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Chapter 2

On endotrivial modules of extraspecial

p-groups

Abstract. We perform homotopical computations of the group of endotrivial modules for general

finite groups. Our emphasis will lie on the extraspecial groups, which have traditionally played a

fundamental role in the theory of endotrivial modules. We analyse the Picard spectral sequence for

the extraspecial groups and show that the E2-page inherits a great deal of structure from a certain Tits

building of isotropic subspaces with respect to a quadratic form.

2.1 Extraspecial p-groups

The goal of this section is to take a closer look at the nature of extraspecial p-groups, particularly their

subgroup structure. We might as well start with their definition: A p-group G is called extraspecial

if its centre Z(G) is cyclic of order p, and the quotient G/Z(G) is a nontrivial elementary abelian

p-group. For instance, if p = 2 then the smallest extraspecial groups are Q8 and D8.

Lemma 2.1.1. In an extraspecial p-group G, one has [G, G] = Z(G).

Proof. Since G/Z(G) is abelian, [G, G] is contained within Z(G). As Z(G) is cyclic of prime order,

either [G, G] is trivial or it’s all of Z(G). It cannot be trivial, because then all of G is abelian and hence

G/Z(G) is trivial, which was assumed not to be the case.

We shall regard Z(G) as the underlying group of Fp, and G/Z(G) as the underlying group of an

Fp-vector space V. We nonetheless choose to stick with multiplicative notation.

The structure of G is captured by a bilinear form B : V ×V → Fp, which we define as follows.

Take a pair (x, y) ∈ V × V, lift it to a pair (x, y) in G× G, and let B(x, y) be the commutator [x, y],

which by Lemma 2.1.1 lives in Fp.

Lemma 2.1.2. B is a well-defined map. It is a nondegenerate alternating (and hence skew-symmetric)

bilinear form on V.

From this lemma, general linear algebra forces the rank of V to be even, from which we infer

that every extraspecial p-group has order p1+2n for some n ≥ 1.
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Proof. We first prove that B is well defined. Let x, y ∈ G and let z ∈ Z. We show that [xz, y] = [x, y].

The proof that [x, yz] = [x, y] is similar. For all x, y, z ∈ G for all groups G, one has the identity

[xz, y] = [x, y]z[z, y], but by Lemma 2.1.1, [G, G] is abelian and therefore the identity simplifies to

[xz, y] = [x, y][z, y] for all x, y, z ∈ G.

Clearly if z is in the centre then [z, y] = e and we’re done.

The identity above immediately shows that B is bilinear. It is alternating for obvious reasons. To

prove nondegeneracy, simply observe the fact that [x, g] = 0 for all g ∈ G means precisely that x is in

the centre.

To understand the Picard group of the stable module category StMod(kG) of an extraspecial

p-group, we would like to apply Theorem 1.2.7 for a family of subgroups A. As the full subgroup

structure of an extraspecial group is complicated, it is important to make a clever choice for the family

A. We choose to take A to be the collection of elementary abelian p-subgroups of G containing Z(G).

This family is closed under intersection and conjugation, and every elementary abelian p-subgroup P

of G is contained within a p-subgroup that also contains Z(G), namely the internal direct product

P Z(G).

We proceed to investigate the structure of A. Generally speeaking, subgroups of G containing

Z(G) are in correspondence with subgroups of G/Z(G), and the abelian subgroups containing Z(G)

correspond to those subgroups of G/Z(G) on which the bilinear form B vanishes. To recognise which

of these lift to an elementary abelian subgroup of G, it helps to define an additional structure map

Q : V → Fp as follows. Start with an element x ∈ V, choose a lift to an element x ∈ G, and let Q(x)

be xp. The elementary abelian subgroups of G in A are then precisely those subgroups of G/Z(G) on

which both B and Q vanish identically.

Lemma 2.1.3. The map Q is well defined. If p = 2 then it is a quadratic form, while if p is odd, it is

Fp-linear.

Proof. Take x ∈ G and z ∈ Z(G). We wish to show that xp = (xz)p. Since z lives in the centre, we

can move all the z’s in the expression to the right, so that (xz)p = xpzp. Now since Z(G) is cyclic of

order p, zp must be trivial, and hence we’re done.

To prove that Q is quadratic or bilinear, we shall evaluate Q(xy) for x, y ∈ G. Let us verify the

identity

(xy)n = xnyn[y, x]n(n−1)/2,

which in fact holds for any nilpotent group G of nilpotence class at most 2. To prove this identity,

write

y−nx−n(xy)n = y−nx−n+1y(xy)n−1

= y−nx−n+2y2(xy)n−2[y, x]

= y−nx−n+3y3(xy)n−3[y, x]3

= · · · = y−nx−n+nyn(xy)n−n[y, x]1+2+···+(n−1)

= [y, x]n(n−1)/2

In each step, we move [y, x] to the far right, which we’re allowed to do, because [G, G] is assumed to

be contained in Z(G).
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Apply the identity to the case where n = p. If p = 2, then

Q(xy) = Q(x) Q(y) B(x, y).

The bilinear form B(x, y) was alternating and hence antisymmetric. In characteristic 2, we may as

well say that B(x, y) is symmetric. Consequently, Q is a nondegenerate quadratic form on V. On the

other hand, if p is odd, then p(p− 1)/2 is a multiple of p, and hence [y, x]n(n−1)/2 becomes trivial,

from which we infer that

Q(xy) = Q(x) Q(y),

as desired.

Remark 2.1.4. Alternatively, extraspecial groups may be recognised as certain central extensions of

the elementary abelian group Cn
p by Cp. Central extensions are classified by the second cohomology,

and the structure maps B and Q that we uncovered can be expressed in terms of 2-cocycles.

We have managed to classify the family A entirely in terms of linear algebra. Let’s now make

things a bit more concrete. We will henceforth focus on the case p = 2, reducing the case of odd

primes to a remark at the end of the section.

If p = 2, we have the identity B(x, y) = Q(xy)Q(x)−1Q(y)−1, and so if Q vanishes uniformly on

a subspace of V, then so does B. As such, the subgroups in A are in one-to-one correspondence with

the so-called totally isotropic subspaces of V with respect to the nondegenerate quadratic bilinear

form Q. It is a well-known fact that, for every each even dimension 2n, there are only two such

quadratic forms F2n
2 → F2 up to isomorphism, distinguished by their Arf invariants. We may define

them explicitly as

Q+(x) = x1x2 + · · ·+ x2n−1x2n,

Q−(x) = x1x2 + · · ·+ x2n−1x2n + x1 + x2.

This gives us a way to list all objects in OA. At least in principle, that is — a computer-aided

computation indicates that the number of totally isotropic subspaces increases exponentially in n. As

such, it would be infeasible to brute-force compute resolutions.

Although the orbit category OA has many objects, its morphisms are nicely structured, and this

will be of great help to us. Observe that, is a normal subgroup of G with quotient G, and H and K are

subgroups of G containing N, then

HomG(G/H, G/K) ≃ HomG
(
G/H, G/K

)
;

in particular, applied to the case where G is extraspecial and N = Z(G), we see that the morphisms

in OA can be computed by passing to the orbit category of the quotient G/Z(G). This quotient is

abelian. For a general abelian group A with subgroups H1 and H2, one has

HomA(A/H1, A/H2) ≃

A/H2 if H1 ⊆ H2;

∅ otherwise.

We thus find the following down-to-earth description of OA for an extraspecial 2-group G. Write Q for

the quadratic form on the F2-vector space V = G/Z(G). Then OA has as objects all totally isotropic
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subspaces W of V, and

HomOA
(W ′, W) =

V/W if W ′ ⊆W;

∅ otherwise.

Let T be the category whose objects are all totally isotropic subspaces W and V, and where now

HomT(W ′, W) =

∗ if W ′ ⊆W;

∅ otherwise.

We remark that T may be regarded as a sort of Tits building for the subspace V equipped with the

quadratic form Q. Now, there’s a functor F : OA → T sending every object W to itself, and as such,

by the results of Section 2.A, there’s a Grothendieck spectral sequence

Epq
2 = Hp(T; W 7→ Hq(F ↓W;F)

)
⇒ Hp+q(OA;F).

Fixing a subspace W, we now consider the comma category F ↓ W. We observe that this category

consists of all subspaces U of W, with

HomF↓W(U′, U) =

V/U if U′ ⊆ U;

∅ otherwise.

Notice that for all such U and U′, there is a direct sum decomposition V/U = (V/W)⊕ (W/U):

the natural quotient map V/U → V/W induces a further functor GW : (F ↓ W)→ B(V/W), whose

unique comma category now admits an initial object, namely W, so that the derived limits over

any presheaf on this comma category are trivial. Consequently, the Grothendieck spectral sequence

applied to GW degenerates and we conclude that

H∗(F ↓ T,F) ≃ H∗
(
V/W;F(W)

)
,

where the V/W-action on F(W) are defined by the restriction maps of the presheaf F. The func-

toriality in T is the expected one: if W ′ → W is a map in T, then the map H∗
(
V/W;F(W)

)
→

H∗
(
V/W ′;F(W ′)

)
may be specified in terms of the quotient map V/W ′ → V/W and the map

W ′ → W in OA corresponding to 0 ∈ V/W. In summary, the spectral sequence for computing

derived limits over OA simplifies to become

Epq
2 = Hp(T; W 7→ Hq(V/W;F(W))

)
⇒ Hp+q(OA;F).

Remark 2.1.5. Our category T is acted on in an obvious way by the subgroup O±2n(F2) of the general

linear group of V = G/Z(G) ≃ F2n
2 consisting of those linear maps which preserve the quadratic

form Q±. This action induces an action on StMod(kG) (as well as on Db(kG), cf. [Mat16, Prop. 9.13]).

It would be interesting to know if there is a representation-theoretic meaning of this action.

In principle, our spectral sequence need not be of much help. An inductive argument involving

the Grothendieck spectral sequence shows that if P is a poset with a chain c0 < · · · < cn of length n,

then H∗(P;F) has the potential to be nonzero for ∗ = 0, . . . , n. In particular, the E2-page of the

spectral sequence above can have numerous nonzero vertical lines, and exhibit nontrivial differentials.

Fortunately for us, we will see that when F = πt picStMod
(
k[ · ]

)
, the cohomologies simplify quite

drastically.
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Let’s first look at the case t = 0. By virtue of Lemma 1.2.14, F(W) has value Z unless W = 0,

in which case the value becomes 0. The functoriality of F is easy to determine: the generator of

the Picard group is given by the suspension of the unit, and every morphism in F comes from an

underlying functor of stable module categories which is symmetric monoidal and exact by design, so

for every morphism W ′ → W, the induced map F(W) → F(W ′) is the identity — unless of course

W ′ = 0 and W ̸= 0. In view of this, we can describe the cohomology groups as Hs(OA\0(G); Z). Only

the case s = 0 is relevant to the development of the limit spectral sequence; in that case, computing

the group is a matter of counting the path components of OA\0(G). In view of our Grothendieck

spectral sequence, we can equivalently choose to count the path components of T \ 0.

Remark 2.1.6. At a first glance, an obvious source of path components is maximal 1-dimensional

totally isotropic subspaces, corresponding to maximal elementary abelian groups of rank 2, taken up

to G-conjugacy. Maximal rank-2 elementary abelians are known to play a distinguished role in the

study of torsionfree endotrivial modules — and we’ll come back to this point in Section 2.3.

We will skip the case t = 1, instead treating it on an ad hoc basis in the case of D8 in the next

section.

Consider the case t ≥ 2. Again something fortunate happens in this case: if W ′ → W is a map

in T, corresponding to an inclusion H ↪→ K of (necessarily normal) subgroups of G, then the induced

map H∗(V/W;F) → H∗(V/W ′;F) is always 0. This is because the associated restriction map on F

amounts to taking the transfer homomorphism on homology with respect to the inclusion H ↪→ K.

As all groups are p-groups, the index of H in K is a power of p, and consequently the transfer map

vanishes. The functoriality in T is therefore trivial, and our Grothendieck spectral sequence easily lets

us find that

Hs(OA;F) ≃
(⊕

P
Hs(G/P; Ĥ1−t(P; k)

))
⊕ Hs−1(G/Z(G); Ĥ1−t(Z(G); k)

)
, (2.1.7)

where P ranges over the maximal elementary abelian subgroups of G. The G/P-action on Ĥ1−t(P; k)

is induced by conjugation, and is usually nontrivial. We’ll refer to all but the last component as the

noncentral component, and to the last component as the central component.

Remark 2.1.8. The trivial functoriality in T is nothing specific to extraspecial p-groups; we merely

used the fact that G is a p-group to argue that the subgroup inclusion have index a power of p, which

is enough to conclude that the transfer maps vanish.

As before, by Theorem 1.2.11 there is a natural isomorphism between the cohomology groups

Hs(OA; πt picStMod(k[ · ])
)
≃ Hs(OA; πt−1 Ω StMod(k[ · ])

)
inducing comparison maps between their respective descent spectral sequences, and the E∞-structure

of the endomorphism ring of the unit endows the spectral sequence corresponding to the right-hand

side with a cup product structure.

We are led to consider the product structure of

Est
2 = Hs(OA; πt Ω StMod(k[ · ])

)
.

In view of Eq. (2.1.7), it is tempting to suspect that the products somehow distribute over the sum-

mands in an obvious way. This is not the case, however. For one, the decomposition in Eq. (2.1.7) fails
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to hold for negative homotopy groups of Ω StMod
(
k[ · ]

)
since the functoriality in T is a (nontrivial)

map on cohomology rather than a (trivial) transfer map.

Partial information about the cup product structures may be gleaned from various comparison

maps. Consider, for instance, the inclusion ι : M ↪→ OA of the full subcategory M spanned by the

maximal objects. For any presheaf F, there is a natural map ι∗ : H∗
(
OA;F

)
→ H∗

(
M;F ◦ ι

)
. Now

take F to be πt Ω StMod
(
k[ · ]

)
for varying t. Then ι∗ preserves cup products. For t ≥ 2, ι∗ is the

projection onto the noncentral component of Eq. (2.1.7). This lets us conclude that, when restricting

attention to the noncentral component, the cup product can effectively be computed on the separate

summands. However, we crucially cannot exclude the possibility of products of elements in the

noncentral component to land in the central component.

Similarly we may consider the functor π : OA → Z where Z is the subcategory consisting of the

same objects as OA but with the endomorphisms of the maximal objects taken out. Derived limits

over Z are described by G/Z(G)-cohomology shifted in degree. Owing to this degree shift, cup

products of derived limits over Z are trivial, and by mapping to the derived limit over OA, we infer

that cup products on the central component are trivial.

We can use the same comparison maps ι : M ↪→ OA and π : OA → Z to infer partial infor-

mation about the differentials of the limit spectral sequence. We learn that, upon restricting to a

given summand in Eq. (2.1.7), the differentials can be understood in the expected manner: take the

Hochschild–Serre spectral sequences

Est
2 = Hs(G/P; Ht(P; k)

)
⇒ Hs+t(G; k)

for maximal abelian P, and

Hs(G/Z(G); Ht(Z(G); k)
)
⇒ Hs+t(G; k)

with Z(G) the centre of G, and proceed to reflect in the t-axis using Tate duality pairings to understand

the differentials for the negative Tate cohomology groups. As before, however, we cannot rule out

that the differentials out of the noncentral components may have nontrivial values in the central

component.

