

STABLE TOPOLOGICAL CYCLIC HOMOLOGY IS TOPOLOGICAL HOCHSCHILD HOMOLOGY

By LARS HESSELHOLT

1. INTRODUCTION

1.1. Topological cyclic homology is the codomain of the cyclotomic trace from algebraic K -theory

$$\text{trc}: K(L) \rightarrow \text{TC}(L).$$

It was defined in [2] but for our purpose the exposition in [6] is more convenient. The cyclotomic trace is conjectured to induce a homotopy equivalence after p -completion for a certain class of rings including the rings of algebraic integers in local fields of positive residue characteristic p . We refer to [11] for a detailed discussion of conjectures and results in this direction.

Recently B.Dundas and R.McCarthy have proven that the stabilization of algebraic K -theory is naturally equivalent to topological Hochschild homology,

$$K^S(R; M) \simeq T(R; M)$$

for any simplicial ring R and any simplicial R -module M , *cf.* [4]. We note that both functors are defined for pairs $(L; P)$ where L is a functor with smash product and P is an L -bimodule; *cf.* [12]. An outline of a proof in this setting and by quite different methods, has been given by R.Schwänzl, R.Staffelt and F.Waldhausen. Hence the following result is a necessary condition for the conjecture mentioned above to hold.

Theorem. *Let L be a functor with smash product and P an L -bimodule. Then there is a natural weak equivalence, $\text{TC}^S(L; P)_p^\wedge \simeq T(L; P)_p^\wedge$.*

It is not surprising that we have to p -complete in the case of TC since the cyclotomic trace is really an invariant of the p -completion of algebraic K -theory, *cf.* 1.4 below. The rest of this paragraph recalls cyclotomic spectra, topological Hochschild homology, topological cyclic homology and stabilization. In paragraph 2 we decompose topological Hochschild homology of a split extension of FSP 's and approximate TC in a stable range. Finally in paragraph 3 we study free cyclic objects and use them to prove the theorem.

Throughout G denotes the circle group, equivalence means weak homotopy equivalence and a G -equivalence is a G -map which induces an equivalence of H -fixed sets for any closed subgroup $H \leq G$.

I want to thank my adviser Ib Madsen for much help and guidance in the preparation of this paper as well as in my graduate studies as a whole. Part of this work was done during a stay at the University of Bielefeld and it is a pleasure to thank the university and in particular Friedhelm Waldhausen for their hospitality. I also want to thank him and John Klein for many enlightening discussions.

1.2. Let L be an FSP and let P be an L -bimodule. Then $\text{THH}(L; P)_\bullet$ is the simplicial space with k -simplices

$$\text{holim}_{\substack{\longrightarrow \\ I^{k+1}}} F(S^{i_0} \wedge \dots \wedge S^{i_k}, P(S^{i_0}) \wedge L(S^{i_1}) \wedge \dots \wedge L(S^{i_k}))$$

The author was supported by the Danish Natural Science Research Council

and Hochschild-type structure maps, *cf.* [12], and $\mathrm{THH}(L; P)$ is its realization. When $P = L$, considered as an L -bimodule in the obvious way, $\mathrm{THH}(L; L)$ is a cyclic space so $\mathrm{THH}(L; L)$ has a G -action. In both cases we use a thick realization to ensure that we get the right homotopy type, *cf.* the appendix. More generally if X is some space we let $\mathrm{THH}(L; P; X)$ be the simplicial space

$$\mathrm{holim}_{\substack{\longrightarrow \\ I^{k+1}}} F(S^{i_0} \wedge \dots \wedge S^{i_k}, P(S^{i_0}) \wedge L(S^{i_1}) \wedge \dots \wedge L(S^{i_k}) \wedge X),$$

where X acts as a dummy for the simplicial structure maps. If X has a G -action then $\mathrm{THH}(L; P; X)$ becomes a G -space and $\mathrm{THH}(L; L; X)$ a $G \times G$ -space. We shall view the latter as a G -space via the diagonal map $\Delta: G \rightarrow G \times G$ and then denote it $\mathrm{THH}(L; X)$.

We define a G -prespectrum $t(L; P)$ in the sense of [9] whose 0'th space is $\mathrm{THH}(L; P)$. Let V be any orthogonal G -representation, or more precisely, any f.d. sub inner product space of a fixed ‘complete G -universe’ U . Then

$$t(L; P)(V) = \mathrm{THH}(L; P; S^V),$$

with the obvious G -maps

$$\sigma: S^{W-V} \wedge t(L; P)(V) \rightarrow t(L; P)(W)$$

as prespectrum structure maps. Here S^V is the one-point compactification of V and $W - V$ is the orthogonal complement of V in W . We also define a G -spectrum $T(L; P)$ associated with $t(L; P)$, *i.e.* a G -prespectrum where the adjoints $\tilde{\sigma}$ of the structure maps are homeomorphisms. We first replace $t(L; P)$ by a thickened version $t^\tau(L; P)$ where the structure maps σ are closed inclusions. It has as V 'th space the homotopy colimit over suspensions of the structure maps

$$t^\tau(L; P)(V) = \mathrm{holim}_{\substack{\longrightarrow \\ Z \subset V}} \Sigma^{V-Z} t(L; P)(Z)$$

and as structure maps the compositions ($t = t(L; P)$)

$$\Sigma^{W-V} \mathrm{holim}_{\substack{\longrightarrow \\ Z \subset V}} \Sigma^{V-Z} t(Z) \cong \mathrm{holim}_{\substack{\longrightarrow \\ Z \subset V}} \Sigma^{W-Z} t(Z) \rightarrow \mathrm{holim}_{\substack{\longrightarrow \\ Z \subset W}} \Sigma^{W-Z} t(Z).$$

Here the last map is induced by the inclusion of a subcategory and as such is a closed cofibration, in particular it is a closed inclusion. Furthermore since V is terminal among $Z \subset V$ there is natural map $\pi: t^\tau(L; P) \rightarrow t(L; P)$ which is spacewise a G -homotopy equivalence. Next we define $T(L; P)$ by

$$T(L; P)(V) = \varinjlim_{W \subset U} \Omega^{W-V} t^\tau(L; P)(W)$$

with the obvious structure maps.

We can replace $\mathrm{THH}(L; P; S^V)$ by $\mathrm{THH}(L; S^V)$ above and get a G -prespectrum $t(L)$ and a G -spectrum $T(L)$. These possess some extra structure which allows the definition of $\mathrm{TC}(L)$ and we will now discuss this in some detail. For a complete account we refer to [6], see also [3].

1.3. Let C be a finite subgroup of G of order r and let J be the quotient. The r 'th root $\rho_C: G \rightarrow J$ is an isomorphism of groups and allows us to view a J -space X as a G -space $\rho_C^* X$. Recall that the free loop space $\mathcal{L}X$ has the special property that $\rho_C \mathcal{L}X^C \cong_G \mathcal{L}X$ for any finite subgroup of G . Cyclotomic spectra, as defined in [3] and [6], is a class of G -spectra which have the analogous property in the world of spectra. This section recalls the defintion.

