STABLE TOPOLOGICAL CYCLIC HOMOLOGY IS
TOPOLOGICAL HOCHSCHILD HOMOLOGY

By LARS HESSELHOLT

1.INTRODUCTION

1.1. Topological cyclic homology is the codomain of the cyclotomic trace from algebraic K-theory
tre: K(L) — TC(L).

It was defined in [2] but for our purpose the exposition in [6] is more convenient. The cyclotomic trace
is conjectured to induce a homotopy equivalence after p-completion for a certain class of rings including
the rings of algebraic integers in local fields of possitive residue characteristic p. We refer to [11] for a
detailed discussion of conjectures and results in this direction.

Recently B.Dundas and R.McCarthy have proven that the stabilization of algebraic K-theory is nat-
urally equivalent to topological Hochschild homology,

K%(R; M) ~ T(R; M)

for any simplicial ring R and any simplicial R-module M, cf. [4]. We note that both functors are defined
for pairs (L; P) where L is a functor with smash product and P is an L-bimodule; ¢f. [12]. An outline
of a proof in this setting and by quite different methods, has been given by R.Schwénzl, R.Staffelt and
F.Waldhausen. Hence the following result is a necessary condition for the conjecture mentioned above to
hold.

Theorem. Let L be a functor with smash product and P an L-bimodule. Then there is a natural weak
equivalence, TC®(L; P); ~ T(L; P);.

It is not surprising that we have to p-complete in the case of TC since the cyclotomic trace is really
an invariant of the p-completion of algebraic K-theory, cf. 1.4 below. The rest of this paragraph recalls
cyclotomic spectra, topological Hochschild homology, topological cyclic homology and stabilization. In
paragraph 2 we decompose topological Hochschild homology of a split extension of FSP’s and approximate
TC in a stable range. Finally in paragraph 3 we study free cyclic objects and use them to prove the
theorem.

Throughout G denotes the circle group, equivalence means weak homotopy equivalence and a G-
equivalence is a G-map which induces an equivalence of H-fixed sets for any closed subgroup H < G.
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1.2. Let L be an FSP and let P be an L-bimodule. Then THH(L; P), is the simplicial space with
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and Hochschild-type structure maps, cf. [12], and THH(L; P) is its realization. When P = L, considered
as an L-bimodule in the obvious way, THH(L; L) is a cyclic space so THH(L; L) has a G-action. In both
cases we use a thick realization to ensure that we get the right homotopy type, cf. the appendix. More
generally if X is some space we let THH(L; P; X), be the simplicial space

holim F(S® A ... A S™, P(S®)AL(S") A ... AL(S™) A X),

Ik+l

where X acts as a dummy for the simplicial structure maps. If X has a G-action then THH(L; P; X)
becomes a G-space and THH(L; L; X) a G x G-space. We shall view the latter as a G-space via the
diagonal map A:G — G x G and then denote it THH(L; X).

We define a G-prespectrum ¢(L; P) in the sense of [9] whose 0’th space is THH(L; P). Let V be any
orthogonal G-representation, or more precisely, any f.d. sub inner product space of a fixed ‘complete
G-universe’ U. Then

t(L; P)(V) = THH(L; P; SV),

with the obvious G-maps
o: SWV AH(L; P) (V) — t(L; P) (W)

as prespectrum structure maps. Here SV is the one-point compactification of V and W — V is the
orthogonal complement of V' in W. We also define a G-spectrum T'(L; P) associated with ¢(L; P), i.e. a
G-prespectrum where the adjoints & of the structure maps are homeomorphisms. We first replace ¢(L; P)
by a thickened version ¢7(L; P) where the structure maps o are closed inclusions. It has as V’th space
the homotopy colimit over suspensions of the structure maps

t7(L; P)(V)) = holim YV=2(L; P)(Z)
ZCV

and as structure maps the compositions (t=t(L;P))

YW=V holim =V ~#¢(Z) = holim £ ~Z#(Z) — holim ¥V ~%¢(Z).

— —
ZCV ZCV ZCW

Here the last map is induced by the inclusion of a subcategory and as such is a closed cofibration, in
particular it is a closed inclusion. Furthermore since V' is terminal among Z C V there is natural map
m:t7(L; P) — ¢(L; P) which is spacewise a G-homotopy equivalence. Next we define T'(L; P) by

T(L; P)(V) = Vlvi_ICT;UQW_VtT(L; P)(W)

with the obvious structure maps.

