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Introduction

In this paper we establish a connection between the Quillen K-theory of certain
local fields and the de Rham-Witt complex of their rings of integers with logarithmic
poles at the maximal ideal. The fields K we consider are complete discrete valuation
fields of characteristic zero with perfect residue field k of characteristic p > 2. When
K contains the pvth roots of unity, the relationship between the K-theory with
Z/pv-coefficients and the de Rham-Witt complex can be described by a sequence

· · · → K∗(K, Z/pv)→W ω∗(A,M) ⊗ SZ/pv (µpv ) 1−F−−−→W ω∗(A,M) ⊗ SZ/pv (µpv ) ∂−→ · · ·

which is exact in degrees ≥ 1. Here A = OK is the valuation ring and W ω∗(A,M) is
the de Rham-Witt complex of A with log poles at the maximal ideal. The factor
SZ/pv (µpv ) is the symmetric algebra of µpv considered as a Z/pv-module located in
degree two. Using this sequence, we evaluate the K-theory with Z/pv-coefficients
of K. The result, which is valid also if K does not contain the pvth roots of unity,
verifies the Lichtenbaum-Quillen conjecture for K, [26], [38]:

∗ Supported in part by NSF Grant and the Alfred P. Sloan Foundation.
∗∗ Supported in part by The American Institute of Mathematics.
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Theorem A. There are natural isomorphisms for s ≥ 1,

K2s(K, Z/pv) = H0(K, µ⊗s
pv )⊕H2(K, µ

⊗(s+1)
pv ),

K2s−1(K, Z/pv) = H1(K, µ⊗s
pv ).

The Galois cohomology on the right can be effectively calculated when k is finite,
or equivalently, when K is a finite extension of Qp, [42]. For m prime to p,

Ki(K, Z/m) = Ki(k, Z/m)⊕Ki−1(k, Z/m)

by Gabber-Suslin, [44], and for k finite, the K-groups on the right are known by
Quillen, [36].

For any linear category with cofibrations and weak equivalences in sense of [48],
one has the cyclotomic trace

tr : K(C)→ TC(C; p)

from K-theory to topological cyclic homology, [7]. It coincides in the case of the
exact category of finitely generated projective modules over a ring with the orig-
inal definition in [3]. The exact sequence above and theorem A are based upon
calculations of TC∗(C; p, Z/pv) for certain categories associated with the field K.
Let A = OK be the valuation ring in K, and let PA be the category of finitely
generated projective A-modules. We consider three categories with cofibrations
and weak equivalences: the category Cb

z(PA) of bounded complexes in PA with ho-
mology isomorphisms as weak equivalences, the subcategory with cofibrations and
weak equivalences Cb

z(PA)q of complexes whose homology is torsion, and the cat-
egory Cb

q(PA) of bounded complexes in PA with rational homology isomorphisms
as weak equivalences. One then has a cofibration sequence of K-theory spectra

K(Cb
z(PA)q) i!−→ K(Cb

z(PA))
j−→ K(Cb

q(PA)) ∂−→ ΣK(Cb
z(PA)q),

and using Waldhausen’s approximation theorem, the terms in this sequence may be
identified with the K-theory of the exact categories Pk, PA and PK . The associated
long-exact sequence of homotopy groups is the localization sequence of [37],

· · · → Ki(k) i!−→ Ki(A)
j∗−→ Ki(K) ∂−→ Ki−1(k)→ . . .

The map ∂ is a split surjection by [15]. We show in section 1.5 below that one has
a similar cofibration sequence of topological cyclic homology spectra

TC(Cb
z(PA)q; p) i!−→ TC(Cb

z(PA); p)
j−→ TC(Cb

q(PA); p) ∂−→ Σ TC(Cb
z(PA)q; p),

and again Waldhausen’s approximation theorem allows us to identify the first two
terms on the left with the topological cyclic homology of the exact categories Pk

and PA. But the third term is different from the topological cyclic homology of
PK . We write

TC(A|K; p) = TC(Cb
q(PA); p),

and we then have a map of cofibration sequences

K(k) i! //

tr

��

K(A)
j∗ //

tr

��

K(K) ∂ //

tr

��

ΣK(k)

tr

��

TC(k; p) i! // TC(A; p)
j∗ // TC(A|K; p) ∂ // Σ TC(k; p).
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By [19, theorem D], the first two vertical maps from the left induce isomorphism
of homotopy groups with Z/pv-coefficients in degrees ≥ 0. It follows that the
remaining two vertical maps induce isomorphism of homotopy groups with Z/pv-
cofficients in degrees ≥ 1,

tr : Ki(K, Z/pv) ∼−→ TCi(A|K; p, Z/pv), i ≥ 1.

It is the right hand side we evaluate.
The spectrum TC(C; p) is defined as the homotopy fixed points of an operator

called Frobenius on another spectrum TR(C; p), so there is a natural cofibration
sequence

TC(C; p)→ TR(C; p) 1−F−−−→ TR(C; p)→ Σ TC(C; p).

The spectrum TR(C; p), in turn, is the homotopy limit of a pro-spectrum TR·(C; p),
its homotopy groups given by the Milnor sequence

0→ lim←−
R

1 TR·
s+1(C; p)→ TRs(C; p)→ lim←−

R

TR·
s(C; p)→ 0,

and there are maps of pro-spectra

F : TRn(C; p)→ TRn−1(C; p),

V : TRn−1(C; p)→ TRn(C; p).

The spectrum TR1(C; p) is the topological Hochschild homology T (C). It has an
action by the circle group T and the higher levels in the pro-system by definition
are the fixed sets of the cyclic subgroups of T of p-power order,

TRn(C; p) = T (C)Cpn−1 .

The map F is the obvious inclusion and V is the accompanying transfer. The struc-
ture map R in the pro-system is harder to define and uses the so-called cyclotomic
structure of T (C), see section 1.1 below.

The homotopy groups TR·
∗(A|K; p) of this pro-spectrum with its various opera-

tors have a rich algebraic structure which we now describe. The description involves
the notion of a log differential graded ring from [24]. A log ring (R,M) is a ring R
with a pre-log structure, defined as a map of monoids

α : M → (R, · ),

and a log differential graded ring (E∗,M) is a differential graded ring E∗, a pre-log
structure α : M → E0 and a map of monoids d log : M → (E1,+) which satisfies
d ◦ d log = 0 and dα(a) = α(a)d log a for all a ∈ M . There is a universal log
differential graded ring with underlying log ring (R,M): the de Rham complex
with log poles ω∗(R,M).

The groups TR1
∗(A|K; p) form a log differential graded ring whose underlying

log ring is A = OK with the canonical pre-log structure given by the inclusion

α : M = A ∩K× → A.

We show that the canonical map

ω∗(A,M) → TR1
∗(A|K; p)
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is an isomorphism in degrees ≤ 2 and that the left hand side is uniquely divisible in
degrees ≥ 2. We do not know a natural description of the higher homotopy groups,
but we do for the homotopy groups with Z/p-coefficients. The Bockstein

TR1
2(A|K; p, Z/p) ∼−→ pTR1

1(A|K; p)

is an isomorphism, and we let κ be the element on the left which corresponds to
the class d log(−p) on the right. The abstract structure of the groups TR1

∗(A; p)
was determined in [27]. We use this calculation in §2 below to show

Theorem B. There is a natural isomorphism of log differential graded rings

ω∗(A,M) ⊗Z SFp{κ}
∼−→ TR1

∗(A|K; p, Z/p),

where dκ = κd log(−p).

The higher levels TRn
∗ (A|K; p) are also log differential graded rings. The under-

lying log ring is the ring of Witt vectors Wn(A) with the pre-log structure

M
α−→ A→Wn(A),

where the right hand map is the multiplicative section an = (a, 0, . . . , 0). The maps
R, F and V extend the restriction, Frobenius and Verschiebung of Witt vectors.
Moreover,

F : TRn
∗ (A|K; p)→ TRn−1

∗ (A|K; p)

is a map of pro-log graded rings, which satisfies

Fd logn a = d logn−1 a, for all a ∈M = A ∩K×,

Fdan = ap−1
n−1dan−1, for all a ∈ A,

and V is a map of pro-graded modules over the pro-graded ring TR·
∗(A|K : p),

V : F ∗ TRn−1
∗ (A|K; p)→ TRn

∗ (A|K; p).

Finally,
FdV = d,

FV = p.

The algebraic structure described here makes sense for any log ring (R,M), and we
show that there exists a universal example: the de Rham-Witt pro-complex with
log poles W· ω∗(R,M). For log rings of characteristic p > 0, a different construction
has been given by Hyodo-Kato, [23].

We show in §3 below that the canonical map

W· ω∗(A,M) → TR·
∗(A|K; p)

is an isomorphism in degrees ≤ 2 and that the left hand side is uniquely divisible
in degrees ≥ 2. Suppose that µpv ⊂ K. We then have a map

SZ/pv (µpv )→ TR·
∗(A|K; p, Z/pv)

which takes ζ ∈ µpv to the associated Bott element defined as the unique element
with image d log· ζ under the Bockstein

TR·
2(A|K; p, Z/pv) ∼−→ pvTR·

1(A|K; p).

The following is the main theorem of this paper.
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Theorem C. Suppose that µpv ⊂ K. Then the canonical map

W· ω∗(A,M) ⊗Z SZ/pv (µpv ) ∼−→ TR·
∗(A|K; p, Z/pv)

is a pro-isomorphism.

We explain the structure of the groups in the theorem for v = 1; the structure
for v > 1 is unknown. Let E∗· stand for either side of the statement above. The
group Ei

n has a natural descending filtration of length n given by

Fils Ei
n = V sEi

n−s + dV sEi−1
n−s ⊂ Ei

n, 0 ≤ s < n.

There is a natural k-vector space structure on Ei
n, and for all 0 ≤ s < n and all

i ≥ 0,
dimk grs Ei

n = eK ,

the absolute ramification index of K. In particular, the domain and range of the
map in the statement are abstractly isomorphic.

The main theorem implies that for s ≥ 0,

TC2s(A|K; p, Z/pv) = H0(K, µ⊗s
pv )⊕H2(K, µ

⊗(s+1)
pv ),

TC2s+1(A|K; p, Z/pv) = H1(K, µ
⊗(s+1)
pv ),

and thus in turn theorem A.
It is also easy to see that the canonical map

K∗(K, Z/pv)→ K ét
∗ (K, Z/pv)

is an isomorphism in degrees ≥ 1. Here the right hand side is the Dwyer-Friedlander
étale K-theory of K with Z/pv-coefficients. This may be defined as the homotopy
groups with Z/pv-coefficients of the spectrum

K ét(K) = holim
−→
L/K

H ·(GL/K ,K(L)),

where the homotopy colimit runs over the finite Galois extensions L/K contained in
an algebraic closure K̄/K, and where the spectrum H ·(GL/K ,K(L)) is the group
cohomology spectrum or homotopy fixed point spectrum of GL/K acting on K(L).
There is a spectral sequence

E2
s,t = H−s(K, µ

⊗(t/2)
pv )⇒ K ét

s+t(K, Z/pv),

where the identification of the E2-term is a consequence of the celebrated theorem
of Suslin, [43], that

Kt(K̄, Z/pv) = µ
⊗(t/2)
pv .

For K a finite extension of Qp, the p-adic homotopy type of the K ét(K) is known
by [45] and [8]. Let FΨr be the homotopy fiber

FΨr → Z×BU
Ψr−1−−−−→ BU.

It follows from this calculation and from the isomorphism above that

Theorem D. If K is a finite extension of Qp, then after p-completion

Z×BGL(K)+ ' FΨgpa−1d

×BFΨgpa−1d

× U |K : Qp|,

where d = (p− 1)/|K(µp) : K|, a = max{v | µpv ⊂ K(µp)}, and where g ∈ Z×p is a
topological generator.
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The proof of theorem C is given in §6 below. It is based on the calculation in §5
of the Tate spectra for the cyclic groups Cpn acting on the topological Hochschild
spectrum T (A|K): Given a finite group G and G-spectrum X, one has the Tate
spectrum Ĥ(G, X) of [11], [12]. Its homotopy groups are approximated by a spec-
tral sequence

E2
s,t = Ĥ−s(G, πtX)⇒ πs+tĤ(G, X),

which converges conditionally in the sense of [1]. In §4 below we give a slightly
different construction of this spectral sequence which is better suited for studying
multiplicative properties. The cyclotomic structure of T (A|K) gives rise to a map

Γ̂K : TRn(A|K; p)→ Ĥ(Cpn , T (A|K)),

and we show in §5 that this map induces an isomorphism of homotopy groups with
Z/pv-coefficients in degrees ≥ 0. We then evaluate the Tate spectral sequence for
the right hand side.

Throughtout this paper, A will be a complete discrete valuation ring with field of
fractions K of characteristic zero and perfect residue field k of characteristic p > 2.
All rings are assumed commutative and unital without further notice. Occasionally,
we will write π̄∗(−) for homotopy groups with Z/p-coefficients.

This paper has been long underway, and we would like to acknowledge the finan-
cial support and hospitality of the many institutions we have visited while working
on this project: Max Planck Institut für Mathematik in Bonn, The American Insti-
tute of Mathematics at Stanford, Princeton University, The University of Chicago,
Stanford University, the SFB 478 at Universität Münster, and the SFB 343 at Uni-
versität Bielefeld. It is also a pleasure to thank Mike Hopkins and Marcel Bökstedt
for valuable help and comments. We are particularly indebted to Mike Mandell for
a conversation which was instrumental in arriving at the definition of the spectrum
T (A|K) as well as for help at various other points. Finally, we thank an unnamed
referee for valuable suggestions on improving the exposition.

1. Topological Hochschild homology and localization

1.1. This paragraph contains the construction of TRn(A|K; p). The main
result is the localization sequence of theorem 1.5.6, which relates this spectrum to
TRn(A; p) and TRn(k; p). We make extensive use of the machinery developed by
Waldhausen in [48] and some familiarity with this material is assumed.

The stable homotopy category is a triangulated category and a closed symmetric
monoidal category, and the two structures are compatible, see e.g. [22, appendix].
By a spectrum we will mean an object in this category, and by a ring spectrum we
will mean a monoid in this category. The purpose of this paragraph is to produce
the following. Let C be a linear category with cofibrations and weak equivalences
in the sense of [48, section 1.2]. We define a pro-spectrum TR·(C; p) together with
maps of pro-spectra

F : TRn(C; p)→ TRn−1(C; p),

V : TRn−1(C; p)→ TRn(C; p),

µ : S1
+ ∧ TRn(C; p)→ TRn(C; p).
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The spectrum TR1(C; p) is the topological Hochschild spectrum of C. The cyclo-
tomic trace is a map of pro-spectra

tr : K(C)→ TR·(C; p),

where the algebraic K-theory spectrum on the left is regarded as a constant pro-
spectrum.

Suppose that the category C has a strict symmetric monoidal structure such
that the tensor product is bi-exact. Then there is a natural product on TR·(C; p)
which makes it a commutative pro-ring spectrum. Similarly, K(C) is naturally a
commutative ring spectrum and the maps F and tr are maps of ring-spectra.

The pro-spectrum TR·(C; p) has a preferred homotopy limit TR(C; p), and there
are preferred lifts to the homotopy limit of the maps F , V and µ. Its homotopy
groups are related to those of the pro-system by the Milnor sequence

0→ lim←−
R

1 TR·
s+1(C; p)→ TRs(C; p)→ lim←−

R

TR·
s(C; p)→ 0.

There is a natural cofibration sequence

TC(C; p)→ TR(C; p) R−F−−−→ TR(C; p)→ Σ TC(C; p),

where TC(C; p) is the topological cyclic homology spectrum of C. The cyclotomic
trace has a preferred lift to a map

tr : K(C)→ TC(C; p),

and in the case where C has a bi-exact strict symmetric monoidal product, the
natural product on TR·(C; p) have preferred lifts to natural products on TR(C; p)
and TC(C; p), and the maps F and tr are ring maps.

Let G be a compact Lie group. One then has the G-stable category which is a
triangulated category with a compatible closed symmetric monoidal structure. The
objects of this category are called G-spectra, and the monoids for the smash product
are called ring G-spectra. Let H ⊂ G be a closed subgroup and let WHG = NGH/H
be the Weil group. There is a forgetful functor which to a G-spectrum X assigns
the underlying H-spectrum UHX. We also write |X| for U{1}X. It comes with a
natural map of spectra

µX : G+ ∧ |X| → |X|.
One also has the H-fixed point functor which to a G-spectrum X assigns the WHG-
spectrum XH . If H ⊂ K ⊂ G are two closed subgroups, there is a map of spectra

ιKH : |XK | → |XH |,

and if |K :H| is finite, a map in the opposite direction

τK
H : |XH | → |XK |.

If X is a ring G-spectrum then UHX is an ring H-spectrum and XH is a ring
WGH-spectrum.

Let T be the circle group, and let Cr ⊂ T be the cyclic subgroup of order r. We
then have the canonical isomorphism of groups

ρr : T ∼−→ T/Cr = WTCr
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given by the rth root. It induces an isomorphism of the T/Cr-stable category and
the T-stable category by assigning to a T/Cr-spectrum Y the T-spectrum ρ∗rY .
Moreover, there is a transitive system of natural isomorphisms of spectra

ϕr : |ρ∗rY |
∼−→ |Y |,

and the following digrams commute

T+ ∧ |ρ∗rY |
µ

//

ρ∧ϕr

��

|ρ∗rY |

ϕr

��

T/Cr+ ∧ |Y |
µ

// |Y |.

We will define a T-spectrum T (C) such that

TRn(C; p) = |ρ∗pn−1T (C)Cpn−1 |
with the maps F and V given by the composites

F = ϕ−1
pn−2ι

Cpn−1

Cpn−2
ϕpn−1 : |ρ∗pn−1T (C)Cpn−1 | → |ρ∗pn−2T (C)Cpn−2 |

V = ϕ−1
pn−1τ

Cpn−1

Cpn−2
ϕpn−2 : |ρ∗pn−2T (C)Cpn−2 | → |ρ∗pn−1T (C)Cpn−1 |

and the map µ given by

µ = µ
ρ∗

pn−1T (C)
C

pn−1 : T+ ∧ |ρ∗pn−1T (C)Cpn−1 | → |ρ∗pn−1T (C)Cpn−1 |.

There is a natural map
K(C)→ T (C)T,

and the cyclotomic trace is then the composite of this map and ϕ−1
pn−1ι

T
Cpn−1

. The
definition of the structure maps in the pro-system TR·(C; p) is more complicated
and uses the cyclotomic structure on T (C) which we now explain.

There is a cofibration sequence of T-CW-complexes

E+ → S0 → Ẽ → ΣE+,

where E is a free contractible T-space, and where the left hand map collapses E
to the non-base point of S0. It induces upon smashing with a T-spectrum T a
cofibration sequence of T-spectra

E+ ∧ T → T → Ẽ ∧ T → ΣE+ ∧ T,

and hence the following basic cofibration sequence of spectra

|ρ∗pn(E+ ∧ T )Cpn | → |ρ∗pnTCpn | → |ρ∗pn(Ẽ ∧ T )Cpn | → Σ|ρ∗pn(E+ ∧ T )Cpn |,
natural in T . The left hand term is written H ·(Cpn , T ) and called the group ho-
mology spectrum or Borel spectrum. Its homotopy groups are approximated by a
strongly convergent first quadrant homology type spectral sequence

E2
s,t = Hs(Cpn , πtT )⇒ πs+tH ·(Cpn , T ).

The cyclotomic structure on T (C) means that there is a natural map of T-spectra

r : ρ∗p(Ẽ ∧ T (C))Cp → T (C)
such that UCps r is an isomorphism of Cps -spectra, for all s ≥ 0. More generally,
since

ρ∗pn(Ẽ ∧ T (C))Cpn = ρ∗pn−1(ρ∗p(Ẽ ∧ T (C))Cp)Cpn−1 ,
8



the map r induces a map of T-spectra

rn+1 : ρ∗pn(Ẽ ∧ T (C))Cpn → ρ∗pn−1T (C)Cpn−1

such that UCps rn+1 is an isomorphism of Cps -spectra, for all s ≥ 0. The map

R : TRn(C; p)→ TRn−1(C; p)

is then defined as the composite

|ρ∗pn−1T (C)Cpn−1 | → |ρ∗pn−1(Ẽ ∧ T (C))Cpn−1 | rn−→
∼
|ρ∗pn−2T (C)Cpn−2 |,

where the left hand map is the middle map in the cofibration sequence above. We
thus have a natural cofibration sequence of spectra

H ·(Cpn−1 , T (C)) N−→ TRn(C; p) R−→ TRn−1(C; p) ∂−→ ΣH ·(Cpn−1 , T (C)).
When C has a bi-exact strict symmetric monoidal product, the map r is a map of
ring T-spectra, and hence R is a map of ring spectra. The cofibration sequence
above is a sequence of TRn(C; p)-module spectra and maps.

For any T-spectrum X, one has the function spectrum F (E+, X), and the pro-
jection E+ → S0 defines a natural map

γ : X → F (E+, X).

This map induces an isomorphism of group homology spectra. One defines the
group cohomology spectrum and Tate spectrum,

H ·(Cpn , X) = |ρ∗pnF (E+, X)Cpn |,

Ĥ (Cpn , X) = |ρ∗pn(Ẽ ∧ F (E+, X))Cpn |.
Their homotopy groups are approximated by homology type spectral sequences

E2
s,t = H−s(Cpn , πtX)⇒ πs+tH ·(Cpn , X),

Ê2
s,t = Ĥ−s(Cpn , πtX)⇒ πs+tĤ (Cpn , X),

both of which converges conditionally in the sense of [1, definition 5.10]. The latter
sequence, called the Tate spectral sequence, will be considered in great detail in
paragraph 4 below. Taking T = F (E+, X) in the basic cofibration sequence above,
we get the Tate cofibration sequence of spectra

H ·(Cpn , X) Nh

−−→ H ·(Cpn , X) Rh

−−→ Ĥ(Cpn , X) ∂h

−−→ ΣH ·(Cpn , X).

Finally, if X = T (C), the map

γ : T (C)→ F (E+, T (C))
induces a map of cofibration sequences

H ·(Cpn , T (C)) N // TRn+1(C; p)
R //

Γ

��

TRn(C; p) ∂ //

Γ̂
��

ΣH ·(Cpn , T (C))

H ·(Cpn , T (C)) Nh
// H ·(Cpn , T (C)) Rh

// Ĥ(Cpn , T (C)) ∂h
// ΣH ·(Cpn , T (C)),

in which all maps commute with the action maps µ. Moreover, if C is strict sym-
metric monoidal with bi-exact tensor product, the four spectra in the middle square
are all ring spectra and R, Rh, Γ and Γ̂ are maps of ring spectra. In this case, the
diagram is a diagram of TRn+1(C; p)-module spectra, [19, pp. 71–72].
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1.2. In order to construct the T-spectrum T (C) we need a model category
for the T-stable category. The model category we use is the category of symmetric
spectra of orthogonal T-spectra, see [31] and [21, theorem 5.10]. We first recall the
topological Hochschild space THH(C). See [7], [10] and [19] for more details.

A linear category C is naturally enriched over the symmetric monoidal category
of symmetric spectra. The symmetric spectrum of maps from c to d, HomC(c, d),
is the Eilenberg-MacLane spectrum for the abelian group HomC(c, d) concentrated
in degree zero. In more detail, if X is a pointed simplicial set, then

Z(X) = Z{X}/Z{x0}

is a simplicial abelian group whose homology is the reduced singular homology of
X. Here Z{X} denotes the degree-wise free abelian group generated by X. Let
Si be the i-fold smash product of the standard simplicial circle S1 = ∆[1]/∂∆[1].
Then the spaces {|Z(Si)|}i≥0 is a symmetric ring spectrum with the homotopy type
of an Eilenberg-MacLane spectrum for Z concentrated in degree zero, and we define

HomC(c, d)i = |HomC(c, d)⊗ Z(Si)|.

Let I be the category with objects the finite sets

i = {1, 2, . . . , i}, i ≥ 1,

and the empty set 0, and morphisms all injective maps. It is a strict monoidal
category under concatenation of sets and maps. There is a functor Vk(C;X) from
Ik+1 to the category of pointed spaces which on objects is given by

Vk(C;X)(i0, . . . , ik) =
∨

c0,...,ck∈ob C

HomC(c0, ck)i0 ∧ · · · ∧HomC(ck, ck−1)ik
∧X.

It induces a functor Gk(C;X) from Ik+1 to pointed spaces with

Gk(C;X)(i0, . . . , ik) = F (Si0 ∧ · · · ∧ Sik , V (C;X)(i0, . . . , ik)),

and we define
THHk(C) = holim

−→
Ik+1

Gk(C;S0).

This is naturally the space of k-simplices in a cyclic space and, by definition,

THH(C) = |[k] 7→ THHk(C)|.

It is a T-space by Connes’ theory of cyclic spaces, [28, 7.1.9].
More generally, let (n) be the finite ordered set {1, 2, . . . , n} and let (0) be

the empty set. The product category I(n) is a strict monoidal category under
component wise concatenation of sets and maps. Concatenation of sets and maps
according to the ordering of (n) also defines a functor

tn : I(n) → I,

but this does not preserve the monoidal structure. By convention I(0) is the cate-
gory with one object and one morphism, and t0 includes this category as the full
subcategory on the object 0. We let G

(n)
k (C;X) be the functor from (I(n))k+1 to

the category of pointed spaces given by

G
(n)
k (C;X) = Gk(C;X) ◦ (tn)k+1,
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and define
THH(n)

k (C;X) = holim
−→

(I(n))k+1

G
(n)
k (C;X).

In particular, THH(0)
k (C;X) = N cy

k (C) ∧X, where

N cy
k (C) =

∨
c0,...,ck∈ob C

HomC(c0, ck) ∧ · · · ∧HomC(ck, ck−1)

is the cyclic bar construction of C. Again this is the space of k-simplices in a cyclic
space, and hence we have the Σn × T-space

THH(n)(C;X) = |[k] 7→ THH(n)
k (C;X)|.

There is a natural product

THH(m)(C;X) ∧ THH(n)(D;Y )→ THH(m+n)(C ⊗ D;X ∧ Y ),

which is Σm×Σn×T-equivariant if T acts diagonally on the left. Here the category
C ⊗ D has as objects all pairs (c, d) with c ∈ ob C and d ∈ D, and

HomC⊗D((c, d), (c′, d′)) = HomC(c, c′)⊗HomD(d, d′).

For any category C, the nerve category N·C is the simplicial category with k-
simplicies the functor category

NkC = C[k],

where the partially ordered set [k] = {0, 1, . . . , k} is viewed as a category. An order
preserving map θ : [k]→ [l] may be viewed as a functor and hence induces a functor

θ∗ : NlC → NkC.
The objects of N·C is the nerve of C, N·C. Clearly, the nerve category is a functor
from categories to simplicial categories.

Suppose now that C is a category with cofibrations and weak equivalences in the
sense of [48, section 1.2]. We then define

Nw
· C ⊂ N·C

to be the full simplicial subcategory with

obNw
· C = N·wC.

There is a natural structure of simplicial category with cofibrations and weak equiv-
alences on Nw

· C: coNw
· C and wNw

· C are the simplicial subcategories which contain
all objects but where morphisms are natural transformations through cofibrations
and weak equivalences in C, respectively. With these definitions there is a natural
isomorphism of bi-simplicial categories with cofibrations and weak equivalences

(1.2.1) N·S·C ∼= S·N·C,
where S·C is Waldhausen’s construction, [48, section 1.3].

Let V be a finite dimensional orthogonal T-representation. We define the (n, V )th
space in the symmetric orthogonal T-spectrum T (C) by

(1.2.2) T (C)n,V = |THH(n)(Nw
· S

(n)
· C;SV )|.

There are two T-actions on this space: one which comes from the topological
Hochschild space, and another induced from the T-action on SV . We give T (C)n,V

the diagonal T-action. There are also two Σn-actions: one which comes from the
11



Σn-action on the topological Hochschild space, and another induced from the per-
mutation of the simplicial directions in the n-simplicial category S

(n)
· C, compare

[10, 6.1]. We also give T (C)n,V the diagonal Σn-action. In particular, the (0, 0)th
space is the cyclic bar construction

T (C)0,0 = |N cy
· (Nw

· C)|.
In general, the T-fixed set of the realization of a cyclic space X· is given by

|X·|T = {x ∈ X0 | s0(x) = t1s0(x)},
and hence, we have a canonical map

| obNw
· S

(n)
· C ∧ SV T

| → (T (C)n,V )T.

The space on the left is the (n, V T)th space of a symmetric orthogonal spectrum,
which represents the spectrum K(C) in the stable homotopy category, and the map
above defines the cyclotomic trace. Moreover, by a construction similar to that of
[19, §2], there are T-equivariant maps

ρ∗p(T (C)n,V )Cp → T (C)n,ρ∗pV Cp ,

and one can prove that for fixed n, the object of the T-stable category defined by
the orthogonal spectrum V 7→ T (C)n,V has a cyclotomic structure.

Suppose that C is a strict symmetric monoidal category and that the tensor
product is bi-exact. There is then an induced Σm × Σn-equivariant product

S
(m)
· C ⊗ S

(n)
· C → S

(m+n)
· C,

and hence
T (C)m,V ∧ T (C)n,W → T (C)m+n,V⊕W .

This product makes T (C) a monoid in the symmetric monoidal category of sym-
metric orthogonal T-spectra.

1.3. We need to recall some of the properties of this construction. It is con-
venient to work in a more general setting.

Let Φ be a functor from a category of categories with cofibrations and weak
equivalences to the category of pointed spaces. If C· is a simplicial category with
cofibrations and weak equivalences, we define

Φ(C·) = |[n] 7→ Φ(Cn)|.
We shall assume that Φ satisfies the following axioms:

(i) the trivial category with cofibrations and weak equivalences is mapped to a
one-point space.

(ii) for any pair C and D of categories with cofibrations and weak equivalences,
the canonical map

Φ(C × D) ∼−→ Φ(C)× Φ(D)
is a weak equivalence.

(iii) if f· : C· → D· is a map of simplicial categories with cofibrations and weak
equivalences, and if for all n, Φ(fn) : Φ(Cn)→ Φ(Dn) is a weak equivalence, then

Φ(f·) : Φ(C·)→ Φ(D·)

is a weak equivalence.
12



In [48], Φ is the functor which to a category assigns the set of objects. Here our
main concern is the functor THH and variations thereof.