For a G -spectrum T there are two J -spectra T^C and $\Phi^C T$ each of which could be called the C -fixed spectrum of T . If $V \subset U^C$ is a C -trivial representation, then

$$T^C(V) = T(V)^C, \quad \Phi^C T(V) = \varinjlim_{W \subset U} \Omega^{W^C - V} T(W)^C$$

and the structure maps are evident. There is a natural map $r_C: T^C \rightarrow \Phi^C T$ of J -spectra; $r_C(V)$ is the composition

$$T^C(V) \cong \varinjlim_{W \subset U} F(S^{W-V}, T(W))^C \xrightarrow{\iota^*} \varinjlim_{W \subset U} F(S^{W^C-V}, T(W)^C) = \Phi^C T(V)$$

where the map ι^* is induced by the inclusion of C -fixed points. The difference between T^C and $\Phi^C T$ is well illustrated by the following example.

Example. Consider the case of a suspension G -spectrum $T = \Sigma_G^\infty X$,

$$T(V) = \varinjlim_{W \subset U} \Omega^{W-V} (S^W \wedge X).$$

We let $E_G H$ denote a universal H -free G -space, that is $E_G H^K \simeq *$ when $H \cap K = 1$ and $E_G H^K = \emptyset$ when $H \cap K \neq 1$. Then on the one hand we have the tom Dieck splitting

$$(\Sigma_G^\infty X)^C \simeq_J \bigvee_{H \leq C} \Sigma_J^\infty (E_{G/H}(C/H)_+ \wedge_{C/H} X^H),$$

and on the other hand the lemma shows that $\Phi^C(\Sigma_G^\infty X) \simeq_J \Sigma_J^\infty X^C$. Moreover the natural map $r_C: (\Sigma_G^\infty X)^C \rightarrow \Phi^C(\Sigma_G^\infty X)$ is the projection onto the summand $H = C$. \square

A J -spectrum D defines a G -spectrum $\rho_C^* D$. However this G -spectrum is indexed on the G -universe $\rho_C^* U^C$ rather than on U . To get a G -spectrum indexed on U we must choose an isometric isomorphism $f_C: U \rightarrow \rho_C^* U^C$, then $(\rho_C^* D)(f_C(V))$ is the V 'th space of the required G -spectrum, which we denote it $\rho_C^\# D$.

We want the f_C 's to be compatible for any pair of finite subgroups, that is the following diagram should commute

$$\begin{array}{ccc} U & \xrightarrow{f_{C_{rs}}} & \rho_{C_{rs}}^* U^{C_{rs}} \\ f_{C_r} \downarrow & & \parallel \\ \rho_{C_r}^* U^{C_r} & \xrightarrow{\rho_{C_r}^*(f_{C_s})^{C_r}} & \rho_{C_r}^* (\rho_{C_s}^* U^{C_s})^{C_r}. \end{array}$$

Moreover the restriction of f_C to the G -trivial universe U^G induces an automorphism of U^G which we request be the identity. We fix our universe,

$$U = \bigoplus_{n \in \mathbb{Z}, \alpha \in \mathbb{N}} \mathbb{C}(n)_\alpha,$$

where $\mathbb{C}(n) = \mathbb{C}$ but with G acting through the n 'th power map. The index α is a dummy. Since $\rho_C^* \mathbb{C}(n) = \mathbb{C}(nr)$, where r is the order of C , we obtain the required maps f_C by identifying $\mathbb{Z} = r\mathbb{Z}$.

Definition. ([6]) A *cyclotomic spectrum* is a G -spectrum indexed on U together with a G -equivalence

$$\varphi_C: \rho_C^\# \Phi^C T \rightarrow T$$

for every finite $C \subset G$, such that for any pair of finite subgroups the diagram

$$\begin{array}{ccc} \rho_{C_r}^\# \Phi^{C_r} \rho_{C_s}^\# \Phi^{C_s} T & \xlongequal{\quad} & \rho_{C_{rs}}^\# \Phi^{C_{rs}} T \\ \rho_{C_r}^\# \Phi^{C_r} \varphi_{C_s} \downarrow & & \varphi_{C_{rs}} \downarrow \\ \rho_{C_r}^\# \Phi^{C_r} T & \xrightarrow{\varphi_{C_r}} & T \end{array}$$

commutes.

We prove in [6] that the topological Hochschild spectrum $T(L)$ defined above is a cyclotomic spectrum. The rest of this section recalls the definition of the φ -maps for $T(L)$. The definition goes back to [2] and begins with the concept of edgewise subdivision.

The realization of a cyclic space becomes a G -space upon identifying G with \mathbb{R}/\mathbb{Z} , and hence C may be identified with $r^{-1}\mathbb{Z}/\mathbb{Z}$. Edgewise subdivision associates to a cyclic space Z_\bullet a simplicial C -space $\text{sd}_C Z_\bullet$. It has k -simplices $\text{sd}_C Z_k = Z_{r(k+1)-1}$ and the generator $r^{-1} + \mathbb{Z}$ of C acts as τ^{k+1} . Moreover, there is a natural homeomorphism

$$D: |\text{sd}_C Z_\bullet| \rightarrow |Z_\bullet|,$$

an $\mathbb{R}/r\mathbb{Z}$ -action on $|\text{sd}_C Z_\bullet|$ which extends the simplicial C -action, and D is G -equivariant when $\mathbb{R}/r\mathbb{Z}$ is identified with \mathbb{R}/\mathbb{Z} through division by r .

We now consider the case of $\text{THH}(L; X)_\bullet$. Let us write $G_k(i_0, \dots, i_k)$ for the pointed mapping space

$$F(S^{i_0} \wedge \dots \wedge S^{i_k}, L(S^{i_0}) \dots \wedge L(S^{i_k}) \wedge X).$$

Then the k -simplices of the edgewise subdivision is the homotopy colimit

$$\text{sd}_C \text{THH}(L; X)_k = \text{holim}_{\substack{\longrightarrow \\ I^{r(k+1)}}} G_{r(k+1)-1}.$$

The C -action on $\text{sd}_C \text{THH}(L; X)_k$ is not induced by one on $G_{r(k+1)-1}$. We consider instead the composite functor $G_{r(k+1)-1} \circ \Delta_r$ where $\Delta_r: I^{k+1} \rightarrow (I^{k+1})^r$ is the diagonal functor. It has C -action and the canonical map of homotopy colimits

$$b_k: \text{holim}_{\substack{\longrightarrow \\ I^{k+1}}} G_{r(k+1)-1} \circ \Delta_r \rightarrow \text{holim}_{\substack{\longrightarrow \\ I^{r(k+1)}}} G_{r(k+1)-1}$$

is a C -equivariant inclusion and induces a homeomorphism of C -fixed sets. Let Y and Z be two C -spaces and consider the mapping space $F(Y, Z)$. It is a C -space by conjugation and we have a natural map

$$\iota^*: F(Y, Z)^C \rightarrow F(Y^C, Z^C),$$

which takes a C -equivariant map $\psi: Y \rightarrow Z$ to the induced map of C -fixed sets. In the case at hand ι^* gives us a natural transformation

$$(G_{r(k+1)-1} \circ \Delta_r)^C \rightarrow G_k,$$

and the induced map on homotopy colimits defines a map of simplicial spaces

$$\tilde{\phi}_{C, \bullet}: \text{sd}_C \text{THH}(L; X)_\bullet^C \rightarrow \text{THH}(L; X^C)_\bullet.$$