We can replace THH(L; P; SV') by THH(L; SV') above and get a G-prespectrum ¢(L) and a G-spectrum
T(L). These possess some extra structure which allows the definition of TC(L) and we will now discuss
this in some detail. For a complete account we refer to [6], see also [3].

1.3. Let C be a finite subgroup of G of order r and let J be the quotient. The r’th root po: G — J is
an isomorphism of groups and allows us to view a J-space X as a G-space piX. Recall that the free
loop space £X has the special property that pc£LX¢ = L£X for any finite subgroup of G. Cyclotomic
spectra, as defined in [3] and [6], is a class of G-spectra which have the analogous property in the world
of spectra. This section recalls the defintion.

For a G-spectrum T there are two J-spectra T¢ and ®CT each of which could be called the C-fixed
spectrum of T. If V. C U is a C-trivial representation, then

TC(V)=T(V)C, @°T(V)= lim Qv Vrw)©
WwWcU
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and the structure maps are evident. There is a natural map ro: T¢ — ®CT of J-spectra; r¢(V) is the
composition

TOWV) = lim F(S" Y, T(W)C 5 lim F(SV Y, T(W)9) = eT(V)
wcU wcuU

where the map ¢* is induced by the inclusion of C-fixed points. The difference between 7€ and ®CT is
well illustated by the following example.

Ezample. Consider the case of a suspension G-spectrum 7' = X% X,

T(V) = Vlvi_n;UQW—V(SW A X).
C

We let E¢H denote a universal H-free G-space, that is EcH® ~ % when HNK =1 and EqHX = @
when H N K # 1. Then on the one hand we have the tom Dieck splitting

(=5X)¢~, \/ SF(Eq/u(C/H)y Acyu XH),
H<C

and on the other hand the lemma shows that ®¢(3¥X) ~ ; EFX ©. Moreover the natural map
re: (B X)C — @Y (2% X) is the projection onto the summand H = C. 0O

A J-spectrum D defines a G-spectrum pfD. However this G-spectrum is indexed on the G-universe
peU @ rather than on U. To get a G-spectrum indexed on U we must choose an isometric isomorphism
fo:U — pUC, then (pgD)(fc(V)) is the V'th space of the required G-spectrum, which we denote it
pZD.

We want the fc’s to be compatible for any pair of finite subgroups, that is the following diagram
should commute

U fors pgrsUcm
ser | H

. 0, P )T Lo,
o, US = pig (0, U,

Moreover the restriction of fo to the G-trivial universe U¢ induces an automorphism of U which we
request be the identity. We fix our universe,

U= @ C(n)a,

n€Z,aeN

where C(n) = C but with G acting through the n‘th power map. The index a is a dummy. Since
p&C(n) = C(nr), where r is the order of C', we obtain the required maps fc by identifying Z = rZ.

Definition. ([6]) A cyclotomic spectrum is a G-spectrum indexed on U together with a G-equivalence
po: pﬁ@CT —T

for every finite C' C G, such that for any pair of finite subgroups the diagram

pt dCpf, T pt. ®CrT
ptacT 7

commutes.



We prove in [6] that the topological Hochschild spectrum T'(L) defined above is a cyclotomic spectrum.
The rest of this section recalls the definition of the ¢-maps for T'(L). The definition goes back to [2] and
begins with the concept of edgewise subdivision.

The realization of a cyclic space becomes a G-space upon identifying G with R/Z, and hence C' may be
identified with r~1Z/Z. Edgewise subdivision associates to a cyclic space Z, a simplicial C-space sd¢ Z. .
It has k-simplices sd¢ Zy = Z,(r41)—1 and the generator r~1 + 7 of C acts as 7Ft1. Moreover, there is a

natural homeomorphism
D:|sd¢ Z.| — |Z.],

an R/rZ-action on | sd¢ Z,| which extends the simplicial C-action, and D is G-equivariant when R/rZ is
identified with R/Z through division by 7.
We now consider the case of THH(L; X),. Let us write Gg/(ig, ... ,ix) for the pointed mapping space

F(S™A...AS% L(S)... ANL(S*) A X).
Then the k-simplices of the edgewise subdivision is the homotopy colimit

sdc THH(L; X)x = holim Gy (441)—1-

[r(k+1)