We next recall some generalities. Let

f, g : C· → D·

be two exact simplicial functors. An exact simplicial homotopy from f to g is an
exact simplicial functor

h : ∆[1]· × C· → D·

such that h ◦ (d1 × id) = f and h ◦ (d0 × id) = g. Here ∆[n]· is viewed as a
discrete simplicial category with its unique structure of a simplicial category with
cofibrations and weak equivalences. An exact simplicial functor f : C· → D· is an
exact simplicial homotopy equivalence if there exists an exact simplicial functor
g : D· → C· and exact simplicial homotopies of the two composites to the respective
identity simplicial functors.

Lemma 1.3.1. An exact simplicial homotopy ∆[1]·×C· → D· induces a homotopy

∆[1]× Φ(C·)→ Φ(D·).

Hence Φ takes exact simplicial homotopy equivalences to homotopy equivalences.

Proof. There is a natural transformation

∆[1]k × Φ(Ck)→ Φ(∆[1]k × Ck).

Indeed, ∆[1]k×Φ(Ck) and ∆[1]k×Ck are coproducts in the category of spaces and the
category of categories with cofibrations and weak equivalences, respectively, indexed
by the set ∆[1]k. The map exists by the universal property of coproducts. �

Lemma 1.3.2. An exact functor of categories with cofibrations and weak equiv-
alences f : C → D induces an exact simplicial functor Nw

· f : Nw
· C → Nw

· D. A
natural transformation through weak equivalences of D between two such functors
f and g induces an exact simplicial homotopy between Nw

· f and Nw
· g.

Proof. The first statement is clear. We view the partially ordered set [1] as
a category with cofibrations and weak equivalences where the non-identity map is
a weak equivalence but not a cofibration. Then the natural transformation defines
an exact functor [1]× C → D, and the required exact simplicial homotopy is given
by the composite

∆[1]· ×Nw
· C → Nw

· [1]×Nw
· C → Nw

· ([1]× C)→ Nw
· D,

where the first and the middle arrow are the canonical simplicial functors, and the
last is induced from the natural transformation. (Note that Nw

· [n] is not a discrete
category.) �

Lemma 1.3.3. ([48, lemma 1.4.1]) Let f, g : C → D be a pair of exact functors of
categories with cofibrations. A natural isomorphism from f to g induces an exact
simplicial homotopy

∆[1]· × S·C → S·D
from S·f to S·g. �
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Corollary 1.3.4. Let C be a category with cofibrations, and let iC be the subcat-
egory of isomorphisms. Then the map induced from the degeneracies in the nerve
direction induces a weak equivalence

Φ(S·C)
∼−→ Φ(Ni

·S·C).

Proof. For each k, the iterated degeneracy functor

s : C = Ni
0C → Ni

kC,
has the retraction

θ∗ : Ni
kC → C,

where θ : [0] → [k] is given by θ(0) = 0. Moreover, there is a natural isomorphism
id ∼−→ θ∗, and hence by lemma 1.3.3,

S·s : S·C → S·Ni
kC = Ni

kS·C
is an exact simplicial homotopy equivalence. The corollary follows from lemma 1.3.1
and from property (iii) above. �

Let A, B and C be categories with cofibrations and weak equivalences and sup-
pose that A and B are subcategories of C and that the inclusion functors are exact.
Following [48, p. 335], let E(A, C,B) be the category with cofibrations and weak
equivalences given by the pull-back diagram

E(A, C,B)
(s,t,q)

//

��

A× C × B

��

S2C
(d2,d1,d0)

// C × C × C.

In other words, E(A, C,B) is the category of cofibration sequences in C of the form

A � C � B, A ∈ A, B ∈ B.

The exact functors s, t and q take this sequence to A, C and B, respectively. The
extension of the additivity theorem to the present situation is due to McCarthy,
[34]. Indeed, the proof given in op.cit. for Φ the cyclic nerve functor generalizes
mutatis mutandis to prove the statement (1) below. The equivalence of the four
statements follows from [48, proposition 1.3.2].

Theorem 1.3.5. (Additivity theorem) The following equivalent assertions hold:
(1) The exact functors s and q induce a weak equivalence

Φ(Nw
· S·E(A, C,B)) ∼−→ Φ(Nw

· S·A)× Φ(Nw
· S·B).

(2) The exact functors s and q induce a weak equivalence

Φ(Nw
· S·E(C, C, C)) ∼−→ Φ(Nw

· S·C)× Φ(Nw
· S·C).

(3) The functors t and s ∨ q induce homotopic maps

Φ(Nw
· S·E(C, C, C))→ Φ(Nw

· S·C).

(4) Let F ′ � F � F ′′ be a cofibration sequence of exact functors C → D. Then the
exact functors F and F ′ ∨ F ′′ induce homotopic maps

Φ(Nw
· S·C)→ Φ(Nw

· S·D). �
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Let f : C → D be an exact functor and let S·(f : C → D) be Waldhausen’s relative
construction, [48, definition 1.5.4]. Then the commutative square

(1.3.6) Φ(Nw
· S·C) //

��

Φ(Nw
· S·S·(id : C → C))

��

Φ(Nw
· S·D) // Φ(Nw

· S·S·(f : C → D))

is homotopy cartesian, and there is a canonical contraction of the upper right hand
term. In particular, if we let D be the category with one object and one morphism,
this shows that the canonical map

Φ(Nw
· S·C)

∼−→ ΩΦ(Nw
· S·S·C)

is a weak equivalence.

Definition 1.3.7. A map f : X → Y of T-spaces is called an F-equivalence if
for all r ≥ 1 the induced map of Cr-fixed points is a weak equivalence of spaces.

Proposition 1.3.8. Let C be a linear category with cofibrations and weak equiva-
lences, and let T (C) be the topological Hochschild spectrum. Then for all orthogonal
T-representations W and V , the spectrum structure maps

T (C)n,V
∼−→ F (Sm ∧ SW , T (C)m+n,W⊕V )

are F-equivalences, provided that n ≥ 1.

Proof. We factor the map in the statement as

T (C)n,V → F (Sm, T (C)m+n,V )→ F (Sm, F (SW , T (C)m+n,W⊕V )).

Since Sm is Cr-fixed the map of Cr-fixed sets induced from the first map may be
identified with the map

(T (C)n,V )Cr → Ωm(T (C)m+n,V )Cr ,

and by definition, this is the map

THH(n)(Nw
· S

(n)
· C;SV )Cr → Ωm THH(m+n)(Nw

· S
(m+n)
· C;SV )Cr .

By the approximation lemma, [2, theorem 1.6] or [30, lemma 2.3.7], we can replace
the functor THH(k)(−;−) by the common functor THH(−;−), and the claim now
follows from (1.3.6) applied to the functor

Φ(C) = THH(C;SV )Cr .

Finally, it follows from the proof of [19, proposition 2.4] that

(T (C)m+n,V )Cr → F (SW , T (C)m+n,W⊕V ))Cr

is a weak equivalence. �

We next extend Waldhausen’s fibration theorem to the present situation. We
follow the original proof in [48, section 1.6], where also the notion of a cylinder
functor is defined.
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Lemma 1.3.9. Suppose that C has a cylinder functor, and that wC satisfies the
cylinder axiom and the saturation axiom. Then

Φ(Nw̄
· C)

∼−→ Φ(Nw
· C)

is a weak equivalence. Here w̄C = wC ∩ co C.

Proof. The proof is analogous to the proof of [48, lemma 1.6.3], but we need
the proof of [37, theorem A] and not just the statement. We consider the bi-
simplicial category T(C) whose category of (p, q)-simplices has objects pairs of
diagrams in C of the form

(Aq → · · · → A0, A0 → B0 → · · · → Bp),

and morphisms all natural transformations of such pairs of diagrams. We let

Tw̄,w(C) ⊂ T(C)

be the full subcategory with objects the pairs of diagrams with the left hand dia-
gram in w̄C and the right hand diagram in wC. There are bi-simplicial functors

Nw̄(Cop)R
p1←− Tw̄,w(C) p2−→ Nw(C)L,

where for a simplicial object X, the bi-simplicial objects XL and XR are obtained
by pre-composing X with projections pr1 and pr2 from ∆×∆ to ∆, respectively.
Applying Φ in each bi-simplicial degree, we get corresponding maps of bi-simplicial
spaces. We show that both maps induce weak equivalences after realization.

For fixed q, the simplicial functor

p1 : Tw̄,w
·,q (C)→ Nw̄

q (Cop)

is a simplicial homotopy equivalence, and hence induces a homotopy equivalence
upon realization. It follows that

Φ(p1) : Φ(Tw̄,w(C)) ∼−→ Φ(Nw̄
· (Cop))

is a weak equivalence of spaces.
Similarly, we claim that for fixed p, the simplicial functor

p2 : Tw̄,w
p,· (C)→ Nw

p (C)

is a simplicial homotopy equivalence. The homotopy inverse σ maps

(B0 → · · · → Bp) 7→ (B0
id−→ . . .

id−→ B0, B0
id−→ B0 → · · · → Bp).

Following the proof of [48, lemma 1.6.3] we consider the simplicial functor

t : Tw̄,w
p,· (C)→ Tw̄,w

p,· (C)

which maps

(Aq → · · · → A0, A0 → B0 → . . . Bp)

7→ (T (Aq → B0)→ · · · → T (A0 → B0), T (A0 → B0)
p−→ B0 → · · · → Bp),

where T is the cylinder functor. There are exact simplicial homotopies from σ ◦ p2

to t and from the identify functor to t. Hence

Φ(p2) : Φ(Tw̄,w(C)) ∼−→ Φ(Nw(C))

is a weak equivalence of spaces.
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Finally, consider the diagram of bi-simplicial categories

Nw̄(Cop)R

i

��

Tw̄,w(C)
p1oo

p2 //

i′

��

Nw(C)L

Nw(Cop)R Tw,w(C)
p1oo

p2 // Nw(C)L,

where i′ is the obvious inclusion functor. Applying Φ the horizontal functors all
induce weak equivalences. The lemma follows. �

Let C be a category with cofibrations and two categories of weak equivalences
vC and wC, and write

Nv,wC = Nv
· (Nw

· C) ∼= Nw
· (Nv

· C).
This is a bi-simplicial category with cofibrations which again has two categories of
weak equivalences.

Lemma 1.3.10. (Swallowing lemma) If vC ⊂ wC then

Φ(Nw
· C) = Φ((NwC)R) ∼−→ Φ(Nv,wC)

is a homotopy equivalence with a canonical homotopy inverse.

Proof. We claim that for fixed m, the iterated degeneracy in the v-direction,

Nw
· C → Nw

· (Nv
mC),

is an exact simplicial homotopy equivalence. Given this, the lemma follows from
the lemma 1.3.1 and from property (iii). The iterated degeneracy above is induced
from the (exact) iterated degeneracy map C → Nv

mC in the simplicial category
Nv

· C. This map has a retraction given by the (exact) iterated face map which takes
c0 → · · · → cm to c0. The other composite takes c0 → · · · → cm to the appropriate
sequence of identity maps on c0. There is a natural transformation from this functor
to the identity functor, given by

c0

id

��

c0

f1

��

. . . c0

fm◦···◦f1

��
c0

f1 // c1
f2 // . . . fm // cm.

The natural transformation is through arrows in vC, and hence in wC. The claim
now follows from lemma 1.3.2. �

The proof of [48, theorem 1.6.4] now gives:

Theorem 1.3.11. (Fibration theorem) Let C be a category with cofibrations
equipped and two categories of weak equivalences vC ⊂ wC, and let Cw be the sub-
category with cofibrations of C given by the objects A such that ∗ → A is in wC.
Suppose that C has a cylinder functor, and that wC satisfies the cylinder axiom, the
saturation axiom, and the extension axiom. Then

Φ(Nv
· S·Cw) //

��

Φ(Nw
· S·Cw)

��

Φ(Nv
· S·C) // Φ(Nw

· S·C)
17



is a homotopy cartesian square of pointed spaces, and there is a canonical contrac-
tion of the upper right hand term. �

1.4. Let A be an abelian category. We view A as a category with cofibrations
and weak equivalences by choosing a null-object and taking the monomorphisms
as the cofibrations and the isomorphisms as the weak equivalences. Let E be an
additive category embedded as a full subcategory of A, and assume that for every
exact sequence in A,

0→ A′ → A→ A′′ → 0,

if A′ and A′′ are in E then A is in E , and if A and A′′ are in E then A′ is in E . We
then view E as a subcategory with cofibrations and weak equivalences of A in the
sense of [48, section 1.1].

The category Cb(A) of bounded complexes in A is a category with cofibrations
and weak equivalences, where the cofibrations are the degree wise monomorphisms
and the weak equivalences zCb(A) are the quasi-isomorphisms. We view the cat-
egory Cb(E) of bounded complexes in E as a subcategory with cofibrations and
weak equivalences of Cb(A). The inclusion E → Cb(E) of E as the subcategory of
complexes concentrated in degree zero, is an exact functor. The assumptions of the
fibration theorem 1.3.11 are satisfied for Cb(E).

Theorem 1.4.1. With E as above, the inclusion induces an equivalence

Φ(Ni
·S·E)

∼−→ Φ(Nz
· S·C

b(E)).

Proof. We follow the proof of [46, theorem 1.11.7]. Since the category Cb(E)
has a cylinder functor which satisfies the cylinder axiom with respect to quasi-
isomorphisms, the fibration theorem shows that the right hand square in the dia-
gram

Φ(Ni
·S·E i) //

��

Φ(Ni
·S·C

b(E)z) //

��

Φ(Nz
· S·C

b(E)z)

��

Φ(Ni
·S·E) // Φ(Ni

·S·C
b(E)) // Φ(Nz

· S·C
b(E))

is homotopy cartesian. Moreover, the composite of the maps in the lower row is
equal to the map of the statement, and the upper left hand and upper right hand
terms are contractible. Hence the theorem is equivalent to showing that the left
hand square, and thus the outer square, is homotopy cartesian.

Let Cb
a be the full subcategory of Cb(E) consisting of the complexes E∗ with

Ei = 0 for i > b and i < a. Then Cb(E) is the colimit of the categories Cb
a as a

and b tends to −∞ and +∞, respectively. We consider Cb
a as a subcategory with

cofibrations of Cb(E). We first show that there is a weak equivalence

Φ(Ni
·S·Cb

a)→
∏

a≤s≤b

Φ(Ni
·S·E), E∗ 7→ (Eb, Eb−1, . . . , Ea).

The map is an isomorphism for b = a. If b > a, the functor

e : Cb
a → E(Ca

a , Cb
a, Cb

a+1),

which takes E∗ to the extension

σ≤aE∗ � E∗ � σ>aE∗,
18



is an exact equivalence of categories. Here σ≤nE∗ is the brutal truncation, [49,
1.2.7]. The inverse, given by the total-object functor, is also exact. Hence, the
induced map

Φ(Ni
·S·Cb

a) ∼−→ Φ(Ni
·S·E(Ca

a , Cb
a, Cb

a+1)),

is a homotopy equivalence by lemma 1.3.2. The additivity theorem 1.3.5 then shows
that

(s, q) : Φ(Ni
·S·E(Ca

a , Cb
a, Cb

a+1))
∼−→ Φ(Ni

·S·Ca
a)× Φ(Ni

·S·Cb
a+1),

so in all, we have a weak equivalence

Φ(Ni
·S·Cb

a) ∼−→ Φ(Ni
·S·E)× Φ(Ni

·S·Cb
a+1), E∗ 7→ (Ea, σ>aE∗).

It now follows by easy induction that the map in question is a weak equivalence.
Next, we claim that the map

Φ(Ni
·S·Cbz

a )→
∏

a≤s<b

Φ(Ni
·S·E), E∗ 7→ (Bb−1, Bb−2, . . . , Ba),

where Bi ⊂ Ei are the boundaries, is a weak equivalence. Note that the exactness
of the functors E∗ 7→ Bi uses that the complex E∗ is acyclic. If a = b−1 the functor
E∗ 7→ Bb−1 is an equivalence of categories with exact inverse functor. Therefore, in
this case, the claim follows from lemma 1.3.2. If b− 1 > a, we consider the functor

Cbz
a → E(Cbz

b−1, Cbz
a , C(b−1)z

a ),

which takes the acyclic complex E∗ to the extension

τ≥b−1E∗ � E∗ � τ<b−1E∗,

where τ≥nE∗ is the good truncation, [49, 1.2.7]. The functor is exact, since we only
consider acyclic complexes, and it is an equivalence of categories with exact inverse
given by the total-object functor. Hence the induced map

Φ(Ni
·S·Cbz

a ) ∼−→ Φ(Ni
·S·E(Cbz

b−1, Cbz
a , C(b−1)z

a ))

is a homotopy equivalence by lemma 1.3.2. The additivity theorem now shows that

Φ(Ni
·S·Cbz

a ) ∼−→ Φ(Ni
·S·E)× Φ(Ni

·S·Cb−1
a ), E∗ 7→ (Bb−1, τ<b−1E∗),

is a weak equivalence, and the claim follows by induction.
Statement (4) of the additivity theorem shows that there is a homotopy commu-

tative diagram

Φ(Ni
·S·Cbz

a ) ∼ //

��

∏
a≤s<b Φ(Ni

·S·E)

��

Φ(Ni
·S·Cb

a) ∼ //
∏

a≤s≤b Φ(Ni
·S·E)

where the horizontal maps are the equivalences established above, and where the
right hand vertical map takes (xs) to (xs + xs−1). It follows that the diagram

Φ(Ni
·S·C0z

0 ) //

��

Φ(Ni
·S·Cbz

a )

��

Φ(Ni
·S·C00) // Φ(Ni

·S·Cb
a)),
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where the maps are induced by the canonical inclusions, is homotopy cartesian.
Indeed, the map of horizontal homotopy fibers may be identified with the map∏

a≤s<b

ΩΦ(Ni
·S·E)→

∏
a≤s≤b,s6=0

ΩΦ(Ni
·S·E),

which takes (xs) to (xs+xs−1), and this, clearly, is a homotopy equivalence. Taking
the homotopy colimit over a and b, we see that the left hand square in the diagram
at the beginning of the proof is homotopy cartesian. �

1.5. In the remainder of this paragraph, A will be a discrete valuation ring
with quotient field K and residue field k. The main result is theorem 1.5.2 below.
It seems unlikely that this result is valid in the generality of the previous section.
Indeed, the proof of the corresponding result for K-theory uses the approximation
theorem [48, theorem 1.6.7], and this fails for general Φ, topological Hochschild
homology included. Our proof of theorem 1.5.2 uses the equivalence criterion of
Dundas-McCarthy for topological Hochschild homology, which we now recall.

If C is a category and n ≥ 0 an integer, we let Endn(C) be the category where an
object is a tuple (c; v1, . . . , vn) with c an object of C and v1, . . . , vn endomorphisms
of c, and where a morphism from (c; v1, . . . , vn) to (d;w1, . . . , wn) is a morphism
f : c→ d in C such that fvi = wif , for 1 ≤ i ≤ n. We note that End0(C) = C.

Proposition 1.5.1. ([7, proposition 2.3.3]) Let F : C → D be an exact functor
of linear categories with cofibrations and weak equivalences, and suppose that for
all n ≥ 0, the map | obNw

· S·Endn(F )| is an equivalence. Then

F∗ : THH(Nw
· S·C)

∼−→ THH(Nw
· S·D)

is an F-equivalence (see definition 1.3.7 ). �

Let MA be the category of finitely generated A-modules. We consider two cat-
egories with cofibrations and weak equivalences, Cb

z(MA) and Cb
q(MA), both of

which have the category of bounded complexes inMA with degree-wise monomor-
phisms as their underlying category with cofibrations. The weak equivalences are
the categories zCb(MA) of quasi-isomorphisms and qCb(MA) of chain maps which
become quasi-isomorphisms in Cb(MK), respectively. We note that Cb(Mq

A) and
Cb(MA)q are the categories of bounded complexes of finitely generated torsion
A-modules and bounded complexes of finitely generated A-modules with torsion
homology, respectively.

Theorem 1.5.2. The inclusion functor induces an F-equivalence

THH(Nz
· S·Cb(Mq

A)) ∼−→ THH(Nz
· S·Cb(MA)q).

Proof. We show that the assumptions of proposition 1.5.1 are satisfied. The
proof relies on Waldhausen’s approximation theorem, [48, theorem 1.6.7], but in a
formulation due to Thomason, [46, theorem 1.9.8], which is particularly well suited
for the situation at hand.

For n ≥ 0, let An be the ring of polynomials in n non-commuting variables
with coefficients in A, and let MA,n ⊂ MAn

be the category of An-modules
which are finitely generated as A-modules. Then the category Endn(Cb(MA))
(resp. Endn(Cb(MA))q, resp. Endn(Cb(Mq

A))) is canonically isomorphic to the
category Cb(MA,n) (resp. Cb(MA,n)q, resp. Cb(Mq

A,n)). Here Cb(MA,n)q ⊂
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Cb(MA,n) is the full subcategory of complexes whose image under the forgetful
functor Cb(MA,n)→ Cb(MA) lies in Cb(MA)q, and similarly forMq

A,n. We must
show that the inclusion functor induces a weak equivalence

| obNz
· S·C

b(Mq
A,n)| ∼−→ | obNz

· S·C
b(MA,n)q|,

for which we use [46, theorem 1.9.8]. The categories Cb(Mq
A,n) and Cb(MA,n)q are

both complicial bi-Waldhausen categories in the sense of [46, 1.2.4], which are closed
under the formation of canonical homotopy pushouts and homotopy pullbacks in
the sense of [46, 1.9.6]. The inclusion functor

F : Cb(Mq
A,n)→ Cb(MA,n)q

is a complicial exact functor in the sense of [46, 1.2.16]. We must verify the con-
ditions [46, 1.9.7.0–1.9.7.3]. These conditions are easily verified with the exception
of condition 1.9.7.1 which reads: for every object B of Cb(MA,n)q, there exists an
object A of Cb(Mq

A,n) and a map FA
∼−→ B in zCb(MA,n)q. This follows from

lemma 1.5.3 below. �

Lemma 1.5.3. Let A be a commutative noetherian ring, and let B be a not
necessarily commutative A-algebra. Let C∗ be a bounded complex of left B-modules
which as A-modules are finitely generated and suppose that the homology of C∗ is
annihilated by some power of an ideal I ⊂ A. Then there exists a quasi-isomorphism

C∗
∼−→ D∗

with D∗ a bounded complex of left B-modules which as A-modules are finitely gen-
erated and annihilated by some power of I.

Proof. Let n be an integer such that for all i ≥ n, Ci is annihilated by some
power of I. We construct a quasi-isomorphism C

∼−→ C ′′ to a bounded complex
C ′′ of left B-modules which as A-modules are finitely generated and such that for
all i ≥ n − 1, C ′′i is annihilated by some power of I. The lemma follows by easy
induction. To begin we note that the exact sequences

0→ Zn → Cn
d−→ Bn−1 → 0,

0→ Bn−1 → Zn−1 → Hn−1 → 0,

show that Zn−1 is annihilated by some power of I, say, by Ir. As an A-module Zn−1

is finitely generated because Cn−1 is a finitely generated A-module and because A is
noetherian. Hence, by the Artin-Rees lemma, [32, theorem 8.5], we can find s ≥ 1
such that Zn−1∩ IsCn−1 ⊂ IrZn−1 = 0. We now define C ′′ to be the complex with
C ′′i = Ci, if 6= n − 1, n − 2, with C ′′n−1 = Cn−1/IsCn−1, and with C ′′n−2 given by
the pushout square

Cn−1
d //

pr

����

Cn−2

����

C ′′n−1
// C ′′n−2.

There is a unique differential on C ′′ such that the canonical projection C → C ′′ is
a map of complexes. The kernel complex C ′ is concentrated in degrees n − 1 and
n− 2. The differential C ′n−1 → C ′n−2 is injective, since Zn−1 ∩ IsCn−1 is zero, and
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surjective, since the square is a pushout. Hence, the homology sequence associated
with the short exact sequence of complexes

0→ C ′ → C → C ′′ → 0

shows that C → C ′′ is a quasi-isomorphism. And by construction, some power of
I annihilates C ′′i , if i ≥ n− 1. �

We thank Thomas Geisser and Stefan Schwede for help with the argument above.
Let Cb

z(PA) and Cb
q(PA) be the category of bounded complexes of finitely gener-

ated projective A-modules considered as a subcategory with cofibrations and weak
equivalences of Cb

z(MA) and Cb
q(MA), respectively.

Proposition 1.5.4. The inclusion functor induces an F-equivalence

THH(Nz
· S·C

b(PA)q) ∼−→ THH(Nz
· S·C

b(MA)q).

Proof. Let An and MA,n be as in the proof of theorem 1.5.2, and let PA,n

be the full subcategory ofMA,n consisting of the An-modules which as A-modules
are finitely generated projective. Then Endn(Cb(MA))q and Endn(Cb(PA))q are
canonically isomorphic to Cb(MA,n)q and Cb(PA,n)q, respectively, and we must
show that the inclusion functor induces a weak equivalence

| obNz
· S·C

b(PA,n)q| ∼−→ | obNz
· S·C

b(MA,n)q|.

Again, we use [46, theorem 1.9.8], where the non-trivial thing to check is condition
1.9.7.1: for every object C∗ of Cb(MA,n)q, there exists an object P∗ of Cb(PA,n)q

and a map P∗
∼−→ C∗ in zCb(MA,n)q. But this follows from [5, chap. XVII,

prop. 1.2]. Indeed, let ε : P∗,∗ → C∗ be a projective resolution of C∗ regarded as
a complex of A-modules. We may assume that each Pi,j is a finitely generated
A-module, and since A is regular, that Pi,j is zero for all but finitely many (i, j).
Furthermore, it is proved in loc.cit. that there exists an An-module structure on P∗,∗
such that ε is An-linear. Hence, the total complex P∗ = Tot(P∗,∗) is in Cb(PA,n)
and Tot(ε) : P∗

∼−→ C∗ is in zCb(MA,n). It follows that P∗ is in Cb(PA,n)q as
desired. �

Definition 1.5.5. We define ring T-spectra

T (A|K) = T (Cb
q(PA)), T (A) = T (Cb

z(PA)), T (k) = T (Cb
z(PA)q)

and let TRn(A|K; p), TRn(A; p), and TRn(k; p) be the associated Cpn−1-fixed point
ring spectra.

We show that the definition of spectra TRn(A; p) and TRn(k; p) given here agrees
with the usual definition. By Morita invariance, [7, proposition 2.1.5], it suffices to
show that there are canonical isomorphisms of spectra

TRn(A; p) ' TRn(PA; p), TRn(k; p) ' TRn(Pk; p),

compatible with the maps R, F , V , and µ. Here the exact category PR is considered
a category with cofibrations and weak equivalences in the usual way. It follows from
theorem 1.4.1, applied to the functor Φ(C) = THH(C)Cr , and proposition 1.3.8 that
the map induced by the inclusion functor

T (PA)→ T (Cb
z(PA)) = T (A)
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is an F-equivalence. This gives the first of the stated isomorphisms of spectra. A
similar argument shows that the inclusion functor induces an F-equivalence

T (Pk) = T (Mk)→ T (Cb
z(Mk)).

By devisage, [6, theorem 1], the same is true for

T (Cb
z(Mk))→ T (Cb

z(M
q
A)).

Finally, theorem 1.5.2 and proposition 1.5.4 show that the maps induced from the
inclusion functors

T (Cb
z(M

q
A)) ∼−→ T (Cb

z(MA)q) ∼←− T (Cb
z(PA)q) = T (k)

are both F-equivalences. This establishes the second of the stated isomorphisms of
spectra. Let

i∗ : TRn(A; p)→ TRn(k; p)

be the map induced from the reduction.

Theorem 1.5.6. For all n ≥ 1, there is a natural cofibration sequence of spectra

TRn(k; p) i!−→ TRn(A; p)
j∗−→ TRn(A|K; p) ∂−→ Σ TRn(k; p),

and all maps in the sequence commute with the maps R, F , V , and µ. The map
j∗ is a map of ring spectra, and the maps i! and ∂ are maps of TRn(A; p)-module
spectra. Here TRn(k; p) is considered a TRn(A; p)-module spectrum via the map
i∗. Moreover, the preferred homotopy limits form a cofibration sequence of spectra.

Proof. We have a commutative square of symmetric orthogonal T-spectra

T (Cb
z(PA)q) //

��

T (Cb
q(PA)q)

��

T (Cb
z(PA)) // T (Cb

q(PA)),

and the fibration theorem 1.3.11 applied to the functor Φ(C) = THH(C)Cr shows
that the corresponding square of Cr-fixed point spectra is homotopy cartesian. It
follows that there is natural cofibration sequence of spectra

TRn(k; p) i!−→ TRn(A; p)
j∗−→ TRn(A|K; p) ∂−→ Σ TRn(k; p),

compatible with R, F , V and µ. It is clear that this is a sequence of TRn(A; p)-
module spectra. �

Addendum 1.5.7. There is a natural map of cofibration sequences

K(k) i! //

tr

��

K(A)
j∗ //

tr

��

K(K) ∂ //

tr

��

ΣK(k)

tr

��

TC(k; p) i! // TC(A; p)
j∗ // TC(A|K; p) ∂ // Σ TC(k; p)

and the vertical maps are all maps of ring spectra. �
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Remark 1.5.8. Let X be a regular affine scheme and let i : Y ↪→ X be a closed
subscheme with open complement j : U ↪→ X. Then, more generally, the proof of
theorem 1.5.6 gives a cofibration sequence of spectra

TR′n(Y ; p) i!−→ TRn(X; p)
j∗−→ TRn(X|U ; p) ∂−→ Σ TR′n(Y ; p),

where the three terms are defined as in definition 1.5.5 with PA replaced by the
category PX of locally free OX -modules of finite rank. The weak equivalences
are the quasi-isomorphisms, zCb(PX), and the chain maps which become quasi-
isomorphisms after restriction to U , qCb(PX), respectively. Similarly, the argument
following definition 1.5.5 gives canonical isomorphisms of spectra

TRn(X; p) ' TRn(PX ; p), TR′n(Y ; p) ' TRn(MY ; p),

where MY is the category of coherent OY -modules. Moreover, if Y is regular,
the resolution theorem, [7, prop. 2.2.3], shows that TRn(MY ; p) is canonically
isomorphic to TRn(PY ; p).

2. The homotopy groups of T (A|K)

2.1. In this paragraph we evaluate the homotopy groups with Z/p-coefficients
of the topological Hochschild spectrum T (A|K). We first fix some conventions.

Let G be a finite group and let k be a commutative ring. The category of
chain complexes of left kG-modules and chain homotopy classes of chain maps is
a triangulated category and a closed symmetric monoidal category, and the two
structures are compatible. The same is true for the category of G-CW-spectra
and homotopy classes of cellular maps. We fix our choices for the triangulated and
closed structures in such a way that the cellular chain functor preserves our choices.

