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Introduction

Classically, one has for every commutative ring A the associated ring of p-typical Witt vectors W (A).
In this paper we extend the classical construction to a functor which associates to any associative ring A
an abelian group W (A). The extended functor comes equipped with additive Frobenius and Verschiebung
operators. We also define groups Wn(A) of Witt vectors of length n in A. These are related by restriction
maps R:Wn(A)→Wn−1(A) and W (A) is the inverse limit. In particular, W1(A) is defined to be the quotient
of A by the additive subgroup [A,A] generated by elements of the form xy− yx, x, y ∈ A. There are natural
exact sequences

0 −→ A/[A,A] V n−1

−−−→Wn(A) R−−−→Wn−1(A) −→ 0

which are useful both for proofs and calculations. We use these in 1.7.10 below to evaluate W (A) when A is
a free associative Fp-algebra without unit. The sequences are usually not split exact, but in contrast to the
classical case, this is not even true as functors from rings to sets, i.e. Wn(A) is not naturally bijective to the
n-fold product of copies of A/[A,A]. Finally, the construction W (−) is Morita invariant:

W (Mn(A)) ∼= W (A).

This more general algebraic structure arises naturally in topology: the topological cyclic homology defined
by Bökstedt-Hsiang-Madsen, [BHM], associates to any ring A a (−2)-connected spectrum TC(A; p). We write
TC∗(A; p) = π∗ TC(A; p). In paragraph 2 below we prove

Theorem A. For any associative ring A,

TC−1(A; p) ∼= W (A)F ,

the coinvariants of the Frobenius endomorphism F :W (A)→W (A).

While it is unlikely that the higher groups TC∗(A; p) admits an algebraic description in general, this has
been expected when A is an Fp-algebra. Indeed, the original calculation of TC(Fp; p) in [M] shows that
TC(A; p) is a generalized Eilenberg-MacLane spectrum, i.e. that the k-invariants are trivial. And in the case
of a smooth algebra over a perfect field of characteristic p, it follows from [H] that the groups TC∗(A; p) may
be determined up to an extension from the de Rham-Witt complex of [I]. In paragraph 3 below, we evaluate
the topological cyclic homology of a free associative Fp-algebra without unit. It turns out to be concentrated
in degree −1, and since the topological cyclic homology of a simplicial ring may be computed degree wise,
we obtain the general formula
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Theorem B. Let A be an associative Fp-algebra. Then

TC∗(A; p) ∼= L∗+1W (A)F ,

the left derived functors in the sense of Quillen of the functor W (−)F .

In an earlier paper, [H], we evaluated the complex of p-typical curves in Quillen’s K-theory in terms of the
fixed sets of Bökstedt’s topological Hochschild homology. In corollary 3.3.6 below, we evaluate this complex
for a free associative Fp-algebra without unit. The resulting complex bears a close resemblance with the
de Rham-Witt complex of a commutative polynomial algebra, as exhibited by Deligne-Illusie, [I], but in
contrast to the latter, it is concentrated in degrees 0 and 1.

Let K∗(A; Zp) denote the p-adic K-groups of the ring A, that is, the homotopy groups of the p-completion
of the spectrum K(A). Similarly, let TC∗(A; Zp) denote the homotopy groups of the p-completion of the
spectrum TC(A; p). The main result of [HM] states that if k is a perfect field of positive characteristic p and
A a finite algebra over the Witt ring W (k), then the cyclotomic trace of [BHM] induces isomorphims

Ki(A; Zp) ∼= TCi(A; Zp), i ≥ 0.

When A is an Fp-algebra, TC(A; p) is already p-complete, so we have

Theorem C. Let k be a perfect field of positive characteristic p and let A be a finite associative k-algebra.
Then the p-adic K-groups of A are given by

Ki(A; Zp) ∼= Li+1W (A)F ,

the left derived functors of W (−)F .

We note that at primes l different from p and rationally, one has K∗(A; Zl) ∼= K∗(A/J ; Zl), where J ⊂ A
is the radical. Moreover, A/J being semi-simple, the latter splits as a product of l-adic K-groups of finite
division algebras over k. These are known when k is a finite field by Wedderburn’s theorem and Quillen’s
original calculation.

All rings considered in this paper will be associative but not necessarily commutative or unital unless
otherwise stated. We shall write G for the circle group.

It is a pleasure to thank Mike Hopkins for the original suggestion to evaluate the topological cyclic
homology of a free associative algebra as well as for several valuable conversations.

1. Witt vectors

1.1. For any commutative ring A, one has the associated ring of Witt vectors W (A), [W]. In this paragraph,
we extend the definition of W (A) to all associative rings. If the ring A is not commutative, W (A) will of
course only be an additive group.

Let A be an associative ring and let [A,A] denote the subgroup of commutators, that is, the additive
subgroup generated by elements of the from xy − yx, x, y ∈ A. We recall the ghost map

(1.1.1) w:AN0 → (A/[A,A])N0

given by the Witt polynomials
w0 = a0

w1 = ap
0 + pa1

w2 = ap2

0 + pap
1 + p2a2

:

Here p is a fixed prime. One may of course factor w through the equivalence relation which identifies two
vectors a and b when their ghost components wn(a) and wn(b) are equivalent modulo commutators, for all
n ≥ 0. We shall see that it is possible to divide this requirement by pn.
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1.2. Let B = Z̃{x1, . . . , xs} be the non-unital ring of polynomials in the non-commutating variables
x1, . . . , xs and recall that the non-unital free monoid Γ of all finite words in the variables x1, . . . , xs forms
an additive basis for B. The length of a word defines a grading on Γ and we let Γn denote the graded piece
of degree n. The infinite cyclic group C acts on Γn by cyclically permuting the letters in a word. An orbit is
called a circular word and two words are called conjugate if they are in the same orbit. We denote a typical
word by ω̃ and a typical circular word by ω. Note that words are conjugate precisely when they viewed as
monomials in B differ by a commutator. We refer to the element of a circular word which is smallest in
the lexicographical order as the preferred representative. For any subset S ⊂ Γ, we let S̄ denote the set of
preferred representatives of the circular words given by the elements of S. We define a partition

(1.2.1) Γn =
∐
d|n

Γn,d.

Here Γn,1 = {xn
1 , . . . , xn

s } is the subset of trivial words and Γn,d, d > 1, is defined recursively as follows:

Γd,d = Γd −
∐

e|d,e6=d

Γd,e

Γ′n,d = Γ̄d,d ∗ · · · ∗ Γ̄d,d (n/d factors)

Γn,d = C · Γ′n,d.

We define non-commutative polynomials

(1.2.2) ∆d(x1, . . . , xs) =
∑

ω̃∈Γ̄d,d

ω̃

and write δk(x1, . . . , xs) = ∆pk(x1, . . . , xs).

Proposition 1.2.3. For all n ≥ 1,

(
s∑

i=1

xi)n −
s∑

i=1

xn
i =

∑
d|n,d 6=1

d∆d(x1, . . . , xs)n/d + εn(x1, . . . , xs),

with εn(x1, . . . , xs) a commutator.

Proof. Let t denote the generator of C and suppose that ω ∈ Γ′n,d. We claim that tmω̃ ∈ Γ′n,d if and
only if d|m. If d divides m then obviously tmω̃ ∈ Γ′n,d; we prove the converse. First note that if we write
ω̃ = xi0xi1 . . . xin−1 , then

idk ≤ idk+l,

whenever 0 ≤ k ≤ n/d− 1 and 0 ≤ l ≤ d− 1. If m = de + r with 1 ≤ r ≤ d− 1 and tmω̃ ∈ Γ′n,d then also

idk−r ≤ idk−r+l,

for all 0 ≤ k ≤ n/d − 1 and 0 ≤ l ≤ d − 1. It follows that all the letters are equal contradicting that ω̃ is
non-trivial. Hence the claim.

From the definitions ∆d(x1, . . . , xs)n/d =
∑

ω̃∈Γ′n,d
ω̃, and so the claim shows

d∆d(x1, . . . , xs)n/d =
∑

ω̃∈Γn,d

ω̃ + εn,d(x1, . . . , xs)

with εn,d(x1, . . . , xs) ∈ [B,B]. Now the proposition follows from (1.2). �
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1.3. Let A be an associative ring and suppose that A has an additive endomorphism φ:A → A which
preserves the commutator subgroup and satisfies that for all x ∈ A and all n ≥ 1,

(1.3.1) xpn

≡ φ(xpn−1
) (modulo pnA + [A,A]).