The C-action on sdc THH(L; X)), is not induced by one on G,.(;41)—1. We consider instead the composite
functor G,(x41)—1 © A, where Ay TP — (IFF17 is the diagonal functor. It has C-action and the
canonical map of homotopy colimits

bi: holim Gy (p41)—1 © Ar — holim G, (41)—1
Ik_+)1 I’“ml)

is a C-equivariant inclusion and induces a homeomorphism of C-fixed sets. Let Y and Z be two C-spaces
and consider the mapping space F (Y, Z). It is a C-space by conjugation and we have a natural map

ViF(Y,2)C — (Y€, Z9),

which takes a C-equivariant map ¥:Y — Z to the induced map of C-fixed sets. In the case at hand *
gives us a natural transformation
(Grer1)—1°A,)C — G,

and the induced map on homotopy colimits defines a map of simplicial spaces
bc..:sdo THH(L; X)¢ — THH(L; X©)..
We define a G-equivariant map
oc(V): pet(L) (V) — t(L)(f5 ' (peV))
as the composite
pe| THH(L; SV)|© EN |sde THH(L; SV)|¢ Se, | THH(L; $°2V°)|

1
Ye )\ THH(L; 576"V,

Indeed it is G-equivariant by [2] lemma 1.11. Next we define a G-map
pc(V): peT(L) (V) = T(f5 (peVE)
as the map on colimits over W C U induced by the composition
P @YV (LW S pe(@ T (L))
L, e VI (L)(15 (W)
Je, @I oW ()£ (oW O)).

Then the required maps ¢¢: pﬁbeT — T of G-spectra are evident in view of the definitions. Furthermore
[2] 1.12 shows that the diagram which relates the p-maps for a pair of finite subgroups of G commutes.
We refer to [6] for the proof that the ¢-maps are G-equivalences.
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1.4. Let j:U® — U® be the inclusion of the trivial G-universe and let D be a J-spectrum. The
underlying non-equivariant spectrum of D is the spectrum j*D with its J-action forgotten. By abuse of
notation we usually denote this D again.

Let T be a cyclotomic spectrum, then r¢, and ¢¢, induce a map of G-spectra

P2, T = 0k (0E, T9) % — pF (o€, @9 T)% — pf T,

It gives a map ®,: T — T of underlying non-equivariant spectra and the compatibility condition in
definition 1.3 implies that ®,®, = ®,.,. The inclusion of the fixed set of a bigger group in that of a smaller
also defines a map of non-equivariant spectra D,:T¢"s — T and these satisfies that D,D; = D,..
Moreover D, &, = &, D,..

Topological cyclic homology of an FSP was defined in [2]; the presentation here is due to T. Goodwillie
[5]. Let I be the category with obI = {1,2,3,...} and two morphisms ®,., D,.: n — m, whenever n = rm,
subject to the relations

¢, =Dy =id,,
(I)T(I)s = (Drsa DrDs = DTS7
®,D, = D,®,.

For a prime p we let I, denote the full subcategory with obl, = {1,p,p?, ...}. The discussion above
shows that a cyclotomic spectrum 7' defines a functor from I to the category of non-equivariant spectra,
which takes n to TC.

Definition. ([2]) TC(T) = holim T, TC(T;p) = holim T»".

—

1 I,

If L is a functor with smash product then TC(L) and TC(L;p) are the connective covers of TC(T(L))
and TC(T'(L); p) respectively. It is often useful to have the definition of TC(T;p) in the form it is given
in [2],

TC(T; p) = [holim T ]®») = [holim TC»* |M{Pr)
Dp ép

Here (D,) is the free monoid on D, and X"{P» stands for the (D, )-homotopy fixed points of X. It is
naturally equivalent to the homotopy fiber of 1 — D,,.

The functor TC(—) is really not a stronger invariant than the TC(—; p)’s. Indeed we have the following
result, which will be proved elsewhere.

Proposition. The projections TC(T) — TC(T;p) induce an equivalence of TC(T') with the fiber product
of the TC(T;p)’s over T. Moreover the p-complete theories agree, TC(T); o~ TC(T;p);. O

Remark. In [2] the authors define a space TC(L; p) and a I'-space structure on it. Furthermore they show
that the cyclotomic trace tre: K (L) — TC(L;p) is a map of I'-spaces. We show in [6] that the spectrum
TC(L; p) defined above is equivalent to the one determined by the I'-space structure. O

1.5. Stable K-theory of simplicial rings was defined by Waldhausen in [15], see also [8]. We conclude this
paragraph with the definition of stable TC of a FSP and leave it to reader to see that stable K-theory
also may be defined in this generality.

