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1. Introduction

This paper calculates the relative algebraic K -theory K∗(k [x ]/(xn ), (x )) of a trun-
cated polynomial algebra over a perfect field k of positive characteristic p. Since
the ideal generated by x is nilpotent, we can apply McCarthy’s theorem: the rela-
tive algebraic K -theory is isomorphic to the relative topological cyclic homology,
[Mc], and it is the latter groups we actually evaluate.

The result is best expressed in terms of big Witt vectors. Let Wm (k ) denote
the big Witt vectors in k of length m , i.e. the multiplicative group

Wm (k ) = (1 + xk [[x ]])×/(1 + xm+1k [[x ]])×,

and recall the Verschiebung map

Vn :Wm (k )→Wmn (k )

given by the substitution Vn (f (x )) = f (xn ). The relative K -theory K (k [x ]/(xn ),
(x )) is given by the fibration sequence

K (k [x ]/(xn ), (x ))→ K (k [x ]/(xn ))→ K (k ),

with a corresponding exact sequence of homotopy groups

0→ K∗(k [x ]/(xn ), (x ))→ K∗(k [x ]/(xn ))→ K∗(k )→ 0.

The groups K∗(k ) were evaluted by Quillen in [Q] when k is a finite field. For a
general perfect field of characteristic p > 0 one knows that the p-adic K -groups
of k vanish in positive degrees by [K]. Theorem 4.2.10 below together with
McCarthy’s theorem gives

� Supported in part by NSF grant
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Theorem A. Let k be a perfect field of positive characteristic. Then

K2m−1(k [x ]/(xn ), (x )) ∼= Wmn (k )/VnWm (k )

and the groups in even degrees are zero.
The result extends calculations by Aisbett and Stienstra of K3(k [x ]/(xn ), (x )).

It was announced in [M], but was there stated as K2m−1(k [x ]/(xn ), (x )) ∼=
Wmn−1(k )/VnWm−1(k ).

In order to evaluate the topological cyclic homology TC(A) one begins with
the topological Hochschild spectrum T (A). This is an S 1-equivariant spectrum.
In the case where A = k [x ]/(xn ), standard cyclic theory leads to an equivalence
of spectra

T (A) �
S 1
T (k ) ∧ N cy(Πn ),

where N cy(Πn ) is the cyclic bar-construction of the pointed monoid Πn =
{0, 1, x , . . . , xn−1}. Thus, for each closed subgroup C ⊂ S 1, the homotopy
groups of the fixed sets T (A)C may be viewed as the C -equivariant homology
groups T (k )C∗ (N cy(Πn )). Knowledge of π∗T (A)C in turn determine the topolog-
ical cyclic homology groups of A. There is an equivariant splitting

N cy(Πn ) ∼=
�

s≥0
N cy(Πn ; s),

where N cy(Πn ; 0) = S 0 and for s ≥ 1 a homeomorphism

N cy(Πn ; s) ∼= S 1+ ∧Cs (∆s−1/Cs ·∆s−n ).

Here ∆s−1 is the standard s − 1 simplex with Cs -action given by cyclic permu-
tation of the vertices, and ∆s−n ⊂ ∆s−1 is the face spanned by the first s−n +1
vertices. Given [HM], the main difficulty we have faced in this paper is to de-
termine the S 1-equivariant homotopy type of the right hand side in the equality
above. This is done in Sect. 3 below and is based on the concept of regular cyclic
polytopes. One considers ∆s−1 as embedded in the regular representation Cs
by mapping the vertices to the group elements. Let d = [(s−1)/n], and consider
the projection

πd : Cs → Vd ; Vd = (ξs )⊕ . . .⊕ (ξds ).

The image of ∆s−1 is the regular cyclic polytope Ps,d in 2d . It contains Qs,d =
πd (Cs ·∆s−n ), so we get a map

πd :∆s−1/Cs ·∆s−n → Ps,d/Qs,d .

For dn < s < (d + 1)n it turns out that ∂Ps,d ⊂ Qs,d and that 0 /∈ Qs,d , and we
can therefore compose with the projection

r :Ps,d/Qs,d → Ps,d/∂Ps,d = S Vd ;

let θs,n = r ◦πd denote the composite. If s = (d +1)n , we project instead to Vd+1,
and use another projection into the join of Cn and S Vd
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r :Ps,d+1/Qs,d+1 → Cn ∗ S Vd .

Again, let θs,n = r ◦ πd+1. The following result is proved in paragraph 3 by a
mixture of geometry of cyclic polytopes and homological techniques based on
results from [BAG].

Theorem B. There are S 1-equivariant equivalences

S 1+ ∧Cs (∆s−1/Cs ·∆s−n )

�
S 1

�
S 1+ ∧Cs S Vd if dn < s < (d + 1)n
S 1+ ∧Cs (Cn ∗ S Vd ) if s = (d + 1)n

given by the maps S 1+ ∧Cs θs,n .

We conjecture that the maps θs,n are themselves Cs -equivariant equivalences,
such that

∆s−1/Cs ·∆s−n �Cs

�
S Vd , if dn < s < (d + 1)n
Cn ∗ S Vd , if s = (d + 1)n

which of course implies Theorem B. If θs,n is not an equivalence its cofiber Xs,n
would be rather complicated in that the Cs -module H̃∗(Xs,n ) has vanishing group
homology by Theorem B.

It is the simplicity of the answer in Theorem B which makes possible the
calculation of T (k )C∗ (N cy(Πn )) and hence the proof of Theorem A: Vd is an S 1-
module so S 1+ ∧Cs S Vd ∼= S 1/Cs+ ∧ S Vd and T (k )∧ S Vd is the Vd th deloop of the
S 1-spectrum T (k ), so one really only needs to calculate the equivariant spectrum
homology of the circles S 1/Cs .

It is a pleasure to acknowledge the help we have received from other mathe-
maticians. First, we thank T. Geisser for urging us to use the topological cyclic
homology techniques to prove Theorem A, which he conjectured. Second, we
are grateful to L. Bærentzen for some very helpful computer calculations at an
early stage. Finally, we thank V. I. Arnold, M. Boij and B. Totaro for help with
the key Theorem 3.1.2. We had long ago conjectured it to be true, but had grave
difficulties in proving it. Arnold and Totaro sent us two independent proofs, at
the very same time as M. Boij supplied us with the final details in the proof we
present.

2. Topological Hochschild homology of truncated polynomial algebras

2.1. This section describes the Hochschild homology and its topological extension
for truncated polynomial algebras, and is mostly a recollection of results from
[BAG] and [HM], but the reader is also referred to [H] and [M].

We begin with the linear case. For any ring A and A-bimodule M we write
HH(A;M ). for the simplicial abelian group with k -simplices

HH(A;M )k = M ⊗ A⊗k
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and simplicial structure maps

di (m ⊗ a1 . . .⊗ ak ) = m ⊗ . . .⊗ ai ai+1 ⊗ . . .⊗ ak , 0 ≤ i < k
= akm ⊗ a1 ⊗ . . .⊗ ak−1 , i = k

si (m ⊗ a1 . . .⊗ ak ) = m ⊗ . . .⊗ ai ⊗ 1⊗ ai+1 ⊗ . . .⊗ ak , 0 ≤ i ≤ k .