We have the following non-commutative version of a lemma of Dwork.

Lemma 1.3.2. A sequence (w0, w1, . . . ) is in the image of the ghost map

w:AN0 → (A/[A,A])N0

if and only if wn ≡ φ(wn−1) modulo pnA + [A,A], for all n ≥ 1.

Proof. If (w0, w1, . . . ) is in the image of w, then

φ(wn−1) = φ(apn−1

0 ) + pφ(apn−2

1 ) + . . . + pn−1φ(an−1)

and so wn ≡ φ(wn−1) modulo pnA + [A,A].
Conversely, we may assume by induction that there exists elements a0, . . . , an−1 ∈ A such that

wn−1 ≡ apn−1

0 + papn−2

1 + · · ·+ pn−1an−1

modulo commutators. Since φ maps commutators to commutators and satisfies (1.3.1), we get that

φ(wn−1) ≡ apn

0 + papn−1

1 + · · ·+ pn−1ap
n−1

modulo pnA + [A,A]. By assumption, wn ≡ φ(wn−1) modulo pnA + [A,A], so we see that there exists an

such that
wn = apn

0 + papn−1

1 + · · ·+ pnan

modulo [A,A]. We note that the class of an modulo commutators is uniquely determined. �

Let A = Z̃{S} be the free associative ring without unit generated by the set S and define φ:A→ A by

(1.3.3) φ(
∑

aω̃ω̃) =
∑

aω̃ω̃p,

where the sum runs over finite words in S. Then φ is an additive endomorphism, which preserves commutators
and (1.2.3) furnishes and induction argument which shows that (1.3.1) holds. Given a linear ordering of the
set of variables S, we define a preferred section

σ0:A/[A,A]→ A

of the projection as follows: a basis for A/[A,A] is given by the set of circular words ω with letters in S. We
define σ0ω to be the preferred representative in the class ω and extend by linearity. In the proof of (1.3.2)
we may choose an to be this preferred representative of its class modulo commutators. Therefore, we have

Addendum 1.3.4. If A = Z̃{S} is the free associative ring without unit on a linearly ordered set S, then
there is a preferred set section

σ:w(AN0)→ AN0

of the ghost map. �

We define a new series of non-commutative polynomials rs, s ≥ 0. Here rs is a polynomial in the variables
xij , yij , where i = 0, 1, . . . , s; j = 0, 1, . . . , ni. Let

εi =
ni∑

j=0

xijyij − yijxij ,
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then r0 = ε0 and rs, for s ≥ 1, is defined by the recursion formula

(1.3.5) rn = εn − σ0

(
p−n(wn(r0, . . . , rn−1, 0)− φ(wn−1(r0, . . . , rn−1)))

)
.

Now let A be any associative ring. The values of the polynomials rs, s ≥ 0, as the variables xij and yij ,
i ≥ 0, j = 1, . . . , ni run through all elements of A defines a subset

(1.3.6) N(A) ⊂ AN0 .

We note that N(A) is non-canonically bijective to [A,A]N0 . Indeed, choose a representation ε =
∑

xjyj−yjxj

of each commutator in A. Then for a given (r0, r1, . . . ) ∈ N(A), we can define εi recursively using (1.3.5).
The commutators εi, i ≥ 0, obtained this way are uniquely determined by the vector (r0, r1, . . . ) ∈ N(A).
In particular, if A′ → A is a surjective ring homomorphism then N(A′)→ N(A) is also surjective.

Lemma 1.3.7. The preimage of zero under the ghost map

w:AN0 → (A/[A,A])N0

contains N(A), and the two subsets are equal if A/[A,A] has no p-torsion.

Proof. We show by induction that wn(r0, . . . , rn) = 0, the case n = 0 this being trivial. We have

wn(r0, . . . , rn) = wn(r0, . . . , rn−1, 0) + pnrn

and by (1.3.5) and induction pnrn = −wn(r0, . . . , rn−1, 0) modulo commutators. Hence N(A) is mapped to
zero by the ghost map.

Conversely, choose a bijection of N(A) and [A,A]N0 , and suppose that (a0, a1, . . . ) is mapped to zero by
the ghost map. Let us write r′n(ε0, . . . , εn−1) for the second term on the right in (1.3.5). We must find a
sequence (ε0, ε1, . . . ) of commutators such that the following equality holds

an = εn − r′n(ε0, . . . , εn−1).

We are given that for every n ≥ 0,

apn

0 + papn−1

1 + . . . + pnan ≡ 0

modulo commutators and may assume by induction that ai = ri(ε0, . . . , εi), for i ≤ n − 1. The argument
above implies that

rpn

0 + prpn−1

1 + . . . + pn−1rp
n−1 ≡ pnr′n(ε0, . . . , εn−1)

modulo commutators, and hence pn(an + r′n(ε0, . . . , εn−1)) is a commutator. Therefore, if A/[A,A] has no
p-torsion, an + r′n(ε0, . . . , εn−1) is a commutator εn. This proves the induction step. �

1.4. We now consider the free associative ring without unit

U = Z̃{a0, b0, a1, b1, . . . }

with the generators ordered as indicated and let φ:U → U be as above. We define non-commutative sum
and difference polynomials si and di by

(1.4.1)
(s0, s1, . . . ) = σ(w(a0, a1, . . . ) + w(b0, b1, . . . )),

(d0, d1, . . . ) = σ(w(a0, a1, . . . )− w(b0, b1, . . . )).

Then si is a non-commutative polynomial in the variables a0, b0, . . . , ai, bi and similar for di. We note that
if we map U to the commutative polynomial ring on the same set of generators, the polynomials si(a, b) and
di(a, b) are mapped to the classical Witt sum and difference polynomials.

We define an equivalence relation on the set AN0 of vectors in A by

(1.4.2) a ∼ b ⇔ d(a, b) ∈ N(A)

and note that the ghost map factors through it. For if a ∼ b, then w(a)− w(b) = w(d(a, b)) = 0.
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Lemma 1.4.3. Let π:A′ → A be a surjective ring homomorphism and let a and b be two equivalent vectors
in A. Then there exists equivalent vectors a′ and b′ in A′ such that πa′ = a and πb′ = b.

Proof. In the equation r = d(a, b) either two of the indeterminates determines the third. Indeed,

di(a0, b0, . . . , ai, bi) = ai − bi + polynomial in a0, b0, . . . , ai−1, bi−1.

Now let a and b be equivalent vectors in A and let r = d(a, b); then r ∈ R(A). We choose a vector a′ in A′

and r′ ∈ R(A′) such that πa′ = a and πr′ = r and let b′ be the unique solution of the equation r′ = d(a′, b′).
Then πb′ satisfies the equation r = d(a, πb′), and hence πb′ = b. �

Proposition 1.4.4. The set of equivalence classes

W (A) = AN0/ ∼
with the composition a + b = s(a, b) is a functor from associative rings to abelian groups such that the ghost
map w:W (A)→ (A/[A,A])N0 is a natural homomorphism.

Proof. If A/[A,A] has no p-torsion, then lemma 1.3.7 shows that the ghost map

w:W (A)→ (A/[A,A])N0

is an injection onto a subgroup and w(s(a, b)) = w(a)+w(b). For a general A, we choose π:A′ → A surjective
with A′/[A′, A′] p-torsion free. If a1 and a2 are equivalent vectors in A then by lemma 1.4.3 we can find
equivalent vectors a′1 and a′2 in A′ such that πa′1 = a1 and πa′2 = a2. This shows that the composition
a + b = s(a, b) factors through the equivalence relation of (1.4.2). To prove associativity, given vectors a, b
and c in A, we choose lifts a′, b′ and c′ to vectors in A′ and calculate

s(a, s(b, c)) = πs(a′, s(b′, c′)) = πs(s(a′, b′), c′) = s(s(a, b), c).

The additive inverse of a is given by d(0, a). One shows that this factors through the equivalence relation
and verify the remaining abelian group axioms in a similar manner. �

Definition 1.4.5. We call W (A) the group of Witt vectors over the ring A.

We note that for any pair of rings W (A × B) ∼= W (A) ×W (B). In particular, if A is an algebra over a
commutative ring k, we get a pairing

(1.4.6) W (k)×W (A)→W (A)

and an argument similar to the proof of (1.4.4) shows that this makes W (A) a module over the ring W (k).

