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1.Introduction

1.1. Topological cyclic homology is the codomain of the cyclotomic trace from algebraic K-theory

trc:K(L)→ TC(L).

It was defined in [2] but for our purpose the exposition in [6] is more convenient. The cyclotomic trace
is conjectured to induce a homotopy equivalence after p-completion for a certain class of rings including
the rings of algebraic integers in local fields of possitive residue characteristic p. We refer to [11] for a
detailed discussion of conjectures and results in this direction.

Recently B.Dundas and R.McCarthy have proven that the stabilization of algebraic K-theory is nat-
urally equivalent to topological Hochschild homology,

KS(R;M) ' T (R;M)

for any simplicial ring R and any simplicial R-module M , cf. [4]. We note that both functors are defined
for pairs (L;P ) where L is a functor with smash product and P is an L-bimodule; cf. [12]. An outline
of a proof in this setting and by quite different methods, has been given by R.Schwänzl, R.Staffelt and
F.Waldhausen. Hence the following result is a necessary condition for the conjecture mentioned above to
hold.

Theorem. Let L be a functor with smash product and P an L-bimodule. Then there is a natural weak
equivalence, TCS(L;P )

∧

p ' T (L;P )
∧

p .

It is not surprising that we have to p-complete in the case of TC since the cyclotomic trace is really
an invariant of the p-completion of algebraic K-theory, cf. 1.4 below. The rest of this paragraph recalls
cyclotomic spectra, topological Hochschild homology, topological cyclic homology and stabilization. In
paragraph 2 we decompose topological Hochschild homology of a split extension of FSP’s and approximate
TC in a stable range. Finally in paragraph 3 we study free cyclic objects and use them to prove the
theorem.

Throughout G denotes the circle group, equivalence means weak homotopy equivalence and a G-
equivalence is a G-map which induces an equivalence of H-fixed sets for any closed subgroup H ≤ G.

I want to thank my adviser Ib Madsen for much help and guidance in the preparation of this paper
as well as in my graduate studies as a whole. Part of this work was done during a stay at the University
of Bielefeld and it is a pleasure to thank the university and in particular Friedhelm Waldhausen for their
hospitality. I also want to thank him and John Klein for many enlightening discussions.

1.2. Let L be an FSP and let P be an L-bimodule. Then THH(L;P ). is the simplicial space with
k-simplices

holim
−→
Ik+1

F (Si0 ∧ . . . ∧ Sik , P (Si0) ∧ L(Si1) ∧ . . . ∧ L(Sik))
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and Hochschild-type structure maps, cf. [12], and THH(L;P ) is its realization. When P = L, considered
as an L-bimodule in the obvious way, THH(L;L) is a cyclic space so THH(L;L) has a G-action. In both
cases we use a thick realization to ensure that we get the right homotopy type, cf. the appendix. More
generally if X is some space we let THH(L;P ;X). be the simplicial space

holim
−→
Ik+1

F (Si0 ∧ . . . ∧ Sik , P (Si0) ∧ L(Si1) ∧ . . . ∧ L(Sik) ∧X),

where X acts as a dummy for the simplicial structure maps. If X has a G-action then THH(L;P ;X)
becomes a G-space and THH(L;L;X) a G × G-space. We shall view the latter as a G-space via the
diagonal map ∆:G→ G×G and then denote it THH(L;X).

We define a G-prespectrum t(L;P ) in the sense of [9] whose 0’th space is THH(L;P ). Let V be any
orthogonal G-representation, or more precisely, any f.d. sub inner product space of a fixed ‘complete
G-universe’ U . Then

t(L;P )(V ) = THH(L;P ;SV ),

with the obvious G-maps
σ:SW−V ∧ t(L;P )(V )→ t(L;P )(W )

as prespectrum structure maps. Here SV is the one-point compactification of V and W − V is the
orthogonal complement of V in W . We also define a G-spectrum T (L;P ) associated with t(L;P ), i.e. a
G-prespectrum where the adjoints σ̃ of the structure maps are homeomorphisms. We first replace t(L;P )
by a thickened version tτ (L;P ) where the structure maps σ are closed inclusions. It has as V ’th space
the homotopy colimit over suspensions of the structure maps

tτ (L;P )(V ) = holim
−→

Z⊂V

ΣV−Zt(L;P )(Z)

and as structure maps the compositions (t=t(L;P))

ΣW−V holim
−→

Z⊂V

ΣV−Zt(Z) ∼= holim
−→

Z⊂V

ΣW−Zt(Z)→ holim
−→

Z⊂W

ΣW−Zt(Z).

Here the last map is induced by the inclusion of a subcategory and as such is a closed cofibration, in
particular it is a closed inclusion. Furthermore since V is terminal among Z ⊂ V there is natural map
π: tτ (L;P )→ t(L;P ) which is spacewise a G-homotopy equivalence. Next we define T (L;P ) by

T (L;P )(V ) = lim−→
W⊂U

ΩW−V tτ (L;P )(W )

with the obvious structure maps.
We can replace THH(L;P ;SV ) by THH(L;SV ) above and get a G-prespectrum t(L) and a G-spectrum

T (L). These possess some extra structure which allows the definition of TC(L) and we will now discuss
this in some detail. For a complete account we refer to [6], see also [3].