We define a G -equivariant map

$$\phi_C(V): \rho_C^* t(L)(V)^C \rightarrow t(L)(f_C^{-1}(\rho_C^* V^C))$$

as the composite

$$\begin{aligned} \rho_C^* |\text{THH}(L; S^V)|^C &\xrightarrow{D^{-1}} |\text{sd}_C \text{THH}(L; S^V)|^C \xrightarrow{\tilde{\phi}_C} |\text{THH}(L; S^{\rho_C^* V^C})| \\ &\xrightarrow{(f_C^{-1})_*} |\text{THH}(L; S^{f_C^{-1} \rho_C^* V^C})|. \end{aligned}$$

Indeed it is G -equivariant by [2] lemma 1.11. Next we define a G -map

$$\varphi_C(V): \rho_C^* T(L)(V)^C \rightarrow T(f_C^{-1}(\rho_C^* V^C))$$

as the map on colimits over $W \subset U$ induced by the composition

$$\begin{aligned} \rho_C^* (\Omega^{W-V} t^\tau(L)(W))^C &\xrightarrow{i^*} \rho_C^* (\Omega^{W^C-V^C} t^\tau(L)(W)^C) \\ &\xrightarrow{\phi_C(W)_*} \Omega^{\rho_C^*(W^C-V^C)} t^\tau(L)(f_C^{-1}(\rho_C^* W^C)) \\ &\xrightarrow{f_C^*} \Omega^{f_C^{-1}(\rho_C^*(W-V)^C)} t^\tau(L)(f_C^{-1}(\rho_C^* W^C)). \end{aligned}$$

Then the required maps $\varphi_C: \rho_C^\# \Phi^C T \rightarrow T$ of G -spectra are evident in view of the definitions. Furthermore [2] 1.12 shows that the diagram which relates the φ -maps for a pair of finite subgroups of G commutes. We refer to [6] for the proof that the φ -maps are G -equivalences.

1.4. Let $j: U^G \rightarrow U^C$ be the inclusion of the trivial G -universe and let D be a J -spectrum. The underlying non-equivariant spectrum of D is the spectrum j^*D with its J -action forgotten. By abuse of notation we usually denote this D again.

Let T be a cyclotomic spectrum, then r_{C_r} and φ_{C_r} induce a map of G -spectra

$$\rho_{C_{rs}}^\# T^{C_{rs}} = \rho_{C_s}^\# (\rho_{C_r}^\# T^{C_r})^{C_s} \rightarrow \rho_{C_s}^\# (\rho_{C_r}^\# \Phi^{C_r} T)^{C_s} \rightarrow \rho_{C_s}^\# T^{C_s}.$$

It gives a map $\Phi_r: T^{C_{rs}} \rightarrow T^{C_s}$ of underlying non-equivariant spectra and the compatibility condition in definition 1.3 implies that $\Phi_r \Phi_s = \Phi_{rs}$. The inclusion of the fixed set of a bigger group in that of a smaller also defines a map of non-equivariant spectra $D_r: T^{C_{rs}} \rightarrow T^{C_s}$, and these satisfies that $D_r D_s = D_{rs}$. Moreover $D_r \Phi_s = \Phi_s D_r$.

Topological cyclic homology of an FSP was defined in [2]; the presentation here is due to T. Goodwillie [5]. Let \mathbb{I} be the category with $\text{ob } \mathbb{I} = \{1, 2, 3, \dots\}$ and two morphisms $\Phi_r, D_r: n \rightarrow m$, whenever $n = rm$, subject to the relations

$$\begin{aligned} \Phi_1 &= D_1 = \text{id}_n, \\ \Phi_r \Phi_s &= \Phi_{rs}, \quad D_r D_s = D_{rs}, \\ \Phi_r D_s &= D_s \Phi_r. \end{aligned}$$

For a prime p we let \mathbb{I}_p denote the full subcategory with $\text{ob } \mathbb{I}_p = \{1, p, p^2, \dots\}$. The discussion above shows that a cyclotomic spectrum T defines a functor from \mathbb{I} to the category of non-equivariant spectra, which takes n to T^{C_n} .

Definition. ([2]) $\text{TC}(T) = \varprojlim_{\mathbb{I}} T^{C_n}$, $\text{TC}(T; p) = \varprojlim_{\mathbb{I}_p} T^{C_{p^s}}$.

If L is a functor with smash product then $\text{TC}(L)$ and $\text{TC}(L; p)$ are the connective covers of $\text{TC}(T(L))$ and $\text{TC}(T(L); p)$ respectively. It is often useful to have the definition of $\text{TC}(T; p)$ in the form it is given in [2],

$$\text{TC}(T; p) \cong \left[\varprojlim_{D_p} T^{C_{p^s}} \right]^{h\langle D_p \rangle} \cong \left[\varprojlim_{\Phi_p} T^{C_{p^s}} \right]^{h\langle D_p \rangle}.$$

Here $\langle D_p \rangle$ is the free monoid on D_p and $X^{h\langle D_p \rangle}$ stands for the $\langle D_p \rangle$ -homotopy fixed points of X . It is naturally equivalent to the homotopy fiber of $1 - D_p$.

The functor $\text{TC}(-)$ is really not a stronger invariant than the $\text{TC}(-; p)$'s. Indeed we have the following result, which will be proved elsewhere.

Proposition. *The projections $\text{TC}(T) \rightarrow \text{TC}(T; p)$ induce an equivalence of $\text{TC}(T)$ with the fiber product of the $\text{TC}(T; p)$'s over T . Moreover the p -complete theories agree, $\text{TC}(T)^\wedge_p \simeq \text{TC}(T; p)^\wedge_p$.* \square

Remark. In [2] the authors define a space $\text{TC}(L; p)$ and a Γ -space structure on it. Furthermore they show that the cyclotomic trace $\text{trc}: K(L) \rightarrow \text{TC}(L; p)$ is a map of Γ -spaces. We show in [6] that the spectrum $\text{TC}(L; p)$ defined above is equivalent to the one determined by the Γ -space structure. \square

1.5. Stable K -theory of simplicial rings was defined by Waldhausen in [15], see also [8]. We conclude this paragraph with the definition of stable TC of a FSP and leave it to reader to see that stable K -theory also may be defined in this generality.

Definition. Let P be an L -bimodule and K a space. The *shift* $P[K]$ of P by K is the functor given by $P[K](X) = K \wedge P(X)$ with structure maps

$$l_{X,Y}^{P[K]} = \text{id}_K \wedge l_{X,Y}^P \circ \text{tw} \wedge \text{id}_{P(Y)}, \quad r_X^{P[K]}, Y = \text{id}_K \wedge r_{X,Y}^P.$$

We shall write $P[n]$ for $P[S^n]$.

We define a new FSP denoted $L \oplus P$ which is to be thought of as an extension of L by a square zero ideal P .