We first consider complexes. If f : X → Y is a chain map, we define the mapping
cone Cf to be the complex

(Cf )n = Yn ⊕Xn−1, d(y, x) = (dy − f(x),−dx),

and the suspension ΣX to be the cokernel of the inclusion ι : Y → Cf of the first
summand. More explicitly,

(ΣX)n = Xn−1, dΣX(x) = −dX(x).

Then, by definition, a sequence X
f−→ Y

g−→ Z
h−→ ΣX is a triangle or a cofibration

sequence if it isomorphic to the distinguised triangle

X
f−→ Y

i−→ Cf
∂−→ ΣX,

where ∂ is the canonical projection. If X
f−→ Y

g−→ Z is a short exact sequence of
complexes then the projection p : Cf → Z, p(y, x′) = g(y), is a quasi-isomorphism
and the composite

HnZ
p∗←−−
∼

HnCf
∂∗−→ HnΣX = Hn−1X

is equal to the connecting homomorphism.
Let X and Y be two complexes. We define the tensor product complex by

(X ⊗ Y )n =
⊕

s+t=n

Xs ⊗ Yt; d(x⊗ y) = dx⊗ y + (−1)|x|x⊗ dy,
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and the complex of (k-linear) homomorphisms by

Hom(X, Y )n =
∏
s∈Z

Hom(Xs, Yn+s); d(f(x)) = (df)(x) + (−1)|f |f(dx).

We note that Z0 Hom(X, Y ) is equal to the set of chain maps from X to Y and that
H0 Hom(X, Y ) is equal to the set of chain homotopy classes of chain maps from X
to Y . The adjunction and twist isomorphisms are given by

φ : Hom(X ⊗ Y, Z)→ Hom(X, Hom(Y,Z)), φ(f)(x)(y) = f(x⊗ y),

γ : X ⊗ Y → Y ⊗X, γ(x⊗ y) = (−1)|x||y|y ⊗ x.

The triangulated and closed symmetric monoidal structures are compatible in the
sense that

Σ(X ⊗ Y ) = (ΣX)⊗ Y

and that if W is a complex and X
f−→ Y

g−→ Z
h−→ ΣX is a triangle, then so is

X ⊗W
f⊗1−−−→ Y ⊗W

g⊗1−−→ Z ⊗W
h⊗1−−−→ ΣX ⊗W.

Indeed, the isomorphism

ρ : Cf ⊗W
∼−→ Cf⊗W , ρ((y, x)⊗ w) = (y ⊗ w, x⊗ w),

and the identity map of X ⊗W , Y ⊗W , and ΣX ⊗W defines an isomorphism of
the appropriate distinguished triangles.

We define the homology of X with Z/m-coefficients by

H∗(X, Z/m) = H∗(Mm ⊗X),

where Mm is the Moore complex given by the distinguished triangle

k
m−→ k

ι−→Mm
β−→ Σk.

Suppose that X is m-torsion free such that X
m−→ X

pr−→ X/mX is a short-exact
sequence of complexes. Then the composite

Hn(X/mX)
p∗←−
∼

Hn(Cm)
ρ∗←−
∼

Hn(Mm ⊗X)
β−→ Hn(ΣX) = Hn−1(X)

is equal to the connecting homomorphism.
We next consider the category of G-CW-spectra and homotopy classes of cellular

maps, see [25, chap. I, §5]. This category, we recall, is equivalent to the G-stable
category. In one direction, the equivalence associates to a G-CW-spectrum X the
underlying G-spectrum UX. In the other direction, we choose a functorial G-CW-
replacement ΓX such that UΓX

∼−→ X.
If X and Y are two G-CW-spectra, the smash product UX∧UY has a canonical

G-CW-structure. But the function spectrum F (UX, UY ) usually does not. Instead
we consider ΓF (UX, UY ). This defines the closed symmetric monoidal structure.

The mapping cone of a celluar map f : X → Y is defined by

Cf = Y ∪X ([0, 1] ∧X),

where we use 1 as the base point for the smash product. The interval is given
the usual CW-structure with a single 1-cell oriented from 0 to 1, and the mapping
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cone is given the induced G-CW-structure. Collapsing the image of the canonical
inclusion i : Y → Cf to the base point defines the map

∂ : Cf → S1 ∧X = ΣX,

where S1 = [0, 1]/∂[0, 1] with the induced CW-structure. We then define the dis-
tiguished triangles to be the sequences of the form

X
f−→ Y

i−→ Cf
∂−→ ΣX.

Again, the triangulated and the closed symmetric monoidal structures are compati-
ble. Indeed, the associativity isomorphism, which is part of the monoical structure,
gives rise to canonical isomorphisms

α : Σ(X ∧W ) ∼−→ (ΣX) ∧W, ρ : Cf ∧W
∼−→ Cf∧W .

The choices made above are preserved by the cellular chain functor. To be more
precise, if X (resp. f : X → Y ) is a G-CW-spectrum (resp. a cellular map), then
the suspension isomorphism gives rise to a canonical isomorphism of complexes
ΣC∗(X; k) ∼−→ C∗(ΣX; k) (resp. C∗(Cf ; k) ∼−→ Cf∗). Under these identifications,
the cellular chain functor carries the distinguished triangles of G-CW-spectra to
the distinguished triangles of complexes of left kG-modules. Similarly, if X and
Y are two G-CW-complexes, then the Künneth isomorphism gives a canonical iso-
morphism C∗(X; k)⊗ C∗(Y ; k) ∼−→ C∗(X ∧ Y ; k).

We define the homotopy groups of X with Z/m-coefficients by

π∗(X, Z/m) = π∗(Mm ∧X),

where Mm is the Moore spectrum given by the distriguished triangle

S0 m−→ S0 ι−→Mm
β−→ S1,

and the homotopy groups with Zp-coefficients by

π∗(X, Zp) = π∗(holim
←−
v

(Mpv ∧X)).

The latter are related to the former by the Milnor sequence

0→ lim←−
v

1πq+1(X, Z/pv)→ πq(X, Zp)→ lim←−
v

πq(X, Z/pv)→ 0.

We shall often abbreviate πq(X, Z/p) and write π̄q(X). Let HZ/m be the Eilenberg-
MacLane spectrum for Z/m. It is a ring spectrum, and we let ε ∈ π1(HZ/m, Z/m)
to be the unique element such that β(ε) = 1. Then for left HZ/m-module spectra
X, we have a natural sum-diagram

(2.1.1) X
ι∧id //

Mm ∧X
β∧id

//

r
oo ΣX,

s
oo

where s is the composite

S1 ∧X
ε∧id−−−→Mm ∧HZ/m ∧X

id∧µ−−−→Mm ∧X,

and where r is determined by the requirement that r ◦ ι = id and r ◦ s = 0.
We recall Connes’ operator. Let T be the space S(C) of complex numbers of

length 1 considered as a group under multiplication. We give T the orientation
induced from the standard orientation of the complex plane, and let [T] ∈ H1(T)
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be the corresponding fundamental class. The reduced homology of a T-space X has
a natural differential given by the composite

d : H̃q(X)
[T]−−→ H̃q+1(T+ ∧X)

µ−→ H̃q+1(X),

where the left hand map is given by the Künneth isomorphism and the right hand
map is induced by the action map. There is a sum-diagram

Z/2 · η = πS
1 (S0)

e //
πS

1 (T+)
h //

c
oo H1(T) = Z · [T]

σ
oo

where h the Hurewitz homomorphism, e is induced from the map S0 → T+ which
takes the non-base-point of S0 to 1 ∈ T, c is induced from the map T+ → S0 which
collapses T to the non-base-point of S0, and σ is determined by hσ = id and cσ = 0.
Let T be a T-spectrum. Then Connes’ operator is the map

(2.1.2) d : πq(T )
[T]∧−−−−−→ πq+1(T+ ∧ T )

µT−−→ πq+1(T ).

If T = HH(A) is the Hochschild spectrum of a ring A, then this definition agrees
with Connes’ original definition, [16, proposition 1.4.6]. We recall from op. cit.,
lemma 1.4.2, that, in general, dd = dη = ηd. Hence, d is a differential, provided that
multiplication by η is trivial on π∗(T ). This is the case, for instance, if multiplication
by 2 on π∗(T ) is an isomorphism.

2.2. We next recall the notion of differentials with logarithmic poles. The
standard reference for this material is [24]. A pre-log structure on a ring R is a
map of monoids

α : M → R,

where R is considered a monoid under multiplication. By a log ring we mean a ring
with a pre-log structure. A derivation of a log ring (R,M) into an R-module E is
a pair of maps

(D,D log) : (R,M)→ E,

where D : R → E is a derivation and D log : M → E a map of monoids, such that
for all a ∈M ,

α(a)D log a = Dα(a).

A log differential graded ring (E∗,M) consists of a differential graded ring E∗, a
pre-log structure α : M → E0, and a derivation (D,D log) : (E0,M) → E1 such
that D is equal to the differential d : E0 → E1 and such that d ◦D log = 0.

There is a universal example of a derivation of a log ring (R,M) given by the
R-module

ω1
(R,M) = (Ω1

R ⊕ (R⊗Z Mgp))/〈dα(a)− α(a)⊗ a | a ∈M〉,

where Mgp is the group completion (or Grothendieck group) of M and 〈. . . 〉 denotes
the submodule generated by the indicated elements. The structure maps are

d : R→ ω1
(R,M), da = da⊕ 0,

d log : M → ω1
(R,M), d log a = 0⊕ (1⊗ a).

The exterior algebra
ω∗(R,M) = Λ∗R(ω1

(R,M))
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endowed with the usual differential is the universal log differential graded ring whose
underlying log ring is (R,M). We stress that here and throughout we use Ω1

R to
mean the absolute differentials.

Let A be a complete discrete valuation ring with quotient field K and perfect
residue field k of mixed characteristic (0, p). We recall the structure of A from
[40, §5, theorem 4]. Let W (k) be the ring of Witt vectors in k, and let K0 be the
quotient field of W (k). There is a unique ring homomorphism

f : W (k)→ A

such that the induced map of residue fields is the identity homomorphism. We
will always view A as an algebra over W (k) via the map f . Moreover, if πK is a
generator of the maximal ideal mK ⊂ A, then

(2.2.1) A = W (k)[πK ]/(φK(πK)),

and the minimal polynomial takes the form

φK(x) = xeK + pθK(x),

where eK = |K :K0| is the ramification index and where θK(x) is a polynomial of
degree less that eK such that θK(0) is a unit in W (k). It follows that θK(πK) is a
unit and that

−p = πeK

K θK(πK)−1.

We will use this formula on numerous occasions in the following. The valuation
ring A has a canonical pre-log structure given by the inclusion

α : M = A ∩K× ↪→ A.

Let vK : K× → Z be the valuation.

Proposition 2.2.2. There is a natural short exact sequence

0→ Ω1
A → ω1

(A,M)
res−−→ k → 0,

where res(ad log b) = avK(b) + mK .

Proof. If a ∈ A ∩K× then avK(a) ∈ mK , and hence, the composition of the
two maps in the statement is zero. Only the exactness in the middle needs proof.
Let ad log b be an element of ω1

(A,M) and write b = πi
Ku with u ∈ A×. Then

ad log b = iad log πK + au−1du.

Suppose that res(ad log b) = ia + mK is trivial. Then ia ∈ mK , which implies that
iaπ−1

K ∈ A, and hence, iad log πK = iaπ−1
K dπK . �

We define the module of relative differentials

ω1
(A,M)/W (k) =

(
Ω1

A/W (k) ⊕ (A⊗Z K×)
)/〈

da− a⊗ a
∣∣ a ∈ A ∩K×

〉
.

Again, there is a natural exact sequence

0→ Ω1
A/W (k) → ω1

(A,M)/W (k)
res−−→ k → 0.

Lemma 2.2.3. Let πK ∈ A be a uniformizer with minimal polynomial φK(x).
Then the element d log πK generates the A-module ω1

(A,M)/W (k), and its annihilator
is the ideal generated by φ′K(πK)πK . This ideal contains p.
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Proof. Since every element of K× can be written as a product πi
Ku with i ∈ Z

and u ∈ A×, the formula

d log(πi
Ku) = id log πK + u−1du

shows that ω1
(A,M)/W (k) is generated by d log πK . The relation identifies

φ′K(πK)πKd log πK = d(φK(πK)) = 0,

so the annihilator ideal is generated φ′K(πK)πK . �

Lemma 2.2.4. For all i > 0, there is a natural exact sequence

A⊗W (k) Ωi
W (k) → ωi

(A,M) → ωi
(A,M)/W (k) → 0,

and the left hand group is uniquely divisible.

Proof. The stated sequence for i = 1 follows from the diagram

0 // Ω1
A

//

��

ω1
(A,M)

//

��

k // 0

0 // Ω1
A/W (k)

// ω1
(A,M)/W (k)

// k // 0

with horizontal exact sequences and from the standard exact sequence

A⊗W (k) ⊗Ω1
W (k) → Ω1

A → Ω1
A/W (k) → 0.

We show that the group Ω1
W (k)

∼−→ HH1(W (k)) is a uniquely divisible group or,
more generally, that HHi(W (k)) is uniquely divisible, for all i > 0. Since W (k) is
torsion free and since W (k)/p = k, the coefficient sequence takes the form

· · · → HHi+1(k)→ HHi(W (k))
p−→ HHi(W (k))→ HHi(k)→ · · ·

But HHi(k) = 0, for i > 0, since k is perfect, [19, lemma 5.5]. This proves the
lemma for i = 1. In particular, the maximal divisible sub-A-module of ω1

(A,M)

is equal to the image of A ⊗W (k) Ω1
W (k), and ω1

(A,M) is the sum of this divisible
module D and the cyclic torsion A-module ω1

(A,M)/W (k). It follows that for i > 1,
ωi

(A,M) = Λi
AD, and this in turn is the image of left hand map of the statement. �

Corollary 2.2.5. The p-torsion submodule of ω1
(A,M) is

pω
1
(A,M) = A/p · d log(−p).

Proof. It follows from lemma 2.2.4 that the canonical map

pω
1
(A,M)

∼−→ pω
1
(A,M)/W (k)

is an isomorphism. Let πK be a uniformizer with minimal polynomial φK(x). Then
by lemma 2.2.3,

ω1
(A,M)/W (k) = A/(πKφ′K(πK)) · d log πK .

We write φK(x) = xeK + pθK(x) such that −p = πeK

K θK(πK)−1. Hence, on the one
hand, we have

πKφ′K(πK) = eKπeK

K + pπKθ′K(πK) = (eK − πKθ′K(πK)θK(πK)−1)πeK

K ,
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and on the other hand,

d log(−p) = d log(πeK

K θK(πK)−1) = (eK − πKθ′K(πK)θK(πK)−1)d log πK .

The claim follows. �

Let L be a finite extension of K, let B be the integral closure of A in L, and
let eL/K = eL/eK be the ramification index of L/K. Then the following diagram
commutes

ω1
(A,MA)/W (k)

resA //

i∗

��

A/mK

eL/K ·i

��

ω1
(B,MB)/W (k)

resB // B/mL,

Recall that B ⊗A Ω1
A/W (k) → Ω1

B/W (k) is an isomorphism if and only if eL/K = 1.

Lemma 2.2.6. The canonical map

B ⊗A ω1
(A,MA)/W (k) → ω1

(B,MB)/W (k)

is an isomorphism if and only if p does not divide eL/K .

Proof. Suppose that p does not divide eL/K . If eL/K = 1 the lemma follows
from the natural exact sequence

0→ Ω1
A/W (k) → ω1

(A,M)/W (k) → A/mK → 0

and from the isomorphism mentioned before the lemma. So replacing K by the
maximal subfield of L which is unramified over K, we may assume that the extension
is totally ramified. Then there exists πK ∈ A such that

L = K(π1/eL/K

K ).

Indeed, if πK and πL are uniformizers of A and B over W (k), then πK = uπ
eL/K

L ,
where u ∈ B× is a unit. But the sequence

1→ U1
B → B×

r−→ k× → 1

is split by the composition of the Teichmüller character τ : k× → W (k)× and the
inclusion W (k)× ↪→ B×. Therefore, replacing πK by τ(r(u))−1πK , we can assume
that the unit u lies in the subgroup U1

B of units in B which are congruent to 1 mod
mL. But every element of U1

B has an eL/Kth root, so replacing πL by u1/eL/K πL

we may assume that u = 1.
Let πK and πL be uniformizers of A and B over W (k) such that πK = π

eL/K

L ,
and let φK(x) be the minimal polynomial of πK . Then

φL(x) = φK(xeL/K )

is the minimal polynomial of πL. The A-module ω1
(A,MA)/W (k) is generated by

d log πK with annihilator (φ′K(πK)πK), and similarly, the B-module ω1
(B,MB)/W (k)

is generated by d log πL with annihilator (φ′L(πL)πL). But

d log πK = d log(πeL/K

L ) = eL/Kd log πL

and
φ′L(πL)πL = φ′K(πeL/K

L ) · eL/Kπ
eL/K

L = eL/Kφ′K(πK)πK ,
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so the claim follows since eL/K is a unit. It is also clear from this argument that
the map of the statement cannot be an isomorphism if the extension L/K is wildly
ramified. �

2.3. In this section we show that the homotopy groups (π∗T (A|K),M) form
a log differential graded ring. In effect, we prove the more general statement:

Proposition 2.3.1. The homotopy groups (TRn
∗ (A|K; p),M) form a log differ-

ential graded ring, if p is odd or n = 1.

The homotopy groups TRn
∗ (A|K; p) form a graded-commutative differential graded

ring with the differential given by Connes’ operator (2.1.2), [16, §1]. It remains to
define the maps

(2.3.2) αn : M → TRn
0 (A|K; p), d logn : M → TRn

1 (A|K; p)

and to verify the relation αn(a)d logn a = dαn(a). We define αn as the composite
of the inclusion M = A ∩K× ↪→ A and the multiplicative map

n : A→ TRn
0 (A|K; p).

This, we recall, is the map of components induced from the composite

A
i−→ |N cy

· (Nq
· C)|

Dr◦∆r−−−−→
∼

|N cy
· (Nq

· C)|Cr = TRn(A|K; p)0,0,

where C = Cb
q(PA) of definition 1.5.5, i(a) is the 0-simplex A

a−→ A, and r = pn−1.
We refer the reader to [3, §1] for the definition of the maps ∆r and Dr.

In general, if C is a category with cofibrations and weak equivalences and if X
is an object of C, there is a natural map in the stable category

d̃et : Σ∞B Aut(X)→ K(C),
where Aut(X) is the monoid of endomorphisms of X in the category wC of weak
equivalences. The inclusion of Aut(X) as a full subcategory of wC induces

B Aut(X) = |N· Aut(X)| → |N·wC| = K(C)0,
but this map does not preserve the basepoint (unless X is the chosen null object).
However, we still get a map of symmetric spectra

det : Σ∞B Aut(X)+ → K(C).

To get the map d̃et, we use that for every pointed space B, there is a natural
isomorphism S0 ∨ Σ∞B

∼−→ Σ∞B+ in the stable category. The inverse is induced
from the map which collapses B to the non-base point in S0 and the map which
identifies the extra base point with the base point in B.

We again let C = Cb
q(PA) and view A as a complex concentrated in degree zero.

Then Aut(A) = A ∩K× = M such that we have a map of monoids

M → π1BM
fdet∗−−−→ π1K(C),

and we define d logn to be the composite of this map and the cyclotomic trace.
Spelling out the definition, d logn is given by the composite

Sl+1 ∧M+
σ∧id−−−→ Sl ∧ T+ ∧M+

id∧j−−−→ Sl ∧ |N cy
· (Nq

· C)|
Dr◦∆r−−−−→
∼

Sl ∧ |N cy
· (Nq

· C)|Cr
λl,0−−→ TRn(A|K; p)l,0,
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where the map j, when restricted to T×{a}, traces out the loop in the realization
given by the 1-simplex (in the diagonal simplicial set):

A
1 //

a

��

A
1 //

a

��

A

a

��

A
1 // A

1 // A.

Lemma 2.3.3. For all a ∈M , dαn(a) = αn(a)d logn a.

Proof. Spelling out the definitions, one readily recognizes that it will suffice
to show that following diagram homotopy-commutes:

T+ ∧M+
id∧∆ //

id∧i

��

T+ ∧M+ ∧M+
j∧id

// |N cy
· (Nq

· C)| ∧ |N cy
· (Nq

· C)|

µ0,0

��

T+ ∧ |N cy
· (Nq

· C)|
µ

// |N cy
· (Nq

· C)|.

Since M is discrete, we may check this separately for each a ∈ M . The composite
of the upper horizontal maps and the right hand vertical map, when restricted to
T×{a}, traces out the loop in the realization given by the 1-simplex (in the diagonal
simplicial set) on the left below. Similarly, the composite of the left hand vertical
map and the lower horizontal map, when restricted to T×{a}, traces out the loop
given by the 1-simplex on the right below:

A
a //

a

��

A
1 //

a

��

A

a

��

,

A
1 //

1

��

A
a //

1

��

A

1

��

A
a // A

1 // A A
1 // A

a // A.

Note that both loops are based at the vertex A
a−→ A. We must show that the two

loops are homotopic through loops based at A
a−→ A. To this end, we consider the

2-simplices

A
a //

1

��

A
1 //

1

��

A
1 //

1

��

A

1

��

A
1 //

1

��

A
1 //

1

��

A
a //

a

��

A

1

��

A
a //

a

��

A
1 //

1

��

A
1 //

a

��

A

a

��

, A
1 //

1

��

A
a //

1

��

A
1 //

1

��

A

1

��

A
1 // A

a // A
1 // A A

1 // A
a // A

1 // A.

The 2-simplex on the left gives a homotopy through loops based at A
a−→ A between

the loop given by the left hand 1-simplex above and the loop given by the 1-simplex

A
a //

a

��

A
1 //

1

��

A

a

��

A
1 // A

a // A.

Similarly, the 2-simplex on the right gives a homotopy through loops based at
A

a−→ A between this loop and the loop given by the right hand 1-simplex above. �
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Proposition 2.3.4. The canonical map

ωq
(A,M) → πqT (A|K)

is an isomorphism, for q ≤ 2, and a rational isomorphism, for all q ≥ 0.

Proof. We consider the long exact sequence of homotopy groups associated
with the sequence of theorem 1.5.6,

T (k) i!−→ T (A)
j∗−→ T (A|K) ∂−→ ΣT (k),

and note that i! : πqT (k) → πqT (A) is zero, if q = 0, 1. Indeed, for q = 0 this is
a map from a torsion group to a torsion-free group, and for q = 1 the domain is
isomorphic to the group Ω1

k which vanishes since k is a perfect, [19, lemma 5.5].
This proves the statement for q = 0. It also shows that the top sequence in the
following diagram of A-modules and A-linear maps,

0 // π1T (A)
j∗ // π1T (A|K)

∂∗ // π0T (k) // 0

0 // Ω1
A

//

OO

ω1
(A,M)

res //

OO

k //

OO

0,

is exact. The lower sequence is the exact sequence of proposition 2.2.2 and the
vertical maps are the canonical maps. The left hand square commutes since j∗
preserves the differential. The commutativity of the right hand square is equivalent
to the statement that ∂∗(d log x) = vK(x), for all x ∈ M . But this follows from
the definition of the map d log in (2.3.2) and from the commutativity of the right
hand square in addendum 1.5.7. Since the left and right hand vertical maps in the
diagram are isomorphisms, so is the middle vertical map. This proves the statement
for q = 1.

We next argue that the map of the statement is a rational isomorphism, for all
q ≥ 0. Since π∗T (k) is torsion the long exact sequence associated with cofibration
sequence above shows that

j∗ : π∗T (A)⊗Q ∼−→ π∗T (A|K)⊗Q
is an isomorphism. Moreover, the linearization map induces an isomorphism

l : π∗T (A)⊗Q ∼−→ HH∗(A)⊗Q,

and the right hand side is canonically isomorphic to HH∗(K). It thus remains to
prove that the canonical map Ω∗K → HH∗(K) is an isomorphism. This in turn
follows from [20] and the fact that K can be written as a filtered colimit of smooth
Q-algebras, [13, IV.17.5.1].

It remains to show that π2T (A|K) is uniquely divisible. The structure of the p-
adic homotopy groups π∗(T (A), Zp) is known from [27, theorem 5.1]. (The assump-
tion that the residue field be finite is not needed. For op. cit., proposition 5.3 and 5.4
and [1, theorem 7.1] shows that the Bockstein spectral sequence converges strongly.)
The result is that for m > 0, π2m(T (A), Zp) vanishes and π2m−1(T (A), Zp) is iso-
morphic to A/(mφ′K(πK)). The latter is a torsion group of bounded exponent. It
follows that for m > 0, π2mT (A) is a uniquely divisible group and π2m−1T (A) is
the sum of a uniquely divisible group and the torsion group π2m−1(T (A), Zp). Since
π1T (k) is trivial, we see that π2T (A|K) is uniquely divisible as stated. �
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2.4. It follows from proposition 2.3.1 that the homotopy groups with Z/p-
coefficients π̄∗T (A|K) form a log differential graded k-algebra. We now evaluate
this log differential graded k-algebra and prove theorem B of the introduction.

The proof of theorem B is based on the calculation in [27, theorems 4.4, 4.6] of
the graded k-algebra π̄∗T (A) = π∗(T (A), Z/p). The result, which we now recall,
depends on whether p divides eK or not. We consider the graded k-algebra

B = A/p⊗ Λ{α1} ⊗ S{α2}

with the generators in the indicated degrees. Let C ⊂ B be the subalgebra gener-
ated by all elements aαε

1α
m
2 for which a ∈ mK/pA or ε = 1 or p divides m, and let

I ⊂ C be the ideal generated by all elements aα1α
m−1
2 for which a ∈ meK−1

K /pA
and m is prime to p. Then as graded k-algebras,

π̄∗T (A) ∼=

{
B, if p divides eK ,
C/I, if p does not divide eK .

We note that, in the former case, the dimension of the k-vector space π̄qT (A) is
equal to eK , for all q ≥ 0. In the latter case, this dimension is equal to eK , if q is
congruent to either −1 or 0 modulo 2p, and is equal to eK − 1, otherwise.

We also recall from [19, theorem 5.2, corollary 5.5] that as a graded k-algebra,

π̄∗T (k) = Λ{ε} ⊗ S{σ},

with the generators ε and σ characterized as follows: the Bockstein takes ε to 1 and
Connes’ operator (2.1.2) takes ε to σ. It follows from the proof of [27, theorems
4.4, 4.6] that the reduction map

i∗ : π̄∗T (A)→ π̄∗T (k)

is induced from a k-algebra map B → π̄∗T (k), which in degree zero is given by the
reduction A/p → k, and which takes the generators α1 and α2 to zero and a unit
times σ, respectively.

Since the group π2T (A|K) is uniquely divisible, by proposition 2.3.4, the integral
Bockstein induces an isomorphism

β : π̄2T (A|K) ∼−→ pπ1T (A|K).

We define κ ∈ π̄2T (A|K) to be the class which corresponds to the generator
d log(−p) on the right. (Note that κ ∈ π̄2T (Zp|Qp).) We now prove theorem B
of the introduction:

Theorem 2.4.1. There is a natural isomorphism of log differential graded rings

ω∗(A,M) ⊗Z SZ/p{κ}
∼−→ π̄∗T (A|K),

where dκ = κd log(−p).

Proof. It is clear that there is a map of graded k-algebras as stated. We show
that this is an isomorphism.

Suppose first that p divides eK . We know from proposition 2.3.4 that the map
of the statement is an isomorphism in degrees q ≤ 1. So it suffices to show that
multiplication by κ induces an isomorphism

κ : π̄qT (A|K) ∼−→ π̄q+2T (A|K).
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To this end, we consider the long-exact sequence associated with the cofibration
sequence of theorem 1.5.6,

· · · → π̄qT (k) i!−→ π̄qT (A)
j∗−→ π̄qT (A|K) ∂−→ π̄q−1T (k)→ · · ·

This is a sequence of graded π̄∗T (A)-modules, where π̄∗T (A|K) (resp. π̄∗T (k)) is
viewed as a graded π̄∗T (A)-module via the map j∗ (resp. i∗). We claim that the
map j∗ is an isomorphism for q = 2. Granting this for the moment, there exists
κ̃ ∈ π̄2T (A) such that κ = j∗(κ̃). And since π̄2T (A) and π̄2T (A|K) are both free
A/p-modules of rank one, the class κ̃ is necessarily a generator. It follows that in
the diagram

· · · // π̄qT (k) i! //

κ̃∼
��

π̄qT (A)
j∗ //

κ̃∼
��

π̄qT (A|K) ∂ //

κ̃

��

π̄q−1T (k) //

κ̃∼
��

· · ·

· · · // π̄q+2T (k) i! // π̄q+2T (A)
j∗ // π̄q+2T (A|K) ∂ // π̄q+1T (k) // · · · ,

two out of three of the vertical maps are isomorphisms. Hence, so are the remaining
vertical maps. To prove the claim, we consider the diagram of A/p-modules

π̄2T (A)
β

∼
//

j∗

��

pπ1T (A)

j∗

��

pΩ1
A

∼oo

j∗

��

π̄2T (A|K)
β

∼
//
pπ1T (A|K) pω

1
(A,M)

∼oo

The left hand horizontal maps are isomorphisms since π2T (A) and π2T (A|K) are
(uniquely) divisible. It follows from proposition 2.3.4 that the right hand horizontal
maps are isomorphisms and that the right hand vertical map is a monomorphism.
But the domain and range of the latter are both k-vector spaces of dimension eK .
Hence, this map is an isomorphism. This proves the claim.