1.3. Let C be a finite subgroup of G of order r and let J be the quotient. The r’th root ρC :G → J is
an isomorphism of groups and allows us to view a J-space X as a G-space ρ∗CX. Recall that the free
loop space LX has the special property that ρCLXC ∼=G LX for any finite subgroup of G. Cyclotomic
spectra, as defined in [3] and [6], is a class of G-spectra which have the analogous property in the world
of spectra. This section recalls the defintion.

For a G-spectrum T there are two J-spectra TC and ΦCT each of which could be called the C-fixed
spectrum of T . If V ⊂ UC is a C-trivial representation, then

TC(V ) = T (V )C , ΦCT (V ) = lim−→
W⊂U

ΩW C−V T (W )C
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and the structure maps are evident. There is a natural map rC :TC → ΦCT of J-spectra; rC(V ) is the
composition

TC(V ) ∼= lim−→
W⊂U

F (SW−V , T (W ))C ι∗−→ lim−→
W⊂U

F (SW C−V , T (W )C) = ΦCT (V )

where the map ι∗ is induced by the inclusion of C-fixed points. The difference between TC and ΦCT is
well illustated by the following example.

Example. Consider the case of a suspension G-spectrum T = Σ∞G X,

T (V ) = lim−→
W⊂U

ΩW−V (SW ∧X).

We let EGH denote a universal H-free G-space, that is EGH
K ' ∗ when H ∩K = 1 and EGH

K = ∅
when H ∩K 6= 1. Then on the one hand we have the tom Dieck splitting

(Σ∞G X)C '
J

∨
H≤C

Σ∞J (EG/H(C/H)+ ∧C/H XH),

and on the other hand the lemma shows that ΦC(Σ∞G X) '
J

Σ∞J X
C . Moreover the natural map

rC : (Σ∞G X)C → ΦC(Σ∞G X) is the projection onto the summand H = C. �

A J-spectrum D defines a G-spectrum ρ∗CD. However this G-spectrum is indexed on the G-universe
ρ∗CU

C rather than on U . To get a G-spectrum indexed on U we must choose an isometric isomorphism
fC :U → ρ∗CU

C , then (ρ∗CD)(fC(V )) is the V ’th space of the required G-spectrum, which we denote it
ρ#

CD.
We want the fC ’s to be compatible for any pair of finite subgroups, that is the following diagram

should commute
U

fCrs−−−−→ ρ∗Crs
UCrs

fCr

y ∥∥∥
ρ∗Cr

UCr
ρ∗Cr

(fCs )Cr

−−−−−−−→ ρ∗Cr
(ρ∗Cs

UCs)Cr .

Moreover the restriction of fC to the G-trivial universe UG induces an automorphism of UG which we
request be the identity. We fix our universe,

U =
⊕

n∈Z,α∈N
C(n)α,

where C(n) = C but with G acting through the n‘th power map. The index α is a dummy. Since
ρ∗CC(n) = C(nr), where r is the order of C, we obtain the required maps fC by identifying Z = rZ.

Definition. ([6]) A cyclotomic spectrum is a G-spectrum indexed on U together with a G-equivalence

ϕC : ρ#
CΦCT → T

for every finite C ⊂ G, such that for any pair of finite subgroups the diagram

ρ#
Cr

ΦCrρ#
Cs

ΦCsT ρ#
Crs

ΦCrsT

ρ#
Cr

ΦCr ϕCs

y ϕCrs

y
ρ#

Cr
ΦCrT

ϕCr−−−−→ T

commutes.
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We prove in [6] that the topological Hochschild spectrum T (L) defined above is a cyclotomic spectrum.
The rest of this section recalls the definition of the ϕ-maps for T (L). The definition goes back to [2] and
begins with the concept of edgewise subdivision.

The realization of a cyclic space becomes a G-space upon identifying G with R/Z, and hence C may be
identified with r−1Z/Z. Edgewise subdivision associates to a cyclic space Z. a simplicial C-space sdC Z..
It has k-simplices sdC Zk = Zr(k+1)−1 and the generator r−1 + Z of C acts as τk+1. Moreover, there is a
natural homeomorphism

D: | sdC Z.| → |Z.|,
an R/rZ-action on | sdC Z.| which extends the simplicial C-action, and D is G-equivariant when R/rZ is
identified with R/Z through division by r.

We now consider the case of THH(L;X).. Let us write Gk(i0, . . . , ik) for the pointed mapping space

F (Si0 ∧ . . . ∧ Sik , L(Si0) . . . ∧ L(Sik) ∧X).

Then the k-simplices of the edgewise subdivision is the homotopy colimit

sdC THH(L;X)k = holim
−→

Ir(k+1)

Gr(k+1)−1.

