

Correction to
**“Witt vectors of non-commutative rings
and topological cyclic homology”**

Lars Hesselholt

This note is to announce and correct two related mistakes. The first mistake is at the bottom of page 114 where it is claimed that the elements ε_i defined recursively using (1.3.5) are commutators. Indeed, this is not always the case and, in general, a surjective ring homomorphism $A' \rightarrow A$ does not induce a surjective map $N(A') \rightarrow N(A)$. The second mistake is the claim in the proof of Lemma 2.2.1 that the abelian group $B/[B, B]$ is torsion free. This is not true and, in fact, the statement of Lemma 2.2.1 is false. The main consequence of these two mistakes is that, for a general associative ring A , the Verschiebung map $V: W_{n-1}(A) \rightarrow W_n(A)$ is not injective as it is falsely stated in Props. 1.6.3 and 2.2.3. However, Thms. A, B, and C of the introduction and Thms. 1.7.10 and 2.2.9 all remain true as stated. We briefly clarify the construction of the abelian group $W_n(A)$ and the proof of the central Thm. 2.2.9.

We define a homomorphism between two sets with unital composition laws to be a map that preserves the composition law and the unit. In general, we do not require composition laws to be associative or commutative or to have an inverse. Let A be a unital associative ring. The integral non-commutative polynomials

$$s_i(X_0, X_1, \dots, X_i, Y_0, Y_1, \dots, Y_i)$$

from (1.4.1) define a unital composition law on the set A^n by the rule

$$(a_0, a_1, \dots, a_{n-1}) * (b_0, b_1, \dots, b_{n-1}) = (s_0, s_1, \dots, s_{n-1})$$

where $s_i = s_i(a_0, \dots, a_i, b_0, \dots, b_i)$. The unit element is the n -tuple $(0, 0, \dots, 0)$. We recall the ghost map $w: A^n \rightarrow A^n$ that to the n -tuple $(a_0, a_1, \dots, a_{n-1})$ associates the n -tuple $(w_0, w_1, \dots, w_{n-1})$ where

$$w_s = a_0^{p^s} + p a_1^{p^{s-1}} + \dots + p^s a_s$$

and let $q: A \rightarrow A/[A, A]$ be the canonical projection. Then the composite map

$$f_n = q^n \circ w: A^n \rightarrow (A/[A, A])^n$$

is a homomorphism with the composition law $*$ on the left-hand side and componentwise addition on the right-hand side. We recursively define the abelian group $W_n(A)$ and a natural factorization of f_n as the composite of two homomorphisms

$$A^n \xrightarrow{q_n} W_n(A) \xrightarrow{\bar{w}} (A/[A, A])^n,$$

where q_n is surjective, and where \bar{w} is injective if $A/[A, A]$ is p -torsion free. It follows from the proof of Thm. 2.2.9 that the map (2.2.6) is a homomorphism

$$\tilde{I}: A^n \rightarrow \text{TR}_0^n(A; p) = \pi_0 T(A)^{C_{p^{n-1}}}.$$

We show, inductively, that \tilde{I} admits a natural factorization

$$A^n \xrightarrow{q_n} W_n(A) \xrightarrow{I} \text{TR}_0^n(A; p)$$

and that the homomorphism I is an isomorphism.

We define $W_1(A)$ to be $A/[A, A]$, q_1 to be q , and \bar{w} to be the identity map. The factorization $\tilde{I} = I \circ q_1$ with I an isomorphism follows immediately from the definition of $T(A)$. So assume that the abelian group $W_{n-1}(A)$ with the properties above has been defined. We first define an abelian group structure on the set

$$\tilde{W}_n(A) = A \times W_{n-1}(A)$$

together with a factorization of the homomorphism

$$\tilde{f}_n = (\text{id} \times q^{n-1}) \circ w: A^n \rightarrow A \times (A/[A, A])^{n-1}$$

as the composition of two homomorphisms

$$A^n \xrightarrow{\tilde{q}_n} \tilde{W}_n(A) \xrightarrow{\bar{w}} A \times (A/[A, A]).$$

We define \tilde{q}_n to be the product map $\text{id} \times q_{n-1}$. The ghost map $w: A^n \rightarrow A^n$ admits a factorization as the composite map

$$A \times A^{n-1} \xrightarrow{\text{id} \times pw} A \times A^{n-1} \xrightarrow{\tau} A \times A^{n-1},$$

where the left-hand map is the bijection given by the formula

$$\tau(x_0, x_1, \dots, x_{n-1}) = (x_0, x_0^p + x_1, \dots, x_0^{p^{n-1}} + x_{n-1}),$$

and we then define the map \tilde{w} to be the composite map

$$A \times W_{n-1}(A) \xrightarrow{\text{id} \times p\bar{w}} A \times (A/[A, A])^{n-1} \xrightarrow{\bar{\tau}} A \times (A/[A, A])^{n-1}$$