Definition. Let L be an FSP and P an L -bimodule. We define the *extension* of L by P as $L \oplus P(X) = L(X) \vee P(X)$ with multiplication

$$\begin{aligned} L \oplus P(X) \wedge L \oplus P(Y) &\rightarrow L(X) \wedge L(Y) \vee L(X) \wedge P(Y) \vee P(X) \wedge L(Y) \vee P(X) \wedge P(Y) \\ &\rightarrow L(X \wedge Y) \vee P(X \wedge Y) \vee P(X \wedge Y) \rightarrow L \oplus P(X \wedge Y). \end{aligned}$$

The first map is the canonical homeomorphism, the second is $\mu_{X,Y} \vee l_{X,Y} \vee r_{X,Y} \vee *$ and the last is convolution. Finally the unit in $L \oplus P$ is the composite

$$X \rightarrow L(X) \rightarrow L \oplus P(X).$$

One verifies immediately that $L \oplus P$ is in fact an FSP and that it contains L as a retract. We shall write $\widetilde{\text{TC}}(L \oplus P)$ for the homotopy fiber of the induced retraction $\text{TC}(L \oplus P) \rightarrow \text{TC}(L)$.

Lemma. *If K is contractible then so is $\widetilde{\text{TC}}(L \oplus P[K])$. Furthermore a contraction of K induces one of $\widetilde{\text{TC}}(L \oplus P[K])$.*

Proof. Let us write F instead of $L \oplus P[K]$. If $h: I_+ \wedge K \rightarrow K$ is a contraction we can define $h(X): I_+ \wedge F(X) \rightarrow F(X)$ by the composition

$$I_+ \wedge (L(X) \vee K \wedge P(X)) \cong I_+ \wedge L(X) \vee I_+ \wedge K \wedge P(X) \xrightarrow{\text{pr}_2 \vee h \wedge \text{id}} L(X) \vee K \wedge P(X).$$

It is compatible with the multiplication and unit in F , that is the following diagrams commute

$$\begin{array}{ccc} I_+ \wedge (F(X) \wedge F(Y)) & \xrightarrow{\text{id} \wedge \mu_{X,Y}} & I_+ \wedge F(X \wedge Y) \\ \Delta \wedge \text{id} \downarrow & & h_{X \wedge Y} \downarrow \\ (I \times I)_+ \wedge F(X) \wedge F(Y) & & F(X \wedge Y) \\ \text{id} \wedge \text{tw id} \downarrow & & \mu_{X,Y} \uparrow \\ I_+ \wedge F(X) \wedge I_+ \wedge F(Y) & \xrightarrow{h_X \wedge h_Y} & F(X) \wedge F(Y). \end{array}$$

and

$$\begin{array}{ccc} I_+ \wedge X & \xrightarrow{\text{id} \wedge \mathbf{1}_X} & I_+ \wedge F(X) \\ \text{pr}_2 \downarrow & & h(X) \downarrow \\ X & \xrightarrow{\mathbf{1}_X} & F(X). \end{array}$$

Therefore the composition

$$\begin{aligned} I_+ \wedge (F(S^{i_0}) \wedge \dots \wedge F(S^{i_k})) &\xrightarrow{\text{tw} \circ (\Delta \wedge \text{id})} I_+ \wedge F(S^{i_0}) \wedge \dots \wedge I_+ \wedge F(S^{i_k}) \\ &\xrightarrow{h(S^{i_0}) \wedge \dots \wedge h(S^{i_k})} F(S^{i_0}) \wedge \dots \wedge F(S^{i_k}) \end{aligned}$$

gives rise to a cyclic map $h_{V_*}: I_+ \wedge \text{THH}(F; F; S^V)_* \rightarrow \text{THH}(F; F; S^V)_*$ whose realization is a G -equivariant homotopy

$$h_V: I_+ \wedge t(F)(V) \rightarrow t(F)(V).$$

Furthermore these are compatible with the structure maps in the prespectrum such that we get a G -equivariant homotopy

$$H: I_+ \wedge T(F) \rightarrow T(F).$$

This gives in turn a homotopy $I_+ \wedge \text{TC}(F) \rightarrow \text{TC}(F)$ from the identity to the retraction onto the image of $\text{TC}(L)$. \square

If we apply $\widetilde{\text{TC}}(L \oplus P[-])$ to the cocartesian square of spaces

$$\begin{array}{ccc} S^n & \longrightarrow & D_+^{n+1} \\ \downarrow & & \downarrow \\ D_-^{n+1} & \longrightarrow & S^{n+1}. \end{array}$$

we get a map from $\widetilde{\text{TC}}(L \oplus P[n])$ to the homotopy limit of

$$\widetilde{\text{TC}}(L \oplus P[D_+^{n+1}]) \rightarrow \widetilde{\text{TC}}(L \oplus P[S^{n+1}], p) \leftarrow \widetilde{\text{TC}}(L \oplus P[D_-^{n+1}]).$$

By the lemma the radial contractions of the discs D^{n+1} give a preferred contraction of $\widetilde{\text{TC}}(L \oplus P[D^{n+1}])$. Hence we obtain a natural map from the homotopy limit above to $\Omega \widetilde{\text{TC}}(L \oplus P[n+1])$. All in all we get a stabilization map

$$\sigma: \widetilde{\text{TC}}(L \oplus P[n]) \rightarrow \Omega \widetilde{\text{TC}}(L \oplus P[n+1])$$

which is natural in L and P .

Definition. Let L be an *FSP* and P an L -bimodule. Then

$$\text{TC}^S(L; P) = \underset{\substack{\longrightarrow \\ n}}{\text{holim}} \Omega^{n+1} \widetilde{\text{TC}}(L \oplus P[n]),$$

with the colimit taken over the stabilization maps.

2. STABLE APPROXIMATION OF $\text{TC}(L \oplus P)$

2.1. In the rest of this paper the prime p is fixed and we shall always consider the functor $\text{TC}(-; p)$ rather than $\text{TC}(-)$.

Recall that by definition $L \oplus P(S^i) = L(S^i) \vee P(S^i)$. Thus we can decompose the smash product

$$L \oplus P(S^{i_0}) \wedge \dots \wedge L \oplus P(S^{i_k})$$

into a wedge of summands of the form

$$F_0(S^{i_0}) \wedge \dots \wedge F_k(S^{i_k}),$$

where $F_i = L, P$. A summand where $\#\{i | F_i = P\} = a$ will be called an a -configuration and the one-point space $*$ will be considered an a -configuration for any $a \geq 0$.

Recall from 1.3 the functor $G_k = G_k(L \oplus P; X)$ whose homotopy colimit is $\text{THH}(L \oplus P; X)_k$. The a -configurations define subspaces

$$G_{a,k}(i_0, \dots, i_k) \subset G_k(i_0, \dots, i_k)$$

preserved under $G_k(f_0, \dots, f_k)$, *i.e.* we get a functor $G_{a,k} = G_{a,k}(L \oplus P; X)$. The spaces

$$\text{THH}_a(L \oplus P; X)_k = \underset{\substack{\longrightarrow \\ I_{k+1}}}{\text{holim}} G_{a,k}(L \oplus P; X)$$

form a cyclic subspace $\text{THH}_a(L \oplus P; X)_* \subset \text{THH}(L \oplus P; X)_*$ with realization $\text{THH}_a(L \oplus P; X)$. Like in 1.2 we can define a G -prespectrum $t_a(L \oplus P)$ and a G -spectrum $T_a(L \oplus P)$. Then $T_a(L \oplus P)$ is a retract of $T(L \oplus P)$. We show below that as a G -spectrum $T(L \oplus P)$ is the wedge sum of the $T_a(L \oplus P)$'s.