The C-action on sdC THH(L;X)k is not induced by one on Gr(k+1)−1. We consider instead the composite
functor Gr(k+1)−1 ◦ ∆r where ∆r: Ik+1 → (Ik+1)r is the diagonal functor. It has C-action and the
canonical map of homotopy colimits

bk: holim
−→
Ik+1

Gr(k+1)−1 ◦∆r → holim
−→

Ir(k+1)

Gr(k+1)−1

is a C-equivariant inclusion and induces a homeomorphism of C-fixed sets. Let Y and Z be two C-spaces
and consider the mapping space F (Y, Z). It is a C-space by conjugation and we have a natural map

ι∗:F (Y,Z)C → F (Y C , ZC),

which takes a C-equivariant map ψ:Y → Z to the induced map of C-fixed sets. In the case at hand ι∗

gives us a natural transformation
(Gr(k+1)−1 ◦∆r)C → Gk,

and the induced map on homotopy colimits defines a map of simplicial spaces

φ̃C,.: sdC THH(L;X)C
. → THH(L;XC)..

We define a G-equivariant map

φC(V ): ρ∗Ct(L)(V )C → t(L)(f−1
C (ρ∗CV

C))

as the composite

ρ∗C |THH(L;SV )|C D−1

−−−→ | sdC THH(L;SV )|C φ̃C−−→ |THH(L;Sρ∗CV C

)|
(f−1

C )∗−−−−→ |THH(L;Sf−1
C ρ∗CV C

)|.

Indeed it is G-equivariant by [2] lemma 1.11. Next we define a G-map

ϕC(V ): ρ∗CT (L)(V )C → T (f−1
C (ρ∗CV

C))

as the map on colimits over W ⊂ U induced by the composition

ρ∗C(ΩW−V tτ (L)(W ))C i∗−→ ρ∗C(ΩW C−V C

tτ (L)(W )C)
φC(W )∗−−−−−→ Ωρ∗C(W C−V C)tτ (L)(f−1

C (ρ∗CW
C))

f∗C−→ Ωf−1
C (ρ∗C(W−V )C)tτ (L)(f−1

C (ρ∗CW
C)).

Then the required maps ϕC : ρ#
CΦCT → T of G-spectra are evident in view of the definitions. Furthermore

[2] 1.12 shows that the diagram which relates the ϕ-maps for a pair of finite subgroups of G commutes.
We refer to [6] for the proof that the ϕ-maps are G-equivalences.
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1.4. Let j:UG → UC be the inclusion of the trivial G-universe and let D be a J-spectrum. The
underlying non-equivariant spectrum of D is the spectrum j∗D with its J-action forgotten. By abuse of
notation we usually denote this D again.

Let T be a cyclotomic spectrum, then rCr
and ϕCr

induce a map of G-spectra

ρ#
Crs

TCrs = ρ#
Cs

(ρ#
Cr
TCr )Cs → ρ#

Cs
(ρ#

Cr
ΦCrT )Cs → ρ#

Cs
TCs .

It gives a map Φr:TCrs → TCs of underlying non-equivariant spectra and the compatibility condition in
definition 1.3 implies that ΦrΦs = Φrs. The inclusion of the fixed set of a bigger group in that of a smaller
also defines a map of non-equivariant spectra Dr:TCrs → TCs , and these satisfies that DrDs = Drs.
Moreover DrΦs = ΦsDr.

Topological cyclic homology of an FSP was defined in [2]; the presentation here is due to T. Goodwillie
[5]. Let I be the category with ob I = {1, 2, 3, . . . } and two morphisms Φr, Dr:n→ m, whenever n = rm,
subject to the relations

Φ1 = D1 = idn,

ΦrΦs = Φrs, DrDs = Drs,

ΦrDs = DsΦr.

For a prime p we let Ip denote the full subcategory with ob Ip = {1, p, p2, . . . }. The discussion above
shows that a cyclotomic spectrum T defines a functor from I to the category of non-equivariant spectra,
which takes n to TCn .

Definition. ([2]) TC(T ) = holim
←−

I
TCn , TC(T ; p) = holim

←−
Ip

TCps .

If L is a functor with smash product then TC(L) and TC(L; p) are the connective covers of TC(T (L))
and TC(T (L); p) respectively. It is often useful to have the definition of TC(T ; p) in the form it is given
in [2],

TC(T ; p) ∼= [holim
←−
Dp

TCps ]h〈Φp〉 ∼= [holim
←−
Φp

TCps ]h〈Dp〉.

Here 〈Dp〉 is the free monoid on Dp and Xh〈Dp〉 stands for the 〈Dp〉-homotopy fixed points of X. It is
naturally equivalent to the homotopy fiber of 1−Dp.

The functor TC(−) is really not a stronger invariant than the TC(−; p)’s. Indeed we have the following
result, which will be proved elsewhere.

Proposition. The projections TC(T )→ TC(T ; p) induce an equivalence of TC(T ) with the fiber product
of the TC(T ; p)’s over T . Moreover the p-complete theories agree, TC(T )

∧

p ' TC(T ; p)
∧

p . �

Remark. In [2] the authors define a space TC(L; p) and a Γ-space structure on it. Furthermore they show
that the cyclotomic trace trc:K(L)→ TC(L; p) is a map of Γ-spaces. We show in [6] that the spectrum
TC(L; p) defined above is equivalent to the one determined by the Γ-space structure. �

1.5. Stable K-theory of simplicial rings was defined by Waldhausen in [15], see also [8]. We conclude this
paragraph with the definition of stable TC of a FSP and leave it to reader to see that stable K-theory
also may be defined in this generality.