The homotopy groups of the realization HH(A;M ), or equivalently, the ho-
mology of the associated chain complex, are the Hochschild homology groups
HH∗(A;M ). When M = A with its standard A-bimodule structure we shorten
notation to HH(A).. The chain complex associated with HH(A;M ). is derived
from the two-sided bar construction by tensoring with M over A⊗Aop. Therefore

HH∗(A;M ) ∼= TorA⊗A
op

∗ (A,M ),

provided that A is flat over , i.e. torsion free. When the ring A is of the form
[x ]/(f (x )), where f (x ) is a monic polynomial, one has the much smaller (peri-
odic) resolution

(2.1.1) · · · ∆f /∆x−−−−→ A⊗ A ∆x−−−−→ A⊗ A
∆f /∆x−−−−→ A⊗ A

∆x−−−−→ A⊗ A µ−−−−→ A→ 0,

where ∆f = 1⊗ f (x )− f (x )⊗1 and ∆x = 1⊗x−x⊗1. Specializing to f (x ) = xn ,
where A is a truncated polynomial algebra, one gets for M = A,
(2.1.2)

HHi ( [x ]/(xn )) ∼=






[x ]/(xn ), if i = 0
x [x ]/(xn ), if i > 0 and even
[x ]/(xn−1)⊕ /n �xn−1�, if i is odd

The k -simplices HH( [x ]/(xn ))k has a -basis consisting of x i0 ⊗ . . .⊗ x ik . We
give such a monomial the weight w = i0 + . . . + ik , and note that the weight
is preserved by the face and degeneracy operators. Hence we get a direct sum
decomposition of simplicial abelian groups

(2.1.3) HH( [x ]/(xn )). ∼=
�

s≥0
HH( [x ]/(xn ); s).

The homology of the summand HH( [x ]/(xn ); 0). is equal to concentrated
in degree zero. To evaluate the homology of the remaining summands, we note
that a chain homotopy equivalence from (2.1.1) to the two-sided bar construction
must have weight (k/2)n , for k even, and ((k − 1)/2)n + 1, for k odd, cf. [HM],
6.3. Hence (2.1.2) shows that the non-zero groups are
(2.1.4)

HH2d ( [x ]/(xn ); s) = HH2d+1( [x ]/(xn ); s) = , if n does not divide s
HH2d+1( [x ]/(xn ); s) = /n , if n divides s,

where d is the integer part
d = [

s − 1
n

].
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The Buenos Aires Group in [BAG] worked out explicitely the chain homotopy
equivalence from (2.1.1) to the (normalized) two-sided bar construction, follow-
ing the standard procedure from e.g. [ML], p. 236. This gives us the following
formulas for the cycles in the Hochschild complex which carry the homology in
(2.1.4):

(2.1.5)

ι2d = (−1)d
�

k0+...+kd=s−d
1≤ki≤n−1

xk0 ⊗ xk1 ⊗ x ⊗ xk2 ⊗ x ⊗ . . .⊗ xkd ⊗ x ,

ι2d+1 = (−1)d
�

k0+...+kd=s−d−1
0≤ki≤n−1

xk0 ⊗ x ⊗ xk1 ⊗ x ⊗ xkd ⊗ x ,

We note that since s > dn , the lower bound on ki is redundant. The final result
we shall need from [BAG] is the value of Connes’ B -operator. On the chain
level,

(2.1.6) B (ι2d ) = −sι2d+1,

and B is zero in odd degrees.

2.2. Let Π be a pointed monoid, i.e. a monoid with a designated base point such
that the product map factors to µ:Π ∧Π → Π , and let A be a ring. The pointed
monoid algebra is the set A(Π) = A[Π]/A[∗] with the ring structure induced
from that on A[Π]. So in particular,

(2.2.1) A[x ]/(xn ) = A(Πn ),

where Πn = {0, 1, x , . . . , xn−1} considered as a pointed monoid with 0 as base
point and xn = 0.

The cyclic bar construction, introduced by Waldhausen, is the cyclic set
N cy. (Π) with k -simplices

(2.2.2) N cy
k (Π) = Π

∧(k+1)

and the Hochschild-like structure maps

di (π0∧ . . . ∧πk ) = π0∧ . . . ∧πiπi+1∧ . . . ∧πk , 0 ≤ i < k
= πkπ0∧π1∧ . . . ∧πk−1 , i = k

si (π0∧ . . . ∧πk ) = π0∧ . . . ∧πi∧1∧πi+1∧ . . . ∧πk , 0 ≤ i ≤ k
τk (π0∧ . . . ∧πk ) = πk∧π0∧ . . . ∧πk−1.

Its geometric realization, which we denote N cy(Π), has a continuous S 1-action.
Moreover, the reduced chains (N cy. (Π)) and HH( (Π)). are isomorphic sim-
plicial abelian groups, so

(2.2.3) H̃∗(N cy(Π)) ∼= HH∗( (Π)).

Under this isomorphism, Connes’ B -operator is given by the composition
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B : H̃∗(N cy(Π)) [S 1]−−−−→ H̃∗+1(S 1+ ∧ N cy(Π)) µ∗−−−−→ H̃∗+1(N cy(Π)),

where the first map is exterior multiplication by [S 1] ∈ H1(S 1), and the second
map is induced from the action map, cf. [H], Proposition 1.4.5.

The topological Hochschild spectrum T (A) of a ring A, is an S 1-equivariant
spectrum. We refer the reader to [HM], §1, or [M], 2.3-2.4 for the definition and to
[LMS] for the notion of an equivariant spectrum. In the case of a pointed monoid
algebra, we have from [HM], Theorem 6.1, an equivalence of S 1-equivariant
spectra

(2.2.4) T (A(Π)) �
S 1
T (A) ∧ N cy(Π),

where the smash product on the right is formed in the category of S 1-equivariant
spectra.

We need to determine the S 1-space N cy(Πn ). First, we have a decomposition
analogous to (2.1.4) of the cyclic set

(2.2.5) N cy. (Πn ) =
�

s≥0
N cy. (Πn ; s),

and the realization decomposes accordingly. The isomorphism (2.2.3) is compati-
ble with these decompositions, so we know the reduced homology H̃ (N cy(Πn ; s))
by (2.1.4). However, to make use of (2.2.4), we need to determine the S 1-
equivariant homotopy type of N cy(Πn ; s). We note that N cy. (Πn ; s) as a cyclic
set is generated by the single simplex

x (s) = x∧ . . . ∧x ∈ N cy
s−1(Πn ; s).

Let Λs−1. be the cyclic (s − 1)-simplex, i.e. the cyclic set with k -simplices
Λ([k ], [s−1]), cf. [L]. Its realization is homeomorphic to S 1×∆s−1. We choose
the homeomorphism from [HM], 6.2, where the Cs -action induced from the Cs -
action in the second factor in Λ([k ], [s − 1]) becomes the diagonal action of
S 1 × ∆s−1 which rotates the first factor by 2π/s and cyclically permutes the
vertices of ∆s−1.
Lemma 2.2.6. The characteristic map ιs :Λs−1. → N cy. (Πn ; s) which represents
x (s) factors over Cs · Λs−n. and defines an S 1-equivariant homeomorphism

(Λs−1/Cs · Λs−n )/Cs ∼= N cy(Πn ; s).

Proof. The composition Λs−n (d0)n−1
−−−−→Λs−1 ιs

−−−−→N cy. (Πn ; s) is constant because
dn−10 x (s) = xn∧x∧ . . . ∧x = 0 and therefore τ is−1Λ

s−n. also maps to zero, for
i = 0, 1, . . . , s−1. Hence ιs factors over Λs−1. /Cs ·Λs−n. . On the other hand, x (s)
is invariant under cyclic permutation, so we get

(Λs−1/Cs · Λs−n )/Cs → N cy(Πn ; s).

This is surjective because N cy. (Πn ; s) is generated by x (s), and it is injective
because the only relation in N cy. (Πn ; s) comes from xn = 0. ��
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3. Cyclic polytopes and the structure of N cy(Πn )

3.1. We embed ∆s−1 in the regular representation Cs by letting the i th vertex
map to t i , where t ∈ Cs is the generator, and let ∆s−n ⊂ ∆s−1 be the inclusion
onto the first s + 1− n vertices. The Cs -action on Cs restricts to one on ∆s−1

and we set

Cs ·∆s−n =
s−1�

i=0

t i ·∆s−n ⊂ ∆s−1.