Suppose now that p does not divide eK . Let L/K be a totally ramified extension
such that p divides eL/K , and let B be the integral closure of A in L. Then we
have a commutative diagram

ω∗(A,MA) ⊗ S{κ} //

��

π̄∗T (A|K)

��

ω∗(B,MB) ⊗ S{κ} ∼ // π̄∗T (B|L),

and the lower horizontal map is an isomorphism. It is easy to see that there exists
L/K for which the left hand vertical map is a monomorphism. For example, one
can take L = K[πL]/(πeL/K

L + πK(πL + 1)). Hence, the upper horizontal map is
a monomorphism. The domain and range of this map are graded k-vector spaces
concentrated in non-negative degrees. The dimension of domain is equal to eK in
each degree. Hence the dimension of the range is at least eK in each degree. We
can estimate the dimension of the range further by means of the exact sequence of
k-vector spaces

· · · → π̄qT (k) i!−→ π̄qT (A)
j∗−→ π̄qT (A|K) ∂−→ π̄q−1T (k)→ · · ·
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The dimension of π̄qT (A) is equal to eK , if q ≡ −1, 0 (mod 2p), and is equal to
eK −1, otherwise. The dimension of π̄qT (k) is equal to one, for all q ≥ 0. It follows
that the dimension of π̄qT (A|K) is equal to either eK or eK + 1, if q ≡ −1, 0 (mod
2p), and is equal to eK otherwise. We must argue that for q ≡ −1, 0, the dimension
of π̄qT (A|K) is equal to eK . This happens if and only if for all s ≥ 0, the map

i! : π̄2ps−1T (k)→ π̄2ps−1T (A)

is non-zero. We show that the class πeK−1
K α1α

ps−1
2 on the right is in the image of

i!, or equivalently, that it maps to zero under j∗. If eK > 1, we can write

πeK−1
K α1α

ps−1
2 = πeK−2

K α1 · πKαps−1
2 .

The image of this class under j∗ is equal to a unit in A/p times the class

πeK−1
K d log πK · πKκps−1.

But this class is in the image of the ring homomorphism

ω∗(A,M) ⊗Z SZ/p{κ} → π̄∗T (A|K)

and the product is equal to zero on the left. Hence j∗(πeK−1
K α1α

ps−1
2 ) is equal to

zero. Finally, in the unramified case we choose a totally ramified extension K/K0

such that p does not divide eK and consider the diagram

π̄2ps−1T (k) i! //

eK

��

π̄2ps−1T (W (k))

��

π̄2ps−1T (k) i! // π̄2ps−1T (A).

We have just proved that the lower horizontal map is a monomorphism, for all
s ≥ 0. And the left hand vertical map is an isomorphism since eK is prime to p.
Hence the top horizontal map is a monomorphism. We have proved that the map
of the statement is an isomorphism of graded k-algebras for all K. In particular,
the class dκ on the right is the image of an element on the left. To determine this
element, we may assume that K = Qp. In the diagram

π̄3T (Zp|Qp)
∂ // π̄2T (Fp)

π̄2T (Zp|Qp)
∂ //

d

OO

π̄1T (Fp)

d

OO

the horizontal maps and the right hand vertical map are isomorphisms. Hence also
the left hand vertical map is an isomorphism. This shows that dκ = uκd log(−p)
with u ∈ F×p . We show in remark 5.3.3 below that in fact u = 1. �

Remark 2.4.2. An argument similar to [27, §5] shows that for m > 0, there
exists a non-canonical isomorphism

π2m−1(T (A|K), Zp) ∼= A/(mπKφ′K(πK))

and that π2m(T (A|K), Zp) vanishes. It would be interesting to give a functorial
description of the left hand group analogous to proposition 2.3.4.
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Let L/K be a Galois extension with Galois group GL/K . The descent problem
for topological Hochschild homology asks under what conditions the canonical map

T (A|K)→ H ·(GL/K , T (B|L))

is a weak equivalence. It is not hard to see from theorem 2.4.1 that this is false in
general, e.g. for a cyclotomic extension Qp(µpn)/Qp with n > 1. However:

Theorem 2.4.3. Let L/K be a finite and tamely ramified Galois extension. Then
the canonical map induces an isomorphism

π̄∗T (A|K) ∼−→ π̄∗H ·(GL/K , T (B|L)).

Proof. It will suffice to show that for all t ≥ 0, the GL/K-module π̄tT (B|L)
is isomorphic to B/p. Indeed, a classical theorem of Noether, [9, I.3, theorem 3],
states that B is isomorphic to A[GL/K ] as a GL/K-module, if and only if L/K is
tamely ramified. Hence, the spectral sequence

E2
s,t = H−s(GL/K , π̄tT (B|L))⇒ π̄s+tH ·(GL/K , T (B|L))

collapses to yield the isomorphism of the statement.
We use theorem 2.4.1 to get the natural isomorphisms

κi : π̄εT (B|L) ∼−→ π̄2i+εT (B|L).

Hence, we only need to consider π̄0T (B|L) and π̄1T (B|L). The former is naturally
isomorphic to B/p regardless of whether L/K is tamely ramified or not, and the
latter is naturally isomorphic to ω1

(B,MB)/p. We have from lemma 2.2.3 that

ω1
(A,MA)/p = A/p · d log πK ,

and since L/K is tamely ramified, lemma 2.2.6 shows that

ω1
(B,MB)/p = B/p · d log πK .

Hence, also ω1
(B,MB)/p is is isomorphic to B/p as a GL/K-module. �

3. The de Rham-Witt complex and TR·
∗(A|K; p)

3.1. In this paragraph, we evaluate the integral homotopy groups TR·
i(A|K; p),

for i ≤ 2. We first consider Witt vectors, see e.g. [35, appendix].
The ring Wn(R) of Witt vectors of length n in R is the set of n-tuples in R but

with a new ring structure characterized by the requirement that the “ghost” map

w : Wn(R)→ Rn,

which to the vector (a0, , . . . , an−1) associates the sequence (w0, . . . , wn−1) with

ws = aps

0 + paps−1

1 + · · ·+ psas,

be a natural transformation of functors from rings to rings. If R has no p-torsion
then the ghost map is injective. If, in addition, there exists a ring endomorphism
φ : R→ R such that ap ≡ φ(a) (mod pR), then a sequence (w0, . . . , wn−1) is in the
image if and only if ws ≡ φ(ws−1) (mod psR), for all 0 < s < n. If R = Z[Xα], the
ring homomorphism which maps Xα to Xp

α is such an endomorphism. Let

n : R→Wn(R)

be the multiplicative section given by an = (a, 0, . . . , 0).
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Lemma 3.1.1. If p is odd then V (1) ≡ −p
n

and −1n ≡ −1 modulo pWn(R).

Proof. By naturality, we may assume that R = Z. We have

w(p
n

+ V (1)) = p(1, 1 + pp−1, 1 + pp2−1, 1 + pp3−1, . . . ),

and therefore it is enough to show that the sequence

(1, 1 + pp−1, 1 + pp2−1, . . . , 1 + ppn−1−1)

is in the image of the ghost map. The identity φ : Z → Z has the property that
ap ≡ φ(a) (mod pZ). Hence, this sequence is in the image of the ghost map if and
only if for all 1 < s < n,

1 + pps−1 ≡ 1 + pps−1−1 (mod ps).

This is true, if p is odd, but fails for p = 2 and s = 2. The second congruence of
the statement is proved in a similar manner. �

In general, (x + y)
n

and xn + y
n

are not equivalent modulo pWn(A). However,
we have the following

Lemma 3.1.2. For all x, y ∈ R,

(x + y)p

n
≡ (xn + y

n
)p ≡ xp

n + yp
n

modulo pWn(R).

Proof. The right hand congruence is valid in any ring. To prove the left hand
congruence, we place ourselves in the universal case R = Z[x, y]. The ghost map

w : Wn(R)→ Rn

is an injection and maps the vector xp
n + yp

n
− (x + y

n
)p to the sequence

(xp + yp − (x + y)p, . . . , xpn

+ ypn

− (x + y)pn

).

As an element of Rn this is divisible by p. We must show that the quotient is in
the image of the ghost map. By the criterion recalled above, we must show that

(xps+1
+ yps+1

− (x + y)ps+1
)/p ≡ (xps+1

+ yps+1
− (xp + yp)ps

)/p (mod ps),

or equivalently, that

(x + y)ps+1
≡ (xp + yp)ps

(mod ps+1).

But this follows from
(x + y)p ≡ xp + yp (mod p)

and from the fact, valid in any commutative ring, that a ≡ b (mod p) implies
aps ≡ bps

(mod ps+1). Indeed, one easily sees that a ≡ b (mod pk) implies that
ap ≡ bp (mod pk+1), and the desired formula then follows by simple induction. �

It follows from lemma 3.1.2 that for every ring R, the map

R→ W̄n(R) = Wn(R)/p,

which takes x to the class of xp
n, is a ring homomorphism. Let A be a complete

discrete valuation ring with quotient field K and perfect residue field k of mixed
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characteristic (0, p). We recall from (2.2.1) that there is a unique ring homomor-
phism f : W (k) → A such that the induced map of residue fields is the identity
homomorphism. Hence, we have a ring homomorphism

(3.1.3) ρn : k → W̄n(A)

which to x assigns f(x̃1/p) p

n
+ pWn(A). Here x̃1/p ∈ W (k) is any element whose

residue class modulo p is the unique pth root of x. We will always view W̄n(A) as
a k-algebra via the map ρn. We note that

R(ρn(x)) = ρn−1(x), F (ρn(x)) = ρn−1(xp).

Let π = πK be a uniformizer with minimal polynomial xeK +pθK(x). We introduce
the modified Verschiebung

(3.1.4) Vπ : W̄n−1(A)→ W̄n(A), Vπ(a) = θK(πn)V (a),

where θK(πn) is the image of θK(x) under the k-algebra map k[x]→ W̄n(A) which
to x assigns the class of πn. The composite FVπ is zero modulo p.

Proposition 3.1.5. Suppose that p is odd. Then the k-algebra W̄n(A) is gener-
ated by the elements V s

π (πi) with 0 ≤ s < n and i ≥ 0 subject to the relations

V s
π (πi) · V t

π(πj) =

{
V t

π(πpti+j), if 0 = s ≤ t < n,
0, if 0 < s ≤ t < n,

V s
π (πeK+i) = V s+1

π (πpi).

Proof. The k-vector space W̄n(A) is generated by V s(πi) with 0 ≤ s < n and
i ≥ 0. Indeed, write a ∈ A as a = xdπ

d + · · ·+ x0 with xi ∈W (k). Then

V s(a) ≡ V s(xdπ
d) + · · ·+ V s(x0) ≡ V s(ρn−s(x̄d)πd) + · · ·+ V s(ρn−s(x̄0))

modulo V s+1W̄n(A), and

V s(ρn−s(x̄i)πi) = ρn(x̄1/ps

)V s(πi).

Since θK(π) is a unit, we instead can use the elements V s
π (πi) as generators. In

general, for s ≤ t, we have

V s
π (πi) · V t

π(πj) = V t
π(F tV s

π (πi) · πj)

from which the first relation follows. Next, lemmas 3.1.1 and 3.1.2 show that
πeK = −p · θK(π) ≡ V (1)θK(π) = V ((θK(π))p)

≡ V (θ(1)
K (πp)) = V (1)θK(π) = Vπ(1),

where θ
(1)
K (x) denotes the image of θK(x) under the automorphism of k[x] induced

by the Frobenius of k. The second relation is an immediate consequence. It remains
to prove that there are no further relations. The sequences

0→ A/p
V n−1

−−−→ W̄n(A) R−→ W̄n−1(A)→ 0

are exact, since Wn(A) is torsion free, and show that W̄n(A) is an neK-dimensional
k-vector space. The relations of the statement implies that

grs
V W̄n(A) = k

{
V s

π (πi)
∣∣ 0 ≤ i < eK

}
,

which is an eK-dimensional k-vector space. Thus there can be no further relations
among the V s

π (πi). �
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3.2. A pre-log structure α : M → R on a ring R induces one on Wn(R) upon
composition with the multiplicative section n : R→Wn(R). We write (Wn(R),M)
for this log ring. We now assume that p is odd and that R is a Z(p)-algebra.

Definition 3.2.1. A log Witt complex over (R,M) consists of:
(i) a pro-log differential graded ring (E∗· ,ME) together with a map of pro-log

rings λ : (W·(R),M)→ (E0
· ,ME);

(ii) a map of pro-log graded rings

F : E∗n → E∗n−1,

such that λF = Fλ and such that
Fd logn a = d logn−1 a, for all a ∈M ,

Fdan = ap−1
n−1dan−1, for all a ∈ R;

(iii) a map of pro-graded modules over the pro-graded ring E∗· ,

V : F ∗E∗n → E∗n+1,

such that λV = V λ, FV = p and FdV = d.
A map of log Witt complexes over (R,M) is a map of pro-log differential graded

rings which commutes with the maps λ, F and V .

The following relations are valid in any log Witt complex

dF = pFd, V d = pdV, V (xdy) = V (x)dV (y).

Indeed, V (xdy) = V (xFdV (y)) = V (x)dV (y), and
dF (x) = FdV F (x) = Fd(V (1)x) = FdV (1)F (x) + FV (1)F (dx)

= d(1)F (x) + pFd(x) = pFd(x),

V d(x) = V (1)dV (x) = d(V (1)V (x))− dV (1)V (x)

= dV (xFV (1)− V (xd(1))) = pdV (x).

Proposition 3.2.2. The category of log Witt complexes over (R,M) has an
initial object W· ω∗(R,M). Moreover, the canonical map is surjective:

λ : ω∗(W·(R),M) � W· ω∗(R,M).

Proof. This is a fairly straightforward application of the Freyd adjoint functor
theorem, [29, p. 116]. For a detailed proof, we refer the reader to [17, §1]. �

We note that W· ω0
(R,M) = W·(R). For we may consider (W·(R),M) a log Witt

complex concentrated in degree zero. Moreover, from [17, theorem D] we have:

Addendum 3.2.3. The canonical map is an isomorphism:

λ : ω∗(R,M)
∼−→W1 ω∗(R,M). �

The filtration of a log Witt complex by the differential graded ideals

Fils Ei
n = V sEi

n−s + dV sEi−1
n−s ⊂ Ei

n

is called the standard filtration. It satisfies
F (Fils Ei

n) ⊂ Fils−1 Ei
n−1,

V (Fils Ei
n) ⊂ Fils+1 Ei

n+1,
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but in general is not multiplicative.

Lemma 3.2.4. The restriction map induces an isomorphism

Wn ωi
(R,M)/ Fils Wn ωi

(R,M)
∼−→Ws ωi

(R,M).

Proof. For a fixed value of n− s, the filtration quotients
′Ws ωi

(R,M) = Wn ωi
(R,M)/ Fils Wn ωi

(R,M)

form a log Witt complex over (R,M). We show that it has the universal property.
Let (E∗· ,ME) be a log Witt complex over (R,M). Then there exists a map of log
Witt complexes over (R,M):

′W· ω∗(R,M) → E∗· .

Indeed, the standard filtration is natural, so we have maps

Wn ωi
(R,M)/ Fils Wn ωi

(R,M) → Ei
n/ Fils Ei

n → Ei
s,

where the right hand map is induced from the restriction maps in E∗· . We must
show that this map of log Witt complexes is unique. To prove this, it will suffice
to show that the canonical map

ωi
(Ws(R),M) →

′Wn ωi
(R,M)

is surjective. But this follows from the commutativity of the diagram

ωi
(Wn(R),M)

// //

����

Wn ωi
(R,M)

����

ωi
(Ws(R),M)

// ′Ws ωi
(R,M)

since the top horizontal and right hand vertical maps are surjective. �

We define a map Fn−1d : Wn(R)→ ω1
(R,M) by the formula

Fn−1d(a) = apn−1−1
0 da0 + apn−2−1

1 da1 + · · ·+ dan−1,

where a = (a0, . . . , an−1). One easily verifies that Fn−1d is a derivation of Wn(R)
into the Wn(R)-module (Fn−1)∗ω1

(R,M) and that the following relation holds:

dFn−1 = pn−1Fn−1d.

It follows immediately from the derivation property that the formula

a · (ω1, ω2) = (Fn−1(a)ω1, F
n−1(a)ω2 − Fn−1da · ω1)

defines a Wn(R)-module structure on ωi−1
(R,M)⊕ωi

(R,M). And the relation shows that

(Fn−1)∗ωi−1
(R,M) → ωi−1

(R,M) ⊕ ωi
(R,M), ω 7→ (pn−1ω,−dω),

is a map of Wn(R)-modules. We let hWn ωi
(R,M) be the quotient Wn(R)-module.

This definition is motivation by lemma 3.3.3 below.

Lemma 3.2.5. There is a natural exact sequence of Wn(R)-modules

(Fn−1)∗pn−1ωi−1
(R,M)

d−→ (Fn−1)∗ωi
(R,M)

ι2−→ hWn ωi
(R,M)

pr1−−→ (Fn−1)∗(ωi−1
(R,M)/pn−1)→ 0.
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Proof. Indeed, as an abelian group, hWn ωi
(R,M) is equal to the push out

ωi−1
(R,M)

d //

pn−1

��

ωi
(R,M)

ι2

��

ωi−1
(R,M)

ι1 // hWn ωi
(R,M)

so the underlying sequence of abelian groups is exact. One readily verifies that the
various maps are Wn(R)-linear. �

Proposition 3.2.6. For any log ring (R,M), there is a natural exact sequence
of Wn(R)-modules,

hWn ωi
(R,M)

N−→Wn ωi
(R,M)

R−→Wn−1 ωi
(R,M) → 0,

where N(ω1, ω2) = dV n−1λ(ω1) + V n−1λ(ω2).

Proof. It follows immediately from definition 3.2.1 that for all a ∈Wn(R),

λ(Fn−1da) = Fn−1dλ(a),

and hence N is Wn(R)-linear. Since the image of N is equal to Filn−1 Wn ωi
(R,M),

the statement follows from lemma 3.2.4. �

Corollary 3.2.7. Let A be a complete discrete valuation ring of mixed char-
acteristic (0, p) with perfect residue field, and let α : M → A be the canonical log
structure. Then for all n ≥ 1 and i ≥ 2, Wn ωi

(A,M) is a uniquely divisible group.

Proof. Lemma 2.2.4 shows that ωi
(A,M) is uniquely divisible, if i ≥ 2. It

follows that hWn ωi
(A,M) is uniquely divisible, if i ≥ 3, and an induction argument

based on proposition 3.2.6 shows that so is Wn ωi
(A,M). The group hWn ω2

(A,M)

is a direct sum of a uniquely divisible group and the group ω1
(A,M)/pn−1. Hence

Wn ω2
(A,M) is a direct sum of a uniquely divisible group and a finitely generated

torsion W (k)-module. It is therefore enough to show that the modulo p reduction
W̄n ω2

(A,M) is trivial. Inductively, it suffices to show that the map

dV n−1 : ω̄1
(A,M) → W̄nω2

(A,M)

is trivial. The map is k-linear, and the domain is generated as a k-vector space by
the elements πi

Kd log πK with 0 ≤ i < eK . Now the relation

πeK
n + θK(πn)V (1),

valid in W̄n(A), shows that V n−1(πi
Kd log πK) = V n−1(πi

K)d logn πK is either triv-
ial or contained in the span of elements of the form πj

Kn
d logn πK . But these

elements have vanishing differential. �
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3.3. We refer the reader to [17, §2] for a fuller discussion of the following
result.

Proposition 3.3.1. The homotopy groups TR·
∗(A|K; p) form a log Witt complex

over (A,M), provided that p is odd. In particular, there is a canonical map

W· ω∗(A,M) → TR·
∗(A|K; p).

Proof. We recall from proposition 2.3.1 above that for all n ≥ 1, the homotopy
groups TRn

∗ (A|K; p) form a log differential graded ring whose underlying log ring
is (Wn(R),M). The relation that for all a ∈M ,

Fd logn a = d logn−1 a,

is immediate from the definition of the maps F and d logn, and the remaining
relations are proved in [19, lemma 3.3] and [16, lemmas 1.5.1 and 1.5.6]. �

The homotopy groups of the homotopy orbit spectra,

hTRn
∗ (A|K; p) = π∗(H ·(Cpn−1 , T (A|K))),

are differential graded modules over TRn
∗ (A|K; p), and there are TRn

∗ (A|K; p)-linear
maps

F : hTRn
∗ (A|K; p)→ F ∗(hTRn−1

∗ (A|K; p)),

V : F ∗(hTRn−1
∗ (A|K; p))→ hTRn

∗ (A|K; p),

which satisfy that FdV = d and FV = p. Moreover, there is a natural spectral
sequence of Wn(A)-modules,

(3.3.2) E2
s,t = Hs(Cpn−1 , (Fn−1)∗ πtT (A|K))⇒ hTRn

s+t(A|K; p).

The reader is referred to [16, §1] and [19, §5] for a proof of these statements.

Lemma 3.3.3. Let ι : ωi
(A,M) → πiT (A|K) be the canonical map. Then the map

hWn ωi
(A,M) → hTRn

i (A|K; p),

(ω1, ω2) 7→ dV n−1ι(ω1) + V n−1ι(ω2),

is a map of Wn(A)-modules. It is an isomorphism, for i ≤ 1, and for i = 2, there
is an exact sequence

(Fn−1)∗(A/pn−1)→ hWn ω2
(A,M) → hTRn

2 (A|K; p)→ 0,

where the map on the left takes a to (da, 0).

Proof. If a ∈Wn(A), ω1 ∈ ωi−1
(A,M) and ω2 ∈ ωi

(A,M), then

a · dV n−1ι(ω1) = d(a · V n−1ι(ω1))− da · V n−1ι(ω1)

= dV n−1(Fn−1a · ι(ω1))− V n−1(Fn−1da · ι(ω1))

= dV n−1ι(Fn−1a · ω1)− V n−1ι(Fn−1da · ω1)),

a · V n−1ι(ω2) = V n−1(Fn−1a · ι(ω2))

= V n−1ι(Fn−1a · ω2),
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which shows that the map of the statement is indeed a map of Wn(A)-modules. The
map ι is an isomorphism for i ≤ 2. So the spectral sequence gives an isomorphism
of Wn(A)-modules

ι0 : (Fn−1)∗A ∼−→ hTRn
0 (A|K; p)

and a natural exact sequence of Wn(A)-modules

0→ (Fn−1)∗ω1
(A,M)

ι1−→ hTRn
1 (A|K; p)→ (Fn−1)∗(A/pn−1)→ 0.

The sequence of lemma 3.2.5 maps to the sequence above, and the map of the left
hand terms is an isomorphism. It remains to show that the same holds for the map
of the right hand terms. This map is induced from the composite

A→ hWn ω1
(A,M) → h TRn

1 (A|K; p)→ A/pn−1

which in turn may be identified with the map

H0(Cpn−1 , A)→ H1(Cpn−1 , A)

given by multiplication by the fundamental class [T/Cpn−1 ]. This map is an epi-
morphism with kernel pn−1A, and the lemma follows for i = 1. The statement for
i = 2 is proved in an entirely similar manner, using the spectral sequence in total
degree ≤ 3 and proposition 4.4.3 below. �

Remark 3.3.4. For i ≤ 1, the proof above does not use that A is a discrete
valuation ring beyond the definition of T (A|K). In effect, the same proof gives an
isomorphism

hWn Ω1
R
∼−→ π1H ·(Cpn−1 , T (R)),

for any Z(p)-algebra R.

Since ω2
(A,M) is a uniquely divisible group, by lemma 2.2.4, the spectral sequence

(3.3.2) gives an exact sequence of Wn(A)-modules

(Fn−1)∗(A/pn−1) d−→ (Fn−1)∗(ω1
(A,M)/pn−1)→ hTRn

2 (A|K; p, Zp)→ 0,

and d is Wn(A)-linear since dFn−1 = pn−1Fn−1d. If πK is a uniformizer, then
d log πK represents a class in the cokernel. We denote this class by [d log πK ]n.

Lemma 3.3.5. The map of Wn(A)-modules

F : hTRn
2 (A|K; p, Zp)→ hTRn−1

2 (A|K; p, Zp)

is a surjection whose kernel is generated by pn−2[d log πK ]n.

Proof. The exact sequence above shows that the map of the statement is a
surjection and that the kernel is a quotient of the cokernel of the following map

(Fn−1)∗(pn−2A/pn−1A) d−→ (Fn−1)∗(pn−2ω1
(A,M)/pn−1ω1

(A,M)).

Hence, it suffices to show that this cokernel is generated by pn−2[d log πK ]n. We
consider the polynomial ring P = W (k)[x] with the pre-log structure α : N0 → P
given by α(i) = xi. The map of W (k)-algebras ε : P → A, ε(x) = πK , preserves
the pre-log structure and induces a surjection ω1

(P, N0)
� ω1

(A,M). It follows that
the map piω1

(P, N0)
� piω1

(A,M) is a surjection, for i ≥ 0, and therefore, it will be
enough to show that the cokernel of the map

(Fn−1)∗(pn−2P/pn−1P ) d−→ (Fn−1)∗(pn−2ω1
(P, N0)

/pn−1ω1
(P, N0)

)
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is generated as a Wn(P )-module by the canonical image of pn−2d log x. Now as a
P -module, the quotient pn−2ω1

(P, N0)
/pn−1ω1

(P, N0)
is generated by pn−2d log x, and

hence the Wn(P )-module (Fn−1)∗(pn−2ω1
(P, N0)

/pn−1ω1
(P, N0)

is generated by the

elements pn−2d log x and pn−2xpi

d log x, 0 ≤ i < n−1. But the last n−1 generators
are all in the image of the map d:

pn−2xpi

d log x = pn−2−id(xpi

).

Hence the cokernel of d is generated by pn−2d log x, and the lemma follows. �

Proposition 3.3.6. The sequences

0→ hTRn
i (A|K; p) N−→ TRn

i (A|K; p) R−→ TRn−1
i (A|K; p)→ 0

are exact, for i ≤ 1, and TRn
2 (A|K; p) is uniquely divisible.

Proof. The statement for i = 0 is [19, proposition 3.3] and for i = 1 is
equivalent to the statement that the norm map is injective. The corresponding
sequence of maximal uniquely divisible subgroups is exact, since Fn−1◦N is injective
on this part. Hence, it suffices to show that TRn−1

2 (A|K; p) is uniquely divisible.
We show by induction on m ≥ 1 that TRm

2 (A|K; p) is uniquely divisible, or
equivalently, that TRm

2 (A|K; p, Zp) vanishes. The basic case m = 1 follows from
proposition 2.3.4 and lemma 2.2.4. In the induction step, we show that

∂K,m : TRm−1
3 (A|K; p, Zp)→ hTRm

2 (A|K; p, Zp)

is surjective. We first consider the case m = 2. In the diagram of W2(A)-modules

TR1
3(A|K; p, Zp)

∂K,2
//

δ
����

hTR2
2(A|K; p, Zp)

δ

��

TR1
2(k; p)

∂k // //
hTR2

1(k; p),

the lower horizontal map and the left hand vertical map are both surjections. In-
deed, for the former, this was proved in [19, theorem 5.5], and for the latter, it
follows from the fact, proved in [27, ], that TR1

2(A; p, Zp) is trivial. The upper
right hand group Q is a quotient of the W2(A)-module M = F ∗(ω1

(A,M)/p). We
claim that M is annihilated by the ideal I = V W2(A) + pW2(A). Indeed, as an
abelian group M is p-torsion and FV = p. It follows that also Q is annihilated by
I, and we can therefore view it as a module over the quotient ring W2(A)/I. This
ring is isomorphic to A/p, the isomorphism given by

W2(A)/I
∼−→ A/p, a + I 7→ R(a) + pA,

and we let g : A/p → W2(A)/I denote the inverse. The A/p-module g∗Q is gener-
ated by the class [d log πK ]2. The image of this class under the right hand vertical
map is a generator ι1 of the W2(A)-module hTR2

1(k; p), which is isomorphic to
k. We now pick α ∈ TR1

3(A|K; p, Zp) such that δ(∂K,2(α)) = ι1. The difference
β = ∂K,2(α)− [d log πK ]2 is in the kernel of δ, and therefore, we can write

β = g(xπK) · [d log πK ]2,

for some x ∈ A/p. We then have

g(1 + xπK) · [d log πK ]2 = ∂K,2(α),
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and since (1 + xπK) ∈ (A/p)×,

[d log πK ]2 = (g(1 + xπK)−1) · ∂K,2(α).

We would like to know that the map of units

W2(A)× → (W2(A)/I)×

is a surjection. This will follow if we know that the I-adic topology on W2(A) is
complete and separated. But the formula

V (x) · V (y) = V (FV (x)y) = V (pxy) = pV (xy)

implies that the I-adic and p-adic topologies on W2(A) coincide, and the p-adic
topology is complete and separated. So we can find a unit u ∈ W2(A)× such that
u + I = g(1 + xπK). Since ∂K,2 is W2(A)-linear, we have

[d log πK ]2 = u−1∂K,2(α) = ∂K,2(u−1α),

which concludes the proof for m = 2.
We now proceed inductively, and consider the diagram

TRm−1
3 (A|K; p, Zp)

∂K,m
//

F
����

hTRm
2 (A|K; p, Zp)

N //

F

��

TRm
2 (A|K; p, Zp)

F

��

TRm−2
3 (A|K; p, Zp)

∂K,m−1
// //

hTRm−1
2 (A|K; p, Zp)

N // TRm−1
2 (A|K; p, Zp).

Inductively, the map ∂K,m−1 is surjective, and the left hand vertical map F is
surjective by lemma 5.6.1. Moreover, the kernel of the middle vertical map is
generated as a Wm(A)-module by the class pm−2[d log πK ]m. It therefore suffices
to show that this class is in the image of ∂K,m in the top row, and this in turn will
follow if we show that the class [d log πK ]m is in the image of ∂K,m. To see this,
we pick α ∈ TRm−1

3 (A|K; p), Zp) such that ∂K,m−1(F (α)) = [d log πK ]m−1. Then
β = ∂K,m(α) − [d log πK ]m is in the kernel of the middle vertical map, so we can
write β = x · pm−2d log πK , for some x ∈Wm(A). But then

(1 + pm−2x)[d log πK ]m = ∂K,m(α),

and hence

[d log πK ]m = (1 + pm−2x)−1∂K,m(α) = ∂K,m((1 + pm−2x)−1α),

where the inverse exists since the p-adic topology on Wm(A) is complete and sep-
arated. �

Addendum 3.3.7. The group TRn
2 (A; p) is uniquely divisible for all n.

Proof. It suffices to show that TRn
2 (A; p, Zp) is trivial. We prove this by

induction, and refer to the proof of proposition 2.3.4 for the case n = 1. Since
TRn

2 (A|K; p, Zp) vanishes, we have an exact sequence

TRn
3 (A|K; p, Zp)

δn−→ TRn
2 (k; p)→ TRn

2 (A; p, Zp)→ 0,
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and we must prove that the map δn is surjective. We consider the diagram

TRn
3 (A|K; p, Zp)

δn //

F
����

TRn
2 (k; p)

F
����

TRn−1
3 (A|K; p, Zp)

δn−1
// // TRn−1

2 (k; p).

The map δn−1 is surjective by induction, and the left hand vertical map is surjective
by lemma 5.6.1. Moreover, it was proved in [19, theorem 5.5] that the right hand
vertical map F is a surjection whose kernel is equal to the image of the map

V : TRn−1
2 (k; p)→ TRn

2 (k; p).