Remark 2.1.9. Some care must be taken to ensure that we can really extend the spectral sequence in a

natural way to negative Tate cohomology groups. The Tate cohomology groups for these spectral

sequences are Ĥ∗(Cn
2 ; k), which by Section 1.A has numerous zero divisors in negative degrees. This

is in contrast to the ring structure on Ĥ∗(Cp; k) — the only Tate cohomology ring we had considered

thus far. Nonetheless, this will not cause any problems.

Remark 2.1.10. We briefly consider the case where p is odd. By Lemma 2.1.3, Q is now an Fp-linear

map. Up to isomorphism, it is either zero or nonzero. We can choose a basis of V with respect to

which B is the symplectic map

B(x, y) = (x1yn+1 + · · ·+ xny2n)− (xn+1y1 + · · ·+ x2nyn),

and Q is one of the two maps

Q+(x) = x1 + · · ·+ x2n

Q−(x) = 0.
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The elementary abelian subgroups of G containing Z(G) are now classified by those subspaces on

which both B and Q vanish. As before, we take a functor to a ‘Tits building’ and run a Grothendieck

spectral sequence. The subsequent methods and results are similar to the case p = 2.

2.2 The case of D8

Now let’s apply the generalities developed in the previous section to D8. The subgroup structure

of D8 is rather complicated:

D8

⟨r2s, s⟩ ⟨r⟩ ⟨rs, r3s⟩

⟨r2s⟩ ⟨s⟩ ⟨r2⟩ ⟨r3s⟩ ⟨rs⟩

{e}

Apart from ⟨r⟩, all nontrivial subgroups are elementary abelian. But it luckily suffices to take A to be

the collection of subgroups containing the centre Z(D8) = ⟨r2⟩. The resulting orbit category is

OA =

⟨r2s, s⟩ ⟨rs, r3s⟩

⟨r2⟩

{e,r} {e,r}

e

rr

e

{e,r,s,rs}

As expected from the previous section, this is precisely the category of totally isotropic subspaces W

of V = D8/Z(D8) ≃ F2
2 with respect to the quadratic form Q+(x) = x1x2, with Hom(W ′, W) given

by either V/W or ∅.

Remark 2.2.1. The case of Q8 fits within this pattern as well. V is 2-dimensional again, but this

time, one has Q(x) = x1x2 + x1 + x2, which has just a single totally isotropic subspace, namely 0,

corresponding to the unique elementary abelian subgroup {±1} of Q8. It may therefore be regarded

as a ‘degenerate’ case which might as well be treated separately the way we did.

We consider the functor F : OA → T as before, where T is now the category

T =

⟨r2s, s⟩ ⟨rs, r3s⟩

⟨r2⟩
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We have a spectral sequence

Epq
2 = Hp

(
T; W 7→ Hq(V/W;F(W)

))
⇒ Hp+q(OA;F

)
for computing cohomology over our orbit category in terms of cohomology over T. This spectral

sequence collapses, as its only vertical lines are on q = 0 and q = 1, which may be computed to be

the kernel and cokernel of the difference F(⟨r2s, s⟩)⊕ F(⟨rs, r3s⟩)→ F(⟨r2⟩).
At this point, we have our recipe to understand the terms in the E2-page of the spectral sequence.

We take F to be πt picStMod
(
k[ · ]

)
. If t = 0, then Lemma 1.2.14 tells us that F sends ⟨r2, s⟩ and ⟨rs, r2⟩

to Z, and ⟨r2⟩ to 0. The functoriality in the endomorphisms is clear: the underlying functors on the

level of stable module categories are exact and hence in particular preserve suspension. As the Picard

groups are generated by the suspension of the unit, all endomorphisms in OA induce identity maps

on F( · ). Consequently,

H∗
(
OA;F

)
≃ H∗(C2; Z)⊕ H∗(C2; Z),

whose terms are easily computed by hand.

If t = 1, then F sends all objects to the group k×, and all morphisms to the identity map. This

yields the following algebraic description of the cohomology of F. For i = 1, 2 we let ι∗i be the map

H∗(C2 × C2; k×)→ H∗(C2; k×) induced by the inclusion maps into the two components. Then

H∗
(
OA;F

)
≃ Ker(ι∗1 − ι∗2)⊕Coker(ι∗−1

1 − ι∗−1
2 ).

In general, the terms are rather complicated. As the coefficient group need not be well behaved, one

needs to invoke the general Künneth formula to express H∗
(
(C2)

2; k×) in terms of H∗(C2; k×), which

causes Tor1-terms to appear. However, we point out that H∗
(
OA;F

)
is always k× for ∗ = 0, and 0

for ∗ = 1. In addition, if k is assumed to be perfect, then the situation simplifies drastically: all the

nontrivial cohomology groups k×/(k×)2 vanish, and as a result all nonzero cohomologies of F are 0.

For t ≥ 2, we recall that the trivial functoriality in T induced a decomposition of the cohomology

groups over OA, which in our case reads as

Hs(OA; πt picStMod(k[ · ]
)
) ≃ Hs(D8/⟨r2s, s⟩; Ĥ1−t(⟨r2s, s⟩)

)
⊕ Hs(D8/⟨rs, r3s⟩; Ĥ1−t(⟨rs, r3s⟩)

)
⊕ Hs−1(D8/⟨r2⟩; Ĥ1−t(⟨r2⟩)

)
.

(2.2.2)

We remark that the action of the quotient group on the Tate cohomology is nontrivial in the first two

cases. Indeed, note that conjugation by a nontrivial representative (in both cases, r) acts nontrivially

on the subgroups ⟨r2s, s⟩ and ⟨rs, r3s⟩; this induces nontrivial functors on the stable module categories

and hence on the homotopy groups of the Picard spectra. In both cases, the action is abstractly

isomorphic to the nontrivial C2-action on C2 × C2 obtained by permuting the terms.

To understand differentials, we consider the functors from M and to Z the way we outlined in

the previous section. Upon restricting to the three summands in Eq. (2.2.2), the differentials in the

stable realm are governed by the three Hochschild–Serre spectral sequences

Est
2 = Hs(D8/⟨r2s, s⟩; Ht(⟨r2s, s⟩)

)
⇒ Hs+t(D8; k),

Est
2 = Hs(D8/⟨rs, r3s⟩; Ht(⟨rs, r3s⟩)

)
⇒ Hs+t(D8; k),

Est
2 = Hs(D8/⟨r2⟩; Ht(⟨r2⟩; k)

)
⇒ Hs+t(D8; k).
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e−3 k k2 k3 k4

e−2 k k2 k3 k4

e−1 k k2 k3 k4

1 k k2 k3 k4

e k k2 k3 k4

e2 k k2 k3 k4

e3 k k2 k3 k4

1 x, y x2, xy, y2 x3, x2y, xy2, y3

Figure 2.1: Serre-graded (!) E2-page of the spectral sequence for Ω StMod(kD8) induced by the central

extension. On the first quadrant, it may also be regarded as the Hochschild–Serre spectral sequence

associated to the same extension.

The Hochschild–Serre spectral sequences for D8 are well known. The first spectral sequence

has its E2-page drawn out on Fig. 2.1. One has d2(x) = d2(y) = 0, and through comparison with

simpler spectral sequences, or computation of transgression, one learns that d2(e) = xy. The E3-page

is sketched in Fig. 2.2, where it collapses.

The other two spectral sequences, coming from the noncentral extensions, are isomorphic to

each other, and their E2-page is sketched on Fig. 2.3. This spectral sequence collapses already on the

E2-page.

We immediately notice something peculiar: On each diagonal line of Fig. 2.3, infinitely many

terms survive. For the results to be consistent, this effectively forces differentials from the central

extension to kill most of the terms occurring in the two spectral sequences of the noncentral extensions.

To this end, we make the following conjecture:

Conjecture 2.2.3. The d2-differential of the limit spectral sequence for picStMod(kD8) sends the

two generators u ∈ H0(D8/P; Ĥ−1(P; k)
)

corresponding to the two noncentral extensions of D8 (cf.

Fig. 2.3) to the generators e−2x and e−2y in H1(D8/Z(D8); Ĥ−2(Z(D8); k)
)

(cf. Fig. 2.1). The same

differential sends the generators xnyn ∈ H0(D8/P; Ĥ−2n−1(P; k)
)

of the noncentral component to

e−2n−2x and e−2n−2y.

Let’s assemble what we know so far, and what the conjecture implies. In Fig. 2.4 we have

illustrated the E2-page of the limit spectral sequence of D8. We have illustrated with blue circles which
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e−4 k k2 k2 k2 k2

0 0 0 0 0

e−2 k k2 k2 k2 k2

0 0 0 0 0

1 k k2 k2 k2 k2

0 0 0 0 0

e2 k k2 k2 k2 k2

1 x, y x2, y2 x3, y3 x4, y4

Figure 2.2: E3-page of the spectral sequence for Ω StMod(kD8) induced by the central extension.

There are no remaining differentials, and E3 = E∞.

summands get killed by virtue of nontrivial differentials of the two noncentral E2-spectral sequences,

and we have illustrated with red circles which summands get killed owing to Conjecture 2.2.3. Some

additional care must be taken with the unstable differential d22
2 : specifically, we must expect the

squaring operation to be trivial in order for things to work out. In Fig. 2.5 we have written out the

E3-page of the limit spectral sequence, assuming our hypotheses are correct.

It seems reasonable that there is an ad hoc explanation of the behaviour of the differentials, for

instance by arguing that we know what the positive lines should converge to and ruling out other

candidate behaviours on a case-by-case basis. Any such method will likely fail to work for groups

beyond D8, owing to the massive increase in complexity. For this reason we shall refrain from even

trying.

Rather, we believe that a first step to finding the differentials should be a systematic computation

of the cup product structure on the E2-page of the Ω-spectral sequence — one which naturally lends

itself to a generalisation to larger extraspecial groups. It’s reasonable, though not guaranteed, that an

understanding of the cup product structure will be sufficient to infer Conjecture 2.2.3.

In any case, upon inspecting Fig. 2.5 we arrive at the following result.

Corollary 2.2.4. Assuming Conjecture 2.2.3, the Picard group of StMod(kD8) is Z⊕Z.

Remark 2.2.5. There is room for nontrivial differentials out of E00
2 = Z⊕Z. Indeed the targets

are completely torsion, and so the kernel of any nontrivial differential would remain abstractly

isomorphic to Z⊕Z. It can be deduced whether such nontrivial differentials occur, and how often:
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3 ⟨x2 + y2, xy⟩ ⟨xye⟩ ⟨xye2⟩ ⟨xye3⟩ ⟨xye4⟩ ⟨xye5⟩

2 ⟨x + y⟩ 0 0 0 0 0

1 ⟨u⟩ ⟨ue⟩ ⟨ue2⟩ ⟨ue3⟩ ⟨ue4⟩ ⟨ue5⟩

0 ⟨1⟩ ⟨e⟩ ⟨e2⟩ ⟨e3⟩ ⟨e4⟩ ⟨e5⟩

−1 ⟨x + y⟩ 0 0 0 0 0

−2 ⟨x2 + y2, xy⟩ ⟨xye⟩ ⟨xye2⟩ ⟨xye3⟩ ⟨xye4⟩ ⟨xye5⟩

−3 ⟨x3 + y3, x2y + xy2⟩ 0 0 0 0 0

−4 ⟨x4 + y4, x3y + xy3, x2y2⟩ ⟨x2y2e⟩ ⟨x2y2e⟩ ⟨x2y2e⟩ ⟨x2y2e⟩ ⟨x2y2e⟩

0 1 2 3 4 5

Figure 2.3: E2-page of the spectral sequence for Ω StMod(kD8) associated to the two noncentral

extensions. The overline indicates the Tate dual element, e.g. xy ∪ xy = u. The Hochschild–Serre

spectral sequence on the lower half has no nontrivial differentials, and by multiplicativity neither

does the top half.
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7 k3 ⊕ k3 ⊕ 0 0⊕ 0⊕ k 0⊕ 0⊕ k2 0⊕ 0⊕ k3 0⊕ 0⊕ k4 0⊕ 0⊕ k5 0⊕ 0⊕ k6

6 k3 ⊕ k3 ⊕ 0 k⊕ k⊕ k k⊕ k⊕ k2 k⊕ k⊕ k3 k⊕ k⊕ k4 k⊕ k⊕ k5 k⊕ k⊕ k6

5 k2 ⊕ k2 ⊕ 0 0⊕ 0⊕ k 0⊕ 0⊕ k2 0⊕ 0⊕ k3 0⊕ 0⊕ k4 0⊕ 0⊕ k5 0⊕ 0⊕ k6

4 k2 ⊕ k2 ⊕ 0 k⊕ k⊕ k k⊕ k⊕ k2 k⊕ k⊕ k3 k⊕ k⊕ k4 k⊕ k⊕ k5 k⊕ k⊕ k6

3 k⊕ k⊕ 0 0⊕ 0⊕ k 0⊕ 0⊕ k2 0⊕ 0⊕ k3 0⊕ 0⊕ k4 0⊕ 0⊕ k5 0⊕ 0⊕ k6

2 k⊕ k⊕ 0 k⊕ k⊕ k k⊕ k⊕ k2 k⊕ k⊕ k3 k⊕ k⊕ k4 k⊕ k⊕ k5 k⊕ k⊕ k6

1 k× 0 (∗) (∗) (∗) (∗) (∗)

0 Z2 0 (Z/2)2 0 (Z/2)2 0 (Z/2)2

0 1 2 3 4 5 6

Figure 2.4: E2-page of the limit spectral sequence for the Picard group of StMod(kD8). For t ≥ 2

we have indicated the contributions coming from each of the summands in Eq. (2.2.2). We have

underlined in red which summands get at least partially killed by Hochschild–Serre differentials, and

in blue the summands which get killed under Conjecture 2.2.3. (∗): These terms are 0 if the field k is

perfect, and more complicated otherwise.
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7 k6 k 0 0 0 0 0

6 k4 0 0 0 0 0 0

5 k4 k 0 0 0 0 0

4 k2 0 0 0 0 0 0

3 k2 k 0 0 0 0 0

2 0 0 0 ? ? ? ?

1 k× 0 ? ? ? ? ?

0 Z2 0 ? 0 ? 0 ?

0 1 2 3 4 5 6

Figure 2.5: E3-page of the limit spectral sequence for the Picard group of StMod(kD8) under Con-

jecture 2.2.3. There are no remaining differentials that could influence the terms on the 0-line. All

positive lines match up with the expected outcomes.
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Through representation theory, the generators of the Picard group are explicitly known, as are their

restrictions to the two subgroups (C2)
2 of D8. These are not two copies of Ω k, but rather a copy of Ω k

and a copy of Ω2 k. We infer that E00
∞ must be an index-2 subgroup of E00

2 , and hence there is a single

nonzero differential at some point.

2.3 Remarks on other finite groups

In this section, we briefly discuss how one might proceed from extraspecial p-groups to arbitrary

finite p-groups, and further to any finite group.

When people initially tried to classify endotrivial modules for finite p-groups, they hoped to do

this through a certain detection result, by which they meant that for any such group G, the natural

restriction map T(G)→ ∏H T(H) is injective, where H ranges over those subgroups of G that are of

a specific form. A famous result of Carlson–Thévenaz [CT04] shows that one must take those H that

are elementary abelian of rank 2, extaspecial, or almost extaspecial.