Lemma. *Let j be a G -prespectrum and let J be the G -spectrum associated with j^τ . If $J^\Gamma \simeq *$ for any finite subgroup $\Gamma \subset G$ and $j(V)^G \simeq *$ for any $V \subset U$ then $J \simeq_G *$.*

Proof. Let \mathcal{F} be the family of finite subgroups of the circle, then J is \mathcal{F} -contractible. Since $J \wedge E\mathcal{F}_+ \rightarrow J$ is an \mathcal{F} -equivalence, $J \wedge E\mathcal{F}_+$ is also \mathcal{F} -contractible. However $J \wedge E\mathcal{F}_+$ is G -equivalent to an \mathcal{F} -CW-spectrum and therefore it is in fact G -contractible by the \mathcal{F} -Whitehead theorem, [9] p.63. Now

$$(J \wedge E\mathcal{F}_+)(V) \cong \varinjlim_W \Omega^W (j^\tau(V + W) \wedge E\mathcal{F}_+),$$

and $j^\tau(V) \wedge E\mathcal{F}_+ \rightarrow j^\tau(V)$ is an G -equivalence since $j(V)^G \simeq *$. Therefore $J \simeq_G J \wedge E\mathcal{F}_+$ and we have already seen that the latter is G -contractible. \square

Lemma. *Let H be a compact Lie group, let X a finite H -CW-complex and let Y_a a family of H -spaces. For $K \leq H$ a closed subgroup we let $n(K) = \min_a \{\text{conn}(Y_a^K)\}$. Then the inclusion*

$$\bigvee_a F(X, Y_a)^H \rightarrow F(X, \bigvee_a Y_a)^H$$

is $2 \min\{n(K) - \dim(X^K) | K \leq H\} + 1$ -connected.

Proof. The inclusion above fits into a commutative square

$$\begin{array}{ccc} \bigvee_a F(X, Y_a)^C & \longrightarrow & F(X, \bigvee_a Y_a)^C \\ \downarrow & & \downarrow \\ \prod'_a F(X, Y_a)^C & \xrightarrow{\cong} & F(X, \prod'_a Y_a)^C, \end{array}$$

where \prod' is the weak product, *i.e.* the subspace of the product where all but a finite number of coordinates are at the basepoint. The lower horizontal map is a homeomorphism because X is finite, and the connectivity of the vertical maps may be estimated by elementary equivariant obstruction theory. For example the connectivity of an equivariant mapping space satisfies

$$\text{conn}(F(X, Y)^H) \geq \min\{\text{conn}(Y^K) - \dim(X^K) | K \leq H\}.$$

Therefore the left vertical map is $2 \min\{n(K) - \dim(X^K) | K \leq H\} + 1$ -connected. \square

Proposition. $T(L \oplus P) \simeq_G \bigvee_a T_a(L \oplus P)$.

Proof. We apply the first lemma with j the G -prespectrum whose V 'th space is the homotopy fiber of the inclusion

$$\bigvee_{a=0}^{\infty} t_a(L \oplus P)(V) \rightarrow t(L \oplus P)(V).$$

We first consider a finite subgroup $\Gamma \subset G$ and show that $J^\Gamma \simeq *$. It suffices to show that $j(V)^C$ is $\dim(V^C) + k(V, C)$ -connected, where $k(V, C) \rightarrow \infty$ as V runs through the f.d. sub inner product spaces of U , for any subgroup $C \subset \Gamma$. We use edgewise subdivision to get a simplicial C -action, that is we can identify $j(V)^C$ with the homotopy fiber of

$$|\bigvee_a \text{sd}_C \text{THH}_a(L \oplus P; S^V)_\bullet^C| \rightarrow |\text{sd}_C \text{THH}(L \oplus P; S^V)_\bullet^C|.$$

As in the 1.3 we consider the diagonal functor $\Delta_r: I^{k+1} \rightarrow (I^{k+1})^r$. Then the second lemma shows that the inclusion

$$\bigvee_a (G_{a, r(k+1)-1} \circ \Delta_r(i_0, \dots, i_k))^C \rightarrow (G_{r(k+1)-1} \circ \Delta_r(i_0, \dots, i_k))^C$$

is $2 \dim(V^C) - 1$ -connected. By [1] theorem 1.5 the same is true for the homotopy colimits over I^{k+1} . Hence the inclusion map

$$\bigvee_a \text{sd}_C \text{THH}_a(L \oplus P; S^V)_k^C \rightarrow \text{sd}_C \text{THH}(L \oplus P; S^V)_k^C$$

is $2 \dim(V^C) - 1$ -connected. Finally the spectral sequence of [13] shows that the induced map on realizations is $2 \dim(V^C) - 1$ -connected. It follows that $J^\Gamma \simeq *$.

We have only left to show that $j(V)^G \simeq *$. If X_\bullet is a cyclic space, then $|X_\bullet|^G$ is homeomorphic to the subspace $\{x \in X_0 | s_0 x = \tau_1 s_1 x\}$ of the 0-simplices. For the domain and the codomain of $j(V)$ this is S^{V^G} and $j(V)$ is the identity. \square

2.2. Let us write $a = p^s k$ with $(k, p) = 1$ and denote $T_a(L \oplus P)$ by $T_s^k(L \oplus P)$. Then the cyclotomic structure map $\varphi = \varphi_{C_p}$ induces a G -equivalence

$$\varphi_s: \rho_{C_p}^\# \Phi^{C_p} T_s^k(L \oplus P) \rightarrow T_{s-1}^k(L \oplus P), \quad s \geq 0,$$

where for convenience $T_{-1}^k(L \oplus P)$ denotes the trivial G -spectrum $*$.

Lemma. i) *The cyclotomic structure map induces a map of underlying non-equivariant spectra*

$$T_s^k(L \oplus P[n])^{C_{p^r}} \rightarrow T_0^k(L \oplus P[n])^{C_{p^{r-s}}}$$

which is kpn -connected.

ii) $T_0^k(L \oplus P[n])^{C_{p^r}}$ is kn -connected.

Proof. Let $\tilde{E}G$ be the mapping cone of the map $\pi: EG_+ \rightarrow S^0$ which collapses EG to the non-basepoint of S^0 . It comes with a G -map $\iota: S^0 \rightarrow \tilde{E}G$ and a G -null homotopy of the composition

$$EG_+ \xrightarrow{\pi} S^0 \xrightarrow{\iota} \tilde{E}G.$$

We can also describe $\tilde{E}G$ as the unreduced suspension of EG and ι as the inclusion of S^0 as the two cone vertices. Finally we note that $\tilde{E}G$ is non-equivariantly contractible while $\tilde{E}G^C = S^0$ for any non-trivial subgroup $C \leq G$.