We may then restate Lemma 2.2.6 as

(3.1.1) N cy(Πn ; s) ∼= S 1+ ∧Cs (∆s−1/Cs ·∆s−n ),

where the S 1-action on N cy(Πn ; s) corresponds to the induced S 1-action on the
right hand. The purpose of this paragraph is to calculate explicitely the S 1-
equivariant homotopy type of the right hand side of (3.1.1).

The trigonometric moment curve in 2d dimensions is

x (t) = (eit , e2it , . . . , edit ) ∈ d

or upon identifying d with 2d

x (t) = (cos t , sin t , cos 2t , sin 2t , . . . , cos dt , sin dt) ∈ 2d .

Consider the s points xj = x (2πj/s), j = 0, 1, . . . , s − 1, on the trigometric
moment curve. Their convex hull in 2d will be denoted Ps,d . It is the regular
cyclic s-polytope in 2d -space, [G]. Note that Ps,1 is the regular s-gon in the
plane. If s ≤ 2d + 1 then Ps,d is an (s − 1)-simplex.

The face structure of Ps,d is completely known. We shall only need the
structure of facets, i.e. codimension 1 faces, where one has Gale’s evenness
criterion: Picture the s points xj on the circle (e.g. by projecting them onto Ps,1).
Then a facet of Ps,d is the convex hull of d pairs of points in the cyclic ordering,
that is,

F = �xi1 , xi1+1, . . . , xid , xid+1�,

where � � denotes the convex hull in 2d . Moreover, the facets are all (2d −1)-
simplices. The original and very readable account of this fact is [C]. See also
[B] and [Z].

The cyclic group Cs acts on Ps,d by cyclically permuting the vertices. This
action is linear. Indeed, let Vd denote the representation

Vd = (ξs )⊕ . . .⊕ (ξds ).

Then the points x0, x1, . . . , xs−1 exactly form the orbit of x0 = (1, . . . , 1) under
the action of Cs , and the action of Cs on Vd restricts to the Cs -action of Ps,d
which permutes the vertices.

Let �x0, . . . , xk � be the convex hull of the first (k + 1) points xν = x (2πν/s),
and let E be the convex hull
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E = �x (t) | 0 ≤ t < 2πd/(d + 1)�.

We note that �x0, . . . , xk � ⊂ E when k/s < d/(d + 1).

Theorem 3.1.2. E does not contain 0. In particular, 0 /∈ �x0, . . . , xk � for k/s <
d/(d + 1).

Proof. Let t0 = 2π/d + 1, and let H be the linear subspace

H = Span{x (0), x (t0), . . . , x ((d − 1)t0); x �(t0), . . . , x �((d − 1)t0)}.

Since x (0) + x (t0) + . . . + x (dt0) = 0, we have x (dt0) ∈ H . Consider the distance
(with sign) from H to x (t),

δ(t) = det(x (0), x (t0), . . . , x ((d − 1)t0), x �(t0), . . . , x �((d − 1)t0), x (t))

It is non-zero, since otherwise we would have E ⊂ H , and this is impossible
since E is 2d -dimensional, and H has codimension at least 1. Now δ(t) is a
trigonometric polynomial of degree d ,

δ(t) =
d�

k=0

(ak cos kt + bk sin kt),

and therefore has at most 2d roots counted with multiplicity in the interval
[0, dt0] ⊂ [0, 2π). (Write it as a polynomial in eit .) But 0 and dt0 are roots and
t0, . . . , (d − 1)t0 are double roots, so these are all roots. It follows that δ(t) has
constant sign on [0, dt0], δ(t) ≥ 0 or δ(t) ≤ 0. Finally,

E ∩ H ⊂ �x (0), x (t0), . . . , x ((d − 1)t0)�.

This is a facet of the d -simplex �x (0), . . . , x (dt0)� and therefore does not contain
0, the barycenter. ��

Remark 3.1.3. The proof above is basically the same as Totaro’s proof. There is
a more combinatorial proof, pointed out by G. Ziegler and by B. Totaro, which
runs as follows.

The combinatorial structure of Ps,d does not depend on the choice of points
xj = x (2πj/s). The convex hull of any s distinct points on the trigonometric
moment curve is combinatorially equivalent to Ps,d . Let T consist of s points in
the interval [0, dt0] with {0, t0, . . . , dt0} ⊂ T and let P (T ) = �x (t) | t ∈ T �. Then
P (T ) is a cyclic polytope and Gale’s evenness criterion shows that the set

F = �x (0), x (t0), . . . , x (dt0)�

is a face of P (T ). Now 0 is the barycenter of F , so in particular, 0 is an interior
point of F . It follows that 0 /∈ P (T − {dt0}). ��
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We recall the structure of the regular representation Cs ,

Cs ∼= ⊕ V[(s−1)/2] (⊕ −),

where the sign representation − occurs only for even s . In particular, we have
a projection

(3.1.4) πd : Cs → Vd

whenever d ≤ [(s − 1)/2]. By definition Ps,d = πd∆s−1, and we now let Qs,d =
πd (Cs ·∆s−n ), or

Qs,d = Cs · �x0, . . . , xs−n� =
s−1�

i=0

�xi , xi+1, . . . , xi+s−n�.

If s < (d + 1)n then the theorem shows that 0 /∈ Qs,d . Hence radial projection
away from 0 gives a Cs -equivariant map

(3.1.5) r :Ps,d/Qs,d → Ps,d/∂Ps,d = S Vd

to the one-point compacification of the representation Vd .

Remark 3.1.6. If s > nd then Qs,d contains the boundary ∂Ps,d . Indeed, the
boundary is a union of the facets, given by Gale’s evenness criterion. A facet

F = �xi1 , xi1+1, . . . , xid , xid+1�

is contained in Qs,d if there is a gap of at least n − 1 points between some of
the vertices considered as points on the circle. The worst case is then the facet

F = �x0, x1, xn , xn+1, . . . , x(d−1)n , x(d−1)n+1�,

or any of its cyclic consequences. But the gap between x(d−1)n+1 and x0 = xs is
s − (d − 1)n − 2 which is greater than or equal to n − 1 precisely when s > dn .

Suppose that dn < s < (d +1)n . We expect that in this case radial projection
away from 0 defines an equivariant strong deformation retract of Qs,d ⊂ Ps,d
onto the boundary ∂Ps,d , such that the map r above is a Cs -equivariant homotopy
equivalence. We shall not need this however.

3.2. In this section, we consider the case where n does not divide s; dn <
s < (d + 1)n . The facets of the convex polytope Ps,d are (2d − 1)-dimensional
simplices, so we may triangulate Ps,d by taking cones from x0 of the facets which
do not contain x0,

Ps,d =
�

x0 /∈F

conex0 (F ).

This triangulation is closely related to the Buenos Aires formula (2.1.5). Indeed,
let

(3.2.1) Xs,d = {(k0, . . . , kd ) |
�
ki = s − d , 1 ≤ ki}

Ys,d = {(k0, . . . , kd ) |
�
ki = s − d , 1 ≤ ki ≤ n − 1}.



82 L. Hesselholt, I. Madsen

A simple calculation in HH( [x ]/(xn )). shows that

dkx⊗s = dk0−12d+1 d
kd−1
2d−1 . . . d

k1−1
1 x⊗s

= xk0 ⊗ xk1 ⊗ x ⊗ xk2 ⊗ x ⊗ . . .⊗ xkd ⊗ x ,

such that we may rewrite (2.1.5) as

(3.2.2) ι2d =
�

k∈Ys,d

dkx⊗s .