Clearly, then, extraspecial groups play a special role in the theory of endotrivial modules. It

is natural then to ask whether this can be seen from a homotopical point of view. One way to see

extraspecial groups arise is as follows. Let P be a finite p-group. Then P has a nontrivial centre, within

which we may find a central subgroup C which is isomorphic to the cyclic group Cp. Observe that we

may take the family A of Theorem 1.2.7 to be those elementary abelian subgroups which contain C.

These, then, are almost in one-to-one correspondence with the elementary abelian subgroups of the

quotient G/C, though such a correspondence is muddled by potential extension problems. Still, it is

tempting to believe that one can quantise in this way the relation between the endotrivial modules

of G and those of G/C; continuing this process inductively, one eventually reaches an elementary

abelian subgroup; the group preceding it is either abelian or extraspecial.

Now let us finally consider the case of a finite group G which is not a p-group. What can we still

infer?

Let’s focus on the torsionfree rank first. Consider the descent spectral sequence where we simply

take the family A of Theorem 1.2.7 to be the family of all elementary abelian subgroups. I claim that

the only source of torsionfree summands of T(G) on the 0-line can occur on the (0, 0)-th spot of the

E2-page

Est
2 = Hs(OA, πt picStMod(kH)

)
of the spectral sequence. Indeed for t ≥ 2 the terms are all torsion as they are vector spaces over k. As

for t = 1, a sufficiently large choice of k could perhaps yield nontrivial torsionfree rank of H1(OA, k×)

— however, we may assume without loss of generality that k is a subfield of Fp, as enlarging the field

any further will not introduce new representation-theoretic phenomena, and Fp
× is entirely torsion.

As the targets of the differentials d∗00 all hit torsion groups, the rank of E∗00 is not altered as the

spectral sequence progresses. As such, we may conclude that

rk T(G) = rk H0(OA, π0 picStMod(kH)
)
.

We have encountered this limit in the case of extraspecial groups, cf. Remark 2.1.6, but it can be

analysed for general G in much the same way. The functor G/H 7→ PicStMod(kH) outputs Z, Z/2Z

or 0 according to Lemma 1.2.14, and all morphisms send generators to generators. Consequently, the
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rank of this cohomology group is equal to the number of path components of the poset of elementary

abelian subgroups of rank ≥ 2. This number can be analysed group-theoretically, thereby recovering

a famous theorem of Carlson–Mazza–Nakano [CMN06]. Briefly, if nG is the number of conjugacy

classes of maximal rank-2 elementary abelian subgroups of G, then

rk T(G) =


0 if G has p-rank 1;

nG if G has p-rank 2;

nG + 1 if G has p-rank ≥ 3.

Now let’s instead take the family A to be the collection of p-subgroups of G. Denote the resulting

orbit category by Op. Notice that we can do this even if G is itself a p-group, but the resulting

decomposition will be trivial, as G would be in A, thus giving Op a final object and rendering the

theorem vacuous. In the non-p-group case, however, the choice has substantial content: the functor

G/P 7→ Ĥ∗(P; k) satisfies the hypotheses of [JM92, Prop. 5.14], and so its higher cohomology groups

all vanish. Consequently, the only nonzero terms on the 0-line of the E2-page are E00
2 and E11

2 , and the

only relevant nontrivial differential is

d00
2 : lim←−O

op
p

PicStMod(kP)→ H2(Op(G); k×).

From the filtration associated to the convergence of the spectral sequence, we infer the exact sequence

0→ H1(Op; k×)→ Pic StMod(kG)→ lim←−O
op
p

PicStMod(kP)→ H2(Op; k×)

This recovers [Gro22, Thm. A]. The nontrivial differential is studied in more detail in upcoming work

of Barthel, Grodal and Hunt.

2.A A Grothendieck spectral sequence for derived limits

Let C be a general category, and we write PSh(C) for the category of presheaves on C with values in

some abelian category of (say) modules over a commutative rings. We are interested in computing

cohomology groups of presheaves over C. In our application, we take C to be a full subcategory of

the orbit category OG of some group G. Suppose F : C → D is a functor to some other category D.

Then there is an obvious pullback functor F∗ : PSh(D)→ PSh(C) on presheaves.

Lemma 2.A.1. With the notation as above, the functor F∗ has a right adjoint, which we shall denote

by F∗.

To define the right adjoint in a succinct way, we recall the definition of (a special case of) the

comma category F ↓ d for all objects d ∈ D. The category F ↓ d has as objects all pairs (c, φ) consisting

of an object c in C and a map φ : F(c) → d. A morphism (c, φ) → (c′, φ′) is an arrow f : c → c′ in C

such that

F(c) F(c′)

d

F( f )

φ φ′

commutes in D. We shall take limits over F ↓ d in our definition of F∗.
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Proof. The right adjoint has an explicit description. A presheaf F is sent to the presheaf

F∗F(d) = lim←−F↓d F(c).

To be more precise, the limit is taken over the functor F ↓ d → A sending a pair (c, φ) to F(c), and

sending a map f : c→ c′ to the associated restriction map of F. Let’s now describe the restriction map

of F∗F along an arrow f : d→ d′. Write an element of F∗F(d′) as a tuple (xc′ ,φ′) parametrised over all

(c′, φ′) in F ↓ d′. We would like to associate to it a tuple (y(c,φ)) parametrised by objects in F ↓ d. Fix

such an object (c, φ). Compose φ : u(c)→ d with f to obtain an object (c, f ◦ φ) in F ↓ d′. We define

the element y(c,φ) to be x(c, f ◦φ).

Let’s now verify that F∗ ⊣ F∗. We want to establish a natural bijection between Hom(F∗F,G) and

Hom(F, F∗G). We start with a natural transformation α : F∗F → G. To associate to it a transformation

β : F → F∗G, we must describe maps β(d) : F(d)→ lim←−F↓d G(c) for all objects d. In turn, to describe

β(d), we need to have maps F(d)→ G(c) for all (c, φ) in F ↓ d in a natural way. These maps are given

by the composition

F(d) F(F(c)) F∗F(c) G(c)
F(φ) α(c)

Naturality with respect to F ↓ d is immediate from naturality of the various α(c). Thus, we have the

desired composed map β(d). One must next verify that these β(d) are natural in D; in other words, if

f : d→ d′ is any map, the diagram

F(d′) F∗G(d′) lim←−F↓d′ G(c
′)

F(d) F∗G(d) lim←−F↓d G(c)

commutes. So start with an element z ∈ F(d′). The image in F∗G(d′) is a tuple (x(c′ ,φ′)) where

x(c′ ,φ′) =
(
α(c′) ◦ F(φ′)

)
(z).

In turn, the image of (x(c′ ,φ′)) in F∗G(d) is a tuple (y(c,φ)) where

y(c,φ) = x(c, f ◦φ) =
(
α(c) ◦ F( f ◦ φ)

)
(z) =

(
α(c) ◦ F(φ)

)(
f (z)

)
,

which is clearly also what comes out had we gone through the diagram in the other way. This

completes the construction of the map Hom(F∗F,G)→ Hom(F, F∗G).

The map in the other direction is somewhat easier, and we’ll be more brisk. Start with a natural

transformation β : F → F∗G. For every c, the map β
(

F(c)
)

: F
(

F(c)
)
→ F∗G(c) can be composed

with the projection down towards the component corresponding to the element (c, Id) in F ↓ F(c).

Assembling these maps for all c yields the desired natural transformation F∗F → G.

Lemma 2.A.2. Let F : C → D be a functor, and let F ∈ PSh(C). Then there exists a natural isomor-

phism

lim←−C
F
∼−→ lim←−D

F∗F.

Proof. We wish to show that lim←−C
F(c) ≃ lim←−D

lim←−F↓d F(c). This is really an upshot of a more abstract

situation. One has a collection of diagrams J(i) parametrised by another diagram I. Each J(i) admits
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a functor F(i) to some category C, and the functors are natural in I. One has a canonical isomorphism

lim←−I
lim←−J(i)

F(i) ≃ lim←−lim−→I
J

F,

where F denotes the unique functor lim−→I
J → C arising from the F(i). In our case, one has I = D

and the J(i) are the F ↓ d. It’s easy to check that lim−→D
F ↓ d is isomorphic to C, hence the result

follows.

The result above suggests that we may apply the Grothendieck spectral sequence to the com-

position lim←−C
≃ lim←−D

◦ F∗. For this to work, F∗ must take injective objects in PSh(C) to lim←−D
-acyclic

objects in PSh(D). This follows from the stronger fact that F∗ preserves injectives, which in turn is a

consequence of the following simple result.

Lemma 2.A.3. Let F : A→ B and G : B→ A be functors between abelian categories such that F ⊣ G.

Suppose that F preserves monomorphisms. Then G preserves injective objects.

Proof. Consider a monomorphism X ↪→ Y in A along with a map X → G(I), with I injective. By the

adjunction this corresponds to a map F(X)→ I. As F preserves injections, F(X)→ F(Y) is injective,

and so since I is injective, there’s a natural map F(Y) → I. The corresponding map Y → G(I) is

precisely what’s needed to show that G(I) is injective.

The Grothendieck spectral sequence for derived functors thus produces a spectral sequence

Epq
2 = Hp(D, RqF∗F)⇒ Hp+q(C,F).

The higher derived functors RqF∗F can be described in terms of the cohomology of comma categories.

Indeed, from the proof of Lemma 2.A.2 one finds that RqF∗F(d) can also be described as Hq(F ↓ d,F
)
,

and hence the spectral sequence can be rewritten as

Epq
2 = Hp(D, Hq(F ↓ ( · ),F)

)
⇒ Hp+q(C,F).

This spectral sequence can be of help whenever we can find a functor F to a simpler category D such

that the comma categories F ↓ d are reasonably simple as well.

Example 2.A.4. Let G be a finite group with normal subgroup H. Derived limits over the categories

BH and BG compute group cohomology over BH and BG. There is a natural functor F : BG →
B(G/H). Since there’s only one object in BG, there’s only one comma category F ↓ ∗. It has as objects

all classes [g] in G/H, and the morphisms are parametrised by H. This category is equivalent to BH.

It follows that we obtain a spectral sequence

Epq
2 = Hp(G/H; Hq(H,F)

)
⇒ Hp+q(G,F).

This is, of course, the classical Hochschild–Serre spectral sequence.
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Chapter 3

A genuine equivariant approach to the

Dade group

Abstract. We investigate how the Dade group of endopermutation modules can be realised as the

Picard group of a certain ∞-category of genuine equivariant spectra. On our way, we produce

a general framework for studying modules whose endomorphisms are trivial up to a specified

subcategory of the representation category. This produces invariants that interpolate between the

group of endotrivial modules and the Dade group, as well as other more exotic invariants that are of

independent interest.

3.1 Endopermutation modules

Let G be a finite group, and let M be a (finite-dimensional) kG-module. Then we call M an endoper-

mutation module if Endk(M) is a permutation module. By this we mean a kG-module admitting a

basis which is G-invariant. This notion, which was first introduced by Dade in [Dad78], evidently

generalises the notion of endotrivial module as studied in the previous section.

Much as how endotrivial modules assemble into the Picard group of the stable module category,

the endopermutation modules assemble into a group known as the Dade group of G. The goal of this

section is to introduce the Dade group and present some of its properties. Most of the material can be

found in [Dad78], but I have aimed to simplify the exposition and present some examples.

The results presented in this section work only when G is a p-group. Nonetheless, it will be

useful to keep in mind the possibility that G is a general finite group of order divisible by p. The

reason for this choice is that we will generalise the results in the next section, at which point we will

have sufficient flexibility to produce a nontrivial theory for general finite groups.

Lemma 3.1.1. Endopermutation modules are closed under tensor products, duals, and internal Hom.

Proof. As all modules are presumed finite-dimensional, Endk(M) is canonically isomorphic to M∗ ⊗
M. Using this, we find that Endk(M ⊗k N) ≃ Endk(M) ⊗ Endk(N), so the first closure property

is proved if we show that permutation modules are closed under tensor product. But this is easy

enough: if X and Y are G-sets, then k[X]⊗k k[Y] is isomorphic to k[X × Y]. Closure under duals
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follows by noting that Endk(M) and Endk(M∗) are isomorphic. Finally, Homk(M, N) is isomorphic

to M∗ ⊗ N, which is an endopermutation module by the first two results of this lemma.

Notice that endopermutation modules typically aren’t closed under direct sums. Indeed if M

and N are endopermutation modules, then the endomorphism algebra of M⊕ N decomposes as

Endk(M⊕ N) ≃ Endk(M)⊕Homk(M, N)⊕Homk(N, M)⊕ Endk(N),

and there’s no reason to expect the two Hom groups to be permutation modules. On the other hand,

we do have the following:

Lemma 3.1.2. If G is a p-group, then any summand of an endopermutation module is again an

endopermutation module.

Proof. If M′ is a summand of M then Endk(M′) is a summand of Endk(M), and so the claim reduces

to the analogous claim for permutation modules. We claim that if M is a permutation module of the

form k(G/H), then M is indecomposable. Suppose M were to split as M′ ⊕M′′. Recall that every

modular representation of a p-group has a fixed point, as we mentioned in Remark 1.2.13, so that

HomG(k, M′ ⊕M′′) is at least 2-dimensional. On the other hand,

HomG
(
k, k(G/H)

)
≃ HomH(k, k) ≃ k,

which is 1-dimensional — a contradiction.

Remark 3.1.3. The statement breaks down for non-p-groups. Permutation modules over non-p-group

typically decompose nontrivially, even when p divides the order of G. This can already be seen

in a group as simple as C6: its regular representation over F2 breaks up into two indecomposable

summands, which are of dimension 2 and 4, respectively. Concretely, these two summands may be

defined by

g 7→
(

0 1

1 0

)
and g 7→


0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 0

 ,

where g is a choice of generator of C6. Already for dimension reasons, the latter cannot be a

permutation module.

Lemma 3.1.4. Endopermutation modules are closed under restriction to subgroups and under

inflation from quotients.

Proof. The endomorphism algebra of the restriction is simply the restriction of the original endomor-

phism algebras, and clearly restrictions of permutation modules are still permutation modules. The

proof for inflation is essentially identical.

Remark 3.1.5. The reader will have noticed the absense of induction in the lemma above. Indeed if H

is a subgroup of G, and M is a kH-module, then by the Mackey decomposition

Endk
(
IndG

H(M)
)
≃
⊕
HgH

IndG
H∩Hg Homk

(
ResH

H∩Hg M, ResH
H∩Hg Mg),

and there’s no reason to expect these individual Hom summands to be permutation modules.
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Example 3.1.6. As a concrete example, take H to be the quaternion group Q8, sitting inside the

semidihedral group G = SD16. Let M be the exotic endotrivial module of Q8 over k = F4 given in

Remark 1.4.6, and consider its induction to SD16. A direct computation with GAP’s MeatAxe module

shows that Endk IndG
H(M) decomposes into indecomposable summands of dimensions 18, 16 and 2,

which rules out the possibility that Endk IndG
H(M) is a permutation module.

In line with [Dad78], we shall call an endopermutation module M capped if the trivial module k is

a direct summand of Endk(M). It is the capped endopermutation modules that will end up assembling

into a group. This will become apparent from our categorical point of view as well: just as how

endotrivial modules are effectively ⊗-invertible object upon trivialising the projective objects, so too

are the capped endopermutation modules ⊗-invertible upon trivialising the permutation modules.

In his paper, Dade in fact gives a different definition of capped endopermutation modules. We

shall verify that they are equivalent.