Definition. Let P be an L-bimodule and K a space. The shift P [K] of P by K is the functor given by
P [K](X) = K ∧ P (X) with structure maps

l
P [K]
X,Y = idK ∧l

P
X,Y ◦ tw ∧ idP (Y ), r

P [K]
X , Y = idK ∧r

P
X,Y .

We shall write P [n] for P [Sn].

We define a new FSP denoted L⊕ P which is to be thought of as an extension of L by a square zero
ideal P .
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Definition. Let L be an FSP and P an L-bimodule. We define the extension of L by P as L⊕P (X) =
L(X) ∨ P (X) with multiplication

L⊕ P (X)∧L⊕ P (Y )→ L(X)∧L(Y )∨L(X)∧P (Y )∨P (X)∧L(Y )∨P (X)∧P (Y )

→ L(X∧Y )∨P (X∧Y )∨P (X∧Y )→ L⊕ P (X∧Y ).

The first map is the canonical homeomorphism, the second is µX,Y ∨lX,Y ∨rX,Y ∨∗ and the last is convo-
lution. Finally the unit in L⊕ P is the composite

X → L(X)→ L⊕ P (X).

One verifies immediately that L ⊕ P is in fact an FSP and that it contains L as a retract. We shall
write T̃C(L⊕ P ) for the homotopy fiber of the induced retraction TC(L⊕ P )→ TC(L).

Lemma. If K is contractible then so is T̃C(L⊕P [K]). Furthermore a contraction of K induces one of
T̃C(L⊕ P [K]).

Proof. Let us write F instead of L⊕ P [K]. If h: I+ ∧K → K is a contraction we can define h(X): I+ ∧
F (X)→ F (X) by the composition

I+∧(L(X)∨K∧P (X)) ∼= I+∧L(X)∨I+∧K∧P (X)
pr2 ∨h∧ id−−−−−−→ L(X)∨K∧P (X).

It is compatible with the multiplication and unit in F , that is the following diagrams commute

I+ ∧ (F (X) ∧ F (Y ))
id∧µX,Y−−−−−−→ I+ ∧ F (X ∧ Y )

∆∧id

y hX∧Y

y
(I × I)+ ∧ F (X) ∧ F (Y ) F (X ∧ Y )

id∧ tw id

y µX,Y

x
I+ ∧ F (X) ∧ I+ ∧ F (Y ) hX∧hY−−−−−→ F (X) ∧ F (Y ).

and
I+ ∧X

id∧1X−−−−→ I+ ∧ F (X)

pr2

y h(X)

y
X

1X−−−−→ F (X).

Therefore the composition

I+ ∧ (F (Si0) ∧ . . . ∧ F (Sik))
tw ◦(∆∧id)−−−−−−−→ I+ ∧ F (Si0) ∧ . . . ∧ I+ ∧ F (Sik)

h(Si0 )∧...∧h(Sik )−−−−−−−−−−−→ F (Si0) ∧ . . . ∧ F (Sik)

gives rise to a cyclic map hV .: I+ ∧ THH(F ;F ;SV ). → THH(F ;F ;SV ). whose realization is a G-
equivariant homotopy

hV : I+ ∧ t(F )(V )→ t(F )(V ).

Furthermore these are compatible with the structure maps in the prespectrum such that we get a G-
equivariant homotopy

H: I+ ∧ T (F )→ T (F ).

This gives in turn a homotopy I+ ∧TC(F )→ TC(F ) from the identity to the retraction onto the image
of TC(L). �
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If we apply T̃C(L⊕ P [−]) to the cocartesian square of spaces

Sn −−−−→ Dn+1
+y y

Dn+1
− −−−−→ Sn+1.

we get a map from T̃C(L⊕ P [n]) to the homotopy limit of

T̃C(L⊕ P [Dn+1
+ ])→ T̃C(L⊕ P [Sn+1], p)← T̃C(L⊕ P [Dn+1

− ]).

By the lemma the radial contrations of the discs Dn+1 give a preferred contraction of T̃C(L⊕P [Dn+1]).
Hence we obtain a natural map from the homotopy limit above to ΩT̃C(L⊕ P [n+ 1]). All in all we get
a stabilization map

σ: T̃C(L⊕ P [n])→ ΩT̃C(L⊕ P [n+ 1])

which is natural in L and P .

Definition. Let L be an FSP and P an L-bimodule. Then

TCS(L;P ) = holim
−→
n

Ωn+1T̃C(L⊕ P [n]),

with the colimit taken over the stabilization maps.