1.5. We let U ′ = Z̃{a0, a1, . . . } with the variables ordered as indicated and note that U ′ contains the Witt
polynomials wi = api

0 + . . . + piai. Let fi = fi(a0, a1, . . . , ai+1) be the non-commutative polynomials given
by

(f0, f1, . . . ) = σ(w1, w2, . . . ),

where σ is the section of addendum 1.3.4. We have

f0 = ap
0 + pa1, f1 = (1− pp−1)ap

1 − δ1(a
p
0, pa1) + pa2, . . .

and in general the Kummer congruences show that fn ≡ ap
n modulo p. Now let A be a ring and define the

Frobenius operator by

(1.5.1) F :W (A)→W (A), F (a0, a1, . . . ) = (f0, f1, . . . ).

An argument similar to the proof of proposition 1.4.4 shows that F is well-defined and additive. We also
note that if A is an Fp-algebra, then F (a0, a1, . . . ) = (ap

0, a
p
1, . . . ). We define the accompanying Verschiebung

operator by

(1.5.2) V :W (A)→W (A), V (a0, a1, . . . ) = (0, a0, a1, . . . ).

Again this is well-defined and additive. Moreover,

FV = p.

Indeed, if F ′ and V ′ are operators on (A/[A,A])N0 such that F ′w = wF and V ′w = wV , then one easily
calculates F ′V ′ = p. Hence we have FV = p on W (A) whenever A/[A,A] has no p-torsion. But taking Witt
vectors preserves surjections, so the formula holds in general.
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1.6. The relation polynomials ri and the sum and difference polynomials si and di all have the property,
that they only depend on the variables xsj , ysj and as, bs, respectively, with s ≤ i. Therefore, we can repeat
the construction of W (A) starting from vectors of length n and get the group of Witt vectors of length n,

(1.6.1) Wn(A) = An/ ∼

with addition given by the first n sum polynomials,

(a0, a1, . . . , an−1) + (b0, b1, . . . , bn−1) = (s0, s1, . . . , sn−1).

Therefore, W (A) may be identified with the inverse limit of the Wn(A) over the restriction maps

(1.6.2) R:Wn(A)→Wn−1(A), R(a0, . . . , an−1) = (a0, . . . , an−2).

The Frobenius and Verschiebung operators reduce to

F :Wn(A)→Wn−1(A), V :Wn−1(A)→Wn(A),

which, on the other hand, induce the original operators F, V :W (A)→W (A) on the limit over R.

Proposition 1.6.3. The sequences

0→Wn(A) V k

−−→Wn+k(A) Rn

−−→Wk(A)→ 0

are exact.

Proof. Let Ns(A) ⊂ As denote the analogue of (1.3.6). We choose representations of all commutators in A
such that we get a bijection between Ns(A) and [A,A]s. A representative of a typical element in the kernel
of Rn has the form

a = (r0, . . . , rk−1, ak, . . . , an+k−1)

with (r0, . . . , rk−1) ∈ Nk(A). Let ε0, . . . , εk−1 be the corresponding sequence of commutators; let

r = (r0, . . . , rk−1, rk, . . . , rn+k−1) ∈ Nn+k−1(A)

be the vector which corresponds to the sequence of commutators ε0, . . . , εk−1, 0, . . . , 0. We now let b be the
unique solution to the equation r = d(a, b). Then b is equivalent to a and by inspection of the difference
polynomials, we see that b has the form

b = (0, . . . , 0, bk, . . . , bn+k−1).

This shows that ker Rn ⊂ im V k. The opposite inclusion is trivial. �

Remark 1.6.4. We note that W1(A) = A/[A,A], so in particular, proposition 1.20 gives an exact sequences

0→Wn(A) V−→Wn+1(A) Rn

−−→ A/[A,A]→ 0.

We recall that when A is commutative, Rn has a natural multiplicative (but of course, non-additive) section
given by the Teichmüller character,

(1.6.5) τ :A→Wn+1(A), τ(a) = (a, 0, . . . , 0).

In the non-commutative setting, we still have the map τ , but it does not in general factor over A/[A,A]. In
fact, although Wn(A) is bijective to the product (A/[A,A])n, there exists no natural bijection. To see this,
suppose there were a natural set section

ν:A/[A,A]→W2(A)
7



of the restriction, and consider the ring homomorphism φ: Z̃[c] → Z̃{x, y} given by φ(c) = xy − yx. Let us
write A = Z̃{x, y}. By naturality, we would have a commutative diagram

Z̃[c] ν−−−−→ W2(Z̃[c]) F−−−−→ Z̃[c]yφ

yφ

yφ

A/[A,A] ν−−−−→ W2(A) F−−−−→ A/[A,A]

Since ν is a section of the restriction, ν(c) = (c, f(c)) for some f(c) ∈ Z̃[c], so F (ν(c)) = cp + pf(c). By the
commutativity of the diagram, we have

(1.6.6) (xy − yx)p + pf(xy − yx) ≡ 0

modulo commutators. We shall see that this is impossible. We have f(c) =
∑

ancn and hence

f(xy − yx) =
∑

n

an(xy − yx)n.

Here (xy − yx)n is a homogeneous polynomial of degree 2n, which is not a commutator unless n = 1. Since
(xy − yx)p is homogeneous of degree 2p we must have f(c) = apc

p, and then (1.6.6) becomes

(xy − yx)p + pap(xy − yx)p ≡ 0

modulo commutators. Now (xy − yx)p is divisible by p but not by p2 modulo commutators. Therefore, this
equation is not satisfied for any integer ap.

1.7. Let S be a linearly ordered set and let A = F̃p{S} be the free associative Fp-algebra without unit
generated by S. In this section we evaluate the group of Witt vectors W (A). The calculation is inspired by
Illusie’s paper [I].

Consider the free associative Qp-algebra without unit generated by S,

L = Q̃p{S};

we recall the structure of the Hochschild homology of L. Let Ω0 be the set of circular words with letters in
S, that is, the set of orbits of the action of the infinite cyclic group C on the set Γ of finite non-empty words
in S by cyclically permuting the letters in words. The period of ω, by which we mean the length πω of the
orbit ω, divides the length |ω| of the word, and then

(1.7.1) HH∗(L/Qp) ∼= Qp〈Ω0〉 ⊗ Λ{ε}, deg ε = 1

with Connes’ B-operator given by the formula

B(ω ⊗ 1) = (|ω|/πω) ω ⊗ ε.

The map φ:L→ L of (1.3.3.) induces a map of the Hochschild groups which satisfies

(1.7.2) Bφ = pφB.

Let D∗ be the complex obtained from HH∗(L/Qp) by inverting φ and with the differential given by (1.7.2);
we describe D∗ in more detail.

Let Cn be the quotient of C of index n and note that

Ω0 =
∐
n≥1

Map(Cn, S)/C
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where the action by C on the set of maps is induced from the action on Cn. We let Ĉp be the profinite and
hence topological group

Ĉp = lim←−
n

Cpn ,

where the limit is over the natural projections. In other words, Ĉp is the additive group of p-adic integers
written multiplicatively. Then C ⊂ Ĉp acts by multiplication and we define

(1.7.3) Ω =
∐

(d,p)=1

Z×Map(Ĉp × Cd, S)/C,

where the action by C on the mapping space is induced from the diagonal action on Ĉp × Cd. We write
elements of Ω as

ω = (d; r, [α]),

where d is a natural number prime to p, r ∈ Z and [α] is a C-orbit of continuous maps from Ĉp × Cd to S.
By the length of ω we mean the rational number |ω| = prd and by the period we mean the length πω of the
orbit [α]. The period is finite because α is continuous.

We identify Ω0 ⊂ Ω with the subset of those ω where |ω| is an integer and divisible by πω. More generally,
we define Ωn ⊂ Ω to be the subset of those ω such that pn|ω| is an integer divisible by πω and note that

(1.7.4) Ω =
⋃
n≥0

Ωn

We have bijections

(1.7.5) f : Ωn → Ωn−1; f(d; r, [α]) = (d; r + 1, [α]), n ≥ 1,

which induce a bijection f : Ω → Ω, and the inclusion Ω0 ⊂ Ωn followed by the bijection fn: Ωn → Ω0 is
equal to φn: Ω0 → Ω0. Hence Ω is the set obtained from Ω0 by inverting φ and

D∗ = Qp〈Ω〉 ⊗ Λ{ε}, deg ε = 1

with the differential B given by the formula (1.7.1).
We define a sub complex E∗ ⊂ D∗ as follows: call an element τ =

∑
ω∈Ω xωω ⊗ εi integral if xω ∈ Zp, for

all ω ∈ Ω, and let

(1.7.6) E∗ = {τ ∈ D∗ | τ and Bτ are integral}.
More concretely, Ei, i = 0, 1, is a free Zp-module on the generators ei(ω), one for each ω ∈ Ω, given by the
formulas

(1.7.7)

e0(ω) =
{

ω ⊗ 1 , if vp(πω) ≤ r

pvp(πω)−rω ⊗ 1 , if vp(πω) > r

e1(ω) = ω ⊗ ε.