Let us write T_s for $T_s^k(L \oplus P[n])$. We can smash the sequence above with T_s and take C_{p^r} -fixed points. Then we get maps of underlying non-equivariant spectra

$$[EG_+ \wedge T_s]^{C_{p^r}} \xrightarrow{\pi_*} T_s^{C_{p^r}} \xrightarrow{\iota_*} [\tilde{E}G \wedge T_s]^{C_{p^r}}$$

and a preferred null homotopy of their composition. These data specifies a map from $[EG_+ \wedge T_s]^{C_{p^r}}$ to the homotopy fiber of ι_* and this an equivalence.

We identify the right hand term. Recall the natural map $r_{C_p}: T_s^{C_p} \rightarrow \Phi^{C_p} T_s$ from 1.3. It factors as a composition

$$T_s^{C_p} \xrightarrow{\pi_*} [\tilde{E}G \wedge T_s]^{C_{p^r}} \xrightarrow{\bar{r}_C} \Phi^{C_p} T_s,$$

where $\bar{r}_C(V)$ is induced from the restriction map

$$F(S^{W-V}, \tilde{E}G \wedge T_s(W))^{C_p} \rightarrow F(S^{W^{C_p}-V}, T(W))^{C_p}.$$

Moreover $\bar{r}_{C_p}(V)$ is a fibration with fiber the equivariant (pointed) mapping space

$$F(S^{W-V}/S^{W^{C_p}-V}, \tilde{E}G \wedge T(W))^{C_p}.$$

If we regard W as a C_{p^r} -space, then W^{C_p} is the singular set, so $S^{W-V}/S^{W^{C_p}-V}$ is a free C_{p^r} -CW-complex in the pointed sense. Since $\tilde{E}G$ is non-equivariantly contractible it follows that \bar{r}_{C_p} is a C_{p^r}/C_p -equivalence. The map Φ_p of underlying non-equivariant spectra defined in 1.4 restricts to a map

$$T_s^{C_{p^r}} \xrightarrow{r_{C_p}^{C_{p^r}/C_p}} (\Phi^{C_p} T_s)^{C_{p^r}/C_p} = (\rho_{C_p}^\# \Phi^{C_p} T_s)^{C_{p^{r-1}}} \xrightarrow{\varphi_{C_p}^{C_{p^{r-1}}}} T_{s-1}^{C_{p^{r-1}}}.$$

Our calculation above shows that its homotopy fiber is equivalent to the underlying non-equivariant spectrum of $[EG_+ \wedge T_s]^{C_{p^r}}$. We contend that this is as highly connected as is T_s . Indeed the skeleton filtration of EG gives rise to a first quadrant spectral sequence

$$E_{s,t}^2 = H_s(C_{p^r}; \pi_t(T_s)) \Rightarrow \pi_{s+t}([EG_+ \wedge T_s]^{C_{p^r}}),$$

where $\pi_t(T_s)$ is a trivial C_{p^r} -module. The identification of the E^2 -term uses the transfer equivalence of [9] p. 89. \square

Proposition. *In the stable range $\leq 2n$ we have*

$$\widetilde{\text{TC}}(L \oplus P[n]) \simeq_{2n} \varprojlim_r T_1(L \oplus P[n]; p)^{C_{p^r}},$$

with the limit taken over the inclusion maps D .

Proof. We get from the connectivity statements in the lemma that

$$\begin{aligned} \tilde{T}(L \oplus P[n])^{C_{p^r}} &\simeq_{2n} T^1(L \oplus P[n])^{C_{p^r}} = \bigvee_{s=0}^{\infty} T_s^1(L \oplus P[n])^{C_{p^r}} \\ &\simeq_{2n} \bigvee_{s=0}^r T_0^1(L \oplus P[n])^{C_{p^{r-s}}} = \bigvee_{t=0}^r T_0^1(L \oplus P[n])^{C_{p^t}}. \end{aligned}$$

Under these equivalences $\Phi: \tilde{T}(L \oplus P[n])^{C_{p^r}} \rightarrow \tilde{T}(L \oplus P[n])^{C_{p^{r-1}}}$ becomes projection onto the first r summands. Therefore

$$\widetilde{\text{TC}}(L \oplus P[n]; p) = [\varprojlim_{\Phi} \tilde{T}(L \oplus P[n])^{C_{p^r}}]^{h\langle D \rangle} \simeq_{2n} [\prod_{t=0}^{\infty} T_0^1(L \oplus P[n])^{C_{p^t}}]^{h\langle D \rangle}.$$

The latter spectrum is naturally equivalent to the homotopy limit stated above. \square

Remark. When $P = L$ there is an unstable formula for $\widetilde{\text{TC}}(L \oplus L[n])$. It was found in [6] and used to evaluate TC of rings of dual numbers over finite fields.

3.FREE CYCLIC OBJECTS

3.1. In this paragraph we examine the cyclic spaces $t_1(L \oplus P)(V)$, we introduced in 2.2. They turn out to be the free cyclic spaces generated by the simplicial spaces $t(L; P)(V)$, from 1.2. First we study free cyclic objects.

Suppose $K: I \rightarrow J$ is a functor between small categories and \mathbb{C} a category which have all colimits. Then the functor $K^*: \mathbb{C}^J \rightarrow \mathbb{C}^I$ has a left adjoint F . If $X: I \rightarrow \mathbb{C}$ is a functor then

$$FX(j) = \varinjlim((K \downarrow j) \xrightarrow{\text{pr}_1} I \xrightarrow{X} \mathbb{C}),$$

where $(K \downarrow j)$ is the category of objects K -over j . It is called the left Kan extension of X along K , cf. [10]. As an instance of this construction suppose I and J are monoids, *i.e.* categories with one object, and \mathbb{C} the category of (unbased) spaces. Then a functor $X: I \rightarrow \mathbb{C}$ is just an I -space and FX is the J -space $J \times_I X$.

Definition. Let X_\bullet be a simplicial object in \mathbb{C} . The *free cyclic object* generated by X_\bullet is the left Kan extension of X_\bullet along the forgetful functor $K: \Delta^{\text{op}} \rightarrow \Lambda^{\text{op}}$. It is denoted FX_\bullet .

If X is an object in \mathbb{C} and S is a set, then we let $S \ltimes X$ denote the coproduct of copies of X indexed by S . We give a concrete description of FX_\bullet .

Lemma. Let $C_{n+1} = \{1, \tau_n, \tau_n^2, \dots, \tau_n^n\}$. Then FX_\bullet has n -simplices

$$FX_n \cong C_{n+1} \ltimes X_n,$$

and the cyclic structure maps are

$$\begin{aligned} d_i(\tau_n^s \ltimes x) &= \tau_{n-1}^s \ltimes d_{i+s}x \quad , \text{ if } i+s \leq n \\ &= \tau_{n-1}^{s-1} \ltimes d_{i+s}x \quad , \text{ if } i+s > n \\ s_i(\tau_n^s \ltimes x) &= \tau_{n+1}^s \ltimes s_{i+s}x \quad , \text{ if } i+s \leq n \\ &= \tau_{n+1}^{s+1} \ltimes s_{i+s}x \quad , \text{ if } i+s > n \\ t_n(\tau_n^s \ltimes x) &= \tau_n^{s-1} \ltimes x. \end{aligned}$$

All indicies are to be understood as the principal representatives modulo $n+1$.