Dually,

(3.2.3) dk:∆2d → ∆s−1; dk = (d1)k1−1(d3)k2−1 . . . (d2d+1)k0−1

gives a 2d -face of ∆s−1. If we embed ∆s−1 in Cs as above, then dk is the
affine map given by the ordered set of vertices

(1, t k1 , t k1+1, t k1+k2+1, t k1+k2+2, . . . , t k1+...+kd+d−1, t k1+...+kd+d ).

The projection πd :∆s−1 → Ps,d of (3.1.4) maps t i to xi , so we get

πd (dk(∆2d )) = conex0 (Fk),

where Fk is the facet of Ps,d = πd (∆s−1) given by

Fk = �xk1 , xk1+1, xk1+k2+1, xk1+k2+2, . . . , xk1+...+kd+d−1, xk1+...+kd+d �.

Conversely, by Gale’s evenness criterion any facet, which does not contain x0,
has this form, and hence

(3.2.4) Ps,d =
�

k∈Xs,d

conex0 (Fk).

The numbers k0 − 1, . . . , kd − 1 give the width of the gaps between the vertices
in the simplex conex0 (Fk). Hence the simplex πddk(∆2d ) is in Qs,d if and only if
one of these gaps is at least n−1, or equivalently, if and only if k ∈ Xs,d−Ys,d .

Lemma 3.2.5. The chain c =
�
k∈Ys,d

dk is a cycle in C∗(∆s−1,Cs ·∆s−n ), and
r∗πd∗(c) generates H2d (S Vd ).

Proof. We note that the sum ki + kj of any pair of indices is strictly greater than
n − 1. For on the one hand k0 + . . . + kd = s − d > (n − 1)d , and on the other
hand each kr ≤ n − 1, and hence

ki + kj > (n − 1)d − (n − 1)(d − 1) = n − 1.

In particular, d0(dk) ∈ C∗(Cs · ∆s−n ), since the gap between t k1+...+kd+d and t k1
is k0 + k1 − 1 and hence greater than or equal to n − 1.

Now consider d1dk. If k1 = n − 1 then the gap between 1 and t k1+1 is n − 1
and hence d1(dk) ∈ C∗(Cs∆s−n ). If k1 ≤ n−2 then the remaining ki are at least
2, so we also have l ∈ Ys,d, where
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l = (k0, k1 + 1, k2 − 1, k3, . . . , kd ), if d ≥ 2
(k0 − 1, k1 + 1), if d = 1.

But d1(dk) = d2(d l) and the two faces appear with opposite sign in the boundary
of the chain c. The other faces di (dk) are treated analogously. ��

By Poincaré duality the 2d th homology of Ps,d/Qs,d is free abelian of rank
equal to the number of connected components of Ps,d−Qs,d . The simplicial chain
πd∗(c) consists of simplices of Ps,d which covers Ps,d −Qs,d . Thus it represents
the sum of the generators of the summands in H2d (Ps,d ,Qs,d ). The map r maps
the connected component of Ps,d − Qs,d which contains 0 to S Vd by a degree
one map, and it follows that r∗πd∗(c) generates H2d (S Vd ).

Proposition 3.2.6. The map S 1+ ∧Cs (∆s−1/Cs∆s−n )→ S 1+ ∧Cs S Vd , induced from
the composition of r and πd is a homotopy equivalence.

Proof. Both spaces are simply connected when d ≥ 1, so it suffices to argue that
the map is a homology equivalence. To this end, we consider the commutative
diagram

∆s−1/Cs ·∆s−n f−−−−→ S 1+ ∧Cs ∆s−1/Cs ·∆s−n ιs−−−−→ N cy(Πn ; s)
�πd

�π̂d

Ps,d/Qs,d −−−−→ S 1+ ∧Cs Ps,d/Qs,d
�r

�r̂

S Vd g−−−−→ S 1+ ∧Cs S Vd ,

where f and g maps u to [1, u]. We remarked above that r∗πd∗(c) represents the
generator. Since Vd extends to an S 1-module,

S 1+ ∧Cs S Vd ∼= S 1/Cs+ ∧ S Vd ; [z , v] �→ [z , zv].

This implies that g induces an isomorphism on homology in dimension 2d , and
that the composite

H̃2d (S 1+ ∧Cs S Vd )
[S 1]−−−−→ H̃2d+1(S 1+ ∧ (S 1+ ∧Cs S Vd ))

µ∗−−−−→ H̃2d+1(S 1+ ∧Cs S Vd ),
is multiplication by s , cf. (2.2.3). On the other hand, since ιs is a homeomorphism
by Lemma 2.2.6, the Buenos Aires formula (2.1.5) and the calculation (3.2.2)
shows that f∗(c) is the generator of H2d (S 1+ ∧Cs (∆s−1/Cs · ∆s−n )). Commuta-
tivity of the diagram shows that r̂ ◦ π̂d induces an isomorphism on homology in
dimension 2d . To prove the same in dimension 2d + 1 we use the commutative
diagram

H̃2d (N cy(Πn ; s))
B−−−−→ H̃2d+1(N cy(Πn ; s))

�∼=
�

H̃2d (S 1+ ∧Cs S Vd ) −−−−→ H̃2d+1(S 1+ ∧Cs S Vd )
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and the fact that the upper horizontal morphism is Connes’ B -operator, hence is
multiplication by −s according to (2.1.6). Since the lower map multiplies by s ,
the right hand vertical map is an isomorphism. ��

3.3. We next treat the case where n divides s; s = (d + 1)n and Vd = (ξs ) ⊕
. . .⊕ (ξds ). There is a cofibration sequence of Cs -spaces

(3.3.1) Cn+ ∧ S Vd
pr2−−−−→ S Vd −−−−→ Cn ∗ S Vd ,

where Cs acts via the projection onto Cn and diagonally in the smash and join.
Indeed, the mapping cone of pr2 is homeomorphic to Cn ∗S Vd /Cn ∗∞ and Cn ∗∞
is contractible. Hence

(3.3.2) S 1+ ∧Cs (Cn ∗ S Vd ) ∼= (S 1 ∪n e2) ∧ S Vd .

Indeed, the left hand side is the cofiber

cof(S 1+ ∧Cs (Cn+ ∧ S Vd )→ S 1+ ∧Cs S Vd ) ∼= cof(S 1+ ∧Cd+1 S Vd → S 1+ ∧Cs S Vd )
∼= cof(S 1/C(d+1)+ ∧ S Vd → S 1/Cs+ ∧ S Vd ) ∼= cof(S 1/C(d+1)+ → S 1/Cs+) ∧ S Vd
∼= (S 1 ∪n e2) ∧ S Vd .

Here the second homeomorphism uses that the Cs -module Vd is the restriction
of an S 1-module so that

S 1+ ∧Cs S Vd ∼= S 1/Cs+ ∧ S Vd , [z , v] �→ [z , zv],

where now on the right hand side the S 1-action is diagonal. In particular,
H2d+1(S 1+ ∧Cs (Cn ∗ S Vd )) = /n . It follows from (3.3.1) that

(3.3.3) H2d+1(Cn ∗ S Vd ) = ICn ,

the augmentation ideal in the integral group ring Cn . We have

ICn/IC 2
n
∼= Cn ,

since the left hand side is H0(Cn ; ICn ) which is isomorphic to H1(Cn ; ) by the
exact homology sequence associated with 0→ ICn → Cn

�−−−−→ → 0. The
isomorphism associates to g ∈ Cn the class g − 1 in ICn/IC 2

n .