The linear automorphism F :D∗ → D∗ induced from the bijection f : Ω → Ω and and the endomorphism
V = pF−1 both restrict to momomorphisms of the subcomplex E∗, and moreover,

(1.7.8) FV = V F = p, BF = pFB, V B = pBV.

The complex E∗ has a decreasing filtration given by

(1.7.9) Filn Ei = V nEi + BV nEi−1

and we write E∗n = E∗/ Filn E∗. In other words, Filn Ei is the free the submodule of Ei on generators
pmei(ω), where m = min{n, n + r − vp(πω)}. We note that E∗1

∼= HH∗(A).
Let K be the free Zp-module generated by Ω0 and note that K ⊂ E0. We compose the restriction of the

section σ0:A/[A,A] → A to Ω0 ⊂ A/[A,A] with the map τ :A → W (A) to obtain a map ι0: Ω0 → W (A).
We then extend this by linearity to a map

ι0:K →W (A)

using that W (A) is a Zp-module.
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Theorem 1.7.10. The map ι0 extends uniquely to a linear embedding ι:E0 → W (A) such that V ι = ιV .
Moreover, this extended map induces isomorphisms

ι:E0
n →Wn(A),

for all n ≥ 1.

Proof. If ω /∈ Ω0 then we can write

e0(ω) = pvp(πω)−rω = V vp(πω)−rω0,

where ω0 = (d; vp(πω), [α]) ∈ Ω0. It follows that

(1.7.11) E0 =
∑
n≥0

V nK

from which the uniqueness of the extension immediately follows. On the other hand, if an extension exists,
it must be given by ι = V nι0 on the submodule V nK ⊂ E0. To see that this gives a well-defined map, we
must show that

V mι0 = V nι0:V mK ∩ V nK →W (A).

Suppose that m ≤ n. Then V mK ∩ V nK = V m(K ∩ V n−mK), so we may assume that m = 0. Suppose
that ω0 ∈ Ω0 and let x = V nω0. We assume that x ∈ K. This means that if we write x = pnω then ω ∈ Ω0.
Now recall that Ω0 is canonically bijective to the set of circular words in S and note that if ω̃ is the preferred
representative of ω, then preferred representative of ω0 is ω̃pn

. We find

ι0(x) = pn(ω̃, 0, . . . ) = FnV n(ω̃, 0, . . . ) = (0, . . . , 0, ω̃pn

, 0, . . . ) = V n(ω̃pn

, 0, . . . ) = V n(ι0(ω0))

and hence we get a well-defined map ι:E0 →W (A) which commutes with V .
To prove the second part of the theorem, we recall that V :E0 → E0 is a monomorphism so that

V n:E0/V E0 → V nE0/V n+1E0

is an isomorphim. Moreover, we have K ∩ V E0 ⊂ pK and also pK = V FK ⊂ V K ⊂ K ∩ V E0. This gives
a map K/pK → E0/V E0 which is an isomorphism by (1.7.11). Finally, K/pK = A/[A,A] and the map of
short exact sequences

0 −−−−→ A/[A,A] V n

−−−−→ E0
n+1 −−−−→ E0

n −−−−→ 0∥∥∥ yι

yι

0 −−−−→ A/[A,A] V n

−−−−→ Wn+1(A) R−−−−→ Wn(A) −−−−→ 0

furnishes an induction argument which finishes the proof. �

Corollary 1.7.12. The group of Witt vectors W (A) is canonically isomorphic as a Zp-module to the set of
infinite formal sums

∑
ω∈Ω xωe0(ω) with xω ∈ Zp such that vp(xω) ≥ vp(πω) − r and for every N ≥ 0 the

set
{ω ∈ Ω | vp(xω) ≤ N}

is finite. Moreover, the Frobenius F :W (A)→W (A) is induced from the map f : Ω→ Ω of (1.7.5).
10



2. Topological cyclic homology

2.1. In this paragraph we prove theorem A of the introduction. The result was established for commutative
rings in [HM]. The topological cyclic homology functor associates to any unital ring A a (−2)-connected
spectrum TC(A; p). We first recall how this is defined and how one may extend the definition to all associative
rings. For a thorough treatment see [HM]. In this paragraph, G will denote the circle group S1. The finite
subgroup of G of order r will be denote Cr.

For any unital ring A, one has the topological Hochschild spectrum T (A) defined by Bökstedt, [B]. This is
a G-equivariant spectrum indexed on a complete G-universe U in the sense of [LMS]. Therefore, the obvious
inclusion map

(2.1.1) Fr:T (A)Crs → T (A)Cs

from the Crs-fixed set to the Cs-fixed set is accompanied by a transfer map going in the opposite direction

Vr:T (A)Cs → T (A)Crs .

We call the maps Fr and Vr the rth Frobenius and Verschiebung, respectively. However, T (A) has an
additional structure: it is a cyclotomic spectrum, see [HM] §2. In particular, there is an extra map, called
restriction,

(2.1.2) Rr:T (A)Crs → T (A)Cs .

The restriction and Frobenius maps satisfy

(2.1.3) RrRs = Rrs, FrFs = Frs, RrFs = FsRr,

and on the level of homotopy groups, one has in addition

RrVs = VsRr, FrVr = r.

We shall often restrict attention to the p-subgroups Cpn for some prime p. We then simply write R, F and
V instead of Rp, Fp and Vp.

In general it is very difficult to analyze the fixed sets of an equivariant spectrum. However, for a cyclotomic
spectrum, and in particular for T (A), one has the following fundamental cofibration sequence of spectra

(2.1.4) T (A)hCpn

N−→ T (A)Cpn R−→ T (A)Cpn−1 .

The left hand term is the homotopy orbit spectrum whose homotopy groups are approximated by a strongly
convergent first quadrant homology type spectral sequence

E2
s,t = Hs(Cpn ;πtT (A))⇒ πs+tT (A)hCpn

where πtT (A) is a trivial Cpn -module.
Consider the functor

(2.1.5) TR(A; p) = holim
←−
R

T (A)Cpn .

The Frobenius maps F :T (A)Cpn → T (A)Cpn−1 induce a self map of TR(A; p), which we also denote F , and
now topological cyclic homology is defined as the homotopy fixed set

(2.1.6) TC(A; p) = TR(A; p)h〈F 〉.

It is canonically equivalent to the homotopy fiber of F − id: TR(A; p)→ TR(A; p).
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More generally, if A→ B is a map of unital rings, the relative topological Hochschild spectrum

T (A→ B) = hofiber(T (A)→ T (B))

is again a cyclotomic spectrum, so the above discussion applies to T (A→ B) as well. Now if A is a possibly
non-unital ring, we can form the associated unital ring Z n A which is Z ⊕ A with multiplication given by
the formula

(x, a)(x′, a′) = (xx′, xa′ + ax′ + aa′).

This is an augmented ring with augmentation ideal A and we define

(2.1.7) T ′(A) = T (Z n A
ε−→ Z).

If A is unital, we have the ring homomorphism φ: Z n A → A given by φ(x, a) = x · 1 + a and hence a ring
isomorphism ε× φ: Z n A→ Z×A. Moreover, the topological Hochschild spectrum preserves products such
that we get a G-equivariant equivalence T (Z n A) −→ T (Z)× T (A), i.e. for all closed subgroups C ⊂ G, the
induced map of C-fixed point spectra is an equivalence. It follows that in this case, we have a canonical
G-equivalence

T ′(A)→ T (A).

We shall therefore simply write T (A) for the spectrum in (2.1.7). As already mentioned T (A) is a cyclotomic
spectrum, so we can define TR(A; p) and TC(A; p) by the formulas (2.1.5) and (2.1.6), respectively. Finally,
we note that since homotopy limits commute, we get a cofibration sequence of spectra

(2.1.8) TC(A; p)→ TC(Z n A; p) ε−→ TC(Z; p).

If k is a unital ring and A is a k-algebra, we could also form the associated unital k-algebra k nA and define
a functor T ′′(A) = T (k n A

ε−→ k). However, since the topological Hochschild spectrum only depends on the
underlying ring of a k-algebra, T ′′(A) is canonically G-equivalent to T ′(A). So for k-algebras, we can replace
Z by k in (2.1.8).