Proof. Both Δ and Λ has objects the finite ordered sets $\mathbf{n} = \{0, \dots, n\}$ but Λ has more morphism than Δ . Specifically $\Lambda(\mathbf{n}, \mathbf{m}) = \Delta(\mathbf{n}, \mathbf{m}) \times \text{Aut}_\Lambda(\mathbf{n})$ and $\text{Aut}_\Lambda(\mathbf{n})$ is a cyclic group of order $n+1$. As a generator for $\text{Aut}_\Lambda(\mathbf{n})$ we choose the cyclic permutation $\tau_n: \mathbf{n} \rightarrow \mathbf{n}$; $\tau_n(i) = i-1 \pmod{n+1}$.

Consider the full subcategory $C(\mathbf{n}) \subset (K \downarrow \mathbf{n})$ whose objects are the automorphisms $K\mathbf{n} \rightarrow \mathbf{n}$, i.e. $\text{ob } C(\mathbf{n}) = C_{n+1}$. The restriction of colimits comes with a map

$$\varinjlim(C(\mathbf{n}) \xrightarrow{\text{pr}_1} \Delta^{\text{op}} \xrightarrow{X_\bullet} \mathbb{C}) \rightarrow \varinjlim((K \downarrow \mathbf{n}) \xrightarrow{\text{pr}} \Delta^{\text{op}} \xrightarrow{X_\bullet} \mathbb{C}) = FX_n,$$

and from the definitions one may readily show that this is an isomorphism. Since in Δ^{op} there are no automorphisms of \mathbf{n} apart from the identity, the category $C(\mathbf{n})$ is a discrete category, i.e. any morphism is an identity. We conclude that

$$FX_n \cong \coprod_{\text{ob } C(\mathbf{n})} X_n = C_{n+1} \ltimes X_n.$$

It is straightforward to check that the cyclic structure maps are as claimed. \square

Example. Suppose \mathbb{C} is the category of commutative rings, where the coproduct is tensor product of rings, and $R_\bullet = R$ is a constant simplicial ring. Then the complex associated with FR is the standard Hochschild complex $Z(R)$ whose homology is $\text{HH}_*(R)$.

3.2. We now take \mathbb{C} to be the category of pointed topological spaces and study the relation between F and realization.

Lemma. There is a natural G -homeomorphism $|FX_\bullet| \cong G_+ \wedge |X_\bullet|$.

Proof. Consider the standard cyclic sets $\Lambda[n] = \Lambda(-, n)$ and their realizations Λ^n . From [7], 3.4 we know that as cocyclic spaces $\Lambda^\bullet \cong G \times \Delta^\bullet$, so we may view Λ^\bullet as a cocyclic G -space. Now suppose Y is a (based) G -space. We can define a cyclic space $C_\bullet(Y)$ as the equivariant mapping space

$$C_\bullet(Y) = F_G(\Lambda^\bullet, Y),$$

with the compact open topology. Then one immediately verifies that C_\bullet is right adjoint to the realization functor $|-|$. The realization functor for simplicial spaces also has a right adjoint. It is given as $S_\bullet(X) = F(\Delta^\bullet, X)$ with the compact open topology. Finally the forgetful functor U from G -spaces to spaces is right adjoint to the functor $G_+ \wedge -$.

By a very general principle in category theory called conjunction, to prove the lemma we may as well show that $S_\bullet(UY) = K^*C_\bullet(Y)$ for any G -space Y . But this is evident since $F_G(G_+ \wedge X, Y) \cong F(X, UY)$ \square

Proposition. *There is a natural equivalence of G -spectra*

$$G_+ \wedge T(L; P) \simeq_G T_1(L \oplus P).$$

The V ’th space in the smash product G -spectrum on the left is naturally homeomorphic to $\varinjlim_W \Omega^{W-V}(G_+ \wedge t^\tau(L; P)(W))$, where G acts diagonally on $G_+ \wedge t^\tau(L; P)(W)$.

Proof. The smash product $P(S^{i_0}) \wedge L(S^{i_1}) \wedge \dots \wedge L(S^{i_k})$ is a 1-configuration, *cf.* 2.1. Thus we have an inclusion map $\mathrm{THH}(L; P; X)_k \hookrightarrow \mathrm{THH}_1(L \oplus P; X)_k$ and these commutes with the simplicial structure maps. By definition we get a map of cyclic spaces

$$j(X)_\bullet : F \mathrm{THH}(L; P; X)_\bullet \rightarrow \mathrm{THH}_1(L \oplus P; X)_\bullet$$

and lemma 3.2 shows that on realizations this gives rise to a G -equivariant map

$$j(X) : G_+ \wedge \mathrm{THH}(L; P; X) \rightarrow \mathrm{THH}_1(L \oplus P; X).$$

When X runs through the spheres S^V these maps form a map j of G -prespectra. Let us write $G_+ \wedge t^\tau(L; P)$ for the G -spectrum whose V ’th space is the colimit

$$\varinjlim_{W \subset U} \Omega^{W-V}(G_+ \wedge t^\tau(L; P)(W)).$$

Then j induces a map $J : G_+ \wedge t^\tau(L; P) \rightarrow T_1(L \oplus P)$ and an argument completely analogous to the proof of proposition 2.1 shows that this is a G -equivalence. Finally the canonical inclusion

$$G_+ \wedge t^\tau(L; P)(V) \rightarrow G_+ \wedge T(L; P)(V)$$

gives a map $G_+ \wedge t^\tau(L; P) \rightarrow G_+ \wedge T(L; P)$ and this is a homeomorphism, *cf.* the appendix. \square

3.3. Before we prove our main theorem we need the following key lemma, also used extensively in [6].

Lemma. *Let T be a G -spectrum. Then there is a natural equivalence of non-equivariant spectra*

$$[T \wedge G_+]^{C_{p^r}} \simeq T \vee \Sigma T,$$

and the inclusion $D : [T \wedge G_+]^{C_{p^r}} \hookrightarrow [T \wedge G_+]^{C_{p^{r-1}}}$ becomes $p \vee \mathrm{id}$. Here p denotes multiplication by p .