Lemma 3.1.7 ([Dad78, Prop. 3.9]). If G is a p-group, then an endopermutation module is capped if

and only if it possesses an indecomposable summand with vertex G.

For a brief discussion on vertices, see Section 3.A. The proof below is paraphrased from [Dad78].

Proof. Consider an endopermutation module with an indecomposable summand M of vertex G. By

Lemma 3.1.2, M is itself an endopermutation module. Define the two-sided ideal

I = ∑
H<G

TrG
H EndkH(M) ⊆ EndkG(M),

where TrG
H denotes the transfer along a subgroup. In modular representation theory, the quotient

EndkG(M)/I is known as the Brauer quotient of M, and it’s the representation-theoretic analogue of

geometric fixed points.

Since Endk(M) is a permutation module, we can explicitly analyse I. For any nontrivial summand

isomorphic to k(G/H), the transfer map TrG
H :
(
k(G/H)

)H →
(
k(G/H)

)G is surjective, but for trivial

summands, all transfers TrG
H : k → k are zero, because the index of H in G is always divisible by p.

Thus, I is nontrivial if and only if Endk(M) has a trivial summand.

On the other hand, a subgroup H of G is a vertex of M if and only if H is minimal among the

subgroups for which TrG
H : EndkH(M) → EndkG(M) is surjective — cf. Lemma 3.A.2. Since M is

indecomposable, EndkG(M) is a local ring; as such, M has vertex H < G if and only if I = EndkG(M).

Together with the previous paragraph, this proves the result.

Now suppose M is a capped endopermutation module over a p-group G. Then we can take

an indecomposable summand with maximal vertex. But what if we can take a different one? As it

happens, the choice is irrelevant:

Lemma 3.1.8. Let M be an endopermutation G-module, where G is again a p-group. Suppose M1

and M2 are indecomposable summands of M with vertex G. Then M1 and M2 are isomorphic.

The proof as stated closely follows the one presented in [Dad78] — we’ll revisit it in Lemma 3.2.3.
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Proof. The only relevant ingredient is the fact that Homk(M1, M2) is a permutation module. From

this we infer that

M1 ⊗M∗1 ⊗M2 ≃ M1 ⊗Homk(M1, M2)

≃
⊕ (

M1 ⊗ k(G/H)
)

The vertices of the indecomposable summands of M1 ⊗ k(G/H) will be subgroups of H. Thus, if

some indecomposable summand of M1 ⊗M∗1 ⊗M2 has vertex G, it must be isomorphic to M1. On

the other hand, M2 is such a summand; indeed, by Lemma 3.1.7, M1 ⊗M∗1 has a trivial summand k,

hence (M1 ⊗M∗1)⊗M2 has a summand k⊗M2.

What this tells us is that a capped endopermutation module M has a unique indecomposable

summand with maximal vertex. Fittingly, we will call this summand the cap of the module, denoted

cap(M). We will say that two capped endopermutation modules are equivalent if their caps are

isomorphic.

Theorem 3.1.9. The equivalence classes of capped endopermutation modules assemble into an abelian

group under the tensor product. Its unit is k, and the inverse of any module is its dual.

The resulting abelian group is called the Dade group of G.

Proof. The tensor product is well defined on equivalence classes. Indeed if M1 and M2 are capped en-

dopermutation modules, then both cap
(
cap(M1)⊗ cap(M2)

)
and cap(M1⊗M2) are indecomposable

summands of M1 ⊗M2 with maximal vertex, hence they are isomorphic by Lemma 3.1.8.

Under the tensor product, the trivial module k is clearly the unit. Moreover, if M is a capped

endopermutation module, then M∗ ⊗M ≃ Endk(M) has a k-summand by assumption, and thus

summand acts as the cap.

3.2 A generalised Dade group

The goal of this section is to give an abstraction of the construction of the Dade group. This produces

invariants that interpolate between the group of endotrivial modules and the Dade group, as well as

other more exotic invariants that are of independent interest.

Let P be a subcategory of the 1-category Modfin(kG) of finite-dimensional kG-modules. A finite-

dimensional module M is said to be P-endotrivial if its endomorphism group Endk(M) splits as

k⊕P, which for us will be shorthand for a splitting as k⊕ P where P is an object in P. We will always

assume that P is closed under direct sums, tensor products, and taking duals, and that the⊗-ideal ⟨P⟩
generated by P is proper, i.e. it doesn’t generate the whole category.

Remark 3.2.1. If G is a p-group and k is algebraically closed then a thick ⊗-ideal is proper if and only

if all its objects have dimension divisible by p, as follows by [Ben20, Theorem 2.1].

Example 3.2.2. Let G be a p-group and let P be the subcategory of all permutation modules with

proper isotropy. Then P-endotrivial modules are precisely the capped endopermutation modules

that we introduced in the previous section.

More generally, if G is any group, then we can take P to be the permutation modules with

isotropy in a family F of subgroups of G. By abuse of notation, we will often write F instead of P. By
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Lemma 3.A.4 the ideal that it generates will be proper if and only if the subgroups in F are all strictly

contained in the Sylow p-subgroup of G. Also notice that, if G is a p-group, then F is automatically

thick because transitive permutation modules of a p-group are indecomposable, as we proved in

Lemma 3.1.2.

The following result is a direct generalisation of Lemma 3.1.7 and Lemma 3.1.8.

Lemma 3.2.3. If M is P-endotrivial, then M always has a unique indecomposable summand M0

which lies outside of ⟨P⟩.

Proof. Decompose M as a direct sum M0 ⊕ · · · ⊕Mr of indecomposable summands. Endk(M) then

decomposes as
⊕

i,j Homk(Mi, Mj). The trivial summand of Endk(M) must be found in only one of

the Homk(Mi, Mj), and since there’s one and only one trivial summand, the i and j must be the same.

Assume without loss of generality that k ⊆ Endk(M0). Clearly, M0 /∈ ⟨P⟩ by properness of ⟨P⟩. Now

take any other summand Mi for i > 0. We have

M0 ⊗M∗0 ⊗Mi ≃ M0 ⊗Homk(M0, Mi)

≃ M0 ⊗ P

where ‘M0 ⊗ P’ is shorthand for ‘M0 ⊗ (something in P)’ — an abuse of notation we’ll frequency

employ. We can thus conclude that M0 ⊗M∗0 ⊗Mi lives in the ideal ⟨P⟩. On the other hand, we can

also write

M0 ⊗M∗0 ⊗Mi ≃ (k⊕ P)⊗Mi

≃ Mi ⊕ ⟨P⟩

Since ⟨P⟩ is thick, this forces Mi to be in ⟨P⟩.

For the lack of better terminology, two P-endotrivial modules M and M′ will be called Dade

equivalent if there’s an equivalence M0 ≃ M′0 of underlying indecomposable summands as they

appear in Lemma 3.2.3. Define the Dade group DP(G) as the group of Dade equivalence classes of

P-endotrivial modules equipped with the tensor product.

It turns out that if P is a (proper) ⊗-ideal, then the Dade group DP(G) admits a different

description:

Lemma 3.2.4. If P is a (proper) ⊗-ideal, then DP(G) is isomorphic to the Picard group of the additive

quotient Modfin(kG)/P.

Proof. Two kG-modules M and N are equivalent in Modfin(kG)/P if and only if M⊕P ≃ N⊕P. This

is a general fact for additive quotients of idempotent-complete additive categories. Clearly then,

P-endotrivial modules are invertible.

Conversely, suppose M is ⊗-invertible in Modfin(kG)/P. We’ll show that M is P-endotrivial. The

inverse of M must be M∗ — this is a general fact for closed symmetric monoidal ∞-categories as

witnessed by the adjunction

Map(X, M∗) ≃ Map(X⊗M, 1)

≃ Map(X⊗M⊗M−1, M−1)

≃ Map(X, M−1)
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So if M is ⊗-invertible, then we know that (M∗ ⊗M)⊕ P ≃ k⊕ P. By appealing to uniqueness of

Krull–Schmidt decompositions, we may remove the P on the left-hand side to conclude the proof of

the claim.

It remains to be verified that mod-P equivalence and Dade equivalence define the same equiva-

lence relation. Let’s denote by mod-P equivalence and Dade equivalence by ∼T and ∼D, respectively.

If M ∼D N then M0 ≃ N0, but clearly, M ∼T M0 and N0 ∼T N, so M ∼T N. Conversely, if M ∼T N,

then M⊕ P ≃ N ⊕ P. But it’s easy to see that M ∼D M⊕ P and N ⊕ P ∼D N, so M ∼D N.

Example 3.2.5. If P is the ⊗-ideal of projective kG-modules, then DP(G) is the classical group of

endotrivial modules, usually denoted T(G). If G is a p-group then all projective modules are free so

that we find back Example 3.2.2 in the case F = {e}.

Remark 3.2.6. Somewhat paradoxically, if we enlarge the subcategory P, say to a subcategory Q, then

the notion of being P-endotrivial becomes less restrictive, yet the Dade equivalence relation doesn’t,

so we get to conclude the existence of an injection DP(G) ↪→ DQ(G).

In fact, the existence of an indecomposable summand outside ⟨P⟩ as asserted in Lemma 3.2.3

becomes more restrictive as you enlarge P. We might as well extrapolate this fact. If k is algebraically

closed and G is a p-group then by Remark 3.2.1 there’s a unique largest ⊗-ideal, which is the ideal (p)

generated by all indecomposable modules of dimension divisible by p. This allows us to conclude,

for instance, that if M is endotrivial, then M has a unique indecomposable summand of dimension

not divisible by p.

The Dade group associated to this maximal ⊗-ideal (p) is rather mysterious. By Lemma 3.2.4 we

can alternatively describe it as the Picard group of the additive quotient Modfin(kG)/(p). In the same

way that quotienting a ring by a maximal ideal produces a field, so does quotienting Modfin(kG) by (p)

produces a field-like category; more precisely, the resulting quotient Modfin(kG)/(p) is precisely the

semisimplification (in the sense of [EO22]) of Modfin(kG).

The Dade group D(p)(G) has implicitly been studied by Benson in [Ben20], where the following

conjecture is made: If G is a finite 2-group, and M is an odd-dimensional indecomposable kG-module,

then Endk(M) is a direct sum of k and indecomposable modules of dimension divisible by 4. In

particular, M is (2)-endotrivial. Thus, if p = 2, the group D(p)(G) is conjecturally generated by all

odd-dimensional indecomposable modules. We will revisit this example in Remark 3.5.4.

Let’s now take a look at some closure properties. If f : G → H is a group homomorphism, then

it induces a symmetric monoidal pullback functor f ∗ on module categories. If P is a subcategory

of Modfin(kH), then f ∗(P) is a subcategory of Modfin(kG). Thus, f ∗ sends P-endotrivial modules to

f ∗(P)-endotrivial modules. Notice moreover that if P is closed under tensor products and duals then

so is f ∗(P) — however, it could happen that f ∗(P) generates all of Modfin(kG) as an ideal, which

would invalidate most of the results above.

Example 3.2.7. If f : G ↪→ H is an inclusion then we take P to be the projective objects, which shows

that endotrivial modules are closed under restriction. On the other hand, if f is a projection G → G/H

and P is the category of permutation modules with isotropy in, say, the family of proper subgroups

of G/H, then f ∗(P) consists of the permutation modules with isotropy in those proper subgroups

of G containing H. In particular, endopermutation modules are closed under inflation.
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The right adjoint pushforward functor f∗ fails to be symmetric monoidal, and there’s no reason

to expect it to preserve P-endotrivial modules for whatever reasonable P you might think of. Indeed

if we recall Example 3.1.6 then we notice that the pushforward doesn’t even have a trivial summand.

Although P-endotrivial modules aren’t closed under induction, they tend to be better preserved

by tensor induction. Recall that if H is a subgroup of G, then the tensor induction of M is defined as

the tensor product
⊗

G/H M equipped with the diagonal G-action.

Example 3.2.8. Tensor induction preserves permutation modules, though the tensor induction of

a free module need not remain free. So tensor induction preserves F-endotrivial modules when F

consists of all proper subgroups, but it doesn’t when F consists of the trivial subgroup. This presents

a striking difference in the structure of the classical Dade group (Example 3.2.2) versus the classical

group of endotrivial modules (Example 3.2.5).

3.3 Relative stable module categories

Recall from Lemma 3.2.4 that the Dade group DP(G) for a ⊗-ideal P could be defined as the Picard

group of the additive quotient Modfin(kG)/P. If P is the subcategory of projective kG-modules, then

by [Ric89] this additive quotient is in fact the homotopy category of the stable module ∞-category

Db,fin(kG)/Perf(kG), also denoted StMod(kG) (but see Remark 1.2.4). This observation gives us the

opportunity to use homotopical methods in the study of endotrivial modules — an opportunity that

we have made ample use of in the previous chapters.

We would like to emulate this process for more general Dade groups. One educated guess

would perhaps be to start off with the (bounded) derived category of kG-modules, and taking the

Verdier quotient by the ⊗-ideal generated not by the complexes of projectives (which would yield the

ordinary stable module category) but rather by the complexes of objects in P. This, however, does not

work. If P is the class of permutation modules with isotropy in a sufficiently large family, then it is

precisely the Quillen stratification that we used in Section 1.2 which prevents this from working: by

[Mat16, Prop. 9.13], the Verdier quotient will be zero.

The approach we instead take is to go back to the ordinary category of kG-modules, and to

alter what we mean by ‘projective object’. We do this using the theory of exact categories, which we

developed in Section 3.B. Specifically, we define an exact category on the category of kG-modules for

which the projective objects are precisely the objects in the thick closure of P. Of particular interest is

the case where P consists of permutation modules, in which case the resulting category is morally

similar to a construction conceived in [CPW98] for the purpose of studying support varieties. We

review their construction in Section 3.D.

Let A be the abelian category Modfin(kG) of finite kG-modules. Consider the exact structure EP

as defined in Lemma 3.B.3, where E is the ordinary exact structure on A, and P is the class of objects

in our subcategory P.

Lemma 3.3.1. With the notation as above, EP defines a Frobenius structure on Modfin(kG) whose

projectives / injectives are the objects in P along with their retracts.
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Proof. To classify the projectives, we verify that the condition in Remark 3.B.5 is satisfied. This is

indeed the case, though some care must be taken here, as Modfin(kG) is not closed under arbitrary

direct sums.

The fact that the injectives and projectives coincide follows by duality. If P is a projective object,

and M′ → M→ M′′ is an exact sequence, then we wish to show that the sequence

HomkG(M′′, P)→ HomkG(M, P)→ HomkG(M′, P)

is again exact, thus proving that P is injective. Because finite-dimensional representations are reflexive

(i.e. isomorphic to their double dual), this sequence is dual to

HomkG(P, M′)→ HomkG(P, M)→ HomkG(P, M′′)

which is exact by projectivity of P.

Remark 3.3.2. The existence of a categorical duality is in fact equivalent to the coincidence of

projectives and injectives. More precisely, if R is an associative unital ring, then the following two

properties are equivalent:

• Every projective R-module is injective and vice versa.

• R is Noetherian and every finitely generated R-module is reflexive.

Denote the (bounded) derived category of Modfin(kG) with the exact structure EP by Db,fin
P (kG).

Lemma 3.2.4 and Theorem 3.C.2 now let us conclude that, for any thick ⊗-ideal P, the Dade group

DP(G) is isomorphic to the Picard group of the symmetric monoidal ∞-category Db,fin
P (kG)/Db(P).