Definition. Let P be an L-bimodule and K a space. The shift P[K] of P by K is the functor given by
PIK|(X) = K A P(X) with structure maps

U = idp ARy otwaidpiyy, LY =idg ark oy

We shall write P[n] for P[S™].

We define a new FSP denoted L & P which is to be thought of as an extension of L by a square zero
ideal P.
5



Definition. Let L be an F'SP and P an L-bimodule. We define the extension of L by P as L ® P(X) =
L(X) Vv P(X) with multiplication
Lo PX)AL®P(Y)— L(X)AL(Y)VL(X)AP(Y)vP(X)AL(Y)vP(X)AP(Y)
— L(XAY)WP(XAY)VP(XAY) - L@ P(XAY).

The first map is the canonical homeomorphism, the second is px yvix yvrx,y v+ and the last is convo-
lution. Finally the unit in L @ P is the composite

X — L(X) — L@P(X).

One verifies immediately that L & P is in fact an FISP and that it contains L as a retract. We shall
write TC(L @ P) for the homotopy fiber of the induced retraction TC(L @ P) — TC(L).

Lemma. If K is contractible then so is 'l/‘vC(L @ P[K]). Furthermore a contraction of K induces one of
TC(L & P[K]).

Proof. Let us write F instead of L & P[K]. If h: I A K — K is a contraction we can define h(X): I A
F(X) — F(X) by the composition

pro VRAid
ey

L AL(X)WEAP(X)) 2 T AL(X)WVI AK AP(X) L(X)VKAP(X).

It is compatible with the multiplication and unit in F', that is the following diagrams commute

idApx,y
s

I, A (F(X)ANF(Y)) I, AF(XAY)

A/\idJ{ hxay
(I x D)y AF(X)AF(Y) F(XAY)

id/\twidl XY

hx Ahy
—_—

I, AF(X) NI AF(Y) F(X)AF(Y).

and
id Alx
T

I AX I, AF(X)

PTy l h(X) l
X X5 FX).
Therefore the composition

tw o(AAid)
—_ 5

Iy A(F(S™®)A...AF(S™)) I . ANF(S®)A... NI A F(S™)

MEONINE) | pgioy &g F(S)

gives rise to a cyclic map hy.: I, A THH(F; F;SY), — THH(F;F;S"). whose realization is a G-
equivariant homotopy
hy: Iy ANH(F)(V) = t(F)(V).

Furthermore these are compatible with the structure maps in the prespectrum such that we get a G-
equivariant homotopy
H:I. NT(F)— T(F).

This gives in turn a homotopy I A TC(F) — TC(F) from the identity to the retraction onto the image
of TC(L). O
6



If we apply ’I"VC(L @ P[—]) to the cocartesian square of spaces

sm ——— Dt

l l

DTH ., gntl,
we get a map from 'fVC(L @® P[n]) to the homotopy limit of
TC(L & P[D}M]) — TC(L & P[S™*],p) — TC(L & P[D"M]).

By the lemma the radial contrations of the discs D"*! give a preferred contraction of TNC(L & P[D"H]).
Hence we obtain a natural map from the homotopy limit above to QTC(L @ Pln + 1]). All in all we get
a stabilization map

o: TC(L & P[n]) — QTC(L & Pln + 1))
which is natural in L and P.

Definition. Let L be an FSP and P an L-bimodule. Then

TCS(L; P) = holim Q"' TC(L & P[n)),

n

with the colimit taken over the stabilization maps.

2.STABLE APPROXIMATION OF TC(L & P)

2.1. In the rest of this paper the prime p is fixed and we shall always consider the functor TC(—;p)
rather than TC(—).
Recall that by definition L & P(S?) = L(S%) v P(S*). Thus we can decompose the smash product

L®P(S®)A...NL® P(S™)
into a wedge of summands of the form
Fo(S™) A ... A Fp(S™),

where F; = L, P. A summand where #{i|F; = P} = a will be called an a-configuration and the one-point
space * will be considered an a-configuration for any a > 0.