where $\bar{\tau}$ is the bijection induced by τ . Since \tilde{I} is equal to the composite map

$$A^n \xrightarrow{\tilde{q}_n} \tilde{W}_n(A) \xrightarrow{I'} \text{TR}_0^n(A; p),$$

where $I'(a_0, a) = \Delta_{p^{n-1}}(a_0) + V(I(a))$, and since \tilde{I} is a homomorphism, there exists a unique unital composition law on $\tilde{W}_n(A)$ such that \tilde{q}_n is a homomorphism. Moreover, since \tilde{f}_n is a homomorphism, so is \tilde{w} . If $A/[A, A]$ is p -torsion free, then \tilde{w} is injective by induction, and Lemma 1.3.2 implies that the image of \tilde{w} is a subgroup of the abelian group $A \times (A/[A, A])^{n-1}$. So the composition law on $\tilde{W}_n(A)$ is an abelian group structure in this case. For a general ring A , we choose a surjective ring homomorphism $\phi: A' \rightarrow A$ from a ring A' such that $A'/[A', A']$ is p -torsion free. In the diagram

$$\begin{array}{ccc} A'^n & \xrightarrow{\tilde{q}_n} & \tilde{W}_n(A') \\ \downarrow \phi^n & & \downarrow \tilde{W}_n(\phi) \\ A^n & \xrightarrow{\tilde{q}_n} & \tilde{W}_n(A) \end{array}$$

the two horizontal maps and the left-hand vertical map are surjective homomorphisms, and hence, so is the right-hand vertical map. Since the composition law on $\tilde{W}_n(A')$ is an abelian group structure, so is the composition law on $\tilde{W}_n(A)$.

We define the abelian group $W_n(A)$ to be the cokernel of the homomorphism

$$\tilde{d}: \mathbb{Z}\langle A \times A \rangle \rightarrow \tilde{W}_n(A)$$

from the free abelian group generated by the set $A \times A$ that to the generator (a, b) associates the element $(ab, 0) - (ba, 0)$. Since the composite

$$\mathbb{Z}\langle A \times A \rangle \xrightarrow{\tilde{d}} \tilde{W}_n(A) \xrightarrow{\tilde{w}} A \times (A/[A, A])^n \xrightarrow{q \times \text{id}} (A/[A, A])^n$$

is equal to zero, we obtain the factorization $f_n = \bar{w} \circ q_n$ as the composition of two homomorphisms. Similarly, the composition $I' \circ \tilde{d}$ is zero, since the Teichmüller map (2.2.4) satisfies $\Delta_{p^{n-1}}(ab) = \Delta_{p^{n-1}}(ba)$. This gives the factorization $\tilde{I} = I \circ q_n$ as the composition of two homomorphisms. To show that I is an isomorphism, we first show that there is a natural short-exact sequence

$$0 \rightarrow W_{n-1}(A) \xrightarrow{\tilde{V}} \tilde{W}_n(A) \xrightarrow{\text{pr}_1} A \rightarrow 0$$

where $\tilde{V}(a) = (0, a)$. We only need to show that \tilde{V} is a homomorphism and may assume that $A/[A, A]$ is p -torsion free. There is a commutative diagram

$$\begin{array}{ccc} W_{n-1}(A) & \xrightarrow{\tilde{V}} & \tilde{W}_n(A) \\ \downarrow w & & \downarrow \tilde{w} \\ (A/[A, A])^{n-1} & \xrightarrow{\tilde{V}^w} & A \times (A/[A, A])^{n-1} \end{array}$$

with the lower horizontal map given by

$$\tilde{V}^w(x_0, x_1, \dots, x_{n-2}) = (0, px_0, px_1, \dots, px_{n-2}).$$

The maps \tilde{V}^w , w and \tilde{w} are homomorphisms, and since $A/[A, A]$ is p -torsion free, the maps w and \tilde{w} are injective. It follows that \tilde{V} is a homomorphism. Moreover, we have a commutative diagram with exact rows

$$\begin{array}{ccccccc} 0 & \longrightarrow & W_{n-1}(A) & \xrightarrow{\tilde{V}} & \tilde{W}_n(A) & \xrightarrow{\text{pr}_1} & A \longrightarrow 0 \\ & & \parallel & & \downarrow & & \downarrow q_1 \\ & & W_{n-1}(A) & \xrightarrow{V} & W_n(A) & \xrightarrow{R^{n-1}} & W_1(A) \longrightarrow 0 \end{array}$$

since the composite $\text{pr}_1 \circ \tilde{d}$ is a surjective homomorphism onto the kernel of q_1 . We now proceed to show that I is an isomorphism. In the diagram