2.Stable Approximation of TC(L ⊕ P )

2.1. In the rest of this paper the prime p is fixed and we shall always consider the functor TC(−; p)
rather than TC(−).

Recall that by definition L⊕ P (Si) = L(Si) ∨ P (Si). Thus we can decompose the smash product

L⊕ P (Si0) ∧ . . . ∧ L⊕ P (Sik)

into a wedge of summands of the form

F0(Si0) ∧ . . . ∧ Fk(Sik),

where Fi = L,P . A summand where #{i|Fi = P} = a will be called an a-configuration and the one-point
space ∗ will be considered an a-configuration for any a ≥ 0.

Recall from 1.3 the functor Gk = Gk(L ⊕ P ;X) whose homotopy colimit is THH(L ⊕ P ;X)k. The
a-configurations define subspaces

Ga,k(i0, . . . , ik) ⊂ Gk(i0, . . . , ik)

preserved under Gk(f0, . . . , fk), i.e. we get a functor Ga,k = Ga,k(L⊕ P ;X). The spaces

THHa(L⊕ P ;X)k = holim
−→
Ik+1

Ga,k(L⊕ P ;X)

form a cyclic subspace THHa(L⊕ P ;X). ⊂ THH(L⊕ P ;X). with realization THHa(L⊕ P ;X). Like in
1.2 we can define a G-prespectrum ta(L⊕P ) and a G-spectrum Ta(L⊕P ). Then Ta(L⊕P ) is a retract
of T (L⊕ P ). We show below that as a G-spectrum T (L⊕ P ) is the wedge sum of the Ta(L⊕ P )’s.
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Lemma. Let j be a G-prespectrum and let J be the G-spectrum associated with jτ . If JΓ ' ∗ for any
finite subgroup Γ ⊂ G and j(V )G ' ∗ for any V ⊂ U then J '

G
∗.

Proof. Let F be the family of finite subgroups of the circle, then J is F-contractible. Since J ∧EF+ → J
is an F-equivalence, J ∧ EF+ is also F-contractible. However J ∧ EF+ is G-equivalent to an F-CW-
spectrum and therefore it is in fact G-contractible by the F-Whitehead theorem, [9] p.63. Now

(J ∧ EF+)(V ) ∼= lim−→
W

ΩW (jτ (V +W ) ∧ EF+),

and jτ (V ) ∧EF+ → jτ (V ) is an G-equivalence since j(V )G ' ∗. Therefore J '
G
J ∧EF+ and we have

already seen that the latter is G-contractible. �

Lemma. Let H be a compact Lie group, let X a finite H-CW-complex and let Ya a family of H-spaces.
For K ≤ H a closed subgroup we let n(K) = mina{conn(Y K

a )}. Then the inclusion∨
a

F (X,Ya)H → F (X,
∨
a

Ya)H

is 2 min{n(K)− dim(XK)|K ≤ H}+ 1-connected.

Proof. The inclusion above fits into a commutative square∨
a F (X,Ya)C −−−−→ F (X,

∨
a Ya)Cy y∏′

a F (X,Ya)C
∼=−−−−→ F (X,

∏′
a Ya)C ,

where
∏′ is the weak product, i.e. the subspace of the product where all but a finite number of coordinates

are at the basepoint. The lower horizontal map is a homeomorphism because X is finite, and the
connectivity of the vertical maps may be estimated by elementary equivariant obstruction theory. For
example the connectivity of an equivariant mapping space satisfies

conn(F (X,Y )H) ≥ min{conn(Y K)− dim(XK)|K ≤ H}.

Therefore the left vertical map is 2 min{n(K)− dim(XK)|K ≤ H}+ 1-connected. �

Proposition. T (L⊕ P ) '
G

∨
a Ta(L⊕ P ).

Proof. We apply the first lemma with j the G-prespectrum whose V ’th space is the homotopy fiber of
the inclusion

∞∨
a=0

ta(L⊕ P )(V )→ t(L⊕ P )(V ).

We first consider a finite subgroup Γ ⊂ G and show that JΓ ' ∗. It suffices to show that j(V )C is
dim(V C) + k(V,C)-connected, where k(V,C)→∞ as V runs through the f.d. sub inner product spaces
of U , for any subgroup C ⊂ Γ. We use edgewise subdivision to get a simplicial C-action, that is we can
identify j(V )C with the homotopy fiber of

|
∨
a

sdC THHa(L⊕ P ;SV )C
. | → | sdC THH(L⊕ P ;SV )C

. |.

As in the 1.3 we consider the diagonal functor ∆r: Ik+1 → (Ik+1)r. Then the second lemma shows that
the inclusion ∨

a

(Ga,r(k+1)−1 ◦∆r(i0, . . . , ik))C → (Gr(k+1)−1 ◦∆r(i0, . . . , ik))C
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is 2 dim(V C) − 1-connected. By [1] theorem 1.5 the same is true for the homotopy colimits over Ik+1.
Hence the inclusion map ∨

a

sdC THHa(L⊕ P ;SV )C
k → sdC THH(L⊕ P ;SV )C

k

is 2 dim(V C)− 1-connected. Finally the spectral sequence of [13] shows that the induced map on realiza-
tions is 2 dim(V C)− 1-connected. It follows that JΓ ' ∗.