We shall henceforth denote this quotient by StModP(kG).

Remark 3.3.3. The classical Dade group is obtained by taking P to be the class of permutation

modules with proper isotropy. This is not an ideal, and as stated in Remark 3.C.4, even though

Db,fin
P (kG) is a well-defined category and even though it has a well-defined Verdier quotient, this

Verdier quotient doesn’t come with a tensor product.

A first approximation would be to simply replace the subcategory P of permutation modules

with the thick ⊗-ideal generated by P. This structure was conceived in [CPW98] and is reviewed in

Section 3.D. The resulting Dade group has been studied in [Las11], where it is denoted by TV(G) for V

the module
⊕

H<G k[G/H], and at the very least it includes the classical Dade group as a subgroup.

In the next section, however, we will work with a slightly different setup. We still take P to be

the collection of permutation modules, but we now simply close up the subcategory Db(P) and take

its thick ⊗-ideal in Db,fin
P (kG). That is, we will study the (now symmetric monoidal) Verdier quotient

Db,fin
P (kG)/⟨Db(P)⟩.

3.4 Elmendorf’s theorem in modular representation theory

When constructing the ∞-category of G-spaces using G-topological spaces, the ‘correct’ notion of

equivalence is simply the equivariant analogue of homotopy equivalence. An equivariant version of

Whitehead’s theorem then tells you that this notion of equivalence can be described nonequivariantly

by saying that we have a homotopy equivalence on all fixed-point spaces for all subgroups of G.
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Since G-homotopy equivalence is detected on the fixed points, objects in SG can be described

entirely using abstract fixed-point data. Elmendorf’s theorem makes this observation precise: SG

is equivalent to the category Fun(O
op
G , S). More generally, if F is a family of subgroups of G, and

we define our weak equivalences on G-spaces as those maps which induce weak equivalences on

H-fixed points for H in F, then the resulting category is modelled by Fun(O
op
F , S).

Now take P to be the subcategory of Modfin(kG) generated by the permutation modules with

isotropy in a family F. As a minor abuse of notation, denote the resulting derived category by

Db,fin
F (kG). Observe that, for any subgroup H, we have an equivalence HomkG

(
k[G/H], M

)
≃ MH .

In view of Lemma 3.B.9, then, weak equivalences in Db,fin
F (kG) just amount to a ‘classical’ weak

equivalence on the fixed points. It would therefore be tempting to suspect that there’s a version of

Elmendorf’s theorem for the category Db,fin
F (kG).

A priori, one may be inclined to claim that Db,fin
F (kG) is modelled by Fun

(
OF(G)op,Perf(k)

)
.

This suspicion, however, isn’t quite accurate. The orbit category OG arises as the full subcategory

of SG on the ‘generating’ objects G/H — in contrast, the full subcategory of the 1-category Modfin(kG)

on the ‘generating’ objects k[G/H] is an altogether different category. When we implement this

correction, we get a statement which is actually correct.

Theorem 3.4.1. We have an equivalence

Db,fin
F (kG) ≃ Funπ(Perm

op
F ,Sp)dual.

In words, Db,fin
F (kG) is equivalent to the dualisable objects in the functor category Funπ(Perm

op
F , Sp)

of finite-product-preserving functors from the category PermF of permutation kG-modules with

isotropy in F.

The classical proof of Elmendorf’s theorem, based on the two-sided bar construction, carries

over to this setting. For this to work, one needs to realise Db,fin
F (kG) as a simplicial model category,

which can indeed be done thanks to the work of [CH02]. However, we choose to take a different

approach to this result.

Let us begin by observing that Db,fin
F (kG) describes the dualisable objects in the larger derived

category DF(kG) of complexes of kG-modules with weak equivalences defined, as before, on the

level of fixed points. As such, it suffices to describe DF(kG) as Funπ(Perm
op
F ,Sp).

Let C be an ∞-category which admits all small colimits. Recall that an object X in C is called

compact if Hom(X, · ) commutes with filtered colimits; X is called projective if Hom(X, · ) commutes

with geometric realisations. An object is compact projective if and only if Hom(X, · ) commutes with

sifted colimits.

Lemma 3.4.2 ([Lur09, Proposition 5.5.8.25]). Let P be a set of compact projective generators of C,

by which we mean that P generates C under small colimits. Assume that P is closed under finite

coproducts, or otherwise add them to your set. Then C is equivalent to the category Funπ(Pop, S) of

finite-product-preserving functors from Pop to spaces. Moreover, every compact projective is either

an object in P, or a retract thereof.

The intuition here is that the functor category Funπ(Pop, S) is the closure of P under sifted

colimits.
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Example 3.4.3. The compact projective objects in S are given by the finite sets. In this case, Lemma 3.4.2

reduces to a tautology.

Lemma 3.4.2 is manifestly about unstable categories. To apply it to our context, we need to

consider first the connective part D≥0
F (kG).

Lemma 3.4.4. The compact projective objects of D≥0
F (kG) are the permutation modules with isotropy

in F (or possible nontrivial summands thereof, in case G is not a p-group).

To prove this result, we use the following technical lemma:

Lemma 3.4.5 ([Lur12, Corollary 4.7.3.18]). Let F : C → D be a functor of ∞-categories with right

adjoint G. Assume that G is conservative and preserves sifted colimits. If C admits a set of compact

projective generators, then so does D; moreover, the compact projective objects in D are precisely the

retracts of F(P) where P is compact projective in C.

Example 3.4.6. The compact projective objects in the ∞-category SG are given by the finite G-sets,

as follows by applying Lemma 3.4.5 to the functor G : S → SG sending X to
⊔

H G/H × X. Thus,

Lemma 3.4.2 recovers Elmendorf’s theorem. More generally, in the ∞-category SF of G-spaces with

weak equivalences defined in terms of H-fixed points for all H ∈ F, the compact projectives are the

finite G-sets with isotropy in F.

Example 3.4.7. The description of the category SpG of genuine G-spectra as spectral Mackey functors

can be viewed as an instance of Lemma 3.4.2. The connective part Sp≥0
G has compact projective

generators Σ∞
+G/H as can be seen by applying Lemma 3.4.5 to the loop space functor Ω∞ : SpG → SG.

The full subcategory spanned by the suspension spectra Σ∞
+G/H is precisely the Burnside category.

To obtain the description of SpG as a functor category to spectra, we simply pass to the stabilisation

of our prestable ∞-category.

Example 3.4.8. If R is an associative ring, then the compact projective objects of D≥0(R) are precisely

the finitely generated free modules, i.e. the finite coproducts of R, as follows by applying Lemma 3.4.5

to the forgetful functor F : D≥0(R)→ Sp≥0 → S, and recalling that the compact projectives in S are

just the finite discrete sets. This implies that the derived ∞-category of R can also be described as the

category Funπ(Lat
op
R ,Sp) of product-preserving functors from the category of finitely generated free

R-modules. In fact, this example readily generalises to arbitrary connective E1-rings.

We adapt the example above to prove our assertion about compact projectives in Db,≥0
F (kG):

Proof of Lemma 3.4.4 and Theorem 3.4.1. Analogous to Example 3.4.8, we observe that there’s a forgetful

functor D≥0
F (kG) → SF, to which we apply Lemma 3.4.5. This yields the desired classification of

compact projectives. The result follows by passing to the stabilisation.

Remark 3.4.9. Notice that PermF is really just the classical 1-category of permutation modules,

despite arising as a full subcategory of the ∞-category DF(kG). The intuitive reason for this is that

the permutation modules are projective with respect to our chosen exact structure, and hence the

mapping spaces are in fact discrete.

Remark 3.4.10. More generally, let P be a suitable thick subcategory of Modfin(kG). It would be

tempting to believe that the derived category DP(kG) can be modelled likewise as a functor category

Funπ(Pop,Sp). I don’t know whether this is the case.
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We proceed to take a closer look at the category PermF. Whenever we have a G-map f : G/H →
G/K, there’s a k-linearised map f : k[G/H] → k[G/K]. But f moreover gives rise to a transfer

map Tr f : k[G/K] → k[G/H], in which we take sums over the pre-images of f . This rules out the

possibility of describing PermF as a k-linearisation of the orbit category, and rather brings us closer to

the Burnside category of spans of G-sets.

Remark 3.4.11. This observation about transfers gives us an a posteriori reason why we couldn’t

have expected Db,fin
F (kG) to be described in terms of functors from the orbit category: Db,fin

F (kG) has

transfers. In hindsight, this could already have been inferred from the original description in terms of

chain complexes.

The relationship to the Burnside category can be made more precise. Write SpanF for the full

subcategory of the Burnside category on those G-sets that have isotropy in F. Then there’s a functor

π : SpanF → PermF, defined by

G/K

G/H G/L

gf 7→ k[G/H] k[G/K] k[G/L]
Tr f g

Upon k-linearising SpanF, this functor becomes full and essentially surjective, but not faithful. To see

this, consider a map f : G/H → G/K corresponding to a subconjugation Hg ⊆ K, and notice that

the composition f ◦ Tr f is equal to multiplication by the index [H : K]. If G is a p-group, and k has

characteristic p, then this always produces 0. In fact the ‘kernel’ of our functor SpanF → PermF is

generated by these relations.

With this in mind, it seems reasonable to conclude that Funπ(Perm
op
F , Sp) may be thought of as

G-spectra but with an enforced relation between the restriction and the transfer. We now proceed to

formalise this observation:

Theorem 3.4.12. Funπ(Perm
op
F ,Sp) is equivalent to the category ModSpF (k) of modules in the ∞-

category SpF of F-complete G-spectra over the Eilenberg–MacLane Mackey functor k.

Before we give the proof, observe that we have an equivalence

SpF ≃ Funπ(Span
op
F ,Sp),

which explains why SpF appears in the theorem statement. This equivalence is again a direct

consequence of Lemma 3.4.2, as the compact projective generators in SpF are precisely the suspension

spectra Σ∞
+G/H for H ∈ F.

Proof. The functor π : SpanF → PermF that we introduced before gives rise to an adjunction π! ⊣
π∗ ⊣ π∗ at the level of functor categories. At this point we invoke the following result.

Lemma 3.4.13 ([MNN17, Proposition 5.29]). Suppose we have a symmetric monoidal functor of stable

categories L : C→ D with right adjoint R. Assume that L ⊣ R satisfies the projection formula, that R

is conservative, and that R commutes with colimits. Then the natural adjunction ModC
(

R(1D)
)
⇄ D

is an inverse equivalence of symmetric monoidal ∞-categories.
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The adjunction π! ⊣ π∗ satisfies the hypotheses of this result. The fact that π! is symmetric

monoidal is a general fact about Day convolutions. Conservativity of π∗ follows from the fact that

equivalences in DF(kG) and in SpF are both governed by Whitehead’s theorem. π∗ commutes with

colimits because it has a further right adjoint. As for the projection formula, consider objects X and Y,

and assume that X is dualisable. We have the following sequence of adjunctions:

map
(
Z, π∗(π!X⊗Y)

)
≃ map

(
π!Z, π!X⊗Y) π! ⊣ π∗

≃ map
(
π!Z, map(Dπ!X, Y)

)
π! preserves dualisables

≃ map
(
π!Z, map(π!DX, Y)

)
⊗-functors commute with D

≃ map
(
π!Z⊗ π!DX, Y

)
tensor ⊣ Hom

≃ map
(
π!(Z⊗DX), Y)

)
π! symmetric monoidal

≃ map
(
Z⊗DX, π∗Y

)
π! ⊣ π∗

≃ map
(
Z, map(DX, π∗Y)

)
tensor ⊣ Hom

≃ map
(
Z, X⊗ π∗Y

)
by definition

This establishes the projection formula under the dualisability assumption. As every object in SpF is

built up as a colimit of dualisables (specifically, the Σ∞
+G/H), the formula holds for all X.

We are now done if we show that the unit in Funπ(Perm
op
F ,Sp) is an Eilenberg–MacLane Mackey

functor. It suffices to check this for Funπ(Perm
op
F , S). This follows from the general fact that the

Yoneda embedding P→ Funπ(Pop, S) is symmetric monoidal when the target is equipped with the

Day convolution. In particular, the unit is represented by 1P, and in the case where P = PermF, this

just returns the constant functor k.

Remark 3.4.14. Alternatively, Theorem 3.4.12 could be proved by investigating the compact projective

generators of ModSpF (k). Example 3.4.8 generalises to the category LModC(A) of left modules over

an E1-algebra object A in a symmetric monoidal ∞-category C. This allows us to see that the objects

k[G/H] for H ∈ F form a collection of compact projective generators in ModSpF (k), and so we’re

done if we show that the full subcategory on these objects is PermF.

Remark 3.4.15. In the discrete case, Mackey functors with this relationship between restriction and

transfer are known as cohomological Mackey functors. By a theorem of Yoshida, these may also be

described as modules over the Hecke algebra EndkG
⊕

H∈F k[G/H]. There’s an analogous description

for DF(kG), e.g. as a consequence of the Schwede–Shipley theorem; in fact the ring remains discrete,

cf. Remark 3.4.9. Notice that the Hecke algebra isn’t commutative; to retain the symmetric monoidal

structure, one needs to remember the Hopf algebra structure of the Hecke algebra, and view DF(kG)

as a comodule category instead.

Remark 3.4.16. From Theorem 3.4.12, we may infer that our category DF(kG) has both genuine

and geometric fixed points — but this could also have been seen directly from the description

as Funπ(Perm
op
F ,Sp). Genuine H-fixed points is the expected thing, namely the functor corepre-

sented by k[G/H]. Geometric fixed points ought to be a colimit-preserving functor compatible with

suspension spectra, and as such, we’d expect ΦH to be the left Kan extension of an association

k[G/K] 7→ k[(G/K)H ]. If F is contained in the Sylow p-subgroup of G then this association can be

made functorial and ΦH is well-defined.
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Now let X be a G-set with isotropy in F and consider the permutation representation k[X], in

other words ‘Σ∞
+X’. Then the genuine fixed points k[X]H is just the classical fixed points of the

representation. Notice that k[X]H is spanned by the H-orbits of X. We can tautologically split these

up into size-1 orbits and larger orbits, yielding

k[X]H ≃ ΦHk[X]⊕ (stuff spanned by nontrivial orbits).

This is analogous to the tom Dieck splitting.

Theorem 3.4.12 allows us to express the derived category Db,fin
F (kG) as a module category internal

to F-complete spectra. It would be beneficial if we could lift this to a statement internal to all G-spectra.

This can be done, at least on the level of dualisable objects.

Theorem 3.4.17. We have an equivalence ModSpF (k)
dual ≃ ModSpG

(k∧F)
dual, where k∧F denotes the

F-completion of k.

Proof. ModSpG
(k∧F) is generated under colimits by the k∧F[G/H]. Its dualisable objects are compact,

hence the identity functor on a dualisable object factors through a finite colimit, which shows that

the dualisable objects in ModSpG
(k∧F) are finite colimits of the permutation modules k∧F[G/H], or

potential retracts thereof. From the sequence of identifications

map
(
EF+, k∧F[G/H]

)
≃ map

(
EF+, IndG

H ResG
H k∧F

)
≃ IndG

H ResG
H map

(
EF+, k∧F

)
≃ map

(
EF+, k∧F

)
[G/H]

≃ k∧F[G/H]

we infer that the k∧F[G/H] (and hence their finite colimits) are F-complete. Identifying with the

objects k[G/H] in ModSpF (k)
dual, we are by observing that ModSpF (k)

dual is generated (under finite

colimits) by these same objects k[G/H] (but see Remark 3.5.1).