Recall from 1.3 the functor Gy, = Gi(L ® P; X) whose homotopy colimit is THH(L & P; X);. The
a-configurations define subspaces

Ga,k(io, . ,ik) C Gk(io, - ,ik)
preserved under G (fo,. .. , fi), i.e. we get a functor G4, = G4 k(L & P; X). The spaces

THH, (L @ P; X); = holim G x(L & P; X)

Ty

form a cyclic subspace THH, (L & P; X), C THH(L @ P; X), with realization THH,(L @& P; X). Like in
1.2 we can define a G-prespectrum ¢,(L & P) and a G-spectrum T, (L & P). Then T, (L @ P) is a retract
of T(L & P). We show below that as a G-spectrum T'(L @ P) is the wedge sum of the T,(L & P)’s.
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Lemma. Let j be a G-prespectrum and let J be the G-spectrum associated with j7. If JU ~ % for any
finite subgroup T' C G and j(V)¢ ~ x for any V C U then J > *

Proof. Let F be the family of finite subgroups of the circle, then J is F-contractible. Since JAEF; — J
is an F-equivalence, J A EFy is also F-contractible. However J A EF, is G-equivalent to an F-CW-
spectrum and therefore it is in fact G-contractible by the F-Whitehead theorem, [9] p.63. Now

(JANEF)V )Nl_H}QW( "(V+W)AEF,),

and j7(V)AEFy — j7(V) is an G-equivalence since j(V) ~ %. Therefore J ~. J AN EF; and we have
already seen that the latter is G-contractible. g

Lemma. Let H be a compact Lie group, let X a finite H-CW-complex and let Y, a family of H-spaces.
For K < H a closed subgroup we let n(K) = min, {conn(Y,X)}. Then the inclusion

\/ F(X,Y,) \/ Y,)
is 2min{n(K) — dim(X¥)|K < H} + 1-connected.

Proof. The inclusion above fits into a commutative square

\/aF(X,Ya)C - F(X?Vaya)c

! |

[T, F(X,Y,)¢ —— F(X,][,Y.)°

where H/ is the weak product, i.e. the subspace of the product where all but a finite number of coordinates
are at the basepoint. The lower horizontal map is a homeomorphism because X is finite, and the
connectivity of the vertical maps may be estimated by elementary equivariant obstruction theory. For
example the connectivity of an equivariant mapping space satisfies

conn(F(X,Y)) > min{conn(Y*) — dim(X*)|K < H}.

Therefore the left vertical map is 2min{n(K) — dim(X¥)|K < H} + 1-connected. O
Proposition. T(L® P) ~, \/, T.(L © P).

Proof. We apply the first lemma with j the G-prespectrum whose V’th space is the homotopy fiber of
the inclusion

\/ ta(L ® P)(V) = (L& P)(V).
a=0
We first consider a finite subgroup I' C G and show that JU ~ x. It suffices to show that (V)¢ is
dim(V ) + k(V, C)-connected, where k(V,C) — oo as V runs through the f.d. sub inner product spaces

of U, for any subgroup C' C I'. We use edgewise subdivision to get a simplicial C-action, that is we can
identify j(V)¢ with the homotopy fiber of

|\/ sde THH, (L @ P; S¥)¢| — | sde THH(L @ P; S¥)€.

As in the 1.3 we consider the diagonal functor A,.: ¥+t — (I*+1)" Then the second lemma shows that
the inclusion
\/(Ga,r(kﬂ)q o Ar(io, .. ,ir)) = (Grpy1y—1 0 Ar(io, ... i)

a
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is 2dim(VY) — 1-connected. By [1] theorem 1.5 the same is true for the homotopy colimits over I*+1.
Hence the inclusion map

\/sdc THH, (L & P; SY)§ — sdc THH(L & P; SV)§,

a

is 2dim(V“) — 1-connected. Finally the spectral sequence of [13] shows that the induced map on realiza-
tions is 2dim (V) — 1-connected. It follows that J' =~ x.

We have only left to show that j(V)¢ ~ . If X, is a cyclic space, then |X,|¢ is homeomorphic to the
subspace {x € Xo|sox = 11512} of the O-simplices. For the domain and the codomain of j(V') this is sve
and j(V) is the identity. O

2.2. Let us write a = p°k with (k,p) = 1 and denote T,(L @ P) by T¥(L @ P). Then the cyclotomic
structure map ¢ = @¢, induces a G-equivalence

o pf, ®TEHL® P) > TE (L& P), s>0,

where for convenience T*, (L @ P) denotes the trivial G-spectrum .