We have only left to show that j(V )G ' ∗. If X. is a cyclic space, then |X.|G is homeomorphic to the
subspace {x ∈ X0|s0x = τ1s1x} of the 0-simplices. For the domain and the codomain of j(V ) this is SV G

and j(V ) is the identity. �

2.2. Let us write a = psk with (k, p) = 1 and denote Ta(L ⊕ P ) by T k
s (L ⊕ P ). Then the cyclotomic

structure map ϕ = ϕCp induces a G-equivalence

ϕs: ρ
#
Cp

ΦCpT k
s (L⊕ P )→ T k

s−1(L⊕ P ), s ≥ 0,

where for convenience T k
−1(L⊕ P ) denotes the trivial G-spectrum ∗.

Lemma. i) The cyclotomic structure map induces a map of underlying non-equivariant spectra

T k
s (L⊕ P [n])Cpr → T k

0 (L⊕ P [n])Cpr−s

which is kpn-connected.
ii) T k

0 (L⊕ P [n])Cpr is kn-connected.

Proof. Let ẼG be the mapping cone of the map π:EG+ → S0 which collapses EG to the non-basepoint
of S0. It comes with a G-map ι:S0 → ẼG and a G-null homotopy of the composition

EG+
π−→ S0 ι−→ ẼG.

We can also describe ẼG as the unreduced suspension of EG and ι as the inclusion of S0 as the two cone
vertices. Finally we note that ẼG is non-equivariantly contractible while ẼGC = S0 for any non-trivial
subgroup C ≤ G.

Let us write Ts for T k
s (L⊕P [n]). We can smash the sequence above with Ts and take Cpr -fixed points.

Then we get maps of underlying non-equivariant spectra

[EG+ ∧ Ts]Cpr π∗−→ T
Cpr

s
ι∗−→ [ẼG ∧ Ts]Cpr

and a preferred null homotopy of their composition. These data specifies a map from [EG+ ∧ Ts]Cpr to
the homotopy fiber of ι∗ and this an equivalence.

We identify the right hand term. Recall the natural map rCp
:TCp

s → ΦCpTs from 1.3. It factors as a
composition

TCp
s

π∗−→ [ẼG ∧ Ts]Cpr r̄C−→ ΦCpTs,

where r̄C(V ) is induced from the restriction map

F (SW−V , ẼG ∧ Ts(W ))Cp → F (SW Cp−V , T (W )Cp).

Moreover r̄Cp(V ) is a fibration with fiber the equivariant (pointed) mapping space

F (SW−V /SW Cp−V , ẼG ∧ T (W ))Cp .
9



If we regard W as a Cpr -space, then WCp is the singular set, so SW−V /SW Cp−V is a free Cpr -CW-
complex in the pointed sense. Since ẼG is non-equivariantly contractible it follows that r̄Cp is a Cpr/Cp-
equivalence. The map Φp of underlying non-equivariant spectra defined in 1.4 restricts to a map

T
Cpr

s

r
Cpr /Cp

Cp−−−−−→ (ΦCpTs)Cpr /Cp = (ρ#
Cp

ΦCpTs)Cpr−1
ϕ

C
pr−1

Cp−−−−−→ T
Cpr−1

s−1 .

Our calculation above shows that its homotopy fiber is equivalent to the underlying non-equivariant
spectrum of [EG+ ∧ Ts]Cpr . We contend that this is as highly connected as is Ts. Indeed the skeleton
filtration of EG gives rise to a first quadrant spectral sequence

E2
s,t = Hs(Cpr ;πt(Ts))⇒ πs+t([EG+ ∧ Ts]Cpr ),

where πt(Ts) is a trivial Cpr -module. The identification of the E2-term uses the transfer equivalence of
[9] p. 89. �

Proposition. In the stable range ≤ 2n we have

T̃C(L⊕ P [n]) '
2n

holim
←−
r

T1(L⊕ P [n]; p)Cpr ,

with the limit taken over the inclusion maps D.

Proof. We get from the connectivity statements in the lemma that

T̃ (L⊕ P [n])Cpr '
2n
T 1(L⊕ P [n])Cpr =

∞∨
s=0

T 1
s (L⊕ P [n])Cpr

'
2n

r∨
s=0

T 1
0 (L⊕ P [n])Cpr−s =

r∨
t=0

T 1
0 (L⊕ P [n])Cpt .

Under these equivalences Φ: T̃ (L ⊕ P [n])Cpr → T̃ (L ⊕ P [n])Cpr−1 becomes projection onto the first r
summands. Therefore

T̃C(L⊕ P [n]; p) = [holim
←−
Φ

T̃ (L⊕ P [n])Cpr ]h〈D〉 '
2n

[
∞∏

t=0

T 1
0 (L⊕ P [n])Cpt ]h〈D〉.

The latter spectrum is naturally equivalent to the homotopy limit stated above. �

Remark. When P = L there is an unstable formula for T̃C(L ⊕ L[n]). It was found in [6] and used to
evaluate TC of rings of dual numbers over finite fields.

3.Free cyclic objects

3.1. In this paragraph we examine the cyclic spaces t1(L⊕ P )(V ). we introduced in 2.2. They turn out
to be the free cyclic spaces generated by the simplicial spaces t(L;P )(V ). from 1.2. First we study free
cyclic objects.