Lemma 3.3.4. The map g:Cn ∗ S Vd → S 1+ ∧Cs (Cn ∗ S Vd ), g(u) = [1, u], induces
the natural map

ICn → ICn/IC 2
n
∼= /n

on homology in dimension 2d + 1.
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Proof. Since the action by Cs on S 1+ ∧ (Cn ∗ S Vd ) is free in the pointed sense,
orbits and homotopy orbits agree, so we have a spectral sequence

E 2 = H∗(Cs , H̃∗(S 1+ ∧ (Cn ∗ S Vd )))⇒ H̃∗(S 1+ ∧Cs (Cn ∗ S Vd )).

It is concentrated on two horizontal lines, since

H̃2d+1(S 1+ ∧ (Cn ∗ S Vd )) = H̃2d+2(S 1+ ∧ (Cn ∗ S Vd ))

are the only non-zero groups. Thus both lines are H∗(Cs ; ICn ). But

H∗(Cs ; Cn ) ∼= H∗(Cd+1; )

by Frobenius reciprocity, cf. [Br], and H∗(Cs ; ICn ) can be obtained from the
exact sequence

· · ·→ H∗(Cs ; ICn )→ H∗(Cs ; Cn )→ H∗(Cs ; )→ · · ·

It follows that H∗(Cs ; ICn ) vanishes in odd degrees and is equal to /n in even
degrees.

By (3.3.2) the spectral sequence converges to a single copy of /n in
degree 2d + 1. Hence all d2-differentials must be isomorphisms, and the edge
homomorphism

H0(Cs ; H̃2d+1(S 1+ ∧ (Cn ∗ S Vd )))→ H̃2d+1(S 1+ ∧Cs (Cn ∗ S Vd ))

is an isomorphism. It follows that the induced map g∗ of the lemma can be
identified with

H̃2d+1(Cn ∗ S Vd )→ H0(Cs ; H̃2d+1(Cn ∗ S Vd ))

which is precisely the map ICn → ICn/IC 2
n . ��

We are now ready to determine S 1+ ∧Cs (∆s−1/Cs ·∆s−n ) when s = n(d + 1)
by an argument similar to that of Sect. 3.2. This makes use to the projection

πd+1:∆s−1/Cs ·∆s−n → Ps,d+1/Qs,d+1,

and of the associated π̂d+1 = S 1+ ∧Cs πd+1. We still have 0 /∈ Qs,d+1, but this time
Qs,d+1 does not contain all of ∂Ps,d+1. Indeed,

∂1Ps,d+1 = ∂Ps,d+1 − Qs,d+1 ∩ ∂Ps,d+1 = Cn · �x0, x1, xn , xn+1, . . . , xdn , xdn+1�
=
�n−1
i=0 �xi , xi+1, . . . , xi+dn , xi+dn+1�,

which in turn is homotopy equivalent to a circle. This follows because each of the
involved facets are joins of two (d − 1)-simplices which each may be retracted
on their barycenters, and the resulting line segments form a circle.

We write Vd+1 = Vd ⊕ (ξd+1s ); ξd+1s = ξn . Then

(3.3.5) Qs,d+1 ∩ (ξd+1s ) = {ξin | i = 0, 1, . . . , n − 1} = Cn · {1}
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where (ξd+1s ) = 0 ⊕ (ξd+1s ) ⊂ Vd+1. Indeed, projecting to Vd we have 0 ∈
�x0, . . . , xnd � ⊂ Vd , namely,

0 =
1

d + 1
(x0 + xn + . . . + xnd ).

The proof of (3.1.2) shows that this is the only representation of 0 in the cyclic
polytope �x0, . . . , xnd � ⊂ Vd , and (3.3.5) follows.

Let n = { 12 (ξ
i
n + ξi+1n ) | i = 0, 1, . . . , n − 1}, the set of midpoints in the regular

n-gon in (ξn ). Radial projection from 0 ∈ Vd+1 gives a map

r : (Ps,d+1,Qs,d+1)→ (Ps,d+1, ∂Ps,d+1 − n).

On the other hand,
∂Ps,d+1 ∼= S (Vd ) ∗ S ( (ξn ))

and the general formula X ∗Y −Y0 � X ∗(Y −Y0) together with the Cs -homotopy
equivalence S ( (ξn ))− n � Cn · {1} show that

(3.3.6) ∂Ps,d+1 − n �Cs
Cn ∗ S (Vd ).

Thus we get a Cs -equivariant map

(3.3.7) r :Ps,d+1/Qs,d+1 → ΣCn ∗ S (Vd ) ∼= Cn ∗ S Vd .

This may very well be an equivariant homotopy equivalence, but we shall do
with less.

The Buenos Aires formula, giving the generator ι2d+1 of H̃2d+1(N cy(Πn ; s)) =
/n , has only one term, namely

xn−1 ⊗ x ⊗ . . .⊗ xn−1 ⊗ x ∈ (N cy
2d+1(Πn ; s)).

This is the iterated face dn−12d+2d
n−1
2d . . . dn−12 applied to the generator x⊗s , so dually

consider the face

c:∆2d+1 → ∆s−1; c = (d2)n−1 . . . (d2d+2)n−1.

This is the affine map given by the ordered set of vertices

(1, t , t n , t n+1, . . . , t dn , t dn+1)

in ∆s−1 ⊂ Cs , and maps to a facet of Ps,d+1 under the projection πd+1. The
argument of Lemma 3.2.5 implies that c becomes a cycle in C∗(∆s−1,Cs ·∆s−n ).
Thus

πd+1(c) ∈ C2d+1(Ps,d+1,Qs,d+1), rπd+1(c) ∈ C2d+1(Ps,d+1, ∂Ps,d+1 − n)

are also cycles. In order to determine their homology class, we may instead
determine the homology class of

∂rπd+1(c): ∂∆2d+1 → ∂Ps,d+1 − n ∼= S (Vd+1)− n.
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We know from (3.3.4) and (3.3.6) that

H2d+1(S (Vd+1)− n) = ICn .

The augmentation ideal ICn is isomorphic to Cn/(N ), where N is the norm ele-
ment. We saw above that H0(Cs ; ICn ) ∼= /n , and hence that H0(Cs ; Cn/(N ))
∼= /n . Indeed a specific isomorphism is induced from the augmentation
�: Cn/(N )→ /n .

Lemma 3.3.8. The cycle ∂rπd+1(c) represents an element of H2d (S (Vd+1)− n) =
Cn/(N ) which augments to 1 + n .

Proof. The boundary of rπd+1(c) is a 2d -dimensional sphere S 2d in S 2d+1 =
S (Vd+1) which does not intersect n. Let Ḋ+ and Ḋ− be the two components of
S (Vd+1)− S 2d , say, rπd+1(c) = D+. The inclusion S 2d ⊂ S (Vd+1)− n induces an
injection on homology if and only if n+ = D+ ∩ n and n− = D− ∩ n are both
non-empty, and [S 2d ] ∈ H2d (S (Vd+1) − n) augments to n+ ∈ /n , n+ = #n+.
This follows from Poincaré duality. The dual of the homology sequence

. . .→ H2d+1(S (Vd+1)− n, S 2d )→ H2d (S 2d )→ H2d (S (Vd+1))→ . . .

is the sequence

. . .→ H 0(S (Vd+1)− S 2d ,n)→ H 1(S (Vd+1), S (Vd+1)− S 2d )

→ H 1(S (Vd+1),n)→ . . .