2.2. We note that for any ring A,

πiT (A) = HHi(A), i = 0, 1,

where we remember HH0(A) = A/[A,A]. For commutative rings, HH1(−) preserves surjections of rings, but
for unital rings in general, this is not true. Instead one has an exact sequence

HH1(A)→ HH1(A/I)→ I/[I,A]→ A/[A,A]

for any two-sided ideal I ⊂ A.

Lemma 2.2.1. For any unital ring A, there is a unital ring B and a ring homomorphism B → A such that

HHi(B)→ HHi(A), i = 0, 1,

are surjections and such that B/[B,B] is a free abelian group.

Proof. Let V = Z{A} be the free associative unital ring on the underlying set of A. Then V/[V, V ] is a free
abelian group and HH0(V )→ HH0(A) is surjective. However, HH1(V )→ HH1(A) need not be a surjection.
To obtain this, we first construct, for each cycle z ∈ A ⊗ A, a ring homomorphism Uz → A such that the
class of z is in the image of the induced map HH1(Uz)→ HH1(A). Suppose that

z =
n∑

i=1

ai ⊗ bi
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let Uz be the associative ring on generators xi,z, yi,z; i = 1, . . . nz; subject to the relation

(2.2.2)
n∑

i=1

(xi,zyi,z − yi,zxi,z) = 0.

Then there is a unique ring homomorphism Uz → A which sends xi,z and yi,z to ai and bi, respectively.
Under this map, the cycle z′ =

∑n
i=1 xi,z ⊗ yi,z is mapped to z. Hence the class of z′ is mapped to the class

of z under the induced map
HH1(Uz)→ HH1(A).

Now let B be the generalized free product of V and the Uz as z runs through all cycles in A ⊗ A, that is,
the coproduct in the category of unital associative rings. Concretely, B is the associative ring on generators
a ∈ A and xi,z, yi,z, where z runs through all cycles in A ⊗ A and i = 1, . . . , nz, subject to the relations
(2.2.2). We have a ring homomorphisms B → A and, for each cycle z, Uz → B such that the composite
Uz → B → A is the original map Uz → A. Hence the induced map

HH1(B)→ HH1(A)

is surjective. Finally, we choose a linear ordering of the set of generators. Then a basis for B/[B,B] is given
by the circular words in the variables a, xi,z and yi,z which does not contain a factor x1,zy1,z. �

Proposition 2.2.3. For any associative ring A, the sequence

0→ π0T (A) V n

−−→ π0T (A)Cpn R−→ π0T (A)Cpn−1 → 0

is exact.

Proof. The fundamental cofibration sequence (2.1.4) induces a long-exact sequence of homotopy groups

· · · → π1T (A)Cpn−1 ∂−→ π0T (A)hCpn

N−→ π0T (A)Cpn R−→ π0T (A)Cpn−1 → 0.

Moreover, the edge homomorphism of the spectral sequence of (2.1.4) gives an isomorphism

ιn:π0T (A)→ π0T (A)hCpn

and [HM], lemma 3.2 shows that N ◦ ιn = V n. We must show that the boundary map ∂ is trivial.
Suppose first that A/[A,A] is p-torsion free. By (2.1.3) the composition

π0T (A) V n

−−→ π0T (A)Cpn F n

−−→ π0T (A)

is multiplication by pn, and therefore in this case, V n is injective. Suppose next that A is a unital ring and
let B → A be as in lemma 2.2.1. We consider the diagram

π1T (B)hCpn

N−−−−→ π1T (B)Cpn R−−−−→ π1T (B)Cpn−1 ∂−−−−→ 0y y y
π1T (A)hCpn

N−−−−→ π1T (A)Cpn R−−−−→ π1T (A)Cpn−1

The spectral sequence (2.1.4) gives an exact sequence

HH1(B) ιn−→ π1T (B)Cpn −→ HH0(B)/pn HH0(B)→ 0
13



and similar for A. It follows that π1T (B)hCpn → π1T (A)hCpn is surjective. An induction argument based
on the diagram above now shows that π1T (B)Cpm → π1T (A)Cpm is surjective, for all m ≥ 0, and hence

∂:π1T (A)Cpn−1 → π1T (A)hCpn

is trivial. This proves the proposition for any unital ring, and finally, the general case follows from (2.1.7)
and the 3× 3-lemma. �

For any ring A, there is a natural map of sets

(2.2.4) ∆r:A→ π0T (A)Cr .

This was defined in [HM], 3.3, for unital rings and extends by (2.1.7) and naturality to all rings. Let
π:A→ A/[A,A] be the projection. Then one has the following formulas, proved in op. cit. lemma 3.3.2:

(2.2.5) Rr ◦∆r = π, Fr ◦∆r = rπ.

We consider the following map of sets

(2.2.6) Ĩ : A[n−1] → π0T (A)Cpn−1 , Ĩ(a0, . . . , an−1) =
n−1∑
i=0

V i(∆pn−1−i(ai)),

where [n− 1] = {0, 1, . . . , n− 1}. We also consider the map of spectra

(2.2.7) w̃:T (A)Cpn−1 → T (A)[n−1],

which on the i’th factor is given by RiFn−1−i. It induces an additive map on homotopy groups, which we
also denote w̃, and the relations (2.2.5) show that

(2.2.8) w̃ ◦ Ĩ = w:A[n−1] → (A/[A,A])[n−1],

where w is the ghost map of (1.1.1).

Theorem 2.2.9. For any associative ring A, the map Ĩ factors to an isomorphism of abelian groups

I:Wn(A)→ π0T (A)Cpn−1

which commutes with the operators R, F and V .

Proof. We show by induction that the map Ĩ of (2.2.6) is surjective, the case n = 1 being trivial. The
fundamental cofibration sequence (2.1.4) gives an exact sequence

A
V n−1

−−−→ π0T (A)Cpn−1 R−→ π0T (A)Cpn−2 → 0

and it follows from [HM], lemma 3.3.1 and lemma 3.3.2, that the image of Ĩ(a0, . . . , an−1) under R is equal
to Ĩ(a0, . . . , an−2). Therefore as a0, . . . , an−2 varies, the elements Ĩ(a0, . . . , an−1) of π0T (A)Cpn−1 form a
set of coset representatives of the image of A under V n−1. Hence Ĩ is surjective. In particular, it follows
from (2.2.4) that the image of the homomorphism

w̃:π0T (A)Cpn−1 → (A/[A,A])[n−1]

is equal to the image of the ghost map.
Suppose that A/[A,A] has no p-torsion. Then by (1.3.6) the ghost map w:Wn(A)→ (A/[A,A])[n−1] is a

monomorphism. Therefore, to prove the theorem in this case it suffices to prove that the same holds for the
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map w̃ above. Again we proceed by induction from the trivial case n = 1. In the induction step, we use the
following map of exact sequences

π0T (A)hCpn−1

N−−−−→ π0T (A)Cpn−1 R−−−−→ π0T (A)Cpn−2 −−−−→ 0ytrf

yw̃

yw̃

0 −−−−→ π0T (A) ι−−−−→ π0T (A)[n−1] π−−−−→ π0T (A)[n−2] −−−−→ 0

The left hand vertical map is the transfer associated with the projection

pr: T (A) ∧ ECpn−1 → T (A) ∧Cpn−1 ECpn−1

and ι and π are the inclusion as the last coordinate and the projection away from the last coordinate,
respectively. The left hand square commutes by [HM], lemma 3.2, and the right hand square by loc. cit.
lemma 3.3.1 and 3.3.2. Moreover, the composition

π0T (A)
pr−→ π0T (A)hCpn−1

trf−→ π0T (A)

is multiplication by pn−1 and hence trf is injective. Therefore, w̃ is injective by induction and the five lemma.
In the general case, we choose a ring epimorphism A′ → A such that A′/[A′, A′] has no p-torsion. Then

π0T (A′)→ π0T (A) is onto and an induction argument based on the diagram

π0T (A′) V n−1

−−−−→ π0T (A′)Cpn−1 R−−−−→ π0T (A′)Cpn−2 −−−−→ 0y y y
π0T (A) V n−1

−−−−→ π0T (A)Cpn−1 R−−−−→ π0T (A)Cpn−2 −−−−→ 0

shows that so is π0T (A′)Cpn−1 → π0T (A)Cpn−1 . Hence Ĩ factors to a surjection of abelian groups

I:Wn(A)→ π0T (A)Cpn−1 .