Since the square

TRn−1
3 (A|K; p, Zp)

δn−1
// //

V

��

TRn−1
2 (k; p)

V

��

TRn
3 (A|K; p, Zp)

δn // TRn
2 (k; p)

commutes and the top horizontal map is a surjection, the proof of the induction
step is complete. �

Theorem 3.3.8. The canonical map

Wn ωq
(A,M) → TRn

q (A|K; p)

is an isomorphism, for q ≤ 2, and a rational isomorphism, for all q ≥ 0.

Proof. The proof is by induction on n starting from proposition 2.3.4. In the
induction step, we use the exact sequences of lemma 3.2.6 and proposition 3.3.6,

hWn ωq
(A,M)

//

��

Wn ωq
(A,M)

R //

��

Wn−1 ωq
(A,M)

//

∼
��

0

0 // hTRn
q (A|K; p) N // TRn

q (A|K; p) R // TRn−1
q (A|K; p) // 0,

where the lower sequence is exact, for q ≤ 1, and exact modulo torsion, for all q.
If q ≤ 1, the left hand vertical map is an isomorphism by lemma 3.3.3, and hence
the statement follows in this case. When q = 2, the left hand vertical map is an
epimorphism with torsion kernel. Since the domain and range of the middle and
right hand vertical maps are both divisible groups, the statement follows. �

In the proof of the proposition 3.3.6, addendum 3.3.7, and theorem 3.3.8 above
for n > 3 we have used lemma 5.6.1 below. However, the lemma is not needed to
prove these statements for n ≤ 3. In particular, the proof of following result does
not use lemma 5.6.1.

Addendum 3.3.9. The connecting homomorphism

∂ : TR1
2(A|K; p, Z/p)→ hTR2

1(A|K; p, Z/p)

maps κ to dV (1)− V (d log(−p)).
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Proof. To prove the statement, we apply lemma 3.3.10 below to the 3 × 3-
diagram obtained from the smash product of the coefficient cofibration sequence

S0 p−→ S0 i−→Mp
β−→ S1

and the fundamental cofibration sequence

hTRn(A|K; p) N−→ TRn(A|K; p) R−→ TRn−1(A|K; p) ∂−→ Σ(hTRn(A|K; p)).

Since TR2(A|K; p) is uniquely divisible and TR0(A|K; p) torsion free, the lemma
shows that the connecting homomorphism of the statement is equal to the opposite
of the connecting homomorphism associated with the diagram

0 //
h TR2

1(A|K; p)
N //

p

��

TR2
1(A|K; p)

R //

p

��

TR1
1(A|K; p) //

p

��

0

0 //
h TR2

1(A|K; p)
N // TR2

1(A|K; p)
R // TR1

1(A|K; p) // 0.

And by theorem 3.3.8, this diagram is canonically isomorphic to the diagram

0 // hW2ω
1
(A,M)

N //

p

��

W2ω
1
(A,M)

R //

p

��

W1ω
1
(A,M)

//

p

��

0

0 // hW2 ω1
(A,M)

N // W2 ω1
(A,M)

R // W1 ω1
(A,M)

// 0.

The Bockstein maps κ to d log(−p) ∈W1 ω1
(A,M), which is the image by the restric-

tion of d log2(−p) ∈W2 ω1
(A,M). To evaluate pd log2(−p) we use the formula

−(−p)
2

+ V (1) = p(1 + pp−2V (1)),

which one readily verifies using the ghost map. If we differentiate, we find

−d(−p)
2

+ dV (1) = pp−2dV (1) = 0,

and if we multiply by d log2(−p), we get

−d(−p)
2

+ V (d log(−p)) = pd log2(−p) + pp−2V (d log(−p)) = pd log2(−p).

This shows that pd log2(−p) = V (d log(−p))− dV (1) as desired. �

Lemma 3.3.10. Given a 3× 3-diagram of cofibration sequences

E11
f11 //

g11

��

E12
f12 //

g12

��

E13
f13 //

g13

��

ΣE11

Σg11

��

E21
f21 //

g21

��

E22
f22 //

g22

��

E23
f23 //

g23

��

ΣE21

Σg21

��

E31
f31 //

g31

��

E32
f32 //

g32

��

E33
f33 //

g33

��

(−1)

ΣE31

−Σg11

��

ΣE11
Σf11 // ΣE12

Σf12 // ΣE13
−Σf13// Σ2E11

and classes eij ∈ π∗Eij such that g33(e33) = Σf12(e12) and f33(e33) = Σg21(e21).
Then the sum f21(e21) + g12(e12) is in the image of π∗E11 → π∗E22. �
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3.4. The k-algebra W̄n(A) was evaluated in proposition 3.1.5 above. We now
evaluate the differential graded k-algebra W̄n ω∗(A,M). Let π = πK be a uniformizer.
Then the modified Verschiebung from (3.1.4) satisfies

FdVπ(a) = θK(π)pda.

Let r = r(i, eK) = vp(i− peK/(p− 1)).

Proposition 3.4.1. The differential graded k-algebra E∗ = W̄n ω∗(A,M) is con-
centrated in degrees 0 and 1 and satisfies:

(i) a k-basis for E1
n is given by the elements V s

π (πid log π), where 0 ≤ i < eK and
0 ≤ s ≤ r, and dV s

π (πi), where 0 ≤ i < eK and r < s < n. Moreover, V s
π (πid log π)

vanishes, if s > r, dV s
π (πi) vanishes, if s < r, and

dV r
π (πi) = p−r(i− peK/(p− 1)) · V r

π (πid log π).

(ii) the E0
n-module structure on E1

n is given by

V s
π (πi)dV t

π(πj) =


dV t

π(πpti+j)− iV t
π(πpti+jd log π) if 0 = s ≤ t,

−iV t
π(θK(π)pt−s( ps+1−1

p−1 −1)πpt−si+jd log π), if 0 < s ≤ t,

jV s
π (θK(π)ps−t( pt+1−1

p−1 −1)πi+ps−tjd log π), if s ≥ t,

V s
π (πi)V t

π(πjd log π) =


V t

π(πpti+jd log π), if s = 0,
V s

π (πi+psjd log π), if t = 0,
0, otherwise.

Proof. It follows from propositions 3.1.5 and 3.2.2 that E∗n is generated,
as a graded k-vector space, by the monomials in the variables V s

π (πi), dV s
π (πi),

V s
π (πid log π), and dV s

π (πid log π) with 0 ≤ s < n and i ≥ 0. And theorem 3.3.8
and corollary 3.2.7 show that Eq

n vanishes, for q ≥ 2. In particular, the latter
generators, which are of degree two, must vanish.

We verify the relations in (i). If s ≤ r then p−s(i + peK(ps − 1)/(p − 1)) is an
integer, and iterated use of the second relation in proposition 3.1.5 shows that

V s
π (πi) = πp−s(i+peK

ps−1
p−1 ).

It follows that dV s
π (πi) vanishes, if s < r, and that dV r

π (πi) and V r
π (πid log π) are

related as stated. And since Vπd is the zero homomorphism, this also shows that
for s > r, V s

π (πid log π) = V s−r
π V r

π (πid log π) vanishes.
The formulas in (ii) are readily obtained by differentiating the first set of relations

in proposition 3.1.5. If, for instance, 0 < s ≤ t < n, we find that

V s
π (πi)dV t

π(πj) = −dV s
π (πi)V t

π(πj) = −V t
π(F tdV s

π (πi)πj)

= −iV t
π(θK(π)pt−s( ps+1−1

p−1 −1)πpt−si+jd log π),

and the remaining formulas are verified in a similar manner. It remains to prove
that this gives all relations in E1

n. This is the case if and only if E1
n is an neK-

dimensional k-vector space. We prove in proposition 6.1.1 below that this is indeed
the case, and hence there can be no further relations. �
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4. Tate cohomology and the Tate spectrum

4.1. Let G be a finite group and let k be a commutative ring. The norm
element NG ∈ kG is defined as the sum of all the elements of G. If M is a left
kG-module, mulplication by NG defines a map

NG : MG →MG

from the coinvariants MG = k ⊗kG M to the invariants MG = HomkG(k,M). We
note that for left kG-modules M and N , there are canonical isomorphisms

(M ⊗N)G
∼= c∗M ⊗kG N, Hom(M,N)G ∼= HomkG(M,N),

where c∗M denotes the right kG-module with m · g = g−1m.
Let ε : P → k be a projective resolution and let P̃ be the mapping cone of ε such

that there is a distinguished triangle (see section 2.1 above)

P
ε−→ k

ι−→ P̃
∂−→ ΣP.

Definition 4.1.1. Let M be a left kG-module. The Tate cohomology of G with
coefficients in M is given by

Ĥ∗(G, M) = H−∗((P̃ ⊗Hom(P,M))G).

It is clear that the Tate cohomology groups are well-defined up to canonical iso-
morphism. We show that the definition given here agrees with the usual definition
in terms of complete resolutions, [5, chap. XII, §3].

Lemma 4.1.2. The following maps are quasi-isomorphisms:

(P ⊗M)G
N−→
∼

(P ⊗M)G id⊗ε∗−−−−→
∼

(P ⊗Hom(P,M))G.

Proof. We first show that the norm map is an isomorphism of complexes. It
will suffice to show that the norm map

(kG⊗M)G
N−→ (kG⊗M)G

is an isomorphism. For both sides commute with the formation of arbitrary direct
sums. Let η : k → kG and ε : kG → k be the unit and counit of the Hopf algebra
kG, respectively. Then we have an isomorphism of left kG-modules

ξ : kG⊗ ε∗η∗M
∼−→ kG⊗M, ξ(g ⊗ x) = g ⊗ gx.

The left hand side is isomorphic to a direct sum indexed by the elements of G of
copies of M , and G acts by permuting the summands. Hence N is an isomorphism.

In order to show that the right hand map of the statement is a quasi-isomorphism,
we filter the double complex on the right after the first tensor factor. This gives,
by [1, theorem 6.1], a strongly convergent fourth quadrant spectral sequence

E1
s,t = Ht((Ps ⊗Hom(P,M))G)⇒ Hs+t((P ⊗Hom(P,M))G),

and hence, it suffices to show that for all s ≥ 0, the map

(Ps ⊗M)G id⊗ε∗−−−−→ (Ps ⊗Hom(P,M))G

is a quasi-isomorphism. Since both sides commute with filtered colimits in the first
tensor factor, we can further assume that the projective kG-module Ps is finitely

50



generated. In this case, the dual DPs = Hom(Ps, k) again is a (finitely generated)
projective kG-module, and there is a commutative diagram

(Ps ⊗M)G id⊗ε∗
//

∼
��

(Ps ⊗Hom(P,M))G

∼
��

Hom(DPs,M)G
(ε⊗id)∗

// Hom(P ⊗DPs,M)G,

with the vertical maps isomorphisms. The map

ε⊗ id : P ⊗DPs
∼−→ DPs

is a quasi-isomorphism between bounded below complexes of projective kG-modules.
Therefore, it is a chain homotopy equivalence, and hence, so is the lower horizontal
map in the diagram above. The lemma follows. �

Remark 4.1.3. The triangle preceeding definition 4.1.1 and lemma 4.1.2 give
rise to natural isomorphisms

Ĥi(G, M) ∼=

{
Hi(G, M) if i ≥ 1
H−i−1(G, M) if i ≤ −1

and to a natural exact sequence

0→ Ĥ−1(G, M) ∂−→ H0(G, M) N−→ H0(G, M) i−→ Ĥ0(G, M)→ 0.

Hence, the defintion of Tate cohomology given here agrees with the original one
in terms of complete resolutions, [5, chap. XII, §3]. This can also be seen more
directly as follows. Let ε : P̂ → k be a complete resolution in the sense of loc. cit.,
and let P and P− be the complexes whose non-zero terms are Pi = P̂i, if i ≥ 0,
and P−i = P̂i, if i < 0, respectively. Then ε : P → k is a resolution of k by finitely
generated projective left kG-modules and there is a canonical triangle

P− → P̂ → P → ΣP−.

An argument similar to the proof of lemma 4.1.2 shows that the canonical maps

Hom(P̂ ,M)G ∼−→ (P̃ ⊗Hom(P̂ ,M))G ∼−→ (P̃ ⊗Hom(P,M))G

are quasi-isomorphisms.

Definition 4.1.4. The cup product

Ĥ∗(G, M)⊗ Ĥ∗(G, M ′)→ Ĥ∗(G, M ⊗M ′)

is the map on homology induced by the composite

(P̃ ⊗Hom(P,M))G ⊗ (P̃ ⊗Hom(P,M ′))G → (P̃ ⊗ P̃ ⊗Hom(P ⊗ P,M ⊗M ′))G

→ (P̃ ⊗Hom(P,M ⊗M ′))G,

where the first map is the canonical map, and the second map is induced from a
choice of chain maps P → P ⊗ P and P̃ ⊗ P̃ → P̃ compatible with the canonical
isomorphisms k → k ⊗ k and k ⊗ k → k, respectively.

It is well-known that the chain map P → P ⊗ P exists and is unique up to
chain homotopy. The analogous statement for the map P̃ ⊗ P̃ → P̃ is proved in an
entirely similar manner. Hence, the cup product is well-defined. It makes Ĥ∗(G, k)
a graded commutative graded ring and Ĥ∗(G, M) a graded module over this ring.
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4.2. Let C be a cyclic group of order r and let g ∈ C be a generator. We let
ε : W → k be the standard resolution which in degree s ≥ 0 is a free kC-module on
a single generator xs with differential

dxs =

{
Nxs−1, s even,
(g − 1)xs−1, s odd,

and with augmentation ε(x0) = 1. Then W̃ is the complex which in degree s > 0
is a free kC-module on the generator ys = (0, xs−1) and in degree s = 0 is a trivial
kC-module on the generator y0 = (1, 0). The differential is

dys =


−(g − 1)ys−1, s even,
−Nys−1, s > 1 odd,
−y0 s = 1.

The dual of xs is the element x∗s ∈ DWs = Hom(Ws, k) given by x∗s(g
ixs) = δi,0.

Note that gi·x∗n = (gixn)∗ and that the map (gi)∗ : DWs → DWs maps x∗s 7→ g−ix∗s.
Thus

dx∗s =

{
(g−1 − 1)x∗s+1, s even,
Nx∗s+1, s odd.

Lemma 4.2.1. Suppose that the order of C is odd and congruent to zero in k.
Then as a graded k-algebra

Ĥ∗(C, k) = Λ{u} ⊗ S{t±1}
where t and u are the classes of y0 ⊗ Nx∗2 and y0 ⊗ Nx∗1, respectively. Moreover,
the classes 1, ut−1 and t−1 are represented by the elements y0⊗Nx∗0, −Ny1⊗Nx∗0
and Ny2 ⊗Nx∗0, respectively.

Proof. We first evaluate the homology of the complex

(W̃ ⊗Hom(W,k))C = (W̃ ⊗DW )C .

This is the total complex of a double complex, and the filtration after the first
tensor factor gives rise to a fourth quadrant homology type spectral sequence which
converges strongly to the homology of the total complex, [1, theorem 6.1]. We have

E1
s,t = Hs+t(W̃s ⊗DW )C ∼−→ Hs+t(Hom(W, W̃s)C),

which vanishes unless one of s and t are zero. Hence E2
s,t = E∞s,t and it is easy to

see that if either s or t is zero, this is a free k-module of rank one generated by the
classes of y0⊗Nx∗−t and Nys⊗Nx∗0, respectively. We note that these elements are
also cycles in the total complex.

To evaluate the multiplicative structure, we choose liftings
Ψ: W →W ⊗W

Φ: W̃ ⊗ W̃ → W̃

of the canonical maps k → k ⊗ k and k ⊗ k → k, respectively:

Ψm,n(gsxm+n) =


∑

s≤p<q<s

gpxm ⊗ gqxn m and n odd

gsxm ⊗ gs+1xn m odd, n even
gsxm ⊗ gsxn m even
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and

Φm,n(gpym ⊗ gqyn) =


∑

p≤s<q<p

gsym+n m and n odd

δp,q+1g
pym+n m odd, n even

δp,qg
pym+n m even,

where in the first line the sum ranges over the gs between gp and gq−1, both
included, in the cyclic ordering of C specified by the generator g. The sum is zero
if and only if p = q. The map Ψ induces a product map on the dual DW given by
the composite

Ψ∗ : DW ⊗DW
ν−→ D(W ⊗W ) DΨ−−→ DW,

or

Ψ∗m,n(g−px∗m ⊗ g−qx∗n) =


−

∑
p≤s<q<p

g−sx∗m+n m and n odd

δp,q+1g
−px∗m+n m odd, n even

δp,qg
−px∗m+n m even.

We find that

(y0 ⊗Nx∗m) · (y0 ⊗Nx∗n) =

−
r(r − 1)

2
y0 ⊗Nx∗m+n m and n odd

y0 ⊗Nx∗m+n else

and

(Nym ⊗Nx∗0) · (Nyn ⊗Nx∗0) =


r(r − 1)

2
Nym+n ⊗Nx∗0 m and n odd

Nym+n ⊗Nx∗0 else.

Moreover, the product

(y0 ⊗Nx∗2) · (Ny2 ⊗Nx∗0) = Ny2 ⊗Nx∗2

is homologous to y0 ⊗ Nx∗0, which represents the multiplicative unit in the coho-
mology ring. Indeed,

d(∆(N)(y1 ⊗ x∗0) + ∆(N)(y2 ⊗ x∗1)) = −y0 ⊗Nx∗0 + Ny2 ⊗Nx∗2.

Hence Ny2 ⊗Nx∗0 represents the class t−1. Finally, for any element α ∈ kC,

(1⊗ α)∆(N) = (ᾱ⊗ 1)∆(N),

where ᾱ = c(α) is the antipode. Therefore, if α ∈ kC is such that (g− 1)α = r−N
(for example α = 1 + 2g + · · ·+ rgr−1 is such an element), then

d((α⊗ 1)∆(N)(y2 ⊗ x∗0))

= −((g − 1)⊗ 1)(α⊗ 1)∆(N)(y1 ⊗ x∗0)

− (1⊗ (ḡ − 1))(1⊗ ᾱ)∆(N)(y2 ⊗ x∗1)

= Ny1 ⊗Nx∗0 + Ny2 ⊗Nx∗1 − r∆(N)(y1 ⊗ x∗0 + y2 ⊗ x∗1),

and hence, Ny1 ⊗Nx∗0 represents the class −ut−1 in the cohomology ring. �

Addendum 4.2.2. The boundary map ∂ : Ĥ−1(C, k) → H0(C, k) takes ut−1 to
the class of −1.
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Proof. The boundary map, by definition, is induced by the composite

(W̃ ⊗Hom(W,k))C ∂⊗id−−−→ (ΣW ⊗Hom(W,k))C id⊗ε∗←−−−−
∼

(ΣW ⊗ k)C

N←−
∼

(ΣW ⊗ k)C
ε⊗1−−→ ΣkC .

The class ut−1 is represented by the element −Ny1⊗Nx∗0 whose image under ∂⊗ id
is −Nx0 ⊗ Nx∗0. This element is equal to (id⊗ε∗)(−Nx0 ⊗ 1) and −Nx0 ⊗ 1 =
N(−x0 ⊗ 1). Finally (ε⊗ id)(−x0 ⊗ 1) is equal to the class of −1. �

4.3. We recall that for spectra X and Y , there are natural maps

(4.3.1)
∧ : πsX ⊗ πtY → πs+t(X ∧ Y ),

∨ : πs+tF (X, Y )→ Hom(π−sX, πtY ),

where ∧ is the external product and ∨ is the adjoint of the composite

πs+tF (X, Y )⊗ π−sX
∧−→ πt(F (X, Y ) ∧X) ev−→ πtY.

Let X be a G-CW-spectrum with an increasing filtration {Xs} by sub-G-CW-
spectra. Then the exact couple

Ds−1,t+1
i−→ Ds,t

j−→ Es,t
∂−→ Ds−1,t

with

(4.3.2)
Ds,t(X) = πs+t((Xs)G)

Es,t(X) = πs+t((Xs/Xs−1)G)

gives rise to a spectral sequence which abuts the homotopy groups of XG. The spec-
tral sequence converges conditionally in the sense of [1, definition 5.10], provided
that

⋃
Xs = X and holim

←−
(Xs)G is contractible.

If X and X ′ are two G-CW-spectra with such filtrations, we give the smash
product X ∧X ′ the usual product filtration

(X ∧X ′)n =
⋃

s+s′=n

Xs ∧X ′s′ .

with filtration quotients

(X ∧X ′)n/(X ∧X ′)n−1 =
∨

s+s′=n

Xs/Xs−1 ∧Xs′/Xs′−1.

The external product (4.3.1) and the inclusions

Xs ∧X ′s′ → (X ∧X ′)s+s′

Xs/Xs−1 ∧X ′s′/X ′s′−1 → (X ∧X ′)s+s′/(X ∧X ′)s+s′−1

then give rise to pairings

Ds,t(X)⊗Ds′,t′(X ′)→ Ds+s′,t+t′(X ∧X ′),

Es,t(X)⊗ Es′,t′(X ′)→ Es+s′,t+t′(X ∧X ′).

These, in turn, give rise to an external pairing of the associated spectral sequences,
that is, pairings

Er
s,t(X)⊗ Er

s′,t′(X
′)→ Er

s+s′,t+t′(X ∧X ′),
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for all r ≥ 1, which satisfies the Leibnitz rule

dr(xx′) = drxx′ + (−1)|x|xdrx′.

Here |x| is the total degree of x. A filtration preserving product map X ∧ X →
X induces a map of the associated spectral sequences which, pre-composed by
the external product, gives an internal product on the spectral sequence E∗(X).
The differentials act as derivations for this product, and if the product on X is
associative, commutative or unital, the same holds for the internal product in the
spectral sequence. Commutativity in the spectral sequence is up to the usual sign.

Let G be a finite group and let E be a free contractible G-CW-complex. Let Ẽ
be the mapping cone of the projection pr : E+ → S0 which collapses E to the non-
base point of S0. The associated suspension-G-CW-spectra (we make no change in
notation) form a distinguished triangle of associated

E+
pr−→ S0 → Ẽ

∂−→ ΣE+.

Let P and P̃ be the cellular complexes of E+ and Ẽ with coefficients in a commu-
tative ring k. We then have a distinguished triangle

P
pr∗−−→ k → P̃ → ΣP

in the category of chain complexes.
The Tate spectrum of a G-spectrum T is defined by

Ĥ(G, T ) = (Ẽ ∧ ΓF (E+, T ))G,

where ΓX
∼−→ X is a functorial G-CW-substitute. If T and T ′ are two G-spectra,

we define a pairing

(4.3.3) Ĥ(G, T ) ∧ Ĥ(G, T ′)→ Ĥ(G, T ∧ T ′)

as follows. By elementary obstruction theory, there are cellular G-homotopy equiv-
alences E+ → E+∧E+ and Ẽ∧Ẽ → Ẽ compatible with the canonical isomorphisms
S0 → S0 ∧ S0 and S0 ∧ S0 → S0, respectively, and any two such equivalences are
G-homotopic. The pairing then is given by

(Ẽ ∧ ΓF (E+, T ))G ∧ (Ẽ ∧ ΓF (E+, T ))G → (Ẽ ∧ Ẽ ∧ ΓF (E+ ∧ E+, T ∧ T ′))G

→ (Ẽ ∧ ΓF (E+, T ∧ T ′))G,

where the first map is the canonical map and the second is induced from the chosen
G-equivalences. If T is a G-ring spectrum, the composition of the external product
with the map of Tate spectra induced from the product map on T , makes Ĥ(G, T )
a ring spectrum. This ring spectrum is a associative, commutative or unital if the
G-ring spectrum T is associative, commutative or unital, respectively.

The CW-filtrations of E and Ẽ give rise to a double filtration of the Tate spec-
trum. In more detail, we define

Xr,s = Ẽr ∧ ΓF (E/E−s−1, T )

Yr,s = Ẽr/Ẽr−1 ∧ ΓF (E/E−s−1, T )

Zr,s = Ẽr ∧ ΓF (E−s/E−s−1, T ))

Wr,s = Ẽr/Ẽr−1 ∧ ΓF (E−s/E−s−1, T )).
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To get an honest filtration by sub-G-CW-spectra, we let

X̄r,s = holim
−→

Xr′,s′ ,

where the homotopy colimit runs over all 0 ≤ r′ ≤ r and s′ ≤ s ≤ 0. There is a
canonical homotopy equivalence X̄r,s

∼−→ Xr,s and X̄r,s is a sub-G-CW-spectrum of
the G-CW-spectrum X̄ = X̄∞,0. We also let

Ȳr,s = X̄r,s/X̄r−1,s

Z̄r,s = X̄r,s/X̄r,s−1

W̄r,s = X̄r,s/X̄r−1,s ∪ X̄r,s−1

and define

X̄n =
⋃

r+s≤n

X̄r,s ⊂ X̄.

The exact couple (4.3.2) associated with the filtration {X̄n} gives rise to a condi-
tionally convergent spectral sequence

Ê∗(G, T ) = E∗(X̄)⇒ π∗(Ĥ(G, T )).

Lemma 4.3.4. There is a canonical isomorphism of complexes

Ê1
∗,t(G, T ) ∼= (P̃ ⊗Hom(P, πtT ))G

and hence Ê2
s,t(G, T ) ∼= Ĥs(G, πtT ).

Proof. The inclusions X̄r,s → X̄r+s induce an isomorphism∨
r+s=n

W̄r,s
∼−→ X̄n/X̄n−1

such that the boundary map

X̄n/X̄n−1 → ΣX̄n−1 → Σ(X̄n−1/X̄n−2)

maps the summand W̄r,s to the summands ΣW̄r−1,s and ΣW̄r,s−1 by the maps

∂′ : W̄r,s → ΣȲr,s−1 → ΣW̄r,s−1,

∂′′ : W̄r,s → ΣZ̄r−1,s → ΣW̄r−1,s,

respectively. We identify

πr+s+t((W̄r,s)G) ∼= (P̃r ⊗Hom(P−s, πtT ))G

as follows: If X and Y are two G-spectra, we have the canonical map

π∗((X ∧ Y )G)→ (π∗(X ∧ Y ))G.

This is an isomorphism, for example, if X is a wedge of free G-cells. The desired
isomorphism is the composition of the inverse of this map with X = Ẽr/Ẽr−1 and
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Y = ΓF (E−s/E−s−1, T ) and the map of G-fixed sets induced by

πr+s+t(Ẽr/Ẽr−1 ∧ ΓF (E−s/E−s−1, T ))
∧←−
∼

πr(Ẽr/Ẽr−1)⊗ πs+tΓF (E−s/E−s−1, T )
∼−→ πr(Ẽr/Ẽr−1)⊗ πs+tF (E−s/E−s−1, T )
h⊗∨−−−→
∼

Hr(Ẽr/Ẽr−1)⊗Hom(π−s(E−s/E−s−1), πtT )

1⊗h∗←−−−
∼

Hr(Ẽr/Ẽr−1)⊗Hom(H−s(E−s/E−s−1), πtT ).

Here h is the Hurewitz homomorphism. One readily shows that under this identi-
fication, π∗(∂′) and π∗(∂′′) correspond to the differentials in the algebraic double
complex. �

The pairing (4.3.3) induces a pairing X̄(T )∧ X̄(T ′)→ X̄(T ∧ T ′), and since the
equivalences E+ → E+ ∧ E+ and Ẽ ∧ Ẽ → Ẽ were chosen cellular, this pairing
preserves the filtration by the sub-CW-spectra {X̄n}. Hence, we get an induced
pairing of the associated spectral sequences.

Proposition 4.3.5. Let T and T ′ be two G-spectra. Then the pairing of Tate
spectra (4.3.3) induces a pairing of the associated spectral sequences. On E2-terms,
this pairing corresponds to the pairing on Tate cohomology

Ĥ∗(G, π∗T )⊗ Ĥ∗(G, π∗T
′)→ Ĥ∗(G, π∗(T ∧ T ′))

under the isomorphism of lemma 4.3.4. In particular, if T is an associative G-ring
spectrum, then E2 ∼= Ĥ∗(G, π∗T ) as a bi-graded ring.

Proof. The equivalences E+ → E+ ∧E+ and Ẽ ∧ Ẽ → Ẽ induces chain maps
P → P ⊗P and P̃ ⊗ P̃ → P̃ which lift the canonical maps k → k⊗k and k⊗k → k,
respectively. Now suppose T and T ′ are two G-spectra and consider the spectral
sequences corresponding to the filtrations {(X̄(T ) ∧ X̄(T ′))n} and {X̄(T ∧ T ′)n}.
An argument analogous to the proof of the lemma 4.3.4 identifies the E1-terms of
the associated spectral sequences with the complexes

(P̃ ⊗Hom(P, π∗T )⊗ P̃ ⊗Hom(P, π∗T
′))G

and
(P̃ ⊗Hom(P, π∗(T ∧ T ′)))G,

respectively. We claim that under these identifications, the pairing

X̄(T ) ∧ X̄(T ′)→ X̄(T ∧ T ′)

corresponds to the composition

(P̃ ⊗Hom(P, π∗T ))G ⊗ (P̃ ⊗Hom(P, π∗T
′))G

→ (P̃ ⊗ P̃ ⊗Hom(P ⊗ P, π∗T ⊗ π∗T
′))G → (P̃ ⊗Hom(P, π∗(T ⊗ T ′)))G,

where the first map is canonical map of chain complexes (which involves sign
changes) and the second map is induced from the maps P → P ⊗P and P̃ ⊗ P̃ → P̃
and from the exterior product (4.3.1). This is straightforward to check. Similarly,
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under the isomorphism of lemma 4.3.4 and the analogous isomorphism above, the
external pairing corresponds to the canonical map (no sign changes)

(P̃ ⊗Hom(P, π∗T ))G ⊗ (P̃ ⊗Hom(P, π∗T
′))G

→ (P̃ ⊗Hom(P, π∗T )⊗ P̃ ⊗Hom(P, π∗T
′))G.