Now S (Vd+1)− S 2d = Ḋ+ � Ḋ− and the lower sequence is isomorphic to

. . .→ H 0(Ḋ+,n+)⊕ H 0(Ḋ−,n−)→ (H 0(Ḋ+)⊕ H 0(Ḋ−))/∆

→ (H 0(n+)⊕ H 0(n−))/∆→ . . .

where ∆ is the image of H 0(S (Vd+1)). The element (1, 0) ∈ H 0(Ḋ+)⊕ H 0(Ḋ−)
represents the generator of H2d (S 2d ) under duality and its image in

Cn/(N ) = (H 0(n+)⊕ H 0(n−))/∆

has augmentation #n+ ∈ /n as claimed.
We have left to check that n+ consists of one point. Note that

πd+1(c) = �x0, x1, xn , xn+1, . . . , xdn , xdn+1� = �x0, xn , . . . , xdn� ∗ �x1, xn+1, . . . , xdn+1�

in Vd+1, and moreover,

�x0, xn , . . . , xdn� ∩ (ξd+1s ) = {1}, �x1, xn+1, . . . , xdn+1� ∩ (ξd+1s ) = {ξd+1s }.

Thus πd+1(c) is the line segment which joins 1 and ξd+1s , and the midpoint is
the only element of this line segment which also belongs to n. This shows that
πd+1(c) ∩ (ξd+1s ) ∩ n consists of a single point, and n ⊂ (ξd+1s ) so πd+1(c) ∩ n
is a one point space. The linear projection r does not change this fact, i.e. D+∩n
is also a one point space. ��
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Proposition 3.3.9. For s = n(d+1), the map r̂◦π̂d+1 gives a homotopy equivalence

S 1+ ∧Cs (∆s−1/Cs ·∆s−n ) � S 1+ ∧Cs (Cn ∗ S Vd ),

where Vd = (ξs )⊕ . . .⊕ (ξds ).

Proof. Consider the diagram

∆s−1/Cs ·∆s−n f−−−−→ S 1+ ∧Cs (∆s−1/Cs ·∆s−n ) ιs−−−−→
∼=

N cy(Πn ; s)
�πd+1

�π̂d+1

Ps,d+1/Qs,d+1 −−−−→ S 1+ ∧Cs (Ps,d+1/Qs,d+1)
�r

�r̂

Cn ∗ S Vd
g−−−−→ S 1+ ∧Cs (Cn ∗ S Vd ).

The cohomology class of the cycle c ∈ C2d+1(∆s−1,Cs · ∆s−n ) maps to the
generator of H2d+1(S 1+ ∧Cs (Cn ∗S Vd )) by Lemmas 3.3.5 and 3.3.8. Thus f∗[c] maps
onto this generator under the right hand vertical map. Since H∗(N cy(Πn ; s)) =
/n in degree 2d + 1, r̂ ◦ π̂d+1 is a homology isomorphism. Both domain and
target are simply connected for d > 1. For d = 1, a direct geometric argument
gives the equivalence. ��

Proof of Theorem B. The equivariant Whitehead theorem states that a G-map
f :X → Y between G-CW-complexes (G a compact Lie group) is a G-homotopy
equivalence if and only if the induced map f H :XH → Y H is a weak equivalence
for every closed subgroup H ⊂ G , cf. [A], [LMS]. In the case at hand, we have
constructed Cs -equivariant maps

θs,n :∆s−1/Cs ·∆s−n →
�

S Vd , if dn < s < (d + 1)n
Cn ∗ S Vd , if s = (d + 1)n ,

and proved that the induced S 1-equivariant maps S 1+ ∧Cs θs,n are weak homotopy
equivalences. Therefore, to prove Theorem B we must show that the same holds
on C -fixed sets for every closed C ⊂ S 1. We note that if G is an abelian group,
H ⊂ G a subgroup and X an H -space, then

(G+ ∧H X )K =
�

G/K+ ∧H/K XK , if K ⊂ H
* , if K �⊂ H ,

so it suffices to consider the subgroups Cr ⊂ Cs ⊂ S 1. We shall prove that in
this case θCrs,n may be identified with θs/r,n . Then Theorem B follows from the
equivariant Whitehead theorem.

Let Nr ∈ Cs be the norm element of the subgroup Cr ⊂ Cs , i.e.

Nr = 1 + t s/r + t2s/r + . . . + t (r−1)s/r ,
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where t ∈ Cs is the generator. Then

(∆s−1)Cr = � 1r Nr ,
1
r tNr , . . . ,

1
r t
s/r−1Nr� ∼= ∆s/r−1.

Moreover (Cs ·∆s−n )Cr = Cs · (∆s−n )Cr and

(∆s−n )Cr = (∆s−1)Cr ∩∆s−n ∼= ∆s/r−n ⊂ ∆s/r−1

since the representation of an element in a simplex as a convex combination of
the vertices is unique. Hence

(∆s−1/Cs ·∆s−n )Cr ∼= ∆s/r−1/Cs/r ·∆s/r−n .

One readily verifies that as Cr/s -spaces

(S V[(s−1)/n] )Cr ∼= S V[(s/r−1)/n]

and since (X ∗ Y )G = XG ∗ Y G that

(Cn ∗ S V[(s−1)/n] )Cr ∼=
�

Cn ∗ S V[(s/r−1)/n] , if n divides s/r
S V[(s/r−1)/n] , if n does not divide s/r .

Hence the maps θCrs,n and θs/r,n have the same domain and range, and one sees
similarly that the maps are equal. ��

4. Topological cyclic homology of k [x ]/(xn )

4.1. In this paragraph, we give a general formula for the topological cyclic
homology of a truncated polynomial algebra A[x ]/(xn ). We then calculate the
groups TC∗(k [x ]/(xn )) explicitely, when the coefficient ring is a perfect field of
characteristic p > 0. First, we recall some facts about big Witt vectors and refer
the reader to Bergman’s lecture in [Mu] for details.

Let A be a commutative ring. The big Witt ring of A is the set W(A) = A
equipped with a new ring structure characterized by the requirement that the
ghost map

(4.1.1) w:W(A)→ A

given by the Witt polynomials

wn =
�

d |n

dan/dd , n ≥ 1,

be a natural transformation of functors from rings to rings, when the range is
given the componentwise ring structure. One has,

(4.1.2) (a1, a2, . . .) + (b0, b1, . . .) = (s1(a1, b1), s2(a1, a2, b1, b2), . . .)
(a1, a2, . . .) · (b0, b1, . . .) = (p1(a1, b1), p2(a1, a2, b1, b2), . . .)
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where sn and pn are certain polynomials, which only depend on the ad and
bd where d divides n . To see this, one proves that in the universal case A =
[a1, a2, . . . ; b1, b2, . . .] the ghost map identifies W(A) with a subring of A .
The polynomials sn and pn are then defined by the formula (4.1.2), with the sum
and product on the left formed in this subring structure. Since the ring axioms
hold in the universal case, they hold in general.

There are operators

(4.1.3) Fn :W(A)→W(A), (Frobenius)
Vn :W(A)→W(A), (Verschiebung)

one for each n ≥ 1, characterized by

Fn (wm ) = wmn

Vn (am ) =
�

am/n if n divides m
0 else.

By the same line of reasoning as in the case of the ring structure, one shows that
Fn is well-defined and a ring homomorphism, that Vn is addivitive and that the
following formulas hold

(4.1.4)
Vn (Fn (x )y) = xVn (y)
FnVn = n, VnFn = multVn (1)
FnVm = VmFn , if (m, n) = 1.

As noted above, the polynomials sn and pn depend only on the ad and bd ,
where d divides n . We can therefore, in the above discussion, replace by
any subset S ⊂ which is stable under division and get a ring WS (A). We
call WS (A) the truncated ring of big Witt vectors and S the truncation set. For
example, we have the ring of big Witt vectors of length m defined by

(4.1.5) Wm (A) =W{1,2,...,m}(A).

Evidently, if S ⊂ S � are two truncation sets, then the projection WS � (A) →
WS (A) is a ring homomorphism, and moreover, the Frobenius and Verschiebung
maps restrict to operators

(4.1.6) Fn :WS (A)→WS/n (A),
Vn :WS/n (A)→WS (A),

where S/n is the truncation set S/n = {m ∈ | nm ∈ S}. When S is the empty
set, it is understood that WS (A) is the trivial ring.