$$\begin{array}{ccccccc} W_{n-1}(A) & \xrightarrow{V} & W_n(A) & \xrightarrow{R^{n-1}} & W_1(A) & \longrightarrow 0 \\ \downarrow I & & \downarrow I & & \downarrow I & & \\ \text{TR}_0^{n-1}(A; p) & \xrightarrow{V} & \text{TR}_0^n(A; p) & \xrightarrow{R^{n-1}} & \text{TR}_0^1(A; p) & \longrightarrow 0 \end{array}$$

the rows are exact and, inductively, the right and left-hand vertical maps I are isomorphisms. Suppose first that the abelian group $A/[A, A]$ is p -torsion free. Then the lower left-hand horizontal map V is injective. Indeed, the composite map

$$\text{TR}_0^{n-1}(A; p) \xrightarrow{V} \text{TR}_0^n(A; p) \xrightarrow{F} \text{TR}_0^{n-1}(A; p)$$

is given by multiplication by p and one proves by induction on n that $\text{TR}_0^{n-1}(A; p)$ is p -torsion free. It follows that the upper left-hand horizontal map V is injective and that

the middle vertical map I is an isomorphism as desired. To prove the general case, it suffices to show that if

$$P[1] \xrightarrow[d_0]{d_1} P[0] \xrightarrow{\epsilon} A$$

is a coequalizer diagram of rings, then the rows in the diagram

$$\begin{array}{ccccccc} W_n(P[1]) & \xrightarrow{d_0-d_1} & W_n(P[0]) & \xrightarrow{\epsilon} & W_n(A) & \longrightarrow & 0 \\ \downarrow I & & \downarrow I & & \downarrow I & & \\ \mathrm{TR}_0^n(P[1]; p) & \xrightarrow{d_0-d_1} & \mathrm{TR}_0^n(P[0]; p) & \xrightarrow{\epsilon} & \mathrm{TR}_0^n(A; p) & \longrightarrow & 0 \end{array}$$

are exact. Indeed, we can choose $P[q]$ such that $P[q]/[P[q], P[q]]$ is p -torsion free. The exactness of the lower row is well-known, and the exactness of the upper row follows by an induction argument based on the exact sequences

$$0 \longrightarrow W_{n-1}(A) \xrightarrow{\tilde{V}} \tilde{W}_n(A) \xrightarrow{\mathrm{pr}_1} A \longrightarrow 0$$

and

$$\mathbb{Z}\langle A \times A \rangle \xrightarrow{\tilde{d}} \tilde{W}_n(A) \longrightarrow W_n(A) \longrightarrow 0.$$

This completes the recursive definition of $W_n(A)$.

We remark that \tilde{d} factors through the projection $u: \mathbb{Z}\langle A \times A \rangle \rightarrow A \otimes A$. Indeed, this is true if $A/[A, A]$ is p -torsion free, since the kernels of the homomorphisms \tilde{d} and $\mathrm{pr}_1 \circ \tilde{d}$ are equal and contain the kernel of u . The general case follows since a surjective ring homomorphism induces a surjection of the kernels of the homomorphisms u . By a similar argument we conclude that there exists a natural exact sequence

$$\mathrm{HH}_1(A) \xrightarrow{\partial} W_{n-1}(A) \xrightarrow{V} W_n(A).$$

The value of the homomorphism ∂ on a Hochschild 1-cycle $\zeta = \sum_{1 \leq i \leq m} a_i \otimes b_i$ is given as follows. Let P be the free associative ring on generators $x_1, y_1, \dots, x_m, y_m$. There exists a unique class $\theta(x_1, y_1, \dots, x_m, y_m)$ in $W_{n-1}(P)$ such that

$$V(\theta(x_1, y_1, \dots, x_m, y_m)) = [x_1 y_1 + \dots + x_m y_m]_n - [y_1 x_1 + \dots + y_m x_m]_n$$

where $[a]_n = q_n(a, 0, \dots, 0)$. Then $\partial(\zeta) = \theta(a_1, b_1, \dots, a_m, b_m)$. Using this description one can show that, in general, the map ∂ is non-zero. For example, define A to be the quotient of the free associative ring generated by x, y, z, w by the two-sided ideal generated by $xy - yx + zw - wz$, and let $n = 2$ and $p = 2$. Then $\partial(x \otimes y + z \otimes w)$ is equal to the class of $xyzw - wzyx$ in $W_1(A)$ which is a non-zero 2-torsion class. The map ∂ is zero, however, for any pointed monoid algebra over a commutative ring.

Finally, I would like to acknowledge Kåre Nielsen for discovering the two mistakes and for providing me with the example above. He found the mistakes during his thesis work at Aarhus University. I would also like to apologize for the mistakes and for the delay in the publishing of this correction.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS
E-mail address: larsh@math.mit.edu

NAGOYA UNIVERSITY, NAGOYA, JAPAN
E-mail address: larsh@math.nagoya-u.ac.jp