But this was our definition of the paring in Tate cohomology, see (4.1.4). �

Remark 4.3.6. We show that the spectral sequence Ê∗(G, T ) considered here is
canonically isomorphic to the spectral sequence obtained from Greenlees’ Z-graded
‘filtration’ of Ẽ, [11], [12]. This is the sequence of G-CW-spectra,

· · · → Ẽr−1 → Ẽr → Ẽr+1 → . . . ,

where, for r ≥ 0, Ẽr is the suspension G-spectrum of the r-skeleton of Ẽ, and for
r < 0, Ẽr is the dual D(Ẽ−r) = ΓF (Ẽ−r, S

0). In particular, Ẽ0 = S0 is the sphere
G-spectrum. The maps Ẽr−1 → Ẽr are induced from the canonical inclusions,
and for r = 0, from the canonical map D(S0) ∼−→ S0. In the definition of the
G-CW-spectra X̄r,s and X̄n, we now may vary r over all integers. Let X̄ ′r,s and
X̄ ′n denote the G-CW-spectra so obtained. Then, for r ≥ 0, the canonical inclusion
X̄r,s

∼−→ X̄ ′r,s is a homotopy equivalence. We have maps of filtrations

{X̄n}n∈Z → {X̄ ′n}n∈Z ← {X̄ ′r,0}r∈Z,

and the filtration on the right is Greenlees’ filtration. We show that both maps
induce isomorphisms of the E2-terms of the associated spectral sequences. In order
to identify the E1-terms, let ε : P̂ → k be the complete resolution, where

(ΣP̂ )s = Hs(Ẽs ∪ CẼs−1; k)

with differential

Hs(Ẽs ∪ CẼs−1)
∂∗−→ Hs(ΣẼs−1)

susp←−−−
∼

Hs−1(Ẽs−1)
i∗−→ Hs−1(Es−1 ∪ CẼs−2)

and with structure map

ε : P̂0 = H1(Ẽ1 ∪ CẼ0)
∂∗−→ H1(ΣE0)

susp←−−−
∼

H0(E0) = k.

The map of distinguished triangles

P
ε // k

ε∗

��

// P̃

��

// ΣP

P // ΣP− // ΣP̂ // ΣP

defines a quasi-isomorphism of the mapping cones of the two middle vertical maps.
(See remark 4.1.3 for the definition of the lower triangle.) Now an argument similar
to the proof of lemma 4.3.4 identifies the maps of E1-terms induced from the above
maps of filtrations with the canonical maps

(P̃ ⊗Hom(P,M))G → (ΣP̂ ⊗Hom(P,M))G ← (ΣP̂ ⊗Hom(k,M))G.

Finally, an argument similar to the proof of lemma 4.1.2 shows that both maps are
quasi-isomorphisms.
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4.4. Again let C be a cyclic group of order r and let g be a generator. As our
model for E, we choose the unit sphere

E = S(C∞),

where the generator g acts on C by multiplication by e2πi/r. We give E the usual
C-CW-structure with one free cell in each dimension. The skeleta are

En =

{
S(Cd) n = 2d− 1
S(Cd) ∗ (C · 1) n = 2d,

where in the latter case, we identify the join with its image under the canonical
homeomorphism S(Cn) ∗ S(C) ∼= S(Cn ⊕ C). The attaching maps

αn : Dn × C → En

are defined in even dimensions by the composite

D2d × C
ξ−→ D(Cd)× C

π−→ S(Cd) ∗ (C · 1),

where ξ(z, gs) = (gs · z, gs) and π is the canonical projection. We define

α1(x, gs) = gs · eπi(x+1)/r

and let α2d+1 be the composite

D2d ×D1 × C
ξ−→ D(Cd)×D1 × C

1×α1−−−→ D(Cd)× S(C) π−→ S(Cd) ∗ S(C).

We give D(Cd) the complex orientation and D1 = D(R) = [−1, 1] the standard
orientation from −1 to 1. We may then identify the cellular complex of E with the
standard complex W by the isomorphism

W
∼−→ C∗(E; k)

which maps the generator xn ∈ Wn to the image of the fundamental class under
the composite

Hn(Dn, Sn−1) ι0−→ Hn(Dn × C,Sn−1 × C) αn−−→ Hn(En, En−1).

Here ι0 : Dn → Dn × C maps z to (z, 1).

The C-CW-structure on E induces one on Ẽ and the isomorphism above induces
an isomorphism of chain complexes

W̃
∼−→ C̃∗(Ẽ; k).

We identify Ẽ with SC∞ by the homeomorphism

CS(C∞)+ ∪ S0 ∼−→ D(C∞)/S(C∞)

which maps t ∧ z 7→ tz. Note that under this homeomorphism, the orientation of
the cells in Ẽ corresponds to the complex orientation of SC∞ . In particular, the
composite

H2(SC) ∼←− H2(Ẽ2)
pr∗−−→ H2(Ẽ2, Ẽ1)

∼←− W̃2

maps the fundamental class [SC] to the class Ny2.
Let C ⊂ T be the subgroup of order r. We give T the C-CW-structure of

S(C) = E1. Then the multiplication is cellular, and hence, the cellular complex

Λ = C∗(T; k)
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is naturally a differential graded Hopf algebra with unit 1 = x0. The differential
maps x1 to (g−1) ·x0, x1 is primitive, the coproduct on g is g⊗g, and the antipode
is given by c(x1) = −x1. We note that x1 represents the fundamental class [T].
The C-action on E = S(C∞) naturally extends to a T-action, and the action map

µ : T× E → E

is cellular. The induced action on Ẽ,

µ̃ : T+ ∧ Ẽ = T+ ∧ Cpr
ρ−→ CT+∧pr

Cµ−−→ Cpr = Ẽ,

again is cellular. The induced left Λ-module structures on the cellular complexes
W and W̃ are given by

x1 · xs =

{
xs+1 s even
0 s odd

, x1 · ys =

{
0 s even
−ys+1 s odd.

Let T be a T-spectrum and let X̄ = X̄(T ) be the filtered T-CW-spectrum, which
gives rise to the spectral sequence Ê∗(C, T ). We give T/C the skeleton filtration
such that ΛC = C∗(T/C; k). Then the T-actions on E, Ẽ, and T induce a filtration
preserving map

ω : T/C+ ∧ X̄C → X̄C .

An argument similar to the proof of lemma 4.3.4 identifies the induced map of
E1-terms of the associated spectral sequences with the map

ΛC ⊗ (W̃ ⊗Hom(W,π∗T ))C → (W̃ ⊗Hom(W,π∗T ))C

given by the composite

ΛC ⊗ (W̃ ⊗Hom(W,π∗T ))C N⊗id−−−→
∼

ΛC ⊗ (W̃ ⊗Hom(W,π∗T ))C

→ (Λ⊗ W̃ ⊗Hom(W,π∗T ))C ω∗−−→ (W̃ ⊗Hom(W,π∗T ))C .

Proposition 4.4.1. Let T be a T-spectrum. Then Ê∗(C, T ) is a spectral se-
quence of left ΛC-modules. Moreover, if the class a ∈ π∗(Ĥ(C, T )) is represented
by the infinite cycle z ∈ E1

s,t, and if x1 · z ∈ E1
s+1,t is non-zero, then x1 · z is an

infinite cycle and represents the class of da ∈ π∗(Ĥ(C, T )). �

Let k be a perfect field of odd characteristic p and let T (k) be the topological
Hochschild spectrum of k. Then as a differential graded k-algebra,

π∗(T (k), Z/p) = Λ{ε} ⊗ S{σ}

with the classes ε ∈ π1(T (k), Z/p) and σ ∈ π2(T (k), Z/p) characterized by β(ε) = 1
and d(ε) = σ. The Tate spectral sequence takes the form

Ê2(Cp, T (k)) = Λ{u1, ε} ⊗ S{t±1, σ} ⇒ π∗(T (k), Z/p),

where u1 = u and t are the generators of Ĥ∗(Cp, k) from lemma 4.2.1. The non-zero
differentials are multiplicatively generated from d2(ε) = tσ.

Corollary 4.4.2. The image of the classes ε and σ under the map induced from

Γ̂k : T (k)→ Ĥ(Cp, T (k))

are represented by the infinite cycles ut−1 and t−1, respectively.
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Proof. We recall from section 1.1 that Γ̂k is defined as the composite

T (k) r←−
∼

ρ∗Cp
(Ẽ ∧ T )Cp → ρ∗Cp

(Ẽ ∧ F (E+, T ))Cp .

Both maps are T-equivariant, so Γ̂ commutes with Connes’ operator. It also com-
mutes with the Bockstein operator. Hence, it suffices to show that ut−1 ⊗ 1 repre-
sents the unique class whose Bockstein is the multiplicative unit 1, and that t−1⊗1
represents the image under Connes’ operator of this class. To this end, we recall
from lemma 4.2.1 that the classes 1, ut−1 and t−1 in Ĥ∗(Cp, Fp) are represented
by the elements y0 ⊗ Nx∗0, −Ny1 ⊗ Nx∗0 and Ny2 ⊗ Nx∗0, respectively. We recall
from section 2.1 above that the Bockstein

β : Ĥ∗(Cp, Fp)→ Ĥ∗+1(Cp, Z)

is equal to the connecting homomorphism associated with the exact sequence

0→ (W̃ ⊗Hom(W, Z))Cp
p−→ (W̃ ⊗Hom(W, Z))Cp

pr−→ (W̃ ⊗Hom(W, Fp))Cp → 0.

This takes −Ny1 ⊗Nx∗0 to y0 ⊗Nx∗0, and hence β(ut−1) = 1. Next,

x1 · (−Ny1 ⊗Nx∗0) = −N(x1 · y1)⊗Nx∗0 + Ny1 ⊗N(x1 · x∗0) = Ny2 ⊗Nx∗0,

so by proposition 4.4.1, the image under Connes’ operator of the class represented
by ut−1 ⊗ 1 is represented by t−1 ⊗ 1. �

Finally, for a T-spectrum T , we will also consider the T-Tate spectrum

Ĥ(T, T ) = (Ẽ ∧ ΓF (E+, T ))T,

where again E = S(C∞). The filtration of E by the odd skeleta E2d−1, d ≥ 1,
and the associated filtration of Ẽ both are preserved by the T-action. The induced
filtration of the Tate spectrum gives a conditionally convergent spectral sequence

Ê2(T, T ) = S{t±1} ⊗ π∗(T )⇒ π∗(Ĥ(T, T )),

with the generator t in bi-degree (−2, 0). Let C ⊂ T be a subgroup. Then the
canonical inclusion Ĥ(T, T )→ Ĥ(C, T ) induces a map of spectral sequences

Ê∗(T, T )→ Ê∗(C, T ).

If the order of C is odd and annihilates π∗(T ) then, on E2-terms, this map is the
canonical inclusion which maps t to the generator t of lemma 4.2.1. This is the
case, for instance, if T = Mp ∧ T (A|K) and C = Cpn .

Proposition 4.4.3. Let T be a T-spectrum and let C ⊂ T be a subgroup whose
order r is odd and annihilates π∗(T ). Then the d2-differential in

Ê2(C, T ) = Ĥ∗(C, Z/r)⊗ π∗(T )⇒ π∗(Ĥ(C, T ))

is given by d2(γ ⊗ τ) = γt⊗ dτ , where d is Connes’ operator.

Proof. It was proved in [16, lemma 1.4.2] that in the in the T-Tate spectral
sequence, the d2-differential is given by the formula of the statement. Moreover, ev-
ery C-spectrum T is a module C-spectrum over the sphere C-spectrum S0. Hence,
it suffices to show that the class u is a d2-cycle in the spectral sequence Ê∗(C,S0).
But π1(S0, Z/r) vanishes since r is odd. �
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5. The Tate spectral sequence for T (A|K)

5.1. The Tate spectral sequence Ê∗(Cpn ,Mp∧T (A|K)) is a spectral sequence
of bi-graded k-algebras in a canonical way, which we now explain. (We will abuse
notation and write Ê∗(Cpn , T (A|K))). For every Cpn -ring spectrum T , Ĥ(Cpn , T )
is a TCpn -algebra spectrum, and the Tate spectral sequence is one of bi-graded
π∗(TCpn )-algebras,

Ê2(Cpn , T ) = Ĥ−∗(Cpn , Fn∗π̄∗(T ))⇒ π̄∗(Ĥ(Cpn , T )),

where Fn : TCpn → T is the natural inclusion. Here Fn∗π̄∗T denotes the graded ring
π̄∗T = π∗(T, Z/p) considered as a π̄∗(TCpn )-algebra via the ring homomorphism
induced by Fn. In the case at hand, we consider this a spectral sequence of bi-
graded k-algebras via the ring homomorphism (3.1.3),

ρn+1 : k → W̄n+1(A) = π̄0(T (A|K)Cpn ).

We recall that Fn ◦ ρn+1 = ρ1 ◦ ϕn, where ϕ : k → k is the Frobenius. The latter
is an automorphism, by our assumption that k be perfect, and hence

Ê2(Cpn , T (A|K)) = Λ{un, d log πK} ⊗ S{πK , κ, t±1}/(πeK

K ),

where un and t are the canonical generators from lemma 4.2.1. The differential
structure of this spectral sequence is evaluated in this paragraph. It is in order to
briefly outline the argument.

The d2-differential in Ê∗(Cpn , T (A|K)) is given by proposition 4.4.3 in terms of
Connes’ operator (2.1.2) on π̄∗T (A|K). Hence, by theorem 2.4.1,

d2πK = td log πK · πK , d2κ = td log(−p) · κ,

and we can use the equation −p = πeK

K θK(πK)−1 to express d log(−p) as a poly-
nomial in πK times d log πK . In section 5.2, we replace κ by a new generator αK ,
defined as a certain linear combination of the elements πi

Kκ with 0 ≤ i < eK , which
satisfies that dαK = eKd log πK · αK . In particular, αK is a d2-cycle, if p divides
eK . We also replace t by a new generator τK defined in a similar manner.

The key results that make it possible to completely evaluate the spectral sequence
are consequences of the map

Γ̂A|K : T (A|K)Cpn−1 → Ĥ(Cpn , T (A|K)),

and of the unit map of the ring spectrum on the right,

` : S0 → Ĥ(Cpn , T (A|K)).

We show in section 5.3 that for n < vp(eK), πpn

K and −τKαK are infinite cycles
which represent the classes Γ̂A|K(πKn

) and Γ̂A|K(πK
eK/pn

n
), respectively. We also

show that −τKαp
K is always an infinite cycle which represents the image by the

unit map of the canonical generator v1 ∈ π̄2p−2(S0). Given these infinite cycles
together with the value of the differentials on the p-powers of πK , which we examine
by a universal example in section 5.5, one can evaluate the spectral sequence, if
n < vp(eK). The final part of the argument consists of a somewhat complicated
induction argument, which we present at the end of section 5.5. The key for this
part is naturality, going back and forth between T (A|K) and T (B|L) for suitable
ramified extensions L/K.

62



The handling of the spectral sequences is algebraically somewhat complex. To
ease the presentation we first consider in section 5.4 the case of Ê∗(Cp, T (A|K)).
This section also contains the proof that the map Γ̂A|K induces an isomorphism of
homotopy groups with Z/p-coefficients in non-negative degrees.

5.2. Let L be a finite and totally ramified extension of K, and let B be
the integral closure of A in L. Then B is a complete discrete valuation ring with
quotient field L and residue field k. Let πK and πL be uniformizers of A and B,
respectively. The minimal polynomial of πL over K has the form

φL/K(x) = xeL/K + πKθL/K(x),

where θL/K(x) is a polynomial over A of degree < eL/K and θL/K(0) ∈ A×. More-
over, the canonical map

A[πL]/(φL(πL/K)) ∼−→ B

is an isomorphism. When K = K0 is the quotient field of W (k), we will always use
πK0 = p and write write θL(x) instead of θL/K0(x).

Lemma 5.2.1. Suppose that µp ⊂ K. Then a choice of a generator ζ ∈ µp and
a uniformizer πK ∈ A determines a polynomial uK(x) ∈ W (k)[x] of degree < eK

such that uK(πK)p−1 = θK(πK). Moreover, in ω1
(A,M),

d log ζ = −π
eK/(p−1)
K uK(πK)−1d log(−p).

Proof. Consider the power series f(x) = px + xp and g(x) = (1 + x)p − 1
and recall from [39, §3, proposition 3] that there exists a unique power series ϕ(x)
such that f(ϕ(x)) = ϕ(g(x)) and ϕ(x) ≡ x modulo (x2). Hence, if ζ ∈ µp is a
generator then ϕ(ζ−1) is a (p−1)st root of −p. We define uK(x) to be the unique
polynomial of degree < eK such that

uK(πK) = π
eK/(p−1)
K ϕ(ζ − 1)−1.

To prove the second statement, we first note that

dϕ(ζ − 1) = ϕ(ζ − 1)d log ϕ(ζ − 1)

= π
eK/(p−1)
K uK(πK)−1 · (p− 1)−1d log(−p)

= −π
eK/(p−1)
K uK(πK)−1 · d log(−p),

where the last equality uses that d log(−p) is p-torsion. Hence, it suffices to show
that dϕ(ζ−1) = d log ζ. We may assume that K = Qp(µp), where as a uniformizer,
we take πK = ζ − 1. Then ω1

(A,M) is annihilated by πp−1
K , and since dϕ(ζ − 1) =

ϕ′(ζ − 1)ζd log ζ, we have left to show that ϕ′(x) ≡ (1 + x)−1 modulo (xp−1),
or equivalently, that ϕ(x) ≡ log(1 + x) modulo (xp). But this follows from the
uniqueness of ϕ(x) and from the calculation in Zp[x]/(xp):

log(1 + g(x)) = log((1 + x)p) = p log(1 + x) = f(log(1 + x)). �

Addendum 5.2.2. Let L/K be a finite and totally ramified extension. Then the
inclusion of valuation rings, ι : A→ B, maps

ι(uK(πK)) = (−θL/K(πL))−eK/(p−1)uL(πL).
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Proof. We can write the ι(ϕ(ζ − 1)) = ϕ(ζ − 1) as

ι(πeK/(p−1)
K uK(πK)−1) = π

eL/(p−1)
L uL(πL)−1.

Since ι(πK) = θL/K(πL)−1π
eL/K

L , the left hand side also is equal to

(−θL/K(πL)−1π
eL/K

L )eK/(p−1)ι(uK(πK)−1).

The formula follows since eL/KeK = eL and since πL is a non-zero-divisor. �

Suppose that µp ⊂ K. We choose a generator ζ ∈ µp and a uniformizer πK ∈ A
and let uK(x) be the polynomial from lemma 5.2.1. Let κ ∈ π̄2T (A|K) be the
unique class with β(κ) = d log(−p) and define αK = uK(πK)−1κ.

Proposition 5.2.3. As a differential graded k-algebra

π̄∗T (A|K) = Λ{d log πK} ⊗ S{αK , πK}/(πeK

K )

with dπK = πKd log πK and dαK = eKαKd log πK .

Proof. It follows from theorem 2.4.1 and lemma 2.2.3 that as a differential
graded k-algebra

π̄∗T (A|K) = Λ{d log πK} ⊗ S{κ, πK}/(πeK

K )

with the differential given by dπK = πKd log πK and dκ = κd log(−p). Moreover,
differentiating the equation −p = πeK

K θK(πK)−1, we find

d log(−p) = (eKd log πK − d log θK(πK)).

Finally, θK(πK) = uK(πK)p−1, and hence

d(αK) = −uK(πK)−1d log uK(πK) · κ + uK(πK)−1 · κd log(−p)

= −αKd log uK(πK) + αK(eKd log πK − (p− 1)d log uK(πK))
= eKαKd log πK

as stated. �

We recall the Bott element. Since p is odd, the Bockstein is an isomorphism,

π̄2(Σ∞Bµp+) ∼−→ pπ1(Σ∞Bµp+) ∼←− µp,

and by definition, the Bott element b = bζ is the class on the left which corresponds
to the chosen generator ζ on the right. The spectrum Σ∞Bµp+ is a ring spectrum
and the (p − 1)st power bp−1, which is independent of the choice of generator, is
the image by the unit map of a generator v1 in π̄2p−2(S0). If µp ⊂ K, we have the
maps of ring spectra

Σ∞Bµp+
det−−→ K(K) tr−→ T (A|K)Cpn−1 ,

and let bn = bn,ζ be the image of the Bott element in π̄2(T (A|K)Cpn−1 ). We note
that β(bn) = d logn ζ and that since π2(T (A|K)Cpn−1 ) is uniquely divisible, this
equation characterizes bn. In particular, the calculation

β(b1) = d log ζ = −π
eK/(p−1)
K uK(πK)−1d log(−p) = β(−π

eK/(p−1)
K αK)

shows that

(5.2.4) b1 = −π
eK/(p−1)
K αK .

The elements bn for n > 1, however, are not well understood.
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Let L/K be a finite and totally ramified extension, and let ι : A → B be the
inclusion of valuation rings. Then the map

(5.2.5) ι∗ : π̄∗T (A|K)→ π̄∗T (B|L)

is given by
ι∗(πK) = −θL/K(πL)−1π

eL/K

L ,

ι∗(d log πK) = eL/Kd log πK − d log θL/K(πL),

ι∗(αK) = (−θL/K(πL))eK/(p−1)αL.

The first two equalities follows immediately from the definition of θL/K(πL), and
the last equality follows form addendum 5.2.2.

Let f(x) ∈ k[x] and let n be an integer. We write f (n)(x) for the image of f(x)
under the automorphism ϕn[x] : k[x] → k[x], which applies ϕn to the coefficients
of a polynomial. If R is a k-algebra and if π ∈ R then, as usual, f(π) denotes the
image of f(x) by the unique k-algebra homomorphism k[x] → R which takes x to
π. We note that f (−n)(π) ∈ ϕn∗R and f(π) ∈ R is the same element.

Suppose either µp ⊂ K or K = K0. In the former case, let πK be a uniformizer,
let ζ ∈ µp be a generator and let uK(x) be the polynomial from lemma 5.2.1. In
the latter case, let uK0(x) = 1. Then as a bi-graded k-algebra,

(5.2.6) Ê2(Cpn , T (A|K)) = Λ{un, d log πK} ⊗ S{πK , αK , τ±1
K }/(πeK ),

with the new generators given by

αK = u
(−n)
K (πK)−1κ, τK = u

(−n)
K (πK)p t.

We note the relations τKαK = θ
(−n)
K (πK)tκ and τKαp

K = tκp.
It will be important to know how these new generators behave under extensions.

For integers a, r, d with 0 ≤ r < eK and d ≥ 0, we define

{a, r, d}K = (pa− d)eK/(p− 1) + r.

If µp ⊂ K then p − 1 divides eK such that {a, r, d}K is an integer. Let L/K be a
finite and totally ramified extension, and let ι : A→ B be the inclusion of valuation
rings. Then {a, eL/Kr, d}L = eL/K{a, r, d}K and

(5.2.7) ι∗ : Ê2(Cpn , T (A|K))→ Ê2(Cpn , T (B|L)),

is given by

ι∗(τa
Kπr

Kαd
K) = (−θ

(−n)
L/K (πL))−{a,r,d}K τa

Lπ
eL/Kr

L αd
L,

ι∗(d log πK) = (eL/K −
θ
(−n)
L/K

′(πL)πL

θ
(−n)
L/K (πL)

)d log πL.

5.3. In this section, we produce a number of infinite cycles in the spectral
sequence Ê∗(Cpn , T (A|K)). This uses the maps of differential graded k-algebras

π̄∗T (A|K)
j∗←−− π̄∗T (A)

ρ∗−−→ π̄∗T (A/p),

where the right hand map is induced from the reduction. We evaluate these maps
assuming that vp(eK) > 0. The left hand map may be identified with the map of
graded k-algebras

j∗ : Λ{dπK} ⊗ S{κ̃, πK}/(πeK

K )→ Λ{d log πK} ⊗ S{κ, πK}/(πeK

K ),
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which takes πK to πK , dπK to πKd log πK and κ̃ to κ. (See the discussion preceeding
theorem 2.4.1.) The group π2T (A) is uniquely divisible so the Bockstein induces an
isomorphism β : π̄2T (A) ∼−→ pπ1T (A) and the class κ̃ corresponds to the generator

d log(−p) = −((eK/p)πeK−1
K + θ′K(πK))θK(πK)−1dπK

on the right. The differential graded k-algebra π̄∗T (A/p) is evaluated in proposi-
tion A.1.4 of the appendix. We refer to loc. cit. for the notation.

Proposition 5.3.1. If vp(eK) > 0 the map ρ∗ : π̄∗T (A) → π̄∗T (A/p) may be
identified with the inclusion of differential graded k-algebras

ρ∗ : Λ{dπK} ⊗ S{πK , κ̃}/(πeK

K ) ↪→ Λ{dπ̄K , ε} ⊗ S{σ, π̄K}/(π̄eK

K )⊗ Γ{c̄2}

which takes πK to π̄K and κ̃ to the class

σ − θK(π̄K)−1c̄2 − ε · ((eK/p)π̄eK−1
K + θ′K(π̄K))θK(π̄K)−1dπ̄K .

Proof. Only the formula for ρ∗(κ̃) requires proof. Consider the diagram

T (A)
p

//

T (ρ)

��

T (A) i //

T (ρ)

��

Mp ∧ T (A)
β

//

Mp∧T (ρ)

��

ΣT (A)

ΣT (ρ)

��

T (A/p)
p=0

// T (A/p) i // Mp ∧ T (A/p)
β

//

r
oo ΣT (A/p),

s
oo

with horizontal triangles. The lower triangle split by the maps r and s of section 2.1
above. It shows that

ρ∗(κ̃) = ε · ((ΣT (ρ))∗ ◦ β∗)(κ̃) + (i∗ ◦ r∗ ◦ (Mp ∧ T (ρ))∗)(κ̃).

The value of the first summand is easily determined from the diagram

π2(Mp ∧ T (A))
β∗ //

(Mp∧T (ρ))∗

��

π2(ΣT (A))

(ΣT (ρ))∗

��

π1(T (A))

T (ρ)∗

��

susp

∼
oo Ω1

A
∼oo

ρ∗

��

π2(Mp ∧ T (A/p))
β∗ // π2(ΣT (A/p)) π1(T (A/p))

susp

∼
oo Ω1

A/p
∼oo

and the formula for the Bockstein of κ̃ above:

((ΣT (ρ))∗ ◦ β∗)(κ̃) = −((eK/p)π̄eK−1
K + θ′K(π̄K))θK(π̄K)−1dπ̄K .

It remains to show that

(r∗ ◦ (Mp ∧ T (ρ))∗)(κ̃) = σ − θK(π̄K)−1c̄2.

We first show that the linearization l∗ : π∗T (A/p) → π∗HH(A/p) takes this class
to −θK(π̄K)−1c̄2. The following diagram

π∗(Mp ∧ T (A))
ρ∗ //

l∗

��

π∗(Mp ∧ T (A/p))
r∗ //

l∗

��

π∗T (A/p)

l∗

��

π∗(Mp ∧HH(A))
ρ∗ // π∗(Mp ∧HH(A/p))

r∗ // π∗HH(A/p)
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commutes and the composite of the lower horizontal maps is an isomorphism. Let
c1, c

[d]
2 ∈ π∗(Mp ∧HH(A)) be the classes which correspond to c̄1, c̄

[d]
2 ∈ π∗HH(A/p)

under this isomorphism. We claim that c2 = −θK(πK)κ̃. The diagram

π2(Mp ∧ T (A)) ∼
β

//

∼ l∗

��

pπ1T (A)

∼ l∗

��

π2(Mp ∧HH(A)) ∼
β

//
pπ1 HH(A),

where all maps are isomorphisms, shows that to prove this, it will suffice to show
that the lower Bockstein takes c2 to ((e/p)πeK−1

K + θ′K(πK))dπK . This Bockstein,
in turn, may be identified with the connecting homomorphism in the diagram

0 // A · c2
p

//

φ′K(πK)

��

A · c2
ρ

//

φ′K(πK)

��

A/p · c̄2
//

φ′K(π̄K)=0

��

0

0 // A · c2
p

// A · c2
ρ

// A/p · c̄2
// 0

and the claim follows; compare section A.1 below. We consider again the diagram
from the beginning of the proof. This may be further refined to a diagram of
horizontal triangles

T (A;A)
p

//

T (A;ρ)

��

T (A;A) i //

T (A;ρ)

��

Mp ∧ T (A;A)
β

//

Mp∧T (A;ρ)

��

ΣT (A;A)

ΣT (A;ρ)

��

T (A;A/p)
p

//

T (ρ;A/p)

��

T (A;A/p) i //

T (ρ;A/p)

��

Mp ∧ T (A;A/p)
β

//

Mp∧T (ρ;A/p)

��

r
oo ΣT (A;A/p)

ΣT (ρ;A/p)

��

s
oo

T (A/p;A/p)
p=0

// T (A/p;A/p) i // Mp ∧ T (A/p;A/p)
β

//

r
oo ΣT (A/p;A/p),

s
oo

where for an A-A-bimodule M , T (A;M) is the topological Hochschild spectrum of
A with coeffcients in M . It shows that

(r∗ ◦ (Mp ∧ T (ρ))∗)(κ̃) = (T (ρ;A/p)∗ ◦ r∗ ◦ (Mp ∧ T (A; ρ))∗)(κ̃).

The map T (ρ;A/p)∗ is equal to the edge homomorphism of the spectral sequence

E2
s,t = πsT (A/p, TorA

t (A/p, A/p))⇒ πs+tT (A;A/p)

considered in [27]. Hence, loc.cit., proposition 4.3, shows that there is a unique
class in the image of

T (ρ;A/p)∗ : π2T (A;A/p)→ π2T (A/p;A/p) = π2T (A/p)

whose image under l∗ : π2T (A/p) → π2 HH(A/p) is −θK(π̄K)−1c̄2 and that this
class has the form λ · σ − θK(π̄K)−1c̄2, where λ ∈ (Z/p)× is a unit. Finally, the
following lemma shows that λ = 1 (or equivalently, that the class σ of loc.cit. agrees
with our class σ). �

Lemma 5.3.2. The reduction i∗ : π̄∗T (A)→ π̄∗T (k) maps κ̃ to σ.
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Proof. We proved in addendum 3.3.9 that in the diagram

π̄2T (A|K)

∂A|K

��

π̄2T (A)
i∗ //

∂A

��

j∗oo π̄2T (k)

∂k

��

π̄1H ·(Cp, T (A|K)) π̄1H ·(Cp, T (A))
i∗ //

j∗oo π̄1H ·(Cp, T (k))

the left hand vertical map takes κ to dV (1) − V (d log(−p)). It follows that the
middle vertical map takes κ̃ to dV (1) − V (d log(−p)) + aV (πeK−1

K dπK) for some
a ∈ A. Since Ω1

k vanishes, we conclude that the right hand vertical map takes i∗(κ̃)
to dV (1), and since π̄2T (k) is a one-dimensional k-vector space, it thus suffices to
show that also ∂k(σ) = dV (1). To this end, we consider the diagram

π̄2T (k)

∂k

��

(−1)

π̄1T (k)

∂k

��

doo Γ̂ // π̄1Ĥ(Cp, T (k))

∂h
k

��

π̄1H ·(Cp, T (k)) π̄0H ·(Cp, T (k))doo π̄0H ·(Cp, T (k)),

where the left hand square anti-commutes by our conventions from section 2.1
above. The class σ, by definition, is the image of ε under the top differential, and
the bottom differential takes V (1) to dV (1). Hence, it suffices to show that ∂k(ε) =
−V (1). We recall from corollary 4.4.2 that the class Γ̂(ε) is represented in the
spectral sequence Ê∗(Cp, T (k)) by the infinite cycle u1t

−1. Hence, addendum 4.2.2
shows that the image of this class by the right hand vertical map is −V (1). �

Remark 5.3.3. It follows from propositions 5.3.1 and A.1.4 that in π̄∗T (A),

dκ̃ = −θ′K(πK)θK(πK)−1dπK · κ̃.