Now let p be a prime. The ring of p-typical Witt vectors is defined as the
truncated Witt ring

(4.1.7) W (A) =W{1,p,p2,...}(A).

If A is a (p)-algebra, one has a ring isomorphism
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(4.1.8) W(A) ∼=
�

(d ,p)=1

W (A),

which on the d th factor is given by the composite ring map

Id :W(A)
Fd−−−−→ W(A) pr−−−−→ W (A);

see [Mu]. More generally, we have the ring of p-typical Witt vectors of length
s ,

(4.1.9) Ws (A) =W{1,p,...,ps−1}(A),

and, when A is a (p)-algebra, a ring isomorphism

(4.1.10) Wm (A) ∼=
�

(d ,p)=1

Ws (A), ps−1d ≤ m < psd ,

whose d th factor is the composite

Id :Wm (A)
Fd−−−−→ W[m/d ](A)

pr−−−−→ Ws (A).

Suppose that n = pi k with (p, k ) = 1 and let d = ek . Then one readily shows
that the formulas (4.1.4) give a commutative square

(4.1.11)

Wm (A)
Ie−−−−→ Ws (A)

�Vn
�kVpi

Wmn (A)
Id−−−−→ Ws+i (A),

which describes the Verschiebung map under the splitting in (4.1.10).
Finally, we recall that the underlying additive group of the ring W(A) is

isomorphic to the multiplicative group of power series in A with constant term
1,

(4.1.12) W(A) ∼= (1 + XA[[X ]])×, (a1, a2, . . .) �→
�

i≥1
(1− aiX i ),

and under this isomorphism

Fn (f (X )) =
n�

i=1

f (ξi ), Vn (f (X )) = f (Xn ),

where ξ1, . . . , ξn are the formal nth roots of X . Similarly,

Wm (A) ∼= (1 + XA[[X ]])×/(1 + Xm+1A[[X ]])×.

4.2. Given a ring A and a two-sided ideal I , we let T (A, I ) denote the relative
topological Hochschild spectrum, that is, the homotopy fiber of the map T (A)→
T (A/I ). We recall the equivalence of S 1-spectra
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T (A[x ]/(xn )) �
S 1
T (A) ∧ N cy(Πn ),

where the smash product on the right is formed in the category of S 1-spectra.
Thus for C ⊂ S 1,

π∗(T (A[x ]/(xn ))C ) ∼= T (A)C∗ (N cy(Πn )),

the C -equivariant homology of the S 1-space N cy(Πn ) with respect to the S 1-
spectrum T (A). The S 1-space N cy(Πn ) splits equivariantly as a wedge

N cy(Πn ) =
�

s≥0
N cy(Πn ; s)

and the summand N cy(Πn ; 0) = S 0 corresponds to the copy of T (A) in
T (A[x ]/(xn )). The equivariant homotopy type of the remaining summands is
given by Theorem B which we proved in §3. Let again Vd denote the represen-
tation Vd = (ξ)⊕ . . .⊕ (ξd ) and let [x ] denote the largest integer less than or
equal to x . Then we have a cofibration sequence of S 1-spectra

(4.2.1)
�
s≥1,n|s T (A)V[ s−1n ]

∧ S 1/Cs/n+
pr−−−−→

�
s≥1 T (A)V[ s−1n ]

∧ S 1/Cs+
−−−−→ T (A[x ]/(xn ), (x )).

Indeed, for any finite dimensional S 1-representation V , T (A) ∧ S V �
S 1
T (A)V ,

the V th deloop of the S 1-spectrum T (A), cf. [LMS], Theorem I.7.9, and (4.2.1)
follows from Theorem B.

Recall from [HM], §1, that T (A) is a cyclotomic spectrum so that we have
restriction maps

Rr : T (A)CrsV → T (A)Csρ∗Cr V Cr ,

where ρ∗Cr V
Cr indicates V Cr considered as an S 1-representation through the r th

root isomorphism ρCr : S 1 → S 1/Cr . In our case

ρ∗Cr V
Cr
[ rs−1n ]

∼= V[ s−1n ],

such that the restriction maps are

(4.2.2) Rr : T (A)CrsV
[ rs−1n ]

→ T (A)CsV
[ s−1n ]

.

We can then repeat the argument of [HM], §8, to get
Proposition 4.2.3. After profinite completion there is a cofibration sequence of
spectra

Σ holim←−R
T (A)Cs/nV

[ s−1n ]

Vn−−−−→ Σ holim←−R
T (A)CsV

[ s−1n ]
−−−−→ TC(A[x ]/(xn ), (x )).

The homotopy limits runs over the natural numbers ordered by division and
T (A)Cs/nV

[ s−1n ]
is understood to be the trivial spectrum when n does not divide s. ��

By cofinality, the restriction of the homotopy limit on the left in (4.2.3) to
the natural numbers divisible by n gives an equivalence

(4.2.4) holim←−R
T (A)Cs/nV

[ s−1n ]

∼−−−−→ holim←−R
T (A)CrVr−1 .
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We now fix a prime p and consider, for every d with (d , p) = 1, the compo-
sition

holim←−R
T (A)CsV

[ s−1n ]

prd−−−−→ holim←−R
T (A)Cpr dV

[ p
r d−1
n ]

Fd−−−−→ holim←−R
T (A)CprV

[ p
r−1
n ]

.

The first map is the restriction of the homotopy limit to the natural numbers of
the form prd , r ≥ 0, and the second map is the map of homotopy limits induced
from the inclusion map

Fd : T (A)
Cpr d
V
[ p
r d−1
n ]

→ T (A)CprV
[ p
r d−1
n ]

.

We then have the following analog of (4.1.8).

Proposition 4.2.5. Suppose that A is a commutative (p)-algebra. Then the map

holim←−R
T (A)CsV

[ s−1n ]

∼−−−−→
�
(d ,p)=1 holim←−R

T (A)CprV
[ p
r d−1
n ]

,

whose dth factor is Fd ◦ prd , is an equivalence.

Proof. Let F be the category associated with the poset of natural numbers
ordered after division, and let Fp and F � be the full subcategories of natural
numbers which are powers of p and prime to p, respectively. Then the homotopy
limit on the left in (4.2.5) is indexed by F and the homotopy limits on the
right are indexed by Fp . As categories F = Fp × F � and hence we have a
homeomorphism

holim←−
F

T (A)CsV
[ s−1n ]

∼= holim←−
F �

( holim←−
Fp

T (A)Cpr dV
[ p
r d−1
n ]
).

We claim that the map

T (A)Cpr dV
[ p
r d−1
n ]

→
�

e|d

T (A)CprV
[ p
r e−1
n ]

,

which on the eth factor is given by Rd/eFe , is an equivalence. Given this, the
proposition follows. To prove the claim we need the following generalization
of [HM], Theorem 2.2: let T be a cyclotomic spectrum, let q be a prime and
let l be a natural number prime to q . Then there is a cofibration sequence of
(non-equivariant) spectra

(4.2.6) (ρ#Cl T
Cl
V )hC i

q

N−−−−→ T
Cqi l
V

R−−−−→ T
Cqi−1 l
ρ∗Cq V

Cq .