We now turn our attention to the F-stable module category StModF(kG), obtained by taking the

Verdier quotient of DF(kG) by the thick ⊗-ideal generated by the k[G/H] for H ∈ F. This is entirely

analogous to the Verdier quotient of SpG by ⟨Σ∞
+G/H⟩H∈F. The latter has been studied in [MNN17]

where it is called the F−1-localisation of SpG.

Theorem 3.4.18. We have an equivalence StModF(kG)dual ≃ ModSpG
(k∧F ⊗ ẼF)dual.

Proof. F−1-localisation is a smashing localisation, hence F−1-local modules over a ring are equiva-

lently modules over the F−1-localised ring. The result thus follows from Theorem 3.4.17.

This description of StModF(kG) allows us to give an alternative description of the mapping

spectra in StModF(kG). The following result is a direct analogue of [Kra20, Lemma 4.2].

Corollary 3.4.19. On the level of dualisable objects, StModF(kG) can be described as follows. If M

and N are dualisable kG-modules, then

mapStModF(kG)(M, N) ≃
(
mapk(M, N)

)tFG.
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Proof. A symmetric monoidal functor F : C→ D between closed symmetric monoidal ∞-categories

commutes with internal Homs of dualisable objects, as evidenced by the series of identities

map
(

F(X), F(Y)
)
≃ DF(X)⊗ F(Y)

≃ F(DX)⊗ F(Y)

≃ F(DX⊗Y)

≃ F
(
map(X, Y)

)
In particular, if R is a commutative algebra object in C, then we may take F : C→ ModC(R) to be the

functor sending X to R⊗ X. Apply this to the case C = ModSpG
(k) and R = k∧F ⊗ ẼF. For dualisable

k-modules M and N with G-action, we then know that

mapStModF(kG)(M, N) ≃ mapk(M, N)⊗ k∧F ⊗ ẼF.

By an argument analogous to that in the proof of Theorem 3.4.17 we find that

mapk(M, N)⊗ k∧F ⊗ ẼF ≃ mapk(M, N)∧F ⊗ ẼF

To get the mapping spectrum, we simply pass to genuine G-fixed points. By definition, this is the

F-Tate construction of mapk(M, N).

3.5 Final remarks

We end with some open-ended remarks. As they are largely speculative, I am compelled to be more

imprecise in my use of language. I hope that the remarks are nonetheless of some value to the reader.

Remark 3.5.1. Throughout this section we have worked with a discrete base field. It is tempting to ask

whether the results carry over to more general base rings or ring spectra. At least two complications

arise.

In Remark 1.2.4 we assured that it’s irrelevant whether we take the small or large stable module

category, but this fails when we consider other base rings. As pointed out in [Kra20, Remark 4.3],

StMod(RG) tends to exhibit nonsplit idempotents when R is a ring of integers. In upcoming work,

Grodal and Krause establish the failure of StMod(RG) to be idempotent-complete in terms of character

theory.

Second, we cannot pass from SpF to SpG because Theorem 3.4.17 fails to hold. The complication

arises at the very end, when we say that ModSpF (k)
dual is generated under finite colimits by the

objects k[G/H]. By [Tre15, Theorem A.4], this fact is true if you take the base ring to be a discrete

regular Noetherian ring of finite Krull dimension, but there are counterexamples otherwise:

In Example A.3 of the same paper, Mathew considers the case F = {e}, G = C2, with base ring

R = F2[ε]/(ε2). Then the free R-module of rank 1 with C2-action specified by multiplication by 1 + ε

defines a ⊗-invertible object in the functor category which does not belong to the thick subcategory

generated by the permutation modules.

Passing to non-discrete E∞-rings, the result fails even for the most well-behaved regular rings,

such as the sphere spectrum. The functor category Fun
(

BCp,Perf(S)
)

has many exotic ⊗-invertible

objects: by the Atiyah–Segal theorem, maps BCp → BO∧p are classified by the p-adically completed
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real representation ring RO(Cp); composing these maps with the p-completed J-homomorphism

BO∧p → Sp produces uncountably many Picard elements.

Remark 3.5.2. In Example 3.2.8 we observed that F-endotrivial modules are closed under tensor

induction if P has all proper subgroups, but not if P has only the trivial subgroup. On the level

of stable module categories, this manifests itself as the existence of symmetric monoidal functors

between the StModF(kG) for varying G and large enough F. These functors seem to be analogous to

the Hill–Hopkins–Ravenel norm maps NG
H found in equivariant homotopy theory.

Remark 3.5.3. In [Kra20], A. Krause develops a mechanism of ‘isotropy separation for compact

objects’, manifesting into a pullback square

ModSpG
(RG)

ω/G ModSpG
(RG)

ω/
(
G∪ {G/K}

)

Fun
(

BWG(K),ModSp(R)ω
)

StMod
(

RWG(K)
)

⌜

for any connective E∞-ring R, family G, and subgroup K such that K′ ∈ G for all K′ ⊊ K. Unfortunately,

ModSpF (k) doesn’t quite fit into the mechanism, because, despite what the notation may suggest, the

Eilenberg–MacLane Mackey functor k isn’t the inflation of a non-equivariant spectrum. Nonetheless,

it’s reasonable to expect a similar-looking square to exist. Think of DF(kG) as Funπ(Perm
op
F ,Sp).

Killing a family G is akin to restricting the ‘domain of definition’ from PermF to the open complement

PermF \ PermG, and killing an additional element G/K is akin to taking an open complement of the

‘closed point’ B Aut
(
k[G/K]

)
. Perhaps, then, there’s some kind of square

DF(G)dual/G DF(G)dual/
(
G∪ {G/K}

)

Funπ(
{⊕

k[G/K]
}op,Sp)dual Funπ(

{⊕
k[G/K]

}op,Sp)dual/⟨k[G/K]⟩

⌜

Given an element of the Dade group Pic DF(G)dual/F, we can ask how far it can climb up the

isotropy separation ladder. This yields a kind of filtration, indexed by the conjugacy classes of sub-

groups of G. Classical literature often relates the Dade group to Weyl groups of subgroups of G. For

instance, [Bou06, Theorem 8.2] establishes a direct sum decomposition D(G)tors ≃
⊕

K T
(
WG(K)

)
tors

where K ranges over certain subgroups of G. It seems reasonable that the filtration and the direct

sum decomposition are related.

Remark 3.5.4. Throughout this section we have worked with StModP(kG) where P is generated by

permutation modules, but it would be interesting to examine the nature of this stable module category

for other P. Of particular interest, at least to me, is the case P = (p), as introduced in Remark 3.2.6.

Benson’s conjecture would then say that StMod(2)(kG) has the curious field-like property that all

objects are direct sums of ⊗-invertibles.

The special nature of 2-groups can already be observed by considering the classical stable module

category of the cyclic group Cp. This stable module category is equivalent to Mod(ktCp), and

π∗ ktCp ≃

k[x±1] with |x| = 1 if p = 2;

k[x±1]⊗Λ(y) with |x| = 2, |y| = 1 if p is odd.
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The ring ktC2 is the most field-like because π∗ ktC2 is a graded field. That said, ktC3 is still somewhat

field-like in the sense that all its compact modules are free. (In the literature, A∞-rings with this

property are known as semisimple ring spectra.) For larger primes, Mod(ktCp) can still be analysed

directly — the modular representations theory is tame for all p thanks to Jordan normal form theory

— but the complexity of Mod(ktCp) increases exponentially in p.

3.A The vertex of a representation

The goal of this appendix is to define the vertex of a modular representation, and verify some of

its basic properties. To define vertices, we first need to recall the notion of H-projectivity — a topic

which we will get back to in Section 3.D. All of the material in this appendix is well known.

Let P be a finite-dimensional kG-module, and let H be a subgroup of G. Then we say that M is

H-projective if P is isomorphic to a direct summand of a module induced up from H.

Example 3.A.1. The usual notion of projectivity is clearly equivalent to H-projectivity where H is

the trivial subgroup. At the opposite end of the scale, any kG-module is S-projective for S a Sylow

p-subgroup of G, which can be seen more easily after the lemma below.

Lemma 3.A.2. Let P be a kG-module. Then P is H-projective if and only if any, and hence all, of the

following properties are satisfied.

(a) P satisfies the following lifting property: We are given a homomorphism g : N′ → N and a

surjective homomorphism f : P→ N. If f admits a lift along g as an H-module, then in fact it

admits a lift along g as a G-module.

(b) P satisfies the following splitting property: If a surjective G-homomorphism f : Q→ P admits

a splitting as an H-homomorphism, then in fact it splits as a G-homomomorphism.

(c) P is a direct summand of IndG
H ResG

H P.

(d) There exists a kG-module M such that P is a direct summand of k(G/H)⊗k M.

Proof. We prove that H-projectivity implies (a). First assume that P = IndG
H M for some H-module M.

We are given a commutative diagram of H-modules

ResG
H IndG

H M

ResG
H N′ ResG

H N

f
f

g

To find a lift of f as a G-module, precompose f with the unit M→ ResG
H IndG

H M; the adjoint maps,

by naturality, then form the desired lifting diagram of G-modules.

More generally, P is merely a summand of a kG-module IndG
H M. Let’s write ι and π for

the implied inclusion and projection. Apply the same method as before to obtain a lifting of the

composition f ◦ π and precompose the resulting lift with ι to obtain the desired result.
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To prove that (a) implies (b), start with a section σH of the surjective H-module map f : ResG
H Q→

ResG
H P, and apply the lifting property of (a) to the diagram

ResG
H P

ResG
H Q ResG

H P

σH

f

To prove that (b) implies (c), observe that the map IndG
H ResG

H M → M must split as a kG-

homomorphism, hence M is a direct summand of IndG
H ResG

H M. This in turns implies (d) thanks to

the series of adjunctions

HomkG
(

M⊗k k(G/H), N) ≃ HomkG(M, Homk(k(G/H), N)
)

tensor ⊣ Hom

≃ HomkG
(

M, CoIndG
H(ResG

H N)
)

by definition

≃ HomkH
(
ResG

H M, ResG
H(M)

)
restriction ⊣ coinduction

≃ HomkG
(
IndG

H(M)ResG
H(M), N

)
induction ⊣ restriction

In turn, any module satisfying (d) is clearly H-projective, so we’re done.

A subgroup H of an indecomposable module M is called a vertex of M if it is a minimal with

respect to the property that M is H-projective.

Lemma 3.A.3. The vertex of a module M is well-defined up to conjugacy. Moreover, it is always a

p-subgroup.

Proof sketch. By our discussion in Example 3.A.1, H will be contained within the Sylow p-subgroup

of G, hence it’s a p-subgroup. As for uniqueness, if M is both H-projective and K-projective, then

it will also be (H ∩ Kg)-projective for a choice of g, as can be seen by applying Lemma 3.A.2 (c) to

both H and K and invoking the Mackey formula.

We leave the following lemma for future reference.

Lemma 3.A.4. Assume that k is algebraically closed. Let M be an indecomposable kG-module with

vertex H. Then dimk(M) is divisible by the index of H in the Sylow p-subgroup of G.

We sketch a proof of this lemma by reducing it to the following well-known theorem of Green.

Theorem 3.A.5 (Green Indecomposability Theorem). Assume that k is algebraically closed. Let L be

an indecomposable kH-module, where H is a normal subgroup of G such that [G : H] = p. Then the

induced module IndG
H L is indecomposable.

Proof sketch of Lemma 3.A.4. If S is a Sylow p-subgroup of G, then the indecomposable summands of

ResG
S M have their vertex contained in H; thus, it suffices to consider the case where G is a p-group,

which we henceforth assume.

M is a summand of IndG
H L for some H-module L which by the Krull–Schmidt theorem may

be assumed to be indecomposable. I claim that IndG
H L must itself be indecomposable. Since G is a

p-group, any subgroup is properly contained in its normaliser; as such, there’s a subnormal series

from H to G whose factors are cyclic of order p. The result now follows by iteratively applying

Theorem 3.A.5.
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3.B Generalities on exact categories

This section serves as a catch-all repository for basic results within the theory of exact categories.

Nothing that is written in this section is new.

Let A be an additive category. A kernel–cokernel pair in A is a pair (i, p) of morphisms i : A′ i−→ A

and p : A→ A′′, such that i is the cokernel of p and p is the kernel of i. Fix a class E of kernel–cokernel

pairs in A. With respect to E, a morphism i is called admissible monic if there exists a p such that

(i, p) ∈ E; dually, p is called admissible epic.

A class E of kernel–cokernel pairs in A is called an exact structure on A if the following axioms

are satisfied.

• For all A ∈ A, the identity morphism IdA is admissible monic and admissible epic;

• the admissible monics and admissible epics are closed under composition;

• admissible monics are closed under pushouts, and admissible epics are closed under pullbacks.

Together, (A,E) is often called an exact category, and kernel–cokernel pairs in E are referred to as

short exact sequences. If (A,E) and (A′,E′) are two exact categories, then an exact functor is an

additive functor A→ A′ sending E into E′.

As is well known, the axioms of an exact category encapsulate the properties of short exact

sequences sufficiently well that most standard results of homological algebra generalise to exact

categories. We refer to [Büh10] for more information.

Lemma 3.B.1 ([Büh10, Prop. 2.16]). Let i : A→ B be a morphism in A admitting a cokernel. If there

exists a morphism j : B→ C such that j ◦ i is an admissible monic, then i is also an admissible monic.

Dually, starting with j : B→ C, if there’s an i : A→ B such that j ◦ i is an admissible epic, then so is j.

Proof sketch. We prove the first statement only, as the second is formally dual. Write k : B→ Coker i

for the cokernel of i : A→ B. Now consider the following diagram:

A B Coker i

A B⊕ C Coker i⊕ C

i k

Id⊕0
⌜

Id⊕0

i⊕0 k⊕Id

In this diagram, k⊕ IdC may be exhibited as the cokernel of i⊕ 0, from which one infers that it is an

admissible epic. But the right square is a pullback square, forcing k to be admissible epic as well.

Let A be an exact category. An object P is called E-projective, or just projective for short, if

HomA(P, · ) : A→ Ab is exact, where Ab is endowed with the standard exact structure; dually, an

object is called E-injective if HomA( · , I) : Aop → Ab is exact.

Lemma 3.B.2. An object P in an exact category A is projective if and only if it satisfies the usual lifting

property along admissible epimorphisms. Dually, an object is injective if and only if it satisfies the

lifting property along admissible monomorphisms.

Proof. The standard proof (for abelian categories with the standard exact structure) carries over

virtually without change.
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Let P be a set of objects in an exact category (A,E). Then we can define a new exact structure

on A by saying that a sequence A′ → A→ A′′ is exact if and only if it is E-exact and the sequences

Hom(P, A′) → Hom(P, A) → Hom(P, A′′) are short exact in Ab for every object P in P. Let us

denote by EP the resulting exact category.

Lemma 3.B.3. The class EP defined above indeed defines an exact structure.

Proof sketch. The proof involves some diagram chasing techniques. Let’s first clear out the easy parts.

Clearly the identity is admissible mono and epi with respect to EP. Admissible epimorphisms are

closed under composition and pullbacks because Hom(P, · ) preserves kernels and pullbacks.