This implies that dκ = κd log(−p) in π̄∗T (A|K) as stated in theorem 2.4.1.

We construct a number of infinite cycles. Recall the map of ring spectra

Γ̂A|K : T (A|K)Cpn−1 → Ĥ(Cpn , T (A|K)).

Proposition 5.3.4. For all K, the element d log πK ∈ Ê2(Cpn , T (A|K)) is an
infinite cycle and represents the homotopy class Γ̂A|K(d logn πK).

Proof. We consider the diagram

T (A|K)Cpn R //

ΓA|K

��

T (A|K)Cpn−1

Γ̂A|K
��

H ·(Cpn , T (A|K)) Rh
// Ĥ(Cpn , T (A|K)).

In the spectral sequence

E2(Cpn , T (A|K)) = Λ{un, d log πK} ⊗ S{πK , t, κ}/(πeK

K )

⇒ π̄∗(H ·(Cpn , T (A|K))).

the element d log πK is an infinite cycle and represents ΓA|K(d logn+1 πK). Indeed,
if we compose ΓA|K and the edge-homomorphism of this spectral sequence, we
get the map Fn : π̄∗T (A|K)Cpn → π̄∗T (A|K) which takes d logn+1 πK to d log πK .
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The map Rh induces the obvious inclusion on E2-terms. Hence, the element
d log πK of Ê∗(Cpn , T (A|K)) is an infinite cycle and, since not a boundary, rep-
resents Rh(ΓA|K(d logn+1 πK)) = Γ̂A|K(R(d logn+1 πK)) = Γ̂A|K(d logn πK). �

Let αA = u
(−n)
K (πK)−1κ̃ and τA = u

(−n)
K (πK)p t such that j∗(αA) = αK and

j∗(τA) = τK .

Lemma 5.3.5. Suppose that µp ⊂ K and let n < vp(eK). Then the elements
πpn

K and −τAαA of Ê2(Cpn , T (A)) are infinite cycles and represent the homotopy
classes Γ̂A(πKn

) and Γ̂A(πK
eK/pn

n
), respectively.

Proof. We consider the diagram

π̄∗(T (A)Cpn−1 )
ΓA //

ρ∗

��

π̄∗(Ĥ(Cpn , T (A)))

ρ∗

��

π̄∗(T (A/p)Cpn−1 )
ΓA/p

// π̄∗(Ĥ(Cpn , T (A))),

with the vertical maps induced from the reduction ρ : A → A/p. The lower hori-
zontal map is studied in the appendix. By addendum A.1.6,

Ê2(Cpn , T (A/p)) = Λ{un, dπK , ε} ⊗ S{t±1, πK , σ}/(πeK

K )⊗ Γ{c̄2},

Ê3(Cpn , T (A/p)) = Λ{un, dπK} ⊗ S{t±1, πp
K}/(πeK

K )⊗ Γ{c̄2},

and Ê3(Cpn , T (A/p)) = Ê∞(Cpn , T (A/p)). We compare this to

Ê2(Cpn , T (A)) = Λ{un, dπK} ⊗ S{τ±1
A , αA, πK}/(πeK

K ),

Ê3(Cpn , T (A)) = Λ{un, πp−1
K dπK} ⊗ S{τ±1

A , αA, πp
K}/(πe

K).

The map ρ∗ : π̄∗T (A)→ π̄∗T (A/p) was evaluated above. The induced map

Ê3(Cpn , T (A)) ↪→ Ê3(Cpn , T (A/p))

is the monomorphism which takes τAαA to −tc̄2. Indeed, the map of E2-terms
takes the element τAαA to −tc̄2 + θK(πK)tσ − tε · θ′K(πK)dπK , and the last two
summands are equal to the image by the d2-differential of ε·θK(πK). For 0 ≤ s ≤ 1,
we have the diagram

Ê3
−s,s(Cpn , T (A)) � � // Ê3

−s,s(Cpn , T (A/p))

Ê∞−s,s(Cpn , T (A)) //

� ?

OO

Ê∞−s,s(Cpn , T (A/p))

∼

OO

and we conclude that the lower horizontal map is a monomorphism. We show in
proposition A.1.7 that the classes Γ̂A/p(πKn

) and Γ̂A/p(πK
eK/pn

n
) are represented

in the spectral sequence Ê∗(Cpn , T (A/p)) by the infinite cycles πpn

K and tc̄2, re-
spectively. It follows immediately that Γ̂A(πKn

) is represented by πpn

K as stated.
To conclude that Γ̂A(πK

eK/pn

n
) is represented by −τAαA we must rule out that an

element of Ê2
−s,s(Cpn , T (A)) with 0 ≤ s ≤ 1 represent this class. But this follows

from the injectivity of the lower horizontal map in the diagram above. �
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Proposition 5.3.6. Suppose that µp ⊂ K and let n < vp(eK). Then the ele-
ments πpn

K and −τKαK of Ê2(Cpn , T (A|K)) are infinite cycles and represent the
homotopy classes Γ̂A|K(πKn

) and Γ̂A|K(πK
eK/pn

n
), respectively.

Proof. The map j∗ : Ê2(Cpn , T (A)) → Ê2(Cpn , T (A|K)) takes the infinite
cycle πpn

K (resp. −τAαA) to the element πpn

K (resp. −τKαK) which therefore is an
infinite cycle. It follows πpn

K (resp. −τKαK) either represents Γ̂A|K(πKn
) (resp.

Γ̂A|K(πK
eK/pn

n
)) or else it is a boundary. The element πpn

K cannot be a boundary,
but we must check that −τKαK is not a d3-boundary. To this end we consider the
diagram

Ê3
1,0(Cpn , T (A|K)) d3

// Ê3
−2,2(Cpn , T (A|K))

Ê3
1,0(Cpn , T (A)) d3

//

j∗∼

OO

Ê3
−2,2(Cpn , T (A))

j∗∼

OO

with vertical isomorphisms. The right hand vertical map takes −τAαA to −τKαK ,
and since −τAαA is not a d3-boundary, neither is −τKαK . �

Let ` : S0 → Ĥ(Cpn , T (A|K)) be the unit map and let v1 ∈ π̄2(p−1)(S0) be the
canonical generator. If µp ⊂ K, then `∗(v1) = Γ̂A|K(bn)p−1.

Addendum 5.3.7. The elements −tκp and (−tκ)pn

of Ê2(Cpn , T (A|K)) are in-
finite cycles which, if not boundaries, represent the homotopy classes `∗(v1) and
V (1), respectively.

Proof. The elements −tκp and (−tκ)pn

are in the image of

ι∗ : Ê2(Cpn , T (W (k)|K0))→ Ê2(Cpn , T (A|K))

so the statement, if valid for some K, is valid for all K. So suppose that µp ⊂ K
and that vp(eK) > n. We may argue as in the proof of proposition 5.3.4 that
Γ̂A|K(bn) is represented by the infinite cycle −π

eK/(p−1)
K αK . Indeed, bn = R(bn+1)

and Fn(bn+1) = b1 and from (5.2.4) we know that b1 = −π
eK/(p−1)
K αK . Now

−π
eK/(p−1)
K αK = −(πpn

K )eK/pn(p−1)αK ,

and it follows from proposition 5.3.6 that π
eK/(p−1)
K is an infinite cycle and rep-

resents Γ̂A|K(πK
eK/pn(p−1)
n

). Hence, also αK is an infinite cycle, and since not a
boundary, represents a homotopy class, say, α̃K . Since the classes Γ̂A|K(bn) and
−Γ̂A|K(πK

eK/pn(p−1)
n

)α̃K are represented in the spectral sequence by the same el-
ement so are their (p− 1)st powers. We know from proposition 5.3.6 that

Γ̂A|K(πK
eK/pn(p−1)
n

)p−1 = Γ̂A|K(πK
eK/pn

n
)

is represented by −τKαK . And αp−1
K , if not a boundary, represents α̃p−1

K . It follows
that −τKαp

K , if not a boundary, represents Γ̂A|K(bp−1
n ) = `∗(v1).

We recall from lemmas 3.1.1 and 3.1.2 that in the Witt ring W̄n(A),

V (1) = θK(πKn
)−1πK

eK

n
,
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and hence, in π̄∗Ĥ(Cpn , T (A|K)),

V (1) = V (Γ̂A|K(1)) = Γ̂A|K(V (1)) = Γ̂A|K(θK(πKn
)−1πK

eK

n
)

= Γ̂A|K(θK(πKn
))−1 · Γ̂A|K(πK

eK/pn

n
)pn

.

It follows that the infinite cycle

θK(πpn

K )−1(−τKαK)pn

= (−θ
(−n)
K (πK)−1τKαK)pn

= (−tκ)pn

,

if not a boundary, represents V (1) as stated. �

5.4. In this section we evaluate the spectral sequence Ê∗(Cp, T (A|K)).

Lemma 5.4.1. Let k be a field of characteristic p > 0, let f(x) be a power series
over k with non-zero constant term, and let

f ′(x)x
f(x)

= a1x + a2x
2 + . . .

be the logarithmic derivative. Then api = ap
i , for all i ≥ 1.

Proof. We may assume that f(x) is a polynomial with f(0) ∈ k×. Moreover,
replacing k by a splitting field for f(x), we can assume that f(x) splits as a product
of linear factors. And since the logarithmic derivative takes products of power series
to sums, we are reduced to the case of a linear polyonomial. The result in this case
is readily verified by computation. �

Proposition 5.4.2. Suppose either µp ⊂ K or K = K0. Then, up to a unit, the
non-zero differentials in the spectral sequence Ê2(Cp, T (A|K)) are generated from

d2(τa
Kπr

Kαd
K) = τK d log πK · τa

Kπr
Kαd

K , if vp{a, r, d}K = 0,

d2p+1(u1) = (τKαK)pτK

and from d log πK being an infinite cycle.

Proof. The d2-differential follows from proposition 4.4.3. If K = K0, we have

Ê3(Cp, T (W (k)|K0)) = Λ{u1, d log(−p)} ⊗ S{t±1, κp},
and for degree reasons, the first possible differential is d2p+1. The canonical map

Ê2p+1(T, T (W (k)|K0)) ↪→ Ê2p+1(Cp, T (W (k)|K0))

may be identified with the inclusion of the subalgebra generated by t, κp, and
d log(−p). The d2p+1-differential on these elements in the left hand spectral se-
quence are zero for degree reasons. Hence, the d2p+1-differential on these classes in
the right hand spectral sequence are zero as well. We claim that, up to a unit,

d2p+1u1 = tp+1κp

For if not, tκp would survive the spectral sequence and represent the homotopy class
−v1 ·1. But Ĥ(Cp, T (W |K0)) is a module spectrum over the generalized Eilenberg-
MacLane spectrum T (W ), and therefore, is itself a generalized Eilenberg-MacLane
spectrum. Hence, multiplication by v1 on π̄∗Ĥ(Cp, T (W |K0)) is identically zero.
All further differentials must vanish for degree reasons.

If µp ⊂ K and vp(eK) > 1, we have

Ê3(Cp, T (A|K)) = Λ{u1, d log πK} ⊗ S{πp
K , αK , τ±1

K }/(πeK

K ),
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and by proposition 5.3.6, πp
K and τKαK are infinite cycles. From the previous case,

we know that t is an infinite cycle, and hence, so is τK = uK(πp
K) t. It follows

that also αK is an infinite cycle. Hence, the remaining non-zero differentials are
generated from the differential on u1. Again all further differentials vanish for
degree reasons.

Finally suppose that µp ⊂ K, but with no restriction on vp(eK). Then

Ê3(Cp, T (A|K)) = Λ{u1, d log πK} ⊗ k{τa
Kπr

Kαd
K | vp{a, r, d}K ≥ 1},

and we need to show that the elements τa
Kπr

Kαd
K with vp{a, r, d}K ≥ 1 are dq-cycles,

for 3 ≤ q ≤ 2p + 1. To this end, we let L/K be a totally ramified extension such
that vp(eL) > 1 and consider

ι∗ : Êq(Cp, T (A|K))→ Êq(Cp, T (B|L)).

We have from (5.2.7) and lemma 5.4.1 that

ι∗(τa
Kπr

Kαd
K) = (θL/K(πp

L))−{a,r,d}K/pτa
Lπ

eL/Kr

L αd
L,

ι∗(d log πK) = (eL/K −
θ′L/K(πp

L)πp
L

θL/K(πp
L)

)d log πL,

where in the first line, vp{a, r, d}K ≥ 1. We know from the previous case that the
dq-differential on ι∗(τa

Kπr
Kαd

K) vanishes, and hence, it will suffice to show that we
can find L/K for which the map ι∗ is injective.

If vp(eL/K) > 1 and θL/K(x) = x− 1 then, up to a unit,

ι∗(uε
1τ

a
Kπr

Kαd
Kd log πK) = uε

1τ
a
Lπ

eL/Kr+p

L αr
Ld log πL,

and hence, for ι∗ to be injective, we need that eL/Kr + p < eL. Since r ≤ eK − 1
and eL = eL/KeK , this is equivalent to the requirement that eL/K ≥ p. We also
need vp(eL) > 1. The extension L with eL/K = p2 and θL/K(x) = x − 1 satisfies
both requirements. It follows that the dq-differentials vanish, if 3 ≤ q ≤ 2p, and
that the non-zero d2p+1-differentials are generated from the differential on u1. All
further differentials vanish for degree reasons. �

Theorem 5.4.3. For all K, and for i ≥ 0, the map is an isomorphism:

Γ̂A|K : π̄iT (A|K) ∼−→ π̄iĤ(Cp, T (A|K)).

Proof. If we let L = K(µp), then in the diagram

π̄∗T (A|K)
Γ̂A|K

//

∼
��

π̄∗Ĥ(Cp, T (A|K))

∼
��

π̄∗T (B|L)GL/K
Γ̂B|L

// π̄∗Ĥ(Cp, T (B|L))GL/K ,

the vertical maps are isomorphisms. Indeed, this follows from theorem 2.4.3 and
from the Tate spectral sequence, since the order of GL/K is prime to p. Hence, we
can assume that µp ⊂ K.

If µp ⊂ K and vp(eK) > 1 or if K = K0, then

Ê∞(Cp, T (A|K)) = Λ{d log πK} ⊗ S{πp
K , αK , τ±1

K }/(πe
K , αp

K),
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and by proposition 5.3.6, there is a multiplicative extension (πp
K)e/p = −τKαK in

the passage to the actual homotopy groups. Hence, as a k-algebra

π̄∗Ĥ(Cp, T (A|K)) = Λ{Γ̂A|K(d log πK)} ⊗ S{Γ̂A|K(πK), τ̃±1
K }/(Γ̂A|K(πK)eK ),

where the class τ̃K is a lifting of τK . It follows that π̄∗T (A|K) and the non-
negatively graded part of π̄∗Ĥ(Cp, T (A|K)) are abstractly isomorphic k-algebras,
and that the map Γ̂A|K is an isomorphism for i = 0 and i = 1. To show that Γ̂A|K
is an isomorphism, for i ≥ 0, it will therefore suffice to show that

Γ̂W (k)|K0 : π̄2T (W |K0)
∼−→ π̄2Ĥ(Cp, T (W |K0))

is an isomorphism. To this end, we consider the diagram

π̄2T (W |K0)
β1

∼
//

Γ̂W (k)|K0
��

π̄1T (W |K0)

Γ̂W (k)|K0
∼

��

π̄2Ĥ(Cp, T (W |K0))
β1 // π̄1Ĥ(Cp, T (W |K0)),

where the upper horizontal map and right hand vertical maps are isomorphisms.
Since all groups in the diagram are one-dimensional k-vector spaces, the left hand
vertical map and lower horizontal map must also be isomorphisms. This shows
that the map of the statement is an isomorphism if µp ⊂ K and vp(eK) > 1 or if
K = K0.

If µp ⊂ K, but with no restrictions on vp(eK),

Ê∞(Cp, T (A|K)) = Λ{d log πK} ⊗ k{τa
Kπr

Kαd
K | vp{a, r, d}K ≥ 1, d < p},

where 0 ≤ r < eK , d ∈ N0 and a ∈ Z. Again, the domain and range of Γ̂A|K
are abstractly isomorphic k-vector spaces. We choose an extension L/K such that
vp(eL) > 1 and such that ι : π̄∗T (A|K) → π̄∗T (B|L) is a monomorphism. Since
Γ̂B|L is an isomorphism in non-negative degrees, Γ̂A|K is a monomorphism, and
hence an isomorphism, in non-negative degrees. �

Addendum 5.4.4. For all K, for all n, v ≥ 1, and for all i ≥ 0, the maps

Γ̂A|K : πi(T (A|K)Cpn−1 , Z/pv) ∼−→ πi(Ĥ(Cpn , T (A|K)), Z/pv),

ΓA|K : πi(T (A|K)Cpn , Z/pv) ∼−→ πi(H ·(Cpn , T (A|K)), Z/pv),

are isomorphisms.

Proof. If v = 1 this follows from theorem 5.4.3 and the main theorem of [47],
and the general case follows by easy induction based on the Bockstein sequence. �

5.5. We now evaluate the spectral sequences Ê∗(Cpn , T (A|K)).

Theorem 5.5.1. Suppose either µp ⊂ K or K = K0. Then the non-zero differ-
entials in the spectral sequence

Ê2(Cpn , T (A|K)) = Λ{un, d log πK} ⊗ S{πK , αK , τ±1
K }/(πeK

K )

⇒ π̄∗(Ĥ(Cpn , T (A|K)))
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are multiplicatively generated from

d2( pv+1−1
p−1 )(τa

Kπr
Kαd

K) = λ · (τKαK)
pv+1−1

p−1 −1τK d log πK · τa
Kπr

Kαd
K ,

d2( pn+1−1
p−1 )−1(un) = µ · (τKαK)

pn+1−1
p−1 −1τK ,

and from d log πK being an infinite cycle. Here λ and µ are units in A/p and in
the first line v = vp{a, r, d}K , where {a, r, d}K = (pa− d)eK/(p− 1) + r.

Remark 5.5.2. We show that the units λ and µ above are given by

λ = −λv · p−v{a, r, d}K · u(v−n)
K (πpv

K )−p, µ = µn · uK(πpn

K )−p,

where λv and µn are units in Fp independent of K.

The proof of theorem 5.5.1 is similar to the proof of proposition 5.4.2 above, but
the individual steps are more involved. It will be necessary to know to the structure
of the Er-terms, given the differential structure.

Lemma 5.5.3. Suppose µp ⊂ K or K = K0, and assume that theorem 5.5.1 is
true for K. Let Êq = Êq(Cpn , T (A|K)). Then for 0 ≤ s < n,

Ê2( ps+1−1
p−1 ) =

s−1⊕
v=1

Λ{un} ⊗ k
{
τa
Kπr

Kαd
Kd log πK | vp{a, r, d}K = v, d < pv+1−1

p−1 − 1
}

⊕ Λ{un, d log πK} ⊗ k
{
τa
Kπr

Kαd
K | vp{a, r, d}K≥ s

}
,

Ê∞ =
n−1⊕
v=1

Λ{un} ⊗ k{τa
Kπr

Kαd
Kd log πK | vp{a, r, d}K = v, d < pv+1−1

p−1 − 1}

⊕ Λ{d log πK} ⊗ k{τa
Kπr

Kαd
K | vp{a, r, d}K ≥ n, d < pn+1−1

p−1 − 1},

where 0 ≤ r < eK , d ∈ N0 and a ∈ Z.

Proof. Assuming the result for s < n− 1, theorem 5.5.1 implies that

Ê2( ps+2−1
p−1 ) = Ê2( ps+1−1

p−1 )+1,

and inductively, Ê2( ps−1
p−1 ) is given by the statement of the lemma. Indeed, this is

clear in the basic case s = 0. The differential d2(ps+1−1)/(p−1) only affects the last
summand on the right hand side of the statement and does not involve the tensor
factor Λ{un}. If we rewrite

Λ{d log πK} ⊗ k{τa
Kπr

Kαd
K | vp{a, r, d}K ≥ s} =

k{τa
Kπr

Kαd
K | vp{a, r, d} = s} ⊕

k{τa
Kπr

Kαd
Kd log πK | vp{a, r, d}K = s, d ≥ ps+1−1

p−1 − 1} ⊕

k{τa
Kπr

Kαd
Kd log πK | vp{a, r, d}K = s, d < ps+1−1

p−1 − 1} ⊕

Λ{d log πK} ⊗ k{τa
Kπr

Kαd
K | vp{a, r, d}K ≥ s + 1},

the differential d2(ps+1−1)/(p−1) vanishes on the last two summands and maps the
first summand isomorphically onto the second. Indeed,

{a + ps+1−1
p−1 , r, d + ps+1−1

p−1 − 1}K = {a, r, d}K + ps+1

p−1 .

74



Assuming that theorem 5.5.1 holds for K, we have

Ê2( pn−1
p−1 )+1 = Ê2( pn+1−1

p−1 )−1,

and the common value has already been determined. Up to a unit,

d2( pn+1−1
p−1 )−1un = (τKαK)

pn+1−1
p−1 −1τK ,

which vanishes on all but the last summand. If we rewrite

Λ{un, d log πK} ⊗ k{τa
Kπr

Kαd
K | vp{a, r, d}K ≥ n} =

Λ{d log πK} ⊗ k{τa
Kπr

Kαd
K | vp{a, r, d}K ≥ n, d ≥ pn+1−1

p−1 − 1} ⊕

Λ{d log πK} ⊗ k{unτa
Kπr

Kαd
K | vp{a, r, d}K ≥ n} ⊕

Λ{d log πK} ⊗ k{τa
Kπr

Kαd
K | vp{a, r, d}K ≥ n, d < pn+1−1

p−1 − 1},

the differential d2(pn+1−1)/(p−1)−1 maps the second summand isomorphically onto
the first summand and vanishes on the last summand unchanged. �

Proposition 5.5.4. Let T = T (W (k)|K0). In the spectral sequence

Ê2(Cpn , T ) = Λ{un, d log(−p)} ⊗ S{t±1, κ} ⇒ π̄∗(Ĥ(Cpn , T )),

the higher differentials are multiplicatively generated from

d2( pv+1−1
p−1 )(tp

v−1
) = λv · (tκ)

pv+1−1
p−1 −1td log(−p) · tp

v−1
, 1 ≤ v < n,

d2( pn+1−1
p−1 )−1(un) = µn · (tκ)

pn+1−1
p−1 −1t,

where λv, µn ∈ Fp are units, and from tκp and d log(−p) being infinite cycles.
Moreover, the infinite cycles (−tκ)ps+1

d log(−p), 1 ≤ s < n, represent dV n−s(1).

Proof. The proof is by induction on n and is similar to the proof in [4] of the
differential structure of the spectral sequences Ê∗(Cpn , T (W (k))). The basic case
n = 1 was proved in proposition 5.4.2. So assume the statement for n− 1.

We first argue that in π̄∗(Ĥ(Cpn , T )), the class vm
1 is non-zero if and only if

m < (pn − 1)/(p− 1). By addendum 5.4.4, the maps

π̄∗(Ĥ(Cpn , T )) Γ̂←− π̄∗(TCpn−1 ) Γ̂−→ π̄∗(H ·(Cpn−1 , T ))

are isomorphisms in non-negative degrees, and hence, we may instead consider the
class vm

1 in π̄∗(H ·(Cpn−1 , T )). To this end, we use the spectral sequence

E2(Cpn−1 , T ) = Λ{un−1, d log(−p)} ⊗ S{t, κ} ⇒ π∗(H ·(Cpn−1 , T ))

whose differential structure is determined by the statement for n− 1. We evaluate
the Er-term by an argument similar to the proof of lemma 5.5.3. To state the
result, let P (a, d, v) be the statement

“a < pv+1−1
p−1 or d < pv+1−1

p−1 − 1, or both”.
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Then for 0 ≤ s < n− 1,

E2( ps+1−1
p−1 ) =

s−1⊕
v=0

Λ{un−1} ⊗ k
{
taκdd log(−p) | vp(pa− d) = v and P (a, d, v)

}
⊕ Λ{un−1, d log(−p)} ⊗ k

{
taκd | vp(pa− d) ≥ s

}
,

E∞ =
n−2⊕
v=0

Λ{un−1} ⊗ k
{
taκdd log(−p) | vp(pa− d) = v and P (a, d, v)

}
⊕ Λ{d log(−p)} ⊗ k{taκd | vp(pa− d) ≥ n− 1 and P (a, d, n− 1)

}
.

We know from addendum 5.3.7 that the infinite cycle (−tκp)m, if not a boundary,
represents the class vm

1 . The smallest power m0 such that (−tκp)m0 is a boundary
is m0 = (pn − 1)/(p− 1), (−tκp)m0 = d2m0−1(un−1κ

pn

). Hence, vm
1 is non-zero, if

m < m0, and vm0
1 is represented by an element of E∞s,2(p−1)m0−s with s < −2m0.

But these groups are all zero, and therefore, so is vm0
1 .

We next show that in Ê∗(Cpn , T ), (−tκ)ps+1
d log(−p), 1 ≤ s < n− 1, represents

dV n−s(1), and that (−tκ)pn

d log(−p), if not a boundary, represents dV (1). The
latter follows from proposition 5.3.4 and addendum 5.3.7, since, by lemma 3.1.1,

dV (1) = d(−p
n
) = −p

n
d logn(−p) = V (1)d logn(−p).

To prove the former, we consider the map

F : π̄1(Ĥ(Cpn , T ))→ π̄1(Ĥ(Cpn−1 , T )),

which, by lemma 3.3.3 and proposition 3.4.1, is a surjection whose kernel is gener-
ated by dV (1). Moreover, it takes dV n−s(1) to dV n−1−s(1) and the induced map
of spectral sequences

F : Ê∗(Cpn , T )→ Ê∗(Cpn−1 , T )

takes (−tκ)ps+1
d log(−p) to (−tκ)ps+1

d log(−p). The claim follows, inductively,
since the generator dV (1) of the kernel of F is represented by an element of
Ê∗m,1−m(Cpn , T ) with m ≤ −2pn.

We now begin the proof of the statement of the proposition for n. Suppose first
that 2 < r < 2(pn−1)/(p−1). The statement for n−1 implies that in the spectral
sequence

Ê2(T, T ) = Λ{d log(−p)} ⊗ S{t±1, κ} ⇒ π̄∗Ĥ(T, T ),

the dr-differential is multiplicatively generated from the stated differentials on tp
v−1

and from d log(−p) and tκp being infinite cycles. Indeed, one shows inductively that
the canonical map induces an isomorphism

γn−1 : Λ{un−1} ⊗ Êr(T, T ) ∼−→ Êr(Cpn−1 , T ).

We claim that for r in the stated range, dr(un) is zero. To see this, we consider the
map of spectral sequences induced from V : π̄∗(Ĥ(Cpn−1 , T ))→ π̄∗(Ĥ(Cpn , T )),

V : Êr(Cpn−1 , T )→ Êr(Cpn , T ).

The map of E2-terms is given by the transfer map in Tate cohomology. It follows
that un = V (un−1), and hence, dr(un) = V (dr(un−1)), which is zero for r in the
stated range. We now conclude, by induction on r, that

γn : Λ{un} ⊗ Êr(T, T ) ∼−→ Êr(Cpn , T )
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is an isomorphism and that the dr-differential is as stated. Before we proceed, we
note that in Ê∗(T, T ), and hence in Ê∗(Cpn , T ), the elements tiκjd log(−p) are
infinite cycles. This follows, by arguments similar to [19, section 5.3], from the fact
that the homotopy groups of T with Zp-coefficients are concentrated in degree zero
and in odd positive degree.

If r = 2(pn − 1)/(p− 1), the possible non-zero differentials are generated from

dr(tp
n−2

) = λn−1 · (tκ)
pn−1
p−1 −1td log(−p) · tp

n−2
,

dr(un) = νn · (tκ)
pn−1
p−1 −1td log(−p) · un,

where λn−1, νn ∈ Fp. We first show that λn−1 is a unit. If n = 2, the k-vector
space π̄1(Ĥ(Cp2 , T )) is generated by the classes d log2(−p) and dV (1). The former is
represented by d log(−p) and the latter by an element of Ê∗m,1−m(Cp2 , T ) with m ≤
−2p2. Hence, the infinite cycle (tκ)pd log(−p) must be hit by a differential, and this
can happen only if λ1 is a unit. If n > 2, we consider dV 2(1) ∈ π̄1(Ĥ(Cpn , T )) which

is represented by (−tκ)pn−1
d log(−p). We know that v

(pn−2−1)/(p−1)
1 annihilates

1 ∈ π̄∗(Ĥ(Cpn−2 , T )) and hence also dV 2(1) ∈ π̄1(Ĥ(Cpn , T )). Therefore,

(−tκp)(p
n−2−1)/(p−1) · (−tκ)pn−1

d log(−p) = (−tκ)
pn−1−1

p−1 −1td log(−p) · t−pn−2

must be hit by a differential, and this can happen only if λn−1 is a unit.

We next show that νn is zero. If not, then dr(untp
n−2c) = 0, for some 0 < c < p,

and for degree reasons, the next possible non-zero differential is

d2( pn−1
p−1 +pn−1c)−1(untp

n−2c) = ξn · (tκp)
pn−1−1

p−1 +pn−2c · tp
n−1(c+1).

But this must be zero, or else v
(pn−1−1)/(p−1)+pn−2c
1 would be zero. For degree

reasons, the next possible non-zero differential is d2(pn+1−1)/(p−1). In particular, no
differential can hit v

(pn−1)/(p−1)
1 . So we must have νn = 0.

The next possible differential is the stated one on un, and since v
(pn−1)/(p−1)
1 is

zero, µn must be a unit. For degree reasons, all further differentials vanish. �

We next prove theorem 5.5.1, if µp ⊂ K and n < vp(eK).