Proof. The Thom collaps $t : S^{\mathbb{C}} \rightarrow S^{i\mathbb{R}} \wedge G_+$ of $S(\mathbb{C}) \subset \mathbb{C}$ gives rise to a G -equivariant transfer map

$$\tau : F(G_+, \Sigma T) \rightarrow G_+ \wedge T$$

which is a G -homotopy equivalence, *cf.* [9], p.89. There is a cofibration sequence of C_{p^r} -spaces

$$C_{p^r+} \hookrightarrow G_+ \rightarrow C_{p^r+} \wedge S^1$$

where S^1 is C_{p^r} -trivial. We may apply $F_{C_{p^r}}(-, \Sigma T)$ and get a cofibration sequence of spectra

$$F(S^1, \Sigma T) \longrightarrow F_{C_{p^r}}(G_+, \Sigma T) \xrightarrow{\mathrm{ev}_\zeta} \Sigma T.$$

Finally ev_ζ is naturally split by the adjoint of the G -action $G_+ \wedge \Sigma T \rightarrow \Sigma T$. \square

Proof of theorem. If we compare proposition 3.2 and lemma 3.3 we find that

$$T_1(L \oplus P)^{C_{p^r}} \simeq T(L; P) \vee \Sigma T(L; P).$$

Now holim of a string of maps

$$\dots \xrightarrow{f_i} X_n \xrightarrow{f_{i-1}} \dots \xrightarrow{f_2} X_2 \xrightarrow{f_1} X_1 \xrightarrow{f_0} X_0$$

where every $f_i = pg_i$ for some g_i vanishes after p -completion, so by proposition 2.2 and lemma 3.3 we get

$$\widetilde{\mathrm{TC}}(L \oplus P[n]) \simeq_{2n} \Sigma T(L; P[n]).$$

The functor $T(L; P)$ is linear in the second variable, *cf.* [12] 2.13, so therefore

$$\Omega^{n+1} \widetilde{\mathrm{TC}}(L \oplus P[n]) \simeq_n \Omega^{n+1} \Sigma T(L; P[n]) \simeq T(L; P).$$

It remains only to check that the stabilization maps defined in 1.5 induce an equivalence of $T(L; P)$. They do. \square

APPENDIX

A.1. Let \mathbb{C} be either of the categories Δ or Λ and let $X:\mathbb{C} \rightarrow \text{Top}_*$ be a functor to pointed spaces. We define a new functor $\bar{X}:\mathbb{C} \rightarrow \text{Top}_*$ by the homotopy colimit

$$\underset{\longrightarrow}{\text{holim}}((-\downarrow \mathbb{C})^{\text{op}} \xrightarrow{\text{pr}_2^{\text{op}}} \mathbb{C}^{\text{op}} \xrightarrow{X} \text{Top}_*),$$

where $(\mathbf{n} \downarrow \mathbb{C})$ is the category under \mathbf{n} , *cf.* [10]. If $\theta:\mathbf{n} \rightarrow \mathbf{m}$ is a morphism in Δ (not \mathbb{C}), which is surjective, then $\theta^*: (\mathbf{m} \downarrow \mathbb{C}) \rightarrow (\mathbf{n} \downarrow \mathbb{C})$ is an inclusion functor. In general inclusions of index categories induces closed cofibrations on homotopy colimits. In particular $\theta^*:\bar{X}_m \rightarrow \bar{X}_n$ is a closed cofibration, so \bar{X} is good in the sense of [14]. Moreover we have a homotopy equivalence $\bar{X}_n \rightarrow X_n$ because $\text{id}:\mathbf{n} \rightarrow \mathbf{n}$ is initial in $(\mathbf{n} \downarrow \mathbb{C})$.

A.2. This section explains a technical point in the passage from G -prespectra to G -spectra. Let $G\mathcal{P}U$ denote the category of G -prespectra indexed on the universe U and let GSU be the full subcategory of G -spectra. In [9] the authors prove that the forgetful functor $l:GSU \rightarrow G\mathcal{P}U$ has a left adjoint $L:G\mathcal{P}U \rightarrow GSU$. We call this functor spectrification and if $t \in G\mathcal{P}U$ then we call Lt the associated G -spectrum. Such a functor is needed since many constructions such as $X \wedge -$ and any (homotopy) colimits do not preserve G -spectra. However L has the serious drawback that in general it loses (weak) homotopy type, *i.e.* the homotopy type of $(Lt)(V)$ cannot be described in terms of that of the spaces $t(W)$. To control the homotopy type the G -prespectrum t has to be an inclusion G -prespectrum, that is the structure maps $\tilde{\sigma}:t(V) \rightarrow \Omega^{W-V}t(W)$ must be inclusions, then

$$(Lt)(V) = \underset{W \subset U}{\varinjlim} \Omega^{W-V}t(W).$$

This is the case for example if the adjoints $\sigma:\Sigma^{W-V}t(V) \rightarrow t(W)$ are closed inclusions. The thickening functor $(-)^{\tau}$ defined in 1.2 produces G -prespectra of this kind. Therefore $L(t^{\tau})$ has the right homotopy type.

If $a:G\mathcal{P}U \rightarrow G\mathcal{P}U$ is a functor we define $A:GSU \rightarrow GSU$ as the composite functor Lal and if a has a right adjoint b , then B is the right adjoint of A . Suppose b preserves G -spectra, then $b(lT) \cong lB(T)$ for any $T \in GSU$. By conjugation we get

$$A(Lt) \cong La(t)$$

for any $t \in G\mathcal{P}U$. The functors a we consider take a G -prespectrum, whose structure maps σ are closed inclusions, to a G -prespectrum of the same kind. Hence the homotopy type of $La(t^{\tau})$ and therefore $A(L(t^{\tau}))$ may be calculated. This shows that all G -spectra considered in this paper have the right homotopy type.

REFERENCES

- [1] M.Bökstedt, *Topological Hochschild Homology*, to appear in Topology.
- [2] M.Bökstedt,W.C.Hsiang,I.Madsen, *The Cyclotomic Trace and Algebraic K-theory of Spaces*, Invent. Math. (1993).
- [3] M.Bökstedt,I.Madsen, *Topological Cyclic Homology of the Integers*, these proceedings.
- [4] B.Dundas,R.McCarthy, *Stable K-theory and Topological Hochschild Homology*, preprint Brown University.
- [5] T.Goodwillie, *Notes on the Cyclotomic Trace*, MSRI (unpublished).
- [6] L.Hesselholt, I.Madsen, *Topological Cyclic Homology of Dual Numbers over Finite Fields*, preprint series, Aarhus University (1993).
- [7] J.D.S.Jones, *Cyclic Homology and Equivariant Homology*, Invent.math. **87** (1987), 403-423.
- [8] C.Kassel, *La K-théorie Stable*, Bull.Soc.math., France **110** (1982), 381-416.
- [9] L.G.Lewis,J.P.May,M.Steinberger, *Stable Equivariant Homotopy Theory*, LNM 1213.
- [10] S.MacLane, *Categories for the Working Mathematician*, GTM 5, Springer-Verlag.
- [11] I.Madsen, *The Cyclotomic Trace in Algebraic K-theory*, Proc. ECM, Paris, France (1992).
- [12] T.Pirashvili, F.Waldhausen, *MacLane Homology and Topological Hochschild Homology*, J.Pure Appl.Alg **82** (1992), 81-99.
- [13] G.Segal, *Classifying Spaces and Spectral Sequences*, Publ.Math.I.H.E.S. **34** (1968), 105-112.
- [14] G.Segal, *Categories and Cohomology Theories*, Topology **13** (1974), 293-312.
- [15] F.Waldhausen, *Algebraic K-theory of Spaces II*, Algebraic Topology Aarhus 1978, LNM **763**, 356-394.