Suppose f : A → B and g : B → C are admissible monomorphisms in EP. To show that their

composition is again admissible, consider the commutative diagram

A B B/A

A C C/A

0 C/B C/B

where the quotient notation is just a shorthand for the cokernel. I claim that, upon applying

Hom(P, · ), all columns, as well as the top and bottom row, become short exact sequences. For the

most part, this is obvious, perhaps with the exception of the rightmost column, where we surjectivity

of Hom(P, C/A)→ Hom(P, C/B) follows by precomposing with Hom(P, C)→ Hom(P, C/A) and

noting that the map C → C/B was EP-admissible epic. At this point, apply the Nine Lemma to

conclude that the middle row is exact as well.

Finally, consider an admissible monomorphism i : A → B and take its pushout along a map

f : A→ A′. We have a commutative diagram

A B B/A

A′ B′ B′/A′
⌟

f

Now apply Hom(P, · ). Surely the top row remains short exact, while the bottom row is a priori

merely left-exact. However, surjectivity of the map Hom(P, B′) → Hom(P, B′/A′) follows by pre-

composing with Hom(P, B)→ Hom(P, B′) and observing that the natural map B/A→ B′/A′ was

an isomorphism by virtue of the pushout construction.

Remark 3.B.4. More generally, if F : (A,E) → (A′,E′) is a functor of exact categories which isn’t

exact but preserves admissible kernels, then the same proof technique shows that the collection of

kernel–cokernel pairs A′ → A→ A′′ in E which F sends to a kernel–cokernel pair in E′ defines a new

exact structure on A. At two points one needs to invoke the dual of Lemma 3.B.1 to make the proof

go through; additionally, one must check that the Nine Lemma still makes sense in general exact

categories; cf. [Büh10, Lem. 3.6].

73



Remark 3.B.5. In full generality, it is not clear what the projectives of EP ought to be, but they are

‘what you’d expect’ under a mild assumption that there are ‘enough’ objects in P. To make this

precise, assume that A admits direct sums. Starting with an object X, consider the object
⊕

P→X P,

where the direct sum is taken over all maps P→ X with P ∈ P. We impose the assumption that the

natural map
⊕

P→X P → X is an admissible epimorphism with respect to E. Notice that it is then

automatically also an admissible epimorphism with respect to EP. Now if X were EP-projective, then

this map would split, so X would be a summand of
⊕

P→X P. We conclude that the projective objects

with respect to EP are direct sums of objects in P, along with any additional summands. I learned

this argument from [CH02, Lem. 1.5].

We say A has enough projectives if, for every A ∈ A, there exists an admissible epic P→ A from

an E-projective object P; dually, A has enough injectives if any object A admits an admissible mono

A→ I into an E-injective object I.

Lemma 3.B.6. Let A be an exact category with enough projectives. Then a sequence A′ → A→ A′′ is

E-exact if and only if Hom(P, A′)→ Hom(P, A)→ Hom(P, A′′) is a short exact sequence of abelian

groups for every projective object P in A.

Proof. We first observe that A → A′′ is an admissible epimorphism. As A has enough projectives,

there exists a projective cover P→ A′′. By surjectivity of Hom(P, A)→ Hom(P, A′′), there exists a

lift of this cover to a map P→ A. Lemma 3.B.1 now implies the desired result.

Next, we prove that A′ → A is a monomorphism. Suppose that we’re given two maps B ⇒ A′

which become the same upon composing with A. Take an admissible epimorphism P→ B. Then the

two maps P → B ⇒ A′ → A are the same, and so by injectivity of Hom(P, A′) → Hom(P, A), we

conclude that the two maps P→ B ⇒ A′ coincide as well. As P→ B was an epimorphism, the maps

B ⇒ A′ coincide, as desired.

Now pick a projective cover P→ A′, and notice that the composition P→ A′ → A→ A′′ is the

zero map, from which we infer that A′ → A → A′′ is the zero map as well; consequently, A′ → A

factors through the kernel K of A→ A′′. The map A′ → K is an admissible epimorphism, as one can

see by taking a projective cover P→ K, lifting it to A′, and applying Lemma 3.B.1; on the other hand,

it is also a monomorphism, since so is A′ → A.

Because the map A′ → K is both a monomorphism and an admissible epi, it fits in the kernel–

cokernel pair 0 → A′ → K. Applying the Five Lemma [Büh10, Cor. 3.2] to the morphism of exact

sequences

0 A′ K

0 K K
Id

shows that A′ → K is an isomorphism, which proves the result.

Let A be an additive category. Write Ch(A) for the category of chain complexes in A. If A admits

an exact structure, then so does Ch(A): the short exact sequences are declared to be the chain maps

which are exact in each degree. In Ch(A), the notion of chain homotopy is defined as usual, leading

to the homotopy category K(A), in which we take Ch(A) and mod out by the nullhomotopic maps.
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This is well known to be a triangulated category, the triangulation being given by the shift functor

ΣA∗ = A∗−1.

A chain complex A∗ in an exact category A is called E-acyclic if the following properties are

satisfied.

• Every differential An → An−1 factors as a decomposition An → Zn → An−1 such that An → Zn

is an admissible epi and Zn → An−1 an admissible mono;

• every resulting composition Zn → An → Zn−1 is exact.

Lemma 3.B.7 ([Büh10, Cor. 10.5]). The homotopy category Ac(A) of acyclic complexes forms a

triangulated subcategory of K(A).

If A is assumed to be idempotent-complete, then a bit more can be said. In all cases of relevance

for us, A will be idempotent-complete anyway.

Lemma 3.B.8 ([Büh10, Cor. 10.11]). If A is idempotent-complete, then the acyclic complexes are closed

under isomorphisms in K(A) and Ac(A) forms a thick subcategory of K(A).

At this point it makes sense to define the derived category of an exact category A, denoted D(A),

as the triangulated Verdier quotient of K(A) by the E-acyclic complexes. More generally, if A fails

to be idempotent-complete, we should take the thick closure of the E-acyclics. The various cousins

of D(A) that ask for certain boundedness conditions on the chain complexes are defined analogously.

This Verdier quotient is obtained by formally inverting the morphisms whose cofibre is E-acyclic —

such a chain map is also called a quasi-isomorphism.

If A has enough projectives, then acyclicity can be measured by considering mappings out of

projectives. We will make use of this in Section 3.4 to understand the quasi-isomorphisms of the

relative derived category.

Lemma 3.B.9. Let A be an idempotent-complete exact category, and assume that it has enough

projective objects. Then a bounded chain complex A∗ is E-acyclic if and only if Hom(P, A∗) is

an exact sequence for every projective object P. Consequently, a chain map A∗ → B∗ is a quasi-

isomorphism if and only if the induced map Hom(P, A∗)→ Hom(P, B∗) is a quasi-isomorphism in

the classical sense.

Proof. The Zn are unique in that they must be the kernel of An−1 → An−2, as well as the image of

An → An−1. Therefore, the claim about acyclicity reduces to checking exactness of the compositions

Zn → An → Zn−1 by mapping out of projectives, which is the content of Lemma 3.B.6.

Remark 3.B.10. Although we will not explicitly need it, it is worth pointing out that one may

frequently endow the category of chain complexes Ch(E) of our exact category E with a model

structure with respect to which the quasi-isomorphisms become weak equivalences. In the setup of

Lemma 3.B.9, fibrations can be defined by mapping out of projectives. That is, the fibrations are those

chain maps f : A∗ → B∗ for which the induced map Hom(P, A∗) → Hom(P, B∗) is a fibration of

chain complexes of abelian groups, i.e. a degreewise surjection; as usual, the cofibrations are simply

taken to be those maps with a suitable lifting property along trivial fibrations.

Remark 3.B.11. The exact categories that are of relevance to us are moreover equipped with a

symmetric monoidal structure, and it is reasonable to ask how these fit together. Notably, it is not to
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be expected in general that the acyclic complexes form a ⊗-ideal; consequently, the Verdier quotient

need not be symmetric monoidal anymore. In the context of model categories, the existence of a

monoidal structure on the derived category has been considered in [CH02, Section 2.1], where criteria

are given under which their model structure yields a monoidal model category. For what it’s worth

these criteria are satisfied in the examples that are of interest to us.

Remark 3.B.12. In the language of exact ∞-categories, there’s a forgetful functor Catstable → Catexact,

and the derived category of an exact category is simply the left adjoint.

3.C Frobenius categories

In this section we study Frobenius categories, which are a special class of exact categories. We refer

the reader to Section 3.B for the necessary generalities on the theory of exact categories.

Following [Hap88], we define a Frobenius category to be an exact category with enough projec-

tives and injectives, which satisfies the property that the projectives and injectives coincide. If A is a

Frobenius category, then we define the stable category St(A) to be the additive quotient of A by the

maps which factor through a projective. That is, the objects of St(A) are those of A, and

HomSt(A)(A, B) = HomA(A, B)/ PHomA(A, B),

where PHomA(A, B) is the collection of those maps A→ B which can be made to factor through a

projective object.

Lemma 3.C.1 ([Hap88, Section I.2]). St(A) is a triangulated category.

Proof sketch. The auto-equivalence Σ of St(A) is defined as follows. If X is an object in A, then there

exists an admissible mono X ↪→ I(X) for some injective object I(X). Pick a corresponding admissible

epi I(X)→ Y. Then we declare ΣX to be the object Y. The inverse Σ−1 can likewise be obtained by

taking the admissible kernel of a projective cover P(X)→ X. Notice that the assignment can be made

functorial.

We now consider the triangulation on St(A). Starting with a map f : X → Y, let’s construct a

diagram

0 X I(X) ΣX 0

0 Y Z ΣX 0

f

⌟

in A, where the map Z → ΣX is defined through the universal property of Z. We simply declare the

distinguished triangles to be those isomorphic to the triangles X → Y → Z → ΣX arising from the

procedure we outlined.

(TR1) and (TR3) are satisfied for obvious reasons; (TR2) and (TR4) are verified in a straightforward

but tedious manner. Let’s sketch the verification of (TR2), referring the reader to the reference for

(TR4). If X → Y → Z → ΣX is a distinguished triangle, then exactness of the first two columns in the

diagram
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0 0

0 Y I(Y) ΣY 0

0 Z I(Y)⊕ ΣX ΣY 0

ΣY ΣY

0 0

implies that I(Y)⊕ ΣX is a pushout in the top left square, so that Y → Z → I(Y)⊕ ΣX → Σ(Y) is a

distinguished triangle, and in St(A), this is isomorphic to Y → Z → ΣX → ΣY.

The triangulation on St(A) strongly suggests that it arises as the homotopy category of a suitable

stable ∞-category, and indeed this turns out to be the case. The following result is well known in the

case that A is the abelian category of modules over a Frobenius ring, where it is a theorem of [Ric89].

Following Section 3.B, we define Db(A) to be the bounded derived category of the exact cate-

gory A. Let us define the perfect complexes to be the complexes which are quasi-isomorphic to a

bounded complex of projective objects. They form a full subcategory of Db(A) that we will denote

by Db(PA).

Theorem 3.C.2. The stable category St(A) is equivalent to the Verdier quotient of Db(A) by the

subcategory of perfect complexes.

Proof. Observe first that Db(PA) forms a triangulated subcategory which is closed under direct

summands, so that the Verdier quotient inherits a natural triangulated structure from Db(A).

Now take a look at the additive functor A→ Db(A)/Db(PA) sending an object to its complex

concentrated in degree 0. This map clearly kills projectives, so that it factors through St(A) to produce

an additive functor F : St(A)→ Db(A)/Db(PA).

We claim that F is exact. Before we prove this, first observe the following. If X is in A, then

we may form the short exact sequence 0 → X → I(X) → ΣX → 0. Now apply F. Effectively by

definition, in Db(A), a short exact sequence gets sent to a distinguished triangle. On the other hand,

as projectives get killed upon quotienting, I(X) gets killed, and we find that X → 0→ ΣX → ΣX is a

distinguished triangle in Db(A)/Db(PA). From this we may infer that ΣX ≃ X[1].

Now let’s form a distinguished triangle in St(A) from the diagram

0 X I(X) ΣX 0

0 Y Z ΣX 0
⌟

Let’s apply F to this diagram. The bottom row gets sent to the distinguished triangle Y → Z →
ΣX → Y[1], which by the previous remark is isomorphic to Y → Z → X[1]→ Y[1]. Now, by shifting,

we find that X → Y → Z → X[1] is a distinguished triangle as well. This proves exactness.
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Fullness of F is easy to see, but faithfulness is harder to show. As a first step, let’s check

that F is ‘injective on objects’, in that if F(X) ≃ 0 then also X ≃ 0. What this effectively says

is that no nonprojective object in A is quasi-isomorphic to a finite complex of projectives. This

may seen counterintuitive — indeed if P∗ → A is a finite projective resolution of a nonprojective

object A, then P∗ and A are quasi-isomorphic. But this can never happen. Indeed, suppose that

0 → Pn → · · · → P0 → A is such a resolution. Then Pn ↪→ Pn−1 is an admissible monomorphism,

and as Pn and Pn−1 are also injective, this forces Pn to become a summand Pn−1, allowing us to delete

Pn from the resolution it and shorten it. Now iterate this procedure to conclude that A is in fact

projective.

We’re now in a position to check that F is faithful. Suppose α : X → Y is a map in St(A) such that

F(α) = 0. Then we prove that α = 0. First, we put α in a distinguished triangle X ↪→ αY ↪→ βZ → ΣX.

Now apply F to this triangle. As α gets mapped to 0, by general triangulated nonsense there must

be a map g : FZ → FY such that g ◦ Fβ = Id. Since F is full, g = Fε for some ε : Z → Y. We see

that F(ε ◦ β) = Id, that F commutes with cones, and that the cone of Id is 0, and so the cone of ε ◦ β

must get sent to 0. But by ‘injectivity on objects’, the cone of ε ◦ β must already be 0, hence ε ◦ β is an

isomorphism. By yet more general triangulated nonsense, this tells us that Y ≃ X⊕ ΣZ, and so our

triangle becomes isomorphic to a direct sum of 0→ Y → Y → 0 and X → 0→ ΣX → ΣX. We find

that α must be 0.

Finally, we show that F is essentially surjective. Take an object X in Db(A)/Db(PA). Lift it to a

representative in Db(A), and rewrite it, by taking projective resolutions, as a complex of projectives

P∗ = · · · → Pr → Pr−1 → · · · → Ps → 0→ · · · ,

where P∗ has trivial homology above degree r for some sufficiently large r. Now consider the map

from P∗ to

P̃∗ = · · · → Pr+2 → Pr+1 → Pr → 0→ · · · .

This map is an isomorphism in Db(A)/Db(PA) because the mapping cone is a bounded complex of

projectives. But P̃∗ has nonzero homology only at position r, hence P̃∗ is quasi-isomorphic to the stalk

complex Σ−r M for some M in A, and this object clearly gets hit by F.

Remark 3.C.3. Classically, the perfect complexes coincide with the compact objects in the derived

∞-category. To what extent does this generalise? On the one hand, we’ll see in Section 3.4 that

this generalises to certain ‘relative’ derived categories of kG-modules. On the one hand, let A be

the category of R-modules endowed with the ‘trivial’ exact structure in which only the split exact

sequences are declared to be exact. Then every object is both projective and injective. The derived

category D(A) is in fact the homotopy category K(R) of chain complexes of R-modules, which is not

compactly generated let alone every object being compact.