Lemma. i) The cyclotomic structure map induces a map of underlying non-equivariant spectra
TH(L & Pln))%" — TH(L & Pln))Cr—

which is kpn-connected.

it) T (L @ P[n])»" is kn-connected.

Proof. Let EG be the mapping cone of the map m: EG4 — SY which collapses EG to the non-basepoint
of SY. It comes with a G-map ¢: S° — EG and a G-null homotopy of the composition

EG. 5 S° 4 EG.

We can also describe EG as the unreduced suspension of EG and ¢ as the inclusion of S° as the two cone
vertices. Finally we note that EQG is non-equivariantly contractible while EGC = S° for any non-trivial
subgroup C < G.

Let us write T for T%(L @ P[n]). We can smash the sequence above with T and take C,--fixed points.
Then we get maps of underlying non-equivariant spectra

(BG4 AT, )% 25 TS L5 [EG AT,

and a preferred null homotopy of their composition. These data specifies a map from [EG, A T,]¢*" to
the homotopy fiber of ¢, and this an equivalence.

We identify the right hand term. Recall the natural map rg,: Tsc ? — O T, from 1.3. It factors as a
composition

TC I [EG AT, 19 99T,
where 7¢ (V) is induced from the restriction map
F(SY=V,EG AT, (W))C» — F(SV =V, T(W)Cr).

Moreover 7, (V) is a fibration with fiber the equivariant (pointed) mapping space

F(SY=V/SWT=V EG AT(W))Cr.
9



If we regard W as a Cpr-space, then WS is the singular set, so SW*V/SWCP*V is a free Cpr-CW-
complex in the pointed sense. Since EG is non-equivariantly contractible it follows that ¢ is a Cpr /C)p-
equivalence. The map ®,, of underlying non-equivariant spectra defined in 1.4 restricts to a map

C,r/Cp Cor—1
Cpr Top Cprpr \Cpr /C # 5Cp7 \C vc, Cpr—1
TS (@ T,)Cr /O = (p# $CT,) Ot L2 0

Our calculation above shows that its homotopy fiber is equivalent to the underlying non-equivariant
spectrum of [EGy A T,]°?". We contend that this is as highly connected as is T,. Indeed the skeleton
filtration of EG gives rise to a first quadrant spectral sequence

ESQ,t = Hs(Cpr; m(Ts)) = mse([EG 1 A TS]Cpr)a

where 7;(T}) is a trivial Cp--module. The identification of the E2-term uses the transfer equivalence of
[9] p. 89. O

Proposition. In the stable range < 2n we have

TC(L & P[n]) ~,, holim Ty (L & P[n];p)°",

r

2

with the limit taken over the inclusion maps D.

Proof. We get from the connectivity statements in the lemma that

F(L & Pl ~,, TNL & Pln)% = \/ T2(L & Pln))%
s=0

~ \/ Tol(L &) P[n])cprfs = \/ Tol(L ) P[n])cpt .
s=0 t=0

Under these equivalences ®:T(L @ P[n])»" — T(L ® P[n])»~' becomes projection onto the first r
summands. Therefore

TC(L & P[n); p) = [hoimT(L @ Pln]) M0 o~ [ﬁ T (L @ P[n])%tMP),
L3} t=0

The latter spectrum is naturally equivalent to the homotopy limit stated above. O

Remark. When P = L there is an unstable formula for Tf‘VC(L @ L[n]). It was found in [6] and used to
evaluate TC of rings of dual numbers over finite fields.

3.FREE CYCLIC OBJECTS

3.1. In this paragraph we examine the cyclic spaces t1(L ® P)(V). we introduced in 2.2. They turn out
to be the free cyclic spaces generated by the simplicial spaces t(L; P)(V), from 1.2. First we study free
cyclic objects.

Suppose K:I — J is a functor between small categories and C a category which have all colimits.
Then the functor K*: C’/ — C! has a left adjoint F. If X:I — C is a functor then

FX(j) =lm((K | j) 2515 0),

where (K | j) is the category of objects K-over j. It is called the left Kan extension of X along K, cf.
[10]. As an instance of this construction suppose I and J are monoids, i.e. categories with one object,
and C the category of (unbased) spaces. Then a functor X:I — C is just an I-space and FX is the
J-space J x1 X.