Moreover, we have the following commutative diagram

0 −−−−→ W1(A) V n−1

−−−−→ Wn(A) R−−−−→ Wn−1(A) −−−−→ 0yI

yI

yI

0 −−−−→ π0T (A) V n−1

−−−−→ π0T (A)Cpn−1 R−−−−→ π0T (A)Cpn−2 −−−−→ 0

with the rows exact by (1.6.3) and (2.2.3), respectively. The claim now follows by induction and the five
lemma. �

We recall from that topological Hochschild homology and its fixed points are Morita invariant. This is
proved in [B] and [BHM] for a unital ring, and the non-unital case follows easily from (2.1.7) and the fact that
Mn(Z n A) ∼= Mn(Z)×Mn(A). We may therefore conclude from (2.2.9) that there is a natural isomorphism

(2.2.10) Wn(Mm(A)) ∼= Wn(A).

One would like also to have an algebraic proof of this fact.
We can now prove theorem A of the introduction. The homotopy groups of the spectrum TR(A; p) defined

in (2.1.5) are given by Milnor’s exact sequence

0→ lim←−
n

(1)πi+1T (A)Cpn−1 → πi TR(A; p)→ lim←−
n

πiT (A)Cpn−1 → 0.

For i = 0 the maps in the limit system on the left are all surjective and hence the derived limit vanishes.
Therefore, we obtain that for any associative ring

(2.2.11) TR0(A; p) ∼= W (A).

Finally, TC(A; p) is the homotopy fiber of F − id: TR(A; p)→ TR(A; p) and since TR(A; p) is a connective
spectrum, theorem A follows.

15



3. Free algebras

3.1. In this paragraph, we evaluate the topological cyclic homology of a free associative Fp-algebra without
unit and prove theorem B of the introduction.

Let k be a unital ring and let S be a set. The free associative k-algebra with unit generated by S, which
we denote k{S}, is the monoid algebra of the monoid 〈S〉 of all finite words in S under concatenation. We
recall that for any monoid Γ, one has the cyclic bar-construction N cy

. (Γ) introduced by Waldhausen. It is a
cyclic set in the sense of Connes with n-simplices

(3.1.1) N cy
n (Γ) = Γn+1

and cyclic structure maps

di(γ0, . . . , γn) = (γ0, . . . , γiγi+1, . . . , γn) , 0 ≤ i < n
= (γnγ0, γ1, . . . , γn−1) , i = n

si(γ0, . . . , γn) = (γ0, . . . , γi, 1, γi+1, . . . , γn) , 0 ≤ i ≤ n
tn(γ0, . . . , γn) = (γn, γ0, . . . , γn−1).

In particular, N cy
. (Γ) is a simplicial set so we can take its geometric realization. The amazing fact about

cyclic sets is that the realization carries a continuous action by the circle G, see e.g. [J].
We shall use theorem 7.1 of [HM] to study the topological Hochschild homology of k{S}. It states that

there is a natural equivalence of G-spectra indexed on U

(3.1.2.) T (k{S}) '
G

T (k) ∧ |N cy
. (〈S〉)|+,

where the smash product on the right is formed in the category of G-spectra indexed on U . The infinite
cyclic group C acts on 〈S〉 by cyclically permuting the letters in a word, and for each orbit ω, the subset of
N cy

. (〈S〉) consisting of those simplices (ω̃0, . . . , ω̃n) for which the product ω̃ ∗ · · · ∗ ω̃n ∈ ω is preserved under
the cyclic structure maps. We denote this cyclic subset by N cy

. (〈S〉;ω) and note the spliting

(3.1.3) N cy
. (〈S〉) =

∐
ω∈Ω0

N cy
. (〈S〉;ω).

The realization decomposes correspondingly. Recall the notion of length and period of circular words from
1.7.

Lemma 3.1.4. Let C(ω) denote the cyclic group of order |ω|/πω. There is a G-equivariant equivalence

|N cy
. (〈S〉;ω)| '

G
S1/C(ω)+,

which depends on a choice of representative for the circular word ω.

Proof. We choose a representative ω̃ for the orbit ω and write |ω| = n + 1. If σ = (ω̃0, . . . , ω̃k) is a simplex
in N cy

. (〈S〉;ω), there exists by definition uσ ∈ C such that uσ · ω̃0 ∗ · · · ∗ ω̃k = ω̃. Hence the simplex σ is
determined by the following data: the ordered partition (|ω0|, . . . , |ωk|) of |ω| and the element uσ ∈ C, or
equivalently, a weakly increasing function θσ: [n]→ [k] and the element uσ ∈ C. Moreover, two simplices σ
and σ′ are equal if and only if θσ and θσ′ are equal and the product u−1

σ uσ′ acts trivially on ω. We also note
that ω is a transitive C-set with isotropy group the subgroup of C of index πω.

We recall that the cyclic category Λ has the same objects as the simplicial category ∆ but more maps:
the automorphism group of [n] is cyclic of order n + 1 with a preferred generator τn and any morphism
f ∈ Λ([k], [n]) decomposes uniquely as f = uθ, with u ∈ AutΛ([n]) and θ ∈ ∆([n], [k]). Also recall the
standard cyclic set

Λ[n] = Λ(−, [n])

which is the free cyclic set generated by the identity ιn: [n]→ [n]. Suppose ω̃ = x0 . . . xn with xi ∈ S. Then
there is a unique cyclic map

α: Λ[n]→ N cy
. (〈S〉;ω)
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which maps ιn to the n-simplex (x0, . . . , xn). The automorphism group of [n] acts on Λ[n] through cyclic
maps; let C(ω) denote the subgroup of index πω. It follows readily from the characterization of the simplices
in N cy

. (〈S〉;ω) that α factors to an isomorphism of cyclic sets

ᾱ: Λ[n]/C(ω)→ N cy
. (〈S〉;ω).

The realization of Λ[n] is homeomorphic to S1 × ∆n, where G acts by multiplication in the first variable.
Moreover, the homeomorphism may be chosen such that τn ∈ AutΛ([n]) acts by the formula

τn(x;u0, . . . , un) = (x− 1
n + 1

;u1, . . . , un, u0),

when we identify S1 with R/Z, see [HM], 6.2. It follows that we have a G-equivariant homeomorphism

|N cy
. (〈S〉;ω)| ∼= S1 ×C(ω) ∆n.

Finally, S1/C(ω) is a strong G-equivariant deformation retract of S1 ×C(ω) ∆n. �

If the set S is linearly ordered, then we have a preferred representative of ω. For later reference we note
that if a word ω̃ is a preferred representative then so is any iterated concatenation ω̃ ∗ · · · ∗ ω̃ of it.

Proposition 3.1.5. Let k be a ring and let k̃{S} be the free associative k-algebra without unit generated by
a linearly ordered set S. Then there is a preferred equivalence of G-equivariant spectra indexed on U

T (k̃{S}) '
G

∨
ω∈Ω0

T (k) ∧ S1/C(ω)+,

where the wedge runs over the set Ω0 of non-empty circular words in S.

Proof. The associative k-algebra with unit k{S} is augmented over k and the augmentation ideal is the
free associative algebra without unit generated by S. Moreover, the map T (k{S}) → T (k) induced by the
augmentation corresponds under (3.1.2) to the map which collapses all the non-trivial summands ω in (3.1.3)
to the base point. Now the claim follows from (2.1.7) �

3.2. Let T be a G-spectrum indexed on a complete G-universe U and let j:UG → U be the inclusion of the
trivial universe. We write j∗T for the G-spectrum indexed on UG obtained by forgetting the value of T on
non-trivial representations. We also call j∗T a spectrum with a G-action or a naive G-spectrum. In this
section, we determine the structure of the Cr-fixed point spectrum

j∗(T ∧ S1/Cs+)Cr ,

which is a spectrum with a G/Cr-action.
The rth root defines a group isomorphism ρ:G → G/Cr which allows us to view a spectrum D with a

G/Cr action as a spectrum ρ∗Cr
D with a G-action. If T is a spectrum with a G-action, we write T (i) for the

spectrum T with G acting through the ith power map.

Proposition 3.2.1. Let T be a G-spectrum indexed on U . For positive integers r and s, let d = (r, s) be
the greatest common divisor and write r′ = r/d and s′ = s/d. Then for every pair of integers m and n such
that mr + ns = d there is a natural non-equivariant equivalence

ρ∗Cr
j∗(T ∧ S1/Cs+)Cr ' ρ∗Cr′

(
G(r′s′)+ ∧ ρ∗Cd

j∗TCd(mr′)
)

given by a chain of equivariant maps of spectra with a G-action.