Remark 3.C.4. We have conveniently ignored the symmetric monoidal structure. To ensure that the

Verdier quotient Db(A)/Db(PA) inherits a symmetric monoidal structure from Db(A), one wants

the subcategory of perfect complexes to form a ⊗-ideal, and as such we want the projectives to be

‘absorbing’ in that tensoring with projectives always yields something projective again. Although this

is true for the construction in Section 3.D, it will fail in the construction presented in Section 3.3. We

work around this issue by simply closing up the subcategory under the tensor product.
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Remark 3.C.5. The stable category of a Frobenius category is an additive construction; the exact

structure merely serves as a crutch for the proofs. It would therefore be reasonable to anticipate a

statement that doesn’t involve the language of exact categories.

Here is one such line of thought. Given an inclusion A ↪→ B of additive categories, the additive

quotient may be defined ∞-categorically as a Dwyer–Kan localisation — or perhaps as a cofibre in a

suitable ∞-category of (semi-)additive ∞-categories. We now state a (by necessity rather stringent)

condition on A under which the additive quotient B/A will be stable.

Let’s call a map X → Y A-injective if, for any object A in A and any map X → A, there exists

a lifted map Y → A making the relevant diagram commute. Dually, call it A-surjective if any map

A → Y admits a lifting to a map A → X. It’s straightforward to verify that the quotient functor

B→ B/A preserves pushouts along A-injectives, and pullbacks along A-surjectives. Now take an

object X in B, and suppose that it admits an A-injective map X → A into an object of A. Let I(X) be

the cofibre of this map. Then in B/A, this objects in the suspension of X. Dually, the fibre P(X) of an

A-surjective map A→ X yields the loop space of X in B/A. The category B/A is stable if these two

constructions are mutual inverses, which can be stated intrinsically in B by requiring that the natural

map X → P
(

I(X)
)

splits.

Notice that this condition is satisfied in the case of a Frobenius exact category, where P(X) and

I(X) are the projective cover and injective hull of an object X, respectively.

3.D The Carlson–Peng–Wheeler exact category

The goal of this section is to take a look at the construction of a ‘relative’ stable module category, which

generalises the usual stable module category of a finite group. This category was first conceived by

Carlson–Peng–Wheeler in their study of the theory of support varieties [CPW98]. We generalise the

construction in Section 3.3 but we proceed in Section 3.4 to study a category closely related, but likely

inequivalent, to that of Carlson–Peng–Wheeler.

Let G be a finite group, and let k be a field of modular characteristic p. We take A to be the abelian

category Modfin(kG) of finite-dimensional kG-modules, and we define on A an exact structure that

we call the F-exact structure, where F refers to a family of subgroups of G. This, as we will show,

defines a Frobenius exact structure, and the resulting stable category is equivalent to the category

studied in [CPW98]. The usual stable module category is obtained by setting F equal to {e}.
We first begin by investigating a special case, which is well known in the literature. Fix a

subgroup H of G. A sequence M′ → M→ M′′ is called H-exact if it is a short exact sequence in the

usual sense, and it splits after tensoring with k(G/H). We will soon prove that this defines an exact

structure on Modfin(kG). We begin with some simple remarks.

Lemma 3.D.1. The {e}-exact sequences are precisely the usual short exact sequences.

Proof. The {e}-short exact sequences are just the short exact sequences which split after tensoring

with kG. But any short exact sequence admits such a splitting because tensoring with kG yields a

projective kG-module.
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One can alternatively formulate H-exact sequences in terms of restrictions — a description which

appears to be used more frequently in the literature. Our choice of definition will however be more

convenient to generalise when we introduce F-exact sequences in a moment.

Lemma 3.D.2. Let M′ → M→ M′′ be a short exact sequence of kG-modules. Then the sequence is

H-exact if and only if M|H → M|H → M′′|H admits a splitting of H-modules.

Proof. In fact this is a consequence of a more general fact. Let F : C → D be a functor between

abelian categories, with right adjoint G. Suppose that we’re given a short exact sequence 0 →
A → B → C → 0 in D such that 0 → FG(A) → FG(B) → FG(C) → 0 is split exact. Then

0→ G(A)→ G(B)→ G(C)→ 0 is split exact as well. In view of the sequence of adjunctions in the

proof of Lemma 3.A.2, our lemma will be proved if we apply our claim to the case where F is IndG
H ,

and G is ResG
H (see the sequence of adjunctions in the proof of Lemma 3.A.2).

To prove our claim, start with a section s : FG(C)→ FG(B) of FG(g). Consider the map

G(C) GFG(B) G(B)s̃ G(ε)

where s̃ is the adjoint of s and ε is the counit of the adjunction. This map, we claim, is a section

of G(g). To verify this, consider the diagram

G(C)

G(B) G(B)

GFG(B)

s̃

G(g) G(g)

η(GB)G(εB)

Note that G(εB) ◦ η(GB) is the identity map by the triangle identity. Moreover, the right triangle

commutes by naturality of the adjunction. This implies that G(ε) ◦ s̃ ◦G(g) = Id. Compose both sides

with G(g). Since G(g) is surjective, it is right-cancellative, and we may deduce that G(g) ◦ G(ε) ◦ s̃ =

Id, as desired.

Corollary 3.D.3. If H′ ≤ H are subgroups of G, then any H-exact sequence is also H′-exact. If H

and H′ are conjugate, then a sequence is H-exact if and only if it is H′-exact.

Proof. The first part is obvious in view of Lemma 3.D.2. As for the second part, simply note that G/H

and G/H′ are isomorphic as G-sets.

We now consider the general definition. Let F be a collection of subgroups of G, and consider a

sequence M′ → M→ M′′ of kG-modules. Then we call this sequence F-exact if it is short exact in the

classical sense and it splits upon tensoring with
⊕

H∈F k(G/H). Let us henceforth denote this direct

sum as k(G/F). Note that in view of Corollary 3.D.3, there is no harm in assuming that F is in fact a

family of subgroups, i.e. that F is closed under conjugations and taking subgroups.

The following lemma shows that the general notion is by no means more exotic than the special

case we considered first.

Lemma 3.D.4. A sequence M′ → M→ M′′ is F-exact if and only if it is H-exact for every H ∈ F.

80



Proof. This is a direct consequence of the following observation, whose proof is elementary: Suppose

that 0→ A′ → A→ A′′ → 0 and 0→ B′ → B→ B′′ → 0 are two short exact sequences, labelled EA

and EB. Then EA ⊕ EB is again a short exact sequence, and it is split if and only if both EA and EB are

split.

Theorem 3.D.5. The F-exact sequences define an exact structure on the category Modfin(kG).

By Lemma 3.D.4 it would suffice to prove this for the H-exact structure, where it is known from

the literature. Nonetheless we opt for a direct proof.

Proof. We use the axioms presented in Section 3.B. We confine ourselves to the statements about

admissible monomorphisms, as those about admissible epimorphisms are dual. The fact that identity

maps are admissible monic is easy to see. To prove that admissible monics are closed under composi-

tion, take two admissible monics M1 → M2 and M2 → M3. Then they are monomorphisms in the

classical sense, hence so is the composition M1 → M3. In addition, the two maps admit a splitting

upon tensoring with k(G/F), and this splitting can be composed. Finally, consider a pushout diagram

M′ M

N′ N

f

g g̃

f̃

⌟

where f is admissible mono. Surely f̃ is a monomorphism. Upon tensoring with k(G/F), f admits a

splitting, say ε. And indeed so does f̃ : to specify a map N⊗ k(G/F)→ N′ ⊗ k(G/F), by the pushout

property it suffices to find maps M⊗ k(G/F) → N′ ⊗ k(G/F) and N′ ⊗ k(G/F) → N′ ⊗ k(G/F),

and (g ◦ ε)⊗ Id and Id⊗ Id do the job.

Let’s now investigate the projectives and injectives relative to the F-exact structure. We shall

accordingly call them the F-projectives and F-injectives, respectively. The proof of the following

result can also be found in [CPW98, Section 2].

Theorem 3.D.6. The F-exact sequences define a Frobenius category; that is, the F-projectives and

F-injectives coincide. In addition, they are characterised as being the summands of all kG-modules of

the form k(G/F)⊗M for some kG-module M.

Before we present a proof, we will first need to treat the following key observation.

Lemma 3.D.7. If V is a finite-dimensional kG-module, then the evaluation map V ⊗V∗ → k splits

upon tensoring with V. In particular, the evaluation map k(G/F)⊗ k(G/F)∗ → k is an admissible

epimorphism with respect to the F-exact structure.

Proof. The evaluation map is obviously an epimorphism. Now take a basis {v1, . . . , vn} of V, with

dual basis {v∗1 , . . . , v∗n}. Then the map ev⊗ Id : V ⊗V∗ ⊗V → V has a right inverse which we define

by sending v to ∑i vi ⊗ v∗i ⊗ v.

Proof of Theorem 3.D.6. Suppose P is F-projective. Then we claim that P is a summand of k(G/F)⊗M

for some kG-module M; in fact, we may take M to be k(G/F)∗ ⊗ P. To prove this, consider the

evaluation map ev : k(G/F)⊗ k(G/F)∗ → k. By Lemma 3.D.7 this map is admissible epi, and it
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clearly remains so after tensoring with P. Now apply the lifting property (Lemma 3.B.2) to the

diagram
P

k(G/F)⊗ k(G/F)∗ ⊗ P P

Id

ev⊗ Id

to conclude the desired result.

Conversely, suppose that P is a summand of k(G/F)⊗M for a kG-module M. We verify that

it satisfies the usual lifting property along admissible epimorphisms. When constructing a lift, we

may as well assume without loss of generality that P is k(G/F)⊗M. So suppose that we’re given an

admissible epimorphism f : N′ → N. Then upon tensoring with k(G/F), this map admits a splitting.

But let us instead fix a basis {v1, . . . , vn} of k(G/F), and identify k(G/F) with k(G/F)∗ according to

this basis. Then the map N′ → N admits a splitting after tensoring with k(G/F)∗. Now consider the

commutative diagram

Hom(k(G/F)⊗M, N′) Hom(M, k(G/F)∗ ⊗ N′)

Hom(k(G/F)⊗M, N) Hom(M, k(G/F)∗ ⊗ N)

∼

f∗ (Id⊗ f )∗

∼

Thanks to the splitting, (Id⊗ f )∗ admits a section, hence so does f∗, which is what we were after.

Finally, observe that Modfin(kG) has enough F-projectives; indeed if M is a kG-module, then the

map ev⊗M→ k(G/F)⊗ k(G/F)∗ ⊗M→ M defines a projective cover of M.

Dually to Lemma 3.D.7, the coevaluation map k → k(G/F) ⊗ k(G/F)∗ is an admissible

monomorphism. We may use this to dualise all our proofs to conclude the corresponding state-

ments for injectives. However, some care must be taken when doing so, as there is a key step in which

the symmetry would normally break. Namely, while tensoring with a module always preserves

epimorphisms, it typically doesn’t preserve monomorphisms. Fortunately, since kG is a Frobenius

ring, all injective kG-modules (in the classical sense) are also projective kG-modules, so no troubles

arise, and all proofs go through.

Example 3.D.8. In the more familiar case where F is the family of subgroups of H, F-projectivity

reduces to the H-projectivity as discussed in Section 3.A.

Denote by Db,fin
F (kG) the bounded derived category of the exact category of finite-dimensional

kG-modules with its F-exact sequences; and denote by StModF(kG) the stable category of this exact

category. By Theorem 3.C.2, the latter may also be described as the Verdier quotient of Db,fin
F (kG) by

the perfect complexes. By the discussion in Remark 3.C.4, the derived category and its stable Verdier

quotient are symmetric monoidal. It is the Picard group of StModF(kG) which, for our purposes, is

the invariant of principal interest, because it relates directly to the Dade group of G.

What can we concretely say about Db,fin
F (kG)? To begin with, some of the Hom groups can be

understood quite explicitly. To this end, we begin by recalling a well-known construction. For a

family F of subgroups of G, we write EF for the homotopy type of a G-space characterised by the

property that
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EFH ≃

∗ if H ∈ F;

∅ if H /∈ F.

This G-space has an explicit simplicial model. Let X be the G-set
⊔

H∈F G/H. Now consider the

simplicial set whose n-simplices are (n + 1)-tuples (x0, . . . , xn), with face maps

di(x0, . . . , xn) = (x0, . . . , x̂i, . . . , xn)

and degeneracy maps

si(x0, . . . , xn) = (x0, . . . , xi, xi, . . . , xn).

There is an obvious G-action on X; to wit, g sends the n-simplex (x0, . . . , xn) to (gx0, . . . , gxn). Clearly

if H /∈ F then there are no H-fixed points; on the other hand, suppose that H ∈ F. Pick an element

v ∈ X which is fixed by H. Consider the simplicial homotopy sending an H-fixed simplex (x0, . . . , xn)

to (x0, . . . , xn, v). This is a nullhomotopy contracting the space onto v.

The simplicial chain complex on our model for EF is the chain complex C∗(X), where Cn(X) is

the k-vector space with basis Xn+1, and with

∂n(x0, . . . , xn) =
n

∑
i=0

(−1)i(x0, . . . , x̂i, . . . , xn).

Lemma 3.D.9. C∗(X) defines an F-projective resolution of the trivial module k.

Proof. F-projectivity of the Ci(X) is immediate from the characterisation of F-projective modules

presented in Theorem 3.D.6. So we are done if we verify that the chain complex is F-exact. By

Lemma 3.D.4, it suffices to check that the chain complex is H-exact for every H ∈ F. To check this,

we use a method analogous to how we observed that EF is contractible: we observe that there is an

H-nullhomotopy on C∗(X). (Any such H-nullhomotopy will in particular imply that C∗(X) is exact

in the classical sense, but this is also immediate from the contractibility of EF.)

More precisely, fix a subgroup H ∈ F, and pick an element v ∈ X which is fixed by H. Consider

the simplicial homotopy h∗ sending a simplex (x0, . . . , xn) to (x0, . . . , xn, v). This is a kH-module

map and it is a nullhomotopy contracting the space onto v. Notice now that h∗ defines a section of

∂n : Cn+1 → Ker(∂n) — at least upon viewing it as a kH-module map. In particular, Ker(∂n) forms an

H-module summand of Cn+1. We now see that the equivalent description presented in Lemma 3.D.2

is satisfied, and we are done.

Write BF for the orbit space of the G-space EF.

Corollary 3.D.10. With respect to the F-exact structure, TorF∗ (k, k) ≃ H∗(BF; k) and Ext∗F(k, k) ≃
H∗(BF; k).

Proof. The simplicial chain complex of BF may be taken to be the G-module of orbits of C∗(X).

However, this is equivalent to taking C∗(X)⊗kG k. This proves the first isomorphism, and the second

isomorphism is proved in an analogous fashion.

We can further rewrite this in terms of orbit categories.

Lemma 3.D.11. BF is homotopy equivalent to the nerve of the orbit category OF(G).
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Proof. To see this it is helpful to view EF through a different model. Namely, we can realise EF as the

nerve of the category whose objects are pairs (H, x) for H ∈ F and x ∈ G/H, and whose morphisms

(H, x) → (H′, x′) are those G-maps G/H → G/H′ such that x gets sent to x′. The G-action on EF

is the obvious one: g sends (H, x) to (H, gx). With respect to this model, the result is easily seen by

comparing simplices.
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