10



Definition. Let X, be a simplicial object in C. The free cyclic object generated by X, is the left Kan
extension of X, along the forgetfull functor K: A°? — A°P. It is denoted F'X,.

If X is an object in C and S is a set, then we let .S x X denote the coproduct of copies of X indexed
by S. We give a concrete description of F'X,.

Lemma. Let Cyy1 = {1,7,,72,...,77}. Then FX, has n-simplices
FX, 2 Chi1 X Xy,
and the cyclic structure maps are
di(Tpxx) = 75 _yxdiqsx ,ifi+s<n
=7 ixdiyst L ifits>n
8i(TpwT) = Ty 1 xSitsT sifi+s<n
=1 usivsr L ifits>n

s—1
X

to(Tixx) =77 .

All indicices are to be understood as the principal representatives modulo n + 1.

Proof. Both A and A has objects the finite ordered sets n = {0, ... ,n} but A has more morphism than
A. Specifically A(n,m) = A(n,m) x Auta(n) and Auta(n) is a cyclic group of order n + 1. As a
generator for Auta (n) we choose the cyclic permutation 7,:n — n; 7,(i) =i — 1 (mod n + 1).

Consider the full subcategory C(n) C (K | n) whose objects are the automorphisms Kn — n, i.e.
obC(n) = C,,11. The restriction of colimits comes with a map

lim(C(n) =5 AP =5 C) — lim((K | n) 25 AP 22 €) = FX,,,
and from the definitions one may readily show that this is an isomorphism. Since in A°P there are no
automorphisms of n apart from the identity, the category C(n) is a discrete category, i.e. any morphism
is an identity. We conclude that

FX, = [ Xo=Cnu1x X,
ob C(n)

It is straightforward to check that the cyclic structure maps are as claimed. O

Example. Suppose C is the category of commutative rings, where the coproduct is tensor product of
rings, and R, = R is a constant simplicial ring. Then the complex associated with F'R is the standard
Hochschild complex Z(R) whose homology is HH,(R).

3.2. We now take C to be the category of pointed topological spaces and study the relation between F'
and realization.

Lemma. There is a natural G-homeomorphism |FX,| =2 G4 A |X,|.

Proof. Consider the standard cyclic sets A[n] = A(—,n) and their realizations A™. From [7], 3.4 we know
that as cocyclic spaces A° = G x A", so we may view A’ as a cocyclic G-space. Now suppose Y is a
(based) G-space. We can define a cyclic space C,(Y") as the equivariant mapping space

C.(Y) = Fa(A',Y),

with the compact open topology. Then one immediately verifies that C, is right adjoint to the realization
functor | — |. The realization functor for simplicial spaces also has a right adjoint. It is given as S,(X) =
F(A", X) with the compact open topology. Finally the forgetfull functor U from G-spaces to spaces is
right adjoint to the functor G4 A —.

By a very general principle in category theory called conjunction, to prove the lemma we may as well
show that S,(UY) = K*C,(Y) for any G-space Y. But this is evident since Fo(G4 A X,Y) = F(X,UY)
O
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Proposition. There is a natural equivalence of G-spectra
Gy AT(L; P) =, Ti(L & P).
The V ’th space in the smash product G-spectrum on the left is naturally homeomorphic to li_Ir;QW_V(GJr AET(L; P)(W)),
w

where G acts diagonally on G4 ANt7(L; P)(W).

Proof. The smash product P(S%) A L(S®) A ... A L(S%) is a 1-configuration, cf. 2.1. Thus we have an
inclusion map THH(L; P; X), — THH;(L & P; X); and these commutes with the simplicial structure
maps. By definition we get a map of cyclic spaces

J(X).: FTHH(L; P; X), — THH, (L ® P; X),
and lemma 3.2 shows that on realizations this gives rise to a G-equivariant map
J(X):G4 NTHH(L; P; X) — THH; (L @ P; X).