If V = 0 this is because TCl is a q-cyclotomic spectrum. In general, it follows
from loc. cit., Proposition 2.1 and the proof of Proposition 2.3. We write d =
qi11 . . . q

im
m , where q1, . . . , qm are primes. Then (4.2.6) gives a cofibration sequence

(ρ#Cl T (A)
Cl
V
[ p
r d−1
n ]
)hCqi

N−−−−→ T (A)Cpr dV
[ p
r d−1
n ]

Rq−−−−→ T (A)Cpr d/qV
[ p
r d/q−1

n ]
,
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where, for notational reasons, we have written q for qm , i for im and l for prd/qi .
Moreover, we have a map of cofibration sequences

(ρ#Cl T (A)
Cl
V
[ p
r d−1
n ]
)hCqi

N−−−−→ T (A)Cpr dV
[ p
r d−1
n ]

Rq−−−−→ T (A)Cpr d/qV
[ p
r d/q−1

n ]�tr
�Fq

�Fq

(ρ#Cl T (A)
Cl
V
[ p
r d−1
n ]
)hCqi−1

N−−−−→ T (A)Cpr d/qV
[ p
r d−1
n ]

Rq−−−−→ T (A)
Cpr d/q2
V
[ p
r d/q−1

n ]
,

where the left hand vertical map is the transfer of the projection going in the
opposite direction. We shall prove that tr is an equivalence such that the square
on the right is homotopy cartesian. The claim then readily follows by induction
on m and ik , k = 1, . . . ,m .

Let us write V for V[(pr d/q−1)/n]. We note that multiplication by q on π∗T (A)ClV
is an isomorphism. For T (A)ClV is a module spectrum over the ring spectrum
T (A)Cl . In particular, the homotopy groups π∗T (A)ClV are modules over the ring
π0T (A)Cl . By [HM], Addendum 3.3, this ring is isomorphic to the truncated big
Witt ring W�l�(A), �l� = {d | d divides l}, and q is a unit in W�l�(A). Now, for
any S 1-spectrum T , one has a first quadrant homology type spectral sequence

E 2s,t = Hs (Cqi ;πt T )⇒ πs+t (ThCqi ),

where the homotopy groups π∗T are trivial Cqi -modules because the Cqi -action
extends to an S 1-action. The edge homomorphism of the spectral sequence is
the map on homotopy groups induced from the projection T → ThCqi . When
multiplication by q is an isomorphism on π∗T , the spectral sequence collapses
onto the axis s = 0, and the edge homomorphism is an isomorphism. This shows
that the projection ThCqi−1 → ThCqi is an equivalence. But the composition

ThCqi
tr−−−−→ ThCqi−1

pr−−−−→ ThCqi

induces multiplication by q on homotopy groups and is therefore also an equiv-
alence. Hence tr is an equivalence. This finishes the proof. ��

We note that the individual terms in the homotopy limits on the right hand
side of (4.2.5) approximate the limit. More precisely, the fundamental cofibration
sequence, [HM], Theorem 2.2, and the fact that taking homotopy orbits preserves
connectivity, shows that the projection

(4.2.7) holim←−R
T (A)CprV

[ p
r d−1
n ]

→ T (A)CpsV
[ p
s d−1
n ]

is 2[(ps+1d −1)/n]-connected. We also note that the proposition gives a splitting
of the left hand spectrum in (4.2.3). Indeed, if we write n = pi k with (k , p) = 1,
then (4.2.4) and (4.2.5) show that the map

(4.2.8) holim←−R
T (A)Cs/nV

[ s−1n ]

∼−−−−→
�
(e,p)=1 holim←−R

T (A)
Cpr−i

V
[ p
r ek−1
n ]

,
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which on the eth factor is given by Fe ◦ prek , is an equivalence.

Addendum 4.2.9. Suppose that n = pi k with (p, k ) = 1 and let d = ek . Then
there is a commutative diagram

π∗holim←−R
T (A)Cs/nV

[ s−1n ]

Fe◦prd−−−−→ π∗holim←−R
T (A)

Cpr−i

V
[ p
r d−1
n ]�Vn

�kVpi

π∗holim←−R
T (A)CsV

[ s−1n ]

Fd◦prd−−−−→ π∗holim←−R
T (A)CprV

[ p
r d−1
n ]

.

Proof. By naturality, we have a commutative square

holim←−R
T (A)Cs/nV

[ s−1n ]

prd−−−−→ holim←−R
T (A)Cpr d/nV

[ p
r d−1
n ]�Vn

�Vn

holim←−R
T (A)CsV

[ s−1n ]

prd−−−−→ holim←−R
T (A)Cpr dV

[ p
r d−1
n ]

.

We recall from [HM], Lemma 2.3.1, that on the level of homotopy groups FsVr =
VrFs , provided that (r , s) = 1. Since we have

π∗ holim←−R
T (A)CprV

[ p
r d−1
n ]

∼= lim←−R
π∗T (A)

Cpr
V
[ p
r d−1
n ]

from (4.2.7), we get a commutative square

π∗ holim←−R
T (A)Cpr d/nV

[ p
r d−1
n ]

Fd/k−−−−→ π∗ holim←−R
T (A)

Cpr−i

V
[ p
r d−1
n ]�Vpi

�Vpi

π∗ holim←−R
T (A)Cpr d/kV

[ p
r d−1
n ]

Fd/k−−−−→ π∗ holim←−R
T (A)CprV

[ p
r d−1
n ]

.

Finally, we can write Fd ◦ Vn as the composite

holim←−R
T (A)Cpr d/nV

[ p
r d−1
n ]

Vpi−−−−→ holim←−R
T (A)Cpr d/kV

[ p
r d−1
n ]

Vk−−−−→ holim←−R
T (A)Cpr dV

[ p
r d−1
n ]

Fk−−−−→ holim←−R
T (A)Cpr d/kV

[ p
r d−1
n ]

Fd/k−−−−→ holim←−R
T (A)CprV

[ p
r d−1
n ]

and Fk ◦ Vk induces multiplication by k on homotopy groups. ��

We now assume that the coefficient ring is a perfect field k of positive char-
acteristic p and proceed to prove Theorem A of the introduction.

Theorem 4.2.10. Let k be a perfect field of characteristic p > 0. Then the long
exact homotopy sequence associated with the cofibration sequence of (4.2.3) takes
the form



96 L. Hesselholt, I. Madsen

0→Wm (k )
Vn−−−−→ Wmn (k ) −−−−→ TC2m−1(k [x ]/(xn ), (x ))→ 0,

the groups in even degrees being zero.

Proof. We have from [HM], Proposition 9.1, and (4.2.7) that

(4.2.11) π2j holim←−R
T (k )CprV

[ p
r d−1
n ]

∼= Ws (k ),

with s determined by the inequalities

[(ps−1d − 1)/n] ≤ j < [(psd − 1)/n].

One readily checks that these inequalities are equivalent to the inequalities

ps−1d ≤ n(j + 1) < psd ,

which appear in the decomposition in (4.1.10). Therefore, by (4.2.5)

π2j holim←−R
T (k )CsV

[ s−1n ]

∼= Wn(j+1)(k )

and the groups in odd degrees are zero. Similarly, we have

(4.2.12) π2j holim←−R
T (k )

Cpr−i

V
[ p
r d−1
n ]

∼= Ws−i (k ),

with s determined by the same inequalities as above. Suppose that d = ek and
let r = s − i . Then one immediately shows that r is given by the inequalities

pr−1e ≤ j + 1 < pre

and hence

π2j holim←−R
T (k )Cs/nV

[ s−1n ]

∼= Wj+1(k ).

Finally, we recall from [HM], Proposition 9.1, that under the isomorphism of
(4.2.11) and (4.2.12) the map

Vpi : holim←−R
T (k )

Cpr−i

V
[ p
r d−1
n ]

→ holim←−R
T (k )

Cpr−i

V
[ p
r d−1
n ]

induces the Verschiebung Vpi :Ws−i (k )→ Ws (k ) of Witt vectors. Now the theo-
rem follows from (4.1.11) and (4.2.9). ��
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