Proof. We recall from [LMS], p. 89, the duality equivalence of G-spectra indexed on U ,

T ∧ S1/Cs+ 'G
ΣF (S1/Cs+, T ).
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It induces, in particular, an equivalence of spectra with a G-action

j∗(T ∧ S1/Cs+) '
G

j∗ΣF (S1/Cs+, T ) = ΣF (S1/Cs+, j∗T ).

We evaluate the Cr-fixed points of the spectrum on the right. To this end, we recall that if G is any group,
H ⊂ G a closed subgroup and X a left G-space, then the function space F (G/H+, X) carries both a left
G-action and a left action by the Weyl group WH. The G-action is by conjugation and the left WH-action
is induced from the right action of WH on the canonical orbit G/H. Moreover, evaluation in H defines a
WH-equivariant homeomorphism

XH ∼= F (G/H+, X)G.

If we apply this space-wise in the spectrum at hand, we get a G/Cr-equivariant isomorphism

F (G/Cs+, j∗T )Cr ∼= F (G/Cr+, F (G/Cs+, j∗T ))G ∼= F ((G/Cr ×G/Cs)+, j∗T )G.

For a spectrum D with a G × G/Cr-action and integers i and j, we write D(i, j) for the spectrum D with
a new G × G/Cr-action given by (g1, g2) · x = gi

1g
j
2x. With this notion in hand, the spectrum on the right

hand side of the equation above may be written more precisely as

F ((G/Cr(1, 1)×G/Cs(1, 0))+, j∗T (1, 0))G×Cr .

We note the G×G/Cr-equivariant homeomorphism

G/Cr(1, 1)×G/Cs(1, 0) ∼= G(r, r)×G(s, 0)

which raises the first and second coordinate to the rth and sth powers, respectively. The choice of m and n
with mr + ns = d specifies a linear isomorphism of the torus on the right hand side above

(3.2.2) G(r, r)×G(s, 0) ∼= G(d, mr)×G(0,−rs/d); (z, w) 7→ (zmwn, z−s/dwr/d),

and finally, the map

F ((G(d, mr)×G(0,−rs/d))+, j∗T (1, 0))G×Cr → F (G(rs/d)+, j∗TCd(mr/d)),

which takes a function Φ to the function φ given by φ(w) = Φ(1, w), is a G/Cr-equivariant isomorphism
when G/Cr acts on the function spectrum on the right by conjugation. We can view this as a spectrum with
a G/Cr′ -action via the dth root map ρCd

:G/Cr′ → G/Cr,

ρ∗Cd
F (G(rs/d)+, j∗TCd(mr/d)) = F (ρ∗Cd

G(rs/d)+, (ρ∗Cd
j∗TCd)(mr/d)),

so in all we obtain an isomorphism of spectra with a G-action

ρ∗Cr
F (G/Cs+, j∗T )Cr ∼= ρ∗Cr′

F (G(r′s′)+, (ρ∗Cd
j∗TCd)(mr′)).

Finally, the equivalence of [LMS], p. 89, gives us a chain of G-maps which induces a non-equivariant equiv-
alence

Σρ∗Cr′
F (G(r′s′)+, (ρ∗Cd

j∗TCd)(mr′)) ' ρ∗Cr′

(
G(r′s′)+ ∧ ρ∗Cd

j∗TCd)(mr′)
)
.

In effect, this is just Spanier-Whitehead duality, but given by a chain of equivariant maps. �

Remark 3.2.3. Suppose that m′ and n′ is another pair of integers such that m′r +n′s = d, say, m′ = m+ ks
and n′ = n− kr. Then there is an isomorphism of spectra with a G-action

k∗: ρ∗Cr′

(
G(r′s′)+ ∧ ρ∗Cd

j∗TCd)(mr′)
)
→ ρ∗Cr′

(
G(r′s′)+ ∧ ρ∗Cd

j∗TCd)(m′r′)
)
,

given by k∗(g, t) = (g, gkt), and as one readily verifies, the equivalences of (3.2.1) are compatible, for varying
choices of m and n, with these isomorphisms.
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Let σ ∈ πS
1 (G+) be the element which reduces to zero in πS

1 (S0) and to the identity in πS
1 (S1). We get a

degree one map

(3.2.4) δ:π∗T
σ−→ π∗+1(G+ ∧ T )

µ−→ π∗+1T

as the composition of exterior multiplication by σ and the map induced from the action map. More generally,
for C ⊂ G a finite subgroup, we may apply the construction above to the naive G-spectrum ρ∗CTC and get
a map δ:π∗TC → π∗+1T

C . We recall from [H] that δ is a differential provided that multiplication by η ∈ πS
1

on π∗T is trivial. In general, one has δδ = ηδ.

Corollary 3.2.5. A pair of integers m and n with mr + ns = d determines an isomorphism

αmn:π∗(T ∧ S1/Cs+)Cr −→ π∗T
Cd ⊕ π∗−1T

Cd ,

and if also m′r + n′s = d, then (αm′n′ ◦ α−1
mn)(a, b) = (a + kδb, b), where ks = m′ −m.

Proof. The underlying non-equivariant spectrum of the naive G-spectrum on the right hand side of (3.2.1)
is equal to S1

+ ∧ TCd independently of the choice of m and n. Hence

π∗(T ∧ S1/Cs+)Cr ∼= π∗T
Cd ⊕ π∗−1T

Cd ,

where we use σ to identify the right hand side as a direct sum. The isomorphism, however, depends on m
and n, and different choices differ by the isomorphism of (3.2.3). The claim now follows from the definition
of δ. �

Suppose that r′ is a divisor in r. We next evaluate the map on homotopy groups induced from the obvious
inclusion of non-equivariant spectra

Fr/r′ : (T ∧ S1/Cs+)Cr → (T ∧ S1/Cs+)Cr′ .

Let d and d′ be the greatest common divisors of r and s and r′ and s, respectively, and let q = rd′/r′d.

Addendum 3.2.6. If m and n are integers with mr + ns = d, then m′ = mq and n′ = nd′/d is a pair of
integers with m′r′ + n′s = d′ and

(αm′n′ ◦ Fr/r′ ◦ α−1
mn)(a, b) = (qFd/d′a + (q − 1)ηFd/d′b, Fd/d′b)

where η ∈ πS
1 .

Proof. The proof of (3.2.1) gives, in particular, an equivalence of non-equivariant spectra

emn: (T ∧ S1/Cs+)Cr → ΣF (S1
+, TCd).

Chasing through the argument, one sees that there is, with the particular choices of m′ and n′, a strictly
commutative diagram of non-equivariant spectra

(T ∧ S1/Cs+)Cr
emn−−−−→ ΣF (S1

+, TCd)yFr/r′

yΣF (q,Fd/d′ )

(T ∧ S1/Cs+)Cr′
em′n′−−−−→ ΣF (S1

+, TCd′ )

where q:S1 → S1 is the q-fold covering. Now let q!: Σ∞+ S1 → Σ∞+ S1 be the Becker-Gottlieb transfer and
recall that under Spanier-Whitehead duality

ΣF (S1
+, TCd) ' TCd ∧ Σ∞+ S1,
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the map F (q, id) on the left corresponds to the map id∧q! on the right. Finally, we recall that under the
isomorphism πS

∗ (S
1
+) ∼= πS

∗ ⊕ πS
∗−1,

q!(a, b) = (qa + (q − 1)ηb, b).

Hence the given formula for Fr/r′ . �

Finally, it follows immediately from the definition of δ and (3.2.1) that, for any choice of m and n with
mr + ns = d, the map

(3.2.7) δ:π∗(T ∧ S1/Cs+)Cr → π∗+1(T ∧ S1/Cs+)Cr

is given by
(αmn ◦ δ ◦ α−1

mn)(a, b) = (0, (rs/d2)a).

3.3. In this section we evaluate the topological cyclic homology of the free associative Fp-algebra without
unit generated by a linearly ordered set S. In passing, we also give a calculation of the p-typical curves on
K(A) using theorem A of [H].

Suppose that k is a perfect field of characteristic p > 0 and recall from [HM], theorem 5.5, that

(3.3.1) π∗T (k)Cpn−1 ∼= SWn(k){σn}

where σn is a polynomial generator of degree 2. The Frobenius, Verschiebung and restriction maps extend
the corresponding maps on the coefficient ring Wn(k) and

F (σi
n) = σi

n−1, V (σi
n−1) = pσi

n, R(σi
n) = piλi

nσi
n−1,

where λn ∈ Wn−1(Fp) is a unit. For degree reasons, the differential δ of (3.2.4) is trivial. Therefore in this
case, the identification of the homotopy groups in (3.2.5) is canonical, i.e. independent of the choice of m
and n. Now recall the complex E∗ defined in (1.7.6).