When X runs through the spheres SV these maps form a map j of G-prespectra. Let us write Gy At™ (L; P)
for the G-spectrum whose V'’th space is the colimit

limy YV (G4 AL (L; P)(W)).
WwcU

Then j induces a map J: G4 At"(L; P) — T1(L @ P) and an argument completely analogous to the proof
of proposition 2.1 shows that this is a G-equivalence. Finally the canonical inclusion

G Nt (L; P)(V) — G ANT(L; P)(V)
gives a map G4 At™(L; P) — G4 AT(L; P) and this is a homeomorphism, cf. the appendix. O
3.3. Before we prove our main theorem we need the following key lemma, also used extensively in [6].
Lemma. Let T be a G-spectrum. Then there is a natural equivalence of non-equivariant spectra
[T AGL])%" ~TV¥T,

and the inclusion D: [T A G )% — [T A G| = becomes p\ id. Here p denotes multiplication by p.
Proof. The Thom collaps t: S — S™® A G of S(C) C C gives rise to a G-equivariant transfer map

T F(G4,XT) - G AT
which is a G-homotopy equivalence, cf. [9], p.89. There is a cofibration sequence of C), -spaces

Cpry = Gy — Cpry A S?
where St is Cpr-trivial. We may apply Fg,. (=, XT) and get a cofibration sequence of spectra

F(S',%T) — Fe,, (G4, T) —% 2T
Finally ev¢ is naturally split by the adjoint of the G-action G4 A XT — XT. g
Proof of theorem. If we compare proposition 3.2 and lemma 3.3 we find that
Ti(L ® P)°" ~T(L; P)V XT(L; P).
Now holim of a string of maps

fi—1
I

i x CPx, I ox, I x

n

where every f; = pg; for some g; vanishes after p-completion, so by proposition 2.2 and lemma 3.3 we get

TC(L ® Pln]) ~, ST(L; Pln)).

—2n
The functor T'(L; P) is linear in the second variable, cf. [12] 2.13, so therefore
Q"MTC(L @ Pln)) ~, Q"I ST(L; Pln]) ~ T(L; P).

It remains only to check that the stabilization maps defined in 1.5 induce an equivalence of T'(L; P).
They do. O
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APPENDIX

A.1. Let C be either of the categories A or A and let X:C — Top, be a functor to pointed spaces. We
define a new functor X:C — Top, by the homotopy colimit

holim((— | C)°P 22, cop X, Top ),

where (n | C) is the category under n, ¢f. [10]. If :n — m is a morphism in A (not C), which is
surjective, then 6*: (m | C) — (n | C) is an inclusion functor. In general inclusions of index categories
induces closed cofibrations on homotopy colimits. In particular 6*: X,, — X,, is a closed cofibration, so
X is good in the sense of [14]. Moreover we have a homotopy equivalence X,, — X,, because id:n — n
is initial in (n | C).

A.2. This section explains a technical point in the passage from G-prespectra to G-spectra. Let GPU
denote the category of G-prespectra indexed on the universe U and let GSU be the full subcategory
of G-spectra. In [9] the authors prove that the forgetful functor I: GSU — GPU has a left adjoint
L:GPU — GSU. We call this functor spectrification and if ¢ € GPU then we call Lt the associated
G-spectrum. Such a functor is needed since many constructions such as X A — and any (homotopy)
colimits do not preserve G-spectra. However L has the serious drawback that in general it looses (weak)
homotopy type, i.e. the homotopy type of (Lt)(V) cannot be described in terms of that of the spaces
t(W). To control the homotopy type the G-prespectrum ¢ has to be an inclusion G-prespectrum, that is
the structure maps &:t(V) — QW ~=V¢(W) must be inclusions, then

(Lt)(V) = wl/i_g;UQW_Vt(W).

This is the case for example if the adjoints o: 2 ~V¢(V) — ¢(W) are closed inclusions. The thickening
functor (—)7 defined in 1.2 produces G-prespectra of this kind. Therefore L(¢™) has the right homotopy

type.

If a: GPU — GPU is a functor we define A: GSU — GSU as the composite functor Lal and if a has
a right adjoint b, then B is the right adjoint of A. Suppose b preserves G-spectra, then b(IT) = IB(T)
for any T' € GSU. By conjugation we get

A(Lt) = La(t)

for any t € GPU. The functors a we consider take a G-prespectrum, whose structure maps o are closed
inclusions, to a G-prespectrum of the same kind. Hence the homotopy type of La(t") and therefore
A(L(t™)) may be calculated. This shows that all G-spectra considered in this paper have the right
homotopy type.
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