Suppose K: I → J is a functor between small categories and C a category which have all colimits.
Then the functor K∗: CJ → CI has a left adjoint F . If X: I → C is a functor then

FX(j) = lim−→((K ↓ j) pr1−−→ I
X−→ C),

where (K ↓ j) is the category of objects K-over j. It is called the left Kan extension of X along K, cf.
[10]. As an instance of this construction suppose I and J are monoids, i.e. categories with one object,
and C the category of (unbased) spaces. Then a functor X: I → C is just an I-space and FX is the
J-space J ×I X.

10



Definition. Let X. be a simplicial object in C. The free cyclic object generated by X. is the left Kan
extension of X. along the forgetfull functor K:∆op → Λop. It is denoted FX..

If X is an object in C and S is a set, then we let S nX denote the coproduct of copies of X indexed
by S. We give a concrete description of FX..

Lemma. Let Cn+1 = {1, τn, τ2
n, . . . , τ

n
n }. Then FX. has n-simplices

FXn
∼= Cn+1 nXn,

and the cyclic structure maps are

di(τ s
nnx) = τ s

n−1ndi+sx , if i+ s ≤ n
= τ s−1

n−1ndi+sx , if i+ s > n

si(τ s
nnx) = τ s

n+1nsi+sx , if i+ s ≤ n
= τ s+1

n+1nsi+sx , if i+ s > n

tn(τ s
nnx) = τ s−1

n nx.

All indicices are to be understood as the principal representatives modulo n+ 1.

Proof. Both ∆ and Λ has objects the finite ordered sets n = {0, . . . , n} but Λ has more morphism than
∆. Specifically Λ(n,m) = ∆(n,m) × AutΛ(n) and AutΛ(n) is a cyclic group of order n + 1. As a
generator for AutΛ(n) we choose the cyclic permutation τn:n→ n; τn(i) = i− 1 (mod n+ 1).

Consider the full subcategory C(n) ⊂ (K ↓ n) whose objects are the automorphisms Kn → n, i.e.
obC(n) = Cn+1. The restriction of colimits comes with a map

lim−→(C(n)
pr1−−→∆op X.−−→ C)→ lim−→((K ↓ n)

pr−→∆op X.−−→ C) = FXn,

and from the definitions one may readily show that this is an isomorphism. Since in ∆op there are no
automorphisms of n apart from the identity, the category C(n) is a discrete category, i.e. any morphism
is an identity. We conclude that

FXn
∼=

∐
ob C(n)

Xn = Cn+1 nXn.

It is straightforward to check that the cyclic structure maps are as claimed. �

Example. Suppose C is the category of commutative rings, where the coproduct is tensor product of
rings, and R. = R is a constant simplicial ring. Then the complex associated with FR is the standard
Hochschild complex Z(R) whose homology is HH∗(R).

3.2. We now take C to be the category of pointed topological spaces and study the relation between F
and realization.

Lemma. There is a natural G-homeomorphism |FX.| ∼= G+ ∧ |X.|.
Proof. Consider the standard cyclic sets Λ[n] = Λ(−, n) and their realizations Λn. From [7], 3.4 we know
that as cocyclic spaces Λ

. ∼= G × ∆
.
, so we may view Λ

.
as a cocyclic G-space. Now suppose Y is a

(based) G-space. We can define a cyclic space C.(Y ) as the equivariant mapping space

C.(Y ) = FG(Λ
.
, Y ),

with the compact open topology. Then one immediately verifies that C. is right adjoint to the realization
functor | − |. The realization functor for simplicial spaces also has a right adjoint. It is given as S.(X) =
F (∆

.
, X) with the compact open topology. Finally the forgetfull functor U from G-spaces to spaces is

right adjoint to the functor G+ ∧ −.
By a very general principle in category theory called conjunction, to prove the lemma we may as well

show that S.(UY ) = K∗C.(Y ) for any G-space Y . But this is evident since FG(G+ ∧X,Y ) ∼= F (X,UY )
�
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Proposition. There is a natural equivalence of G-spectra

G+ ∧ T (L;P ) '
G
T1(L⊕ P ).

The V ’th space in the smash product G-spectrum on the left is naturally homeomorphic to lim−→
W

ΩW−V (G+ ∧ tτ (L;P )(W )),

where G acts diagonally on G+ ∧ tτ (L;P )(W ).

Proof. The smash product P (Si0) ∧ L(Si1) ∧ . . . ∧ L(Sik) is a 1-configuration, cf. 2.1. Thus we have an
inclusion map THH(L;P ;X)k ↪→ THH1(L ⊕ P ;X)k and these commutes with the simplicial structure
maps. By definition we get a map of cyclic spaces

j(X).:F THH(L;P ;X). → THH1(L⊕ P ;X).

and lemma 3.2 shows that on realizations this gives rise to a G-equivariant map

j(X):G+ ∧ THH(L;P ;X)→ THH1(L⊕ P ;X).