Theorem 3.3.2. Let A be the free associative Fp-algebra without unit generated by a linearly ordered set S.
Then there is a canonical isomorphism

π∗T (A)Cpn−1 ∼= E∗n ⊗ S{σn}, deg σn = 2,

which is compatible with the restriction, Frobenius, Verschiebung and differential when these operators act
on the extra generator σn as in (3.3.1).

Proof. The decomposition in (3.1.5) is equivariant, so we get an induced decomposition of the Cpn -fixed set.
The homotopy groups of each summand are given by (3.2.5),

(3.3.3) πiT (A)Cpn−1 ∼=
⊕

ω∈Ωo

Z/pm, i ≥ 0,

where m = m(ω) = min{n, r − vp(πω) + 1}. Moreover, it follows from [HM], theorem 7.1, that under this
decomposition the restriction map

R:π∗T (A)Cpn−1 → π∗T (A)Cpn−2

takes the summand indexed by φ(ω) to the summand indexed by ω by the restriction map

(3.3.4) R:π∗T (Fp)Cpm−1 → π∗T (Fp)Cpm−2

and annihilates summands which are not indexed by elements in the image of φ: Ω0 → Ω0. We can use the
bijections of (1.7.5) to index the sum above by Ωn−1 rather than Ω0. One gets

(3.3.5) πiT (A)Cpn−1 ∼=
⊕

ω∈Ωn−1

Z/pm, i ≥ 0,
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with m = min{n, n + r − vp(πω)}. Letting elements in Ω − Ωn−1 correspond to the trivial group, we may
view the sum (3.3.5) as indexed by Ω. In this setup, the restriction map preserves the index ω: it annihilates
summands with ω ∈ Ω−Ωn−2 and is given by (3.3.4) on the remaining summands. Comparing this to (1.7.9),
we see that the homotopy groups are as stated and that the isomorphism commutes with the restriction map.
It remains to be shown that the Frobenius, Verschiebung and differential are as stated.

The Frobenius is induced from the inclusion F :T (A)Cpn−1 → T (A)Cpn−2 , and hence it preserves the
index in (3.3.3) and covers the bijection f : Ωn−1 → Ωn−2 in (3.3.5). We consider the summand indexed by
ω ∈ Ωn−1 and let s = pn−1|ω|/πω. On this summand, F is the map

F :πi(T (Fp) ∧ S1/Cs+)Cpn−1 → πi(T (Fp) ∧ S1/Cs+)Cpn−2

induced from the inclusion, and was evaluated in (3.2.6). Let pr: Z/pm → Z/pm−1 be the projection. Since
the fixed point spectra T (Fp)Cpr are all Eilenberg-MacLane, multiplication by η is trivial, so we get

F =


pr , if r ≥ vp(πω)
p , if r < vp(πω) and i is even
id , if r < vp(πω) and i is odd.

The claim for F and V readily follows. Finally, the claim for the differential follows from (3.2.7). �

Let E∗ be the complex from 1.7 and let Ê∗ be completed complex

Ê∗ = lim←−
n

E∗n

and let F, V, δ: Ê∗ → Ê∗ be the operators induced from the Frobenius, Verschiebung and differential operators
on E∗.

Corollary 3.3.6. Let A be as above, then

TR∗(A; p) ∼= Ê∗

compatible with the Frobenius, Verschiebung and differential.

Proof. The groups TRi(A; p) = πi TR(A; p) are given by Milnor’s exact sequence

0→ lim←−
n

(1)πi+1T (A)Cpn−1 → TRi(A; p)→ lim←−
n

πiT (A)Cpn−1 → 0.

The extra generator σn vanishes in the limit, since R(σs
n) = psλs

nσs
n−1. Finally, for i = −1, 0 the maps in

the limit system on the left are surjective, so the derived limit vanishes. �

Let
Σ =

∐
(d,k)=1

Map(Ĉp × Cd, S)/C

where the dth summand is the set of continuous maps from Ĉp × Cd to the discrete set S.

Corollary 3.3.7. The topological cyclic homology of A is concentrated in degree −1 and

TC−1(A; p) ∼=
( ⊕

σ∈Σ

Zp

)∧
p
,

the group of infinite sums
∑

σ∈Σ aσσ, aσ ∈ Zp, where, for every n ≥ 0, all but finitely many aσ ∈ pnZp.

Proof. The previous result gives an exact sequence

0→ TC1(A; p)→ Ê1 F−1−−−→ Ê1 → TC0(A; p)→ Ê0 F−1−−−→ Ê0 → TC−1(A; p)→ 0
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and shows that the remaining groups vanish. We first prove that F − 1: Ê1 → Ê1 is an isomorphism.
Recall that Ê1 consists of infinite sums

∑
ω∈Ω aωe1(ω) such that, for every n ≥ 0, only a finite number

of the coefficients aω has vp(aω) ≤ min{n, n + r − vp(πω)}. The Frobenius, given by Fe1(ω) = e1(fω),
acts invertibly making Ê1 an Z[F, F−1]-module, and the topology on Ê1 is such that this extends to a
Z[F ][[F−1]]-module structure. Hence F − 1 is an isomorphism with inverse

(F − 1)−1 =
∞∑

i=1

F−i.

Recall that the Frobenius operator on Ê0 is given by

Fe0(ω) =
{

e0(ω) , if r ≥ vp(πω)
pe0(ω) , if r < vp(πω)

and let Ê0
+ and Ê0

− be the submodules of sums
∑

aωe0(ω) supported on the ω ∈ Ω with r ≥ vp(πω) and
r < vp(πω), respectively. We define ϕ: Ê0 → Ê0 to be the automorphism given by ϕe0(ω) = e0(fω) and
note the commutative diagram with exact rows

0 −−−−→ Ê0
+ −−−−→ Ê0 −−−−→ Ê0

− −−−−→ 0yϕ−1

yF−1

ypϕ−1

0 −−−−→ Ê0
+ −−−−→ Ê0 −−−−→ Ê0

− −−−−→ 0.

The right hand vertical map is an isormorphism with inverse

(pϕ− 1)−1 = −
∑
i≥0

piϕi,

and finally, we have a split exact sequence

0→ Ê0
+

ϕ−1−−−→ Ê0
+

ε−→
( ⊕

σ∈Σ

Zp

)∧
p
→ 0,

where ε is induced from the map ε: Ω→ Σ given by ε(d; r, [α]) = (d; [α]). �

Proof of theorem B. We choose an equivalence P. → A of simplicial rings such that each Ps is a free
associative Fp-algebra without unit. Then W (P.)F is a simplicial abelian group and by definition L∗W (A)F

is the homology of the associated chain complex, [Q]. We recall that there are equivalences of spectra

TC(A; p) ' TC(P.; p) ' holim
−→
∆op

TC(Ps; p).

The skeletal filtration of the homotopy colimit of spectra on the right yields a strongly convergent right half
plane homology type spectral sequence

E1
s,t = πs TC(Pt; p)⇒ πs+t holim

−→
∆op

TC(Ps; p).

Finally, the E1-term is concentrated on the line t = −1 by (3.3.7) and E1
s,−1 = W (Ps)F by theorem A. �

Remark 3.3.8. It is in order to note that in contrast to the case of a free associative algebra over Fp the
topological cyclic homology of a free commutative algebra over Fp is not concentrated in a single degree. We
let I ′m denote the set of ordered tuples i = (i1, . . . , im) with 2 ≤ i1 < i2 < . . . < im ≤ n, for m ≥ 1, and let
I ′0 = {0}. Given i ∈ I ′m, we denote by J(i)′ the set of n-tuples k = (k1, . . . , kn) with ks ∈ N[1/p] such that
kij
6= 0 for all ij ∈ i. The infinite cyclic group C acts on J(i)′ by t · k = pk = (pk1, . . . , pkn); let J(i) denote

the orbit space. Finally, we let
Gm = {(i, [k]) | i ∈ I ′m, [k] ∈ J(i)}.

Then one has

(3.3.9) T̃Cm−1(Fp[X1, . . . , Xn]) ∼=
( ⊕

g∈Gm

Zp

)∧
p
.

It is non-zero if and only if 0 ≤ m ≤ n− 1.
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