WhenX runs through the spheres SV these maps form a map j ofG-prespectra. Let us writeG+∧tτ (L;P )
for the G-spectrum whose V ’th space is the colimit

lim−→
W⊂U

ΩW−V (G+ ∧ tτ (L;P )(W )).

Then j induces a map J :G+∧ tτ (L;P )→ T1(L⊕P ) and an argument completely analogous to the proof
of proposition 2.1 shows that this is a G-equivalence. Finally the canonical inclusion

G+ ∧ tτ (L;P )(V )→ G+ ∧ T (L;P )(V )

gives a map G+ ∧ tτ (L;P )→ G+ ∧ T (L;P ) and this is a homeomorphism, cf. the appendix. �

3.3. Before we prove our main theorem we need the following key lemma, also used extensively in [6].

Lemma. Let T be a G-spectrum. Then there is a natural equivalence of non-equivariant spectra

[T ∧G+]Cpr ' T ∨ ΣT,

and the inclusion D: [T ∧G+]Cpr ↪→ [T ∧G+]Cpr−1 becomes p ∨ id. Here p denotes multiplication by p.

Proof. The Thom collaps t:SC → SiR ∧G+ of S(C) ⊂ C gives rise to a G-equivariant transfer map

τ :F (G+,ΣT )→ G+ ∧ T
which is a G-homotopy equivalence, cf. [9], p.89. There is a cofibration sequence of Cpr -spaces

Cpr+ ↪→ G+ → Cpr+ ∧ S1

where S1 is Cpr -trivial. We may apply FCpr (−,ΣT ) and get a cofibration sequence of spectra

F (S1,ΣT ) −→ FCpr (G+,ΣT )
evζ−−→ ΣT.

Finally evζ is naturally split by the adjoint of the G-action G+ ∧ ΣT → ΣT . �

Proof of theorem. If we compare proposition 3.2 and lemma 3.3 we find that

T1(L⊕ P )Cpr ' T (L;P ) ∨ ΣT (L;P ).

Now holim of a string of maps

· · · fi−→ Xn
fi−1−−−→ · · · f2−→ X2

f1−→ X1
f0−→ X0

where every fi = pgi for some gi vanishes after p-completion, so by proposition 2.2 and lemma 3.3 we get

T̃C(L⊕ P [n]) '
2n

ΣT (L;P [n]).

The functor T (L;P ) is linear in the second variable, cf. [12] 2.13, so therefore

Ωn+1T̃C(L⊕ P [n]) 'n Ωn+1ΣT (L;P [n]) ' T (L;P ).

It remains only to check that the stabilization maps defined in 1.5 induce an equivalence of T (L;P ).
They do. �
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Appendix

A.1. Let C be either of the categories ∆ or Λ and let X: C→ Top∗ be a functor to pointed spaces. We
define a new functor X̄: C→ Top∗ by the homotopy colimit

holim
−→

((− ↓ C)op
prop2−−→ Cop X−→ Top∗),

where (n ↓ C) is the category under n, cf. [10]. If θ:n → m is a morphism in ∆ (not C), which is
surjective, then θ∗: (m ↓ C) → (n ↓ C) is an inclusion functor. In general inclusions of index categories
induces closed cofibrations on homotopy colimits. In particular θ∗: X̄m → X̄n is a closed cofibration, so
X̄ is good in the sense of [14]. Moreover we have a homotopy equivalence X̄n → Xn because id:n → n
is initial in (n ↓ C).

A.2. This section explains a technical point in the passage from G-prespectra to G-spectra. Let GPU
denote the category of G-prespectra indexed on the universe U and let GSU be the full subcategory
of G-spectra. In [9] the authors prove that the forgetful functor l:GSU → GPU has a left adjoint
L:GPU → GSU . We call this functor spectrification and if t ∈ GPU then we call Lt the associated
G-spectrum. Such a functor is needed since many constructions such as X ∧ − and any (homotopy)
colimits do not preserve G-spectra. However L has the serious drawback that in general it looses (weak)
homotopy type, i.e. the homotopy type of (Lt)(V ) cannot be described in terms of that of the spaces
t(W ). To control the homotopy type the G-prespectrum t has to be an inclusion G-prespectrum, that is
the structure maps σ̃: t(V )→ ΩW−V t(W ) must be inclusions, then

(Lt)(V ) = lim−→
W⊂U

ΩW−V t(W ).

This is the case for example if the adjoints σ: ΣW−V t(V ) → t(W ) are closed inclusions. The thickening
functor (−)τ defined in 1.2 produces G-prespectra of this kind. Therefore L(tτ ) has the right homotopy
type.

If a:GPU → GPU is a functor we define A:GSU → GSU as the composite functor Lal and if a has
a right adjoint b, then B is the right adjoint of A. Suppose b preserves G-spectra, then b(lT ) ∼= lB(T )
for any T ∈ GSU . By conjugation we get

A(Lt) ∼= La(t)

for any t ∈ GPU . The functors a we consider take a G-prespectrum, whose structure maps σ are closed
inclusions, to a G-prespectrum of the same kind. Hence the homotopy type of La(tτ ) and therefore
A(L(tτ )) may be calculated. This shows that all G-spectra considered in this paper have the right
homotopy type.
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