Proposition 5.5.5. If µp ⊂ K and if n < vp(eK), the non-zero differentials in
the spectral sequence Ê∗(Cpn , T (A|K)) are multiplicatively generated from

d2( pv+1−1
p−1 )(πpv

K ) = −λv · (tκ)
pv+1−1

p−1 −1t d log πK · πpv

K , 0 ≤ v < n,

d2( pn+1−1
p−1 )−1(un) = µn · (tκ)

pn+1−1
p−1 −1t,

and from τK , αK , and d log πK being infinite cycles.

Proof. Since n < vp(eK), proposition 5.3.6 and addendum 5.3.7 show that
τKαK and τKαp

K are infinite cycles. Hence if drαK is non-trivial then so is dr(αp
K)

contradicting that dr is a derivation. It follows that both αK and τK are infinite
cycles, and d log πK is an infinite cycle by proposition 5.3.4. Hence, theorem 5.5.1
amounts to the statement above.

Suppose first that u′K(0) is a unit. We prove the stated formula for dr(πpv

K ) by
induction on 0 ≤ v < n. The basic case v = 0 follows from proposition 4.4.3. So
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assume that the dr-differential is as stated, for 2 ≤ r ≤ 2(pv − 1)/(p − 1), and
consider 2(pv−1)/(p−1) < r ≤ 2(pv+1−1)/(p−1). We note that πi

K(tκp)jd log πK

is equal to zero in Êr(Cpn , T (A|K)), if vp(i) = s < v and j ≥ (ps− 1)/(p− 1).

By definition, τK = u
(−n)
K (πK)p t, so

tp
v−1

= u
(v−n)
K (πpv

K )−1τpv−1

K ,

and since τK is an infinite cycle, we find

dr(tp
v−1

) = −
u

(v−n)
K

′(πpv

K )

u
(v−n)
K (πpv

K )
tp

v−1
· dr(πpv

K ).

The first factor on the right is a unit in Êr, for r in the stated range, and hence,
we can evaluate dr(πpv

K ) from the value of dr(tp
v−1

), which is known by proposi-
tion 5.5.4. It follows that dr(πpv

K ) is equal to zero, if r < 2(pv+1− 1)/(p − 1). If
r = 2(pv+1− 1)/(p− 1), we have

dr(tp
v−1

) = λv · (tκ)
pv+1−1

p−1 −1td log(−p) · tp
v−1

= λv ·
u

(−n)
K

′(πK)πK

u
(−n)
K (πK)

(tκ)
pv+1−1

p−1 −1td log πK · tp
v−1

= λv ·
u

(v−n)
K

′(πpv

K )πpv

K

u
(v−n)
K (πpv

K )
(tκ)

pv+1−1
p−1 −1td log πK · tp

v−1
.

The second equation uses −p = πeK

K θK(πK)−1 and θK(πK) = uK(πK)p−1, and the
third follows from lemma 5.4.1 since, as noted above, πi

K(tκp)jd log πK is equal
to zero in Êr(Cpn , T (A|K)), if vp(i) = s < v and j ≥ (ps+1− 1)/(p − 1). The
stated formula for dr(πpv

K ) follows. Similarly, we see that dr(πpn

K ) is equal to zero,
if r < 2(pn+1− 1)/(p− 1), and the differential on un follows from proposition 5.5.4.
For degree reasons, all further differential are zero.

To treat the general case, let Π be the pointed monoid {0, 1, π, π2, . . . } with base
point 0. The choice of uniformizer πK determines a map of T-spectra

ρK : T (W |K0) ∧ |N cy
· (Π)| → T (A|K),

which is multiplicative with component wise multiplication on the left; compare
section A.1 below. As a differential graded k-algebra,

π̄∗(T (W |K0) ∧ |N cy
· (Π)|) = Λ{d log(−p), dπ} ⊗ S{κ, π},

and the map of homotopy groups with Z/p-coefficients induced from ρK is the
unique map of differential graded k-algebras that is π̄∗T (W (k)|K0)-linear and takes
π to πK . We claim that in the spectral sequence

Ê∗(Π) = Ê∗(Cpn , T (W (k)|K0) ∧ |N cy
· (Π)|),

the non-zero differentials are generated multiplicatively from

d2( pv+1−1
p−1 )(πpv

) = −λv · (tκ)
pv+1−1

p−1 −1t · πpv−1dπ, 0 ≤ v < n,

from the differentials on the tp
v−1

, 1 ≤ v < n, and the differential on un given by
proposition 5.5.4, and from tκp, d log(−p), πpn

and πpn−1dπ being infinite cycles.
This proves the proposition since Ê∗(Cpn , T (A|K)) is a module spectral sequence
over Ê∗(Π).
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To prove the claim, we choose a totally ramified extension K/K0 with µp ⊂ K
such that n < vp(eK) and u′K(0) is a unit. The proposition already has been
established for Ê∗(Cpn , T (A|K)). As cyclic sets

N cy
· (Π) =

∨
s≥0

N cy
· (Π; s),

where the sth summand has n-simplices (πi0 , . . . , πin) with i0 + . . . in = s, and the
spectral sequence Ê∗(Π) decomposes accordingly. It will suffice to show that for
0 ≤ v ≤ n, the differentials in the pvth summand spectral sequence,

Ê2(Π, pv) = Λ{un, d log(−p)} ⊗ S{t±1, κ} ⊗ k{πpv

, πpv−1dπ}

⇒ π̄∗(Ĥ(Cpn , T (W (k)|K0) ∧ |N cy
· (Π, pv)|),

are multiplicatively generated from the stated differentials on πpv

, the differentials
on the p-powers of t, and the differential on un, and from d log(−p) and πpv−1dπ

being infinite cycles. We note that the map ρK∗ : Ê2(Π, pv)→ Ê2(Cpn , T (A|K)) is
a monomorphism. Indeed, πpv

K and

d log(−p) =
u

(−n)
K

′(πK)πK

u
(−n)
K (πK)

d log πK

are non-zero, since pv < eK and since u′K(0) is unit, respectively. It follows, by
induction on r, that ρK∗ : Êr(Π, pv) → Êr(Cpn , T (A|K)) is a monomorphism and
that the dr-differential is as stated. For instance, πpv−1dπ is an infinite cycle
because ρK∗(πpv−1dπ) = πpv

K d log πK is. �

Proof of theorem 5.5.1. Let n ≥ 1 and K be given. We prove by induction
on q that the dq-differential in Ê∗(Cpn , T (A|K)) is as stated. The basic case q = 2
follows from propositions 4.4.3 and 5.2.3. So assume the statement for q − 1 and
suppose first that 2(ps− 1)/(p− 1) < q ≤ 2(ps+1− 1)/(p− 1) with s < n. We recall
from lemma 5.5.3 that Êq = Êq(Cpn , T (A|K)) is given by

Êq =
s−1⊕
v=1

Λ{un} ⊗ k
{
τa
Kπr

Kαd
Kd log πK | vp{a, r, d}K = v, d < pv+1−1

p−1 − 1
}

⊕ Λ{un, d log πK} ⊗ k
{
τa
Kπr

Kαd
K | vp{a, r, d}K≥ s

}
.

Since the elements τa
Kπr

Kαdd log πK are infinite cycles, and since dq(un) is zero by
proposition 5.5.4, it suffices to evaluate dq(τa

Kπr
Kαd

K) with vp{a, r, d}K ≥ s. To this
end, we find a totally ramified extension

L = K[πL]/(πeL/K

L + πKθL/K(πL))

such that n < vp(eL) and such that the map

ι∗ : Êq
∗,t(Cpn , T (A|K))→ Êq

∗,t(Cpn , T (B|L))

is a monomorphism, for t ≥ q− 1. Since the differential structure of the right hand
spectral sequence is known from proposition 5.5.5, this allows us to evaluate the
dq-differential in the spectral sequence on the left. We consider the extension L/K
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with eL/K = pn+1 and θL/K(x) = x − 1, and recall from (5.2.7) that the map of
E2-terms is given by

ι∗(τa
Kπr

Kαd
K) = (1− πL)−{a,r,d}K τa

Lπ
eL/Kr

L αd
L,

ι∗(d log πK) = πL(1− πL)−1d log πL.

Hence, the induced map of Eq-terms takes τa
Kπr

Kαd
K with vp{a, r, d}K ≥ s to

(1− πps

L )−p−s{a,r,d}K · τa
Lπ

eL/Kr

L αd
L,

and τa
Kπr

Kαd
Kd log πK with vp{a, r, d}K ≥ s and d ≥ (ps− 1)/(p− 1)− 1 to

(1− πps

L )−p−s{a,r,d}K πps

L (1− πps

L )−1 · τa
Lπ

eL/Kr

L αd
Ld log πL,

where the latter statement uses lemma 5.4.1 and that πi
L · τa

Lπ
eL/Kr

L αd
Ld log πL is

equal to zero in Êq(Cpn , T (B|L)), if vp(i) < s. It is clear that this map is a
monomorphism in the stated range. Indeed, r ≤ eK − 1 and eL = eL/KeK , and
therefore, eL/Kr + ps ≤ eL − pn+1 + ps ≤ eL − 1. It follows immediately from
proposition 5.5.5 that dq(ι∗(τa

Kπr
Kαd

K)) vanishes, if q < 2(ps+1− 1)/(p − 1), and a
straightforward calculation shows that

dq(ι∗(τa
Kπr

Kαd
K)) = ι∗(−λs · p−s{a, r, d}K · (tκ)

ps+1−1
p−1 −1td log πK · τa

Kπr
Kαd

K),

if q = 2(ps+1− 1)/(p− 1). Since ι∗ is a monomorphism, we conclude that

dq(τa
Kπr

Kαd
K) = −λs · p−s{a, r, d}K · (tκ)

ps+1−1
p−1 −1td log πK · τa

Kπr
Kαd

K

= −λs · p−s{a, r, d}K · u(s−n)
K (πps

K )−p · (τKαK)
ps+1−1

p−1 −1τKd log πK · τa
Kπr

Kαd
K

as desired. Finally, an analogous argument shows that dq(τa
Kπr

Kαd
K) is equal to

zero, if 2(pn− 1)/(p − 1) < q < 2(pn+1− 1)/(p − 1), and the stated differential
on un follows from proposition 5.5.4. All further differentials vanish for degree
reasons. �

5.6. We conclude this paragraph with a proof of the following result, which
was used in the proof proposition 3.3.6 above for n > 3.

Lemma 5.6.1. For all i ≥ 0, the Frobenius is surjective,

F : TRn
2i+1(A|K; p) � TRn−1

2i+1(A|K; p).

Proof. For i > 0, the group TRn
i (A|K; p) is a sum of a uniquely divisible

group and a p-torsion group of bounded height. Indeed, this is true when n = 1,
and the general case follows inductively from the cofibration sequence

hTRn(A|K; p) N−→ TRn(A|K; p) R−→ TRn−1(A|K; p)

and the spectral sequence (3.3.2). Since FV = p, the Frobenius induces a surjection
of uniquely divisible summands. Hence, it suffices to prove that the statement of
the lemma holds after p-completion. And, by addendum 5.4.4, we may instead
show that the canonical map

γn : π2i+1(H ·(T, T (A|K)), Zp)→ π2i+1(H ·(Cpn , T (A|K)), Zp)
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is surjective. To this end, we consider the spectral sequences

E2
s,t(T) = H−s(BS1, πt(T (A|K), Zp))⇒ πs+t(H ·(T, T (A|K)), Zp),

E2
s,t(Cpn) = H−s(BCpn , πt(T (A|K), Zp))⇒ πs+t(H ·(Cpn , T (A|K)), Zp),

both of which are strongly convergent second quadrant spectral sequences. This
means that the filtration of π∗(H ·(G, T (A|K)), Zp) associated with the spectral se-
quence E∗(G) is complete and separated and that there is a canonical isomorphism

grs πs+t(H ·(G, T (A|K)), Zp) ∼= E∞s,t(G).

It will therefore suffice to show that

grs(γn) : grs π2i+1(H ·(T, T (A|K)), Zp)→ grs π2i+1(H ·(Cpn , T (A|K)), Zp)

is a surjection for all s ≤ 0 and i ≥ 0. The induced map of E2-terms is given by the
map on cohomology induced from the inclusion Cpn → T, and hence, is surjective
for s even. Moreover, by remark 2.4.2, π∗(T (A|K), Zp) is concentrated in odd
degrees with the exception of π0(T (A|K), Zp), and hence, the non-zero differentials
in the spectral sequence Er(T) must originate on the line t = 0. It follows that for
s even and t > 0, the map

γn∗ : Er
s,t(T)→ Er

s,t(Cpn)

is surjective for all 2 ≤ r ≤ ∞. (Since these groups do not support non-zero
differentials, they are stable for r > s.) Since only the groups Er

s,t(Cpn) with s
even and t > 0 can contribute to π2i+1(H ·(Cpn , T (A|K)), Zp), this shows that the
map grs(γn) is indeed surjective. �

6. The pro-system TR·
∗(A|K; p, Z/pv)

6.1. In this paragraph, we prove the main theorem of this work. Suppose
that µpv ⊂ K such that we have the maps

Σ∞Bµpv+
det−−→ K(K) tr−→ TRn(A|K; p).

Since p is odd, the Bockstein gives an isomorphism

π2(Σ∞Bµpv+, Z/pv) ∼−→ pvπ1(Σ∞Bµpv , Z/pv) ∼←− µpv ,

and hence, these maps induces

µpv → K2(K, Z/pv) tr−→ TRn
2 (A|K; p, Z/pv) = π2(TRn(A|K; p), Z/pv).

It follows that we have a canonical map of log Witt complexes

W· ω∗(A,M) ⊗ SZ/pv (µpv )→ TR·
∗(A|K; p, Z/pv),

where on the second tensor factor on the left, the maps R, F and V act as the
identity and the differential d acts as zero. We recall from theorem 3.3.8 that this
map is an isomorphism in degrees 0 and 1.

By addendum 5.4.4 the map

Γ̂A|K : TRn
∗ (A|K; p, Z/pv)→ π∗(Ĥ(Cpn , T (A|K)), Z/pv)
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is an isomorphism in non-negative degrees. The groups on the right, for v = 1,
are given by the spectral sequence Ê∗ = Ê∗(Cpn , T (A|K)), which we evaluated in
theorem 5.5.1 above. The result is that

Ê∞ =
n−1⊕
v=1

k
{
uε

nτa
Kπr

Kαd
Kd log πK

∣∣ vp{a, r, d}K = v, d < pv+1−1
p−1 − 1

}
⊕ k

{
τa
Kπr

Kαd
K(d log πK)ε

∣∣ vp{a, r, d}K ≥ n, d < pn+1−1
p−1 − 1

}
,

where a ∈ Z, d ∈ N0, ε ∈ {0, 1}, and 0 ≤ r < eK , and where

{a, r, d}K = (pa− d)eK/(p− 1) + r.

We call the basis of Ê∞ as a k-vector space exhibited here the standard basis.

Proposition 6.1.1. If µp ⊂ K or if K = K0 then TRn
q (A|K; p, Z/p) is an

neK-dimensional k-vector space, for all q ≥ 0.

Proof. We fix a total degree q and evaluate the cardinality of the standard
basis of Ê∞(Cpn , T (A|K)). An element of the standard basis is in total degree
q = 2m + ε if and only if d− a = m. We let v = vp{a, r, d}K and note that

{a, r, d}K = deK + r − peKm/(p− 1).

Hence, the elements of the standard basis of Ê∞(Cpn , T (A|K)) in total degree q are
indexed by integers 1 ≤ v ≤ n, 0 ≤ r < eK and d ≥ 0 such that either 1 ≤ v < n

and vp(deK + r − peKm/(p− 1)) = v and 0 ≤ deK + r < (pv+1−1
p−1 − 1)eK or v = n

and vp(deK +r−peKm/(p−1)) ≥ v and 0 ≤ deK +r < (pn+1−1
p−1 − 1)eK . But these

requirements are equivalently to the requirement that for all 1 ≤ v ≤ n, deK + r is
congruent to peKm/(p− 1) modulo pv and

(pv−1
p−1 − 1)eK ≤ deK + r < (pv+1−1

p−1 − 1)eK = (pv−1
p−1 − 1)eK + pveK .

It is clear that for each value of 1 ≤ v ≤ n, there are eK pairs (d, r) which satisfy
this requirement. Hence, the dimension is equal to neK as stated. �

Lemma 6.1.2. Suppose that the class ξ ∈ π∗(Ĥ(Cpn , T (A|K))) is represented in
Ê∞(Cpn , T (A|K)) by the element uε

nτa
Kπr

Kαd
K(d log πK)δ. Then the product bn · ξ

is represented by ±uε
nτa+a′

K πr′

Kαd+a′+1
K (d log πK)δ, where r + eK/(p−1) = a′eK + r′

and 0 ≤ r′ < eK .

Proof. We show that the map induced from multiplication by bn,

bn : Ê3(Cpn , T (A|K))→ Ê3(Cpn , T (A|K)),

is given by the stated formula. It suffices to consider the case n = 1. Indeed,

Fn−1 : Ê3
s,t(Cpn , T (A|K))→ Ê3

s,t(Cp, T (A|K)),

V n−1 : Ê3
s,t(Cp, T (A|K))→ Ê3

s,t(Cpn , T (A|K)),

are isomorphisms for s even and odd, respectively, and commute with multiplication
by the Bott element, since Fn−1(bn) = b1. Suppose first that vp(eK) > 1 such that

Ê3(Cp, T (A|K)) = Λ{u1, d log πK} ⊗ S{τ±1
K , πp

K , αK}/(πeK

K ).

It will suffice to prove that b1 · πr
K is equal to ±τa′

K πr′

Kαa′+1
K . This follows from the

“multiplicative extension” πeK

K = −τKαK . More precisely, proposition 5.3.6 shows
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that the elements πp
K and −τKαK represent the classes Γ̂A|K(πK) and Γ̂A|K(πeK/p

K ),
respectively. We also recall from (5.2.4) that the element −π

eK/(p−1)
K αK rep-

resents the Bott element b1. But αK survives the spectral sequence and repre-
sents a homotopy class, say, α̃K . Hence, −π

eK/(p−1)
K αK also represents the class

−Γ̂A|K(πeK/p(p−1)
K )α̃K . The claim follows, if vp(eK) > 1. In general, we pick a

totally ramified extension L/K such that vp(eL) > 1 and such that the map

ι∗ : Ê3(Cp, T (A|K))→ Ê3(Cp, T (B|L))

is a monomorphism. �

We note that multiplication by bn preserves the symbol

{a, r, d}K = {a + a′, r′, d + a′ + 1}K ,

and that the class bq
n is represented by ±τ q1

K π
q0eK/(p−1)
K αq1+q

K with q = q1(p−1)+q0

and 0 ≤ q0 < p− 1.

Lemma 6.1.3. An element of the standard basis of Ê∞(Cpn , T (A|K)) represents
a homotopy class in the image of the composite

Wn ω∗(A,M) ⊗ SZ/p(µp)→ TRn
∗ (A|K; p, Z/p)→ π̄∗Ĥ(Cpn , T (A|K))

if and only if {a, r, d}K ≥ 0.

Proof. The map of the statement is an isomorphism in degrees 0 and 1 by
theorem 3.3.8 and addendum 5.4.4. Indeed, in these dimensions {a, r, d}K is au-
tomatically non-negative since a = d. We must thus show that for all q ≥ 0 and
ε = 0, 1, the map⊕

s≤0

Ê∞s,ε−s(Cpn , T (A|K))→
⊕
s≤0

Ê∞s,2q+ε−s(Cpn , T (A|K))

induced by multiplication by the qth power of the Bott element is a surjection onto
the stated subspace. Suppose for example that a homotopy class is represented
in the spectral sequence by the element τa

Kπr
Kαa+q

K and write r − qeK/(p − 1) =
−a0eK +r0 with 0 ≤ r0 < eK . The requirement {a, r, a+q}K ≥ 0 is then equivalent
to a0 ≤ a, and by lemma 6.1.2

bq · τa−a0
K πr0

K αa−a0
K = ±τa

Kπr
Kαa+q

K .

The other elements of the standard basis are treated similarly. �

Theorem 6.1.4. Suppose K contains the pth roots of unity. Then the canonical
map is a pro-isomorphism:

W· ω∗(A,M) ⊗ SZ/p(µp)
∼−→ TR·

∗(A|K; p, Z/p).

Proof. Let E∗· denote the pro-system on either side of the map in the state-
ment. The standard filtration, given by

Fils E∗n = V sE∗n−1 + dV sE∗n−1,

is a descending filtration with s ≥ 0. The filtration has length n in level n, i.e.
Filn E∗n is trivial. The map of the statement clearly preserves the filtration. We
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show that for all q ≥ 0, there exists N ≥ 1 such that for all n ≥ 1 and 0 ≤ s < n−N ,
the canonical map

grs(Wn ω∗(A,M) ⊗ SZ/p(µp))i → grs TRn
i (A|K; p, Z/p)

is an isomorphism when 0 ≤ s < n−N . Since the structure maps in the pro-systems
preserve the standard filtration, the theorem follows.

We have already proved that the map of the statement is an isomorphism in
degrees 0 and 1. Hence, it suffices to show that for all q ≥ 0, there exists N ≥ 1
such that for all n ≥ 1, 0 ≤ s < n−N and ε = 0, 1, multiplication by qth power of
the Bott element induces an isomorphism

grs TRn
ε (A|K; p, Z/p) ∼−→ grs TRn

2q+ε(A|K; p, Z/p).

We claim that any N ≥ 1 with p(q + 1)eK/(p− 1) < pN will do.
For surjectivity we use the lemma 6.1.3. Consider an element of the standard

basis in degree 2q + ε with symbol {a, r, d}K . Since d ≥ 0 and d = a + q, we have
a ≥ −q, and hence

{a, r, d}K = aeK − qeK/(p− 1) + r

≥ −pqeK/(p− 1) + r > −pN .

Therefore, if vp{a, r, d}K ≥ N we have {a, r, d}K ≥ 0. It follows that multiplication
by the qth power of the Bott element induces a surjection of all summands in
Ê∞(Cpn , T (A|K)) except for the summands with v < N . But these summands all
represent homotopy classes of filtration greater than or equal to n−N . Indeed, by
proposition 4.4.1

V s(un−sτ
a
Kπr

Kαd
Kd log πK) = unτa

Kπr
Kαd

Kd log πK ,

d(unτa
Kπr

Kαd
Kd log πK) = τa

Kπr
Kαd

Kd log πK .

Thus elements of the standard basis with {a, r, d}K < N are either in the image of
V n−N of dV n−N .

To prove injectivity, we first note that for an element of the standard basis of
Ê∞(Cpn , T (A|K)) in total degree 2q + ε, the requirement that

0 ≤ d <
pv+1 − 1

p− 1
− 1

is equivalent to the requirement that

r − pqeK

p− 1
≤ {a, r, d}K < −pqeK

p− 1
+ eK

pv+1 − 1
p− 1

+ r − eK .

We show that vp{a, r, d}K = v ≥ N and {a, r, d}K < eK(pv+1 − 1)/(p− 1) implies
that

{a, r, d}K < −pqeK

p− 1
+ eK

pv+1 − 1
p− 1

+ r − eK .

Indeed, the largest integer which is both congruent to zero modulo pv and smaller
that eK(pv+1 − 1)/(p− 1) is eKpv+1/(p− 1)− pv. Thus {a, r, d}K ≤ eKpv+1/(p−
1)− pv, and it suffices to check that

eKpv+1/(p− 1)− pv < −pqeK

p− 1
+ eK

pv+1 − 1
p− 1

+ r − eK .
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But this is equivalent to the inequality

pv >
p(q + 1)eK

p− 1
− r,

which is satisfied for n < N . This shows that the map induced by multiplication
by the qth power of the Bott element induces a monomorphism of all summands in
Ê∞(Cpn , T (A|K)) except for the summands with v < N . The theorem follows. �

Proof of theorem C. The proof is by induction on v; the basic case v = 1
is theorem 6.1.4. In the induction step, we write q = 2s + ε with 0 ≤ ε ≤ 1 and
consider the diagram of pro-abelian groups

W· ωε
(A,M) ⊗ µ⊗s

pv−1
//

∼
��

W· ωε
(A,M) ⊗ µ⊗s

pv //

��

W· ωε
(A,M) ⊗ µ⊗s

p

∼
��

TR·
q(A|K; p, Z/pv−1) // TR·

q(A|K; p, Z/pv) // TR·
q(A|K; p, Z/p),

where, inductively, the right and left hand vertical maps are pro-isomorphisms.
The lower sequence is exact at the middle. Hence, it will suffice to show that the
upper horizontal sequence is a short-exact sequence of pro-abelian groups. Clearly,
we can assume that s = 0. If ε = 0, the sequence is exact since Wn(A) is torsion
free, for all n ≥ 1. (This does not use that µpv ⊂ K.) If ε = 1, only the injectivity
of the left hand map requires proof. To this end, we consider the diagram

W·(A)⊗ µp
//

∼
��

W· ω1
(A,M) ⊗ Z/pv−1

∼
��

// W· ω1
(A,M) ⊗ Z/pv

��

TR·
2(A|K; p, Z/p)

β
// TR·

1(A|K; p, Z/pv−1) // TR·
1(A|K; p, Z/pv),

where the left hand and middle vertical maps are pro-isomorphisms by induction,
and where the lower sequence is exact. It will suffice to show that the upper left
hand horizontal map is zero. But this map takes x⊗ ζ to xd log· ζ, and since ζ has
pv−1 root, d log· ζ is divisible by pv−1. �

Remark 6.1.5. It follows from theorem C that if µpv ⊂ K, the map

W·(A)⊗ µpv
∼−→ pvW· ω1

(A,M),

which takes x⊗ ζ to xd log· ζ, is a pro-isomorphism. It would be desirable to have
an algebraic proof of this fact.

Theorem 6.1.6. There are natural isomorphisms, for s ≥ 0:

TC2s(A|K; p, Z/p) ∼= H0(K, µ⊗s
p )⊕H2(K, µ⊗(s+1)

p ),

TC2s+1(A|K; p, Z/p) ∼= H1(K, µ⊗(s+1)
p ).

Proof. Since the extension K(µp)/K is tamely ramified, we may assume that
µp ⊂ K. Indeed, theorem 2.4.3 shows that the canonical map

TC∗(A|K; p, Z/p) ∼−→ TC∗(A(µp)|K(µp); p, Z/p)Gal(K(µp)/K)

85



is an isomorphism, and the analogous statement holds for H∗(K, µ⊗s
p ). If µp ⊂ K,

theorem 6.1.4 shows that for s ≥ 0 and 0 ≤ ε ≤ 1, the canonical map

TCε(A|K; p, Z/p)⊗ µ⊗s
p
∼−→ TC2s+ε(A|K; p, Z/p)

is an isomorphism, and hence, it suffices to prove the statement in degrees 0 and 1.
In degree one, the cyclotomic trace induces an isomorphism

K×/K×p = K1(K, Z/p) ∼−→ TC1(A|K; p, Z/p),

and by Kummer theory, the left hand side is H1(K, µp), [40, p. 155]. In degree
zero, we use that addendum 1.5.7 gives an exact sequence

0→ TC0(A; p, Z/p)→ TC0(A|K; p, Z/p)→ TC−1(k; p, Z/p)→ 0.

The left hand term is naturally isomorphic to Z/p = K0(A, Z/p) by [19, theorem
D], and the left hand map has a natural retraction given by

TC0(A|K; p, Z/p)→ TR0(A|K; p, Z/p)F = Z/p.

It remains to show that the right hand term in the sequence is naturally isomorphic
to H2(K, µp). We recall from [40, p. 186] the natural short exact sequence

0→ H2(k, µp)→ H2(K, µp)→ H1(k, Z/p)→ 0.

Since k is perfect, the left hand term vanishes, [40, p. 157]. Let k̄ be an algebraic
closure of k. The normal basis theorem shows that Hi(k, k̄) vanishes for i > 0, and
hence the cohomology sequence associated with the sequence

0→ Z/p→ k̄
ϕ−1−−−→ k̄ → 0

gives a natural isomorphism kϕ
∼−→ H1(k, Z/p). Finally, since k is perfect, the

restriction induces a natural isomorphism

TC−1(k; p, Z/p) = W (k)F /pW (k)F
∼−→ kϕ. �

Remark 6.1.7. If µp ⊂ K, we can also give the following non-canonical descrip-
tion of the groups TC∗(A|K; p, Z/p). Let ζ ∈ µp be a generator, let b = bζ be the
corresponding Bott element, and let π = πK ∈ A be a uniformizer. Then for s ≥ 0,

TC2s(A|K; p, Z/p) = Z/p · bs ⊕ kϕ · ∂(d log π · bs),

TC2s+1(A|K; p, Z/p) = Z/p · bsd log· π ⊕ kϕ · ∂(bs+1)⊕ keK ,

where kϕ is the cokernel of 1−ϕ : k → k, eK is the ramification index, and ∂ is the
boundary homomorphism in the long-exact sequence

· · · ∂−→ TCq(A|K; p, Z/p)→ TRq(A|K; p, Z/p) 1−F−−−→ TRq(A|K; p, Z/p) ∂−→ . . . .

The summand keK in the second line maps injectively to the kernel of 1 − F , the
inclusion

η : keK =
eK−1⊕
i=0

k → TR2s+1(A|K; p, Z/p)

given, on the ith summand, by

ηi(a) =
∑
v≥0

ap−v( pv+1−1
p−1 )uK(π)−pdV v

π (πi) · bs +
∑
v>0

F v(auK(π)−pd(πi)) · bs.

The sum on the right is finite and the sum on the left converges.
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We shall need a special case of the Thomason-Godement construction of the
hyper cohomology spectrum associated with a presheaf of spectra on a site, [10,
§3]. Suppose that F is a functor which to every finite subextension L/K in an
algebraic closure K̄/K assigns a spectrum F (L). For the purpose of this paper, we
shall write

(6.1.8) F ét(K) = holim
−→
L/K

H ·(GL/K , F (L)).

There is a natural strongly convergent spectral sequence

(6.1.9) E2
s,t = H−s(K, lim−→

L/K

πtF (L))⇒ πs+tF
ét(K),

which is obtained by passing to the limit from the spectral sequences for the group
cohomology spectra

E2
s,t = H−s(GL/K , πtF (L))⇒ πs+tH ·(GL/K , F (L)).

Indeed, filtered colimits are exact so we get a spectral sequence with abutment

lim−→
L/K

π∗H ·(GL/K , F (L)) ∼−→ π∗F
ét(K),

and the identification of the E2-term follows from the isomorphism

lim−→
L/K

H∗(GL/K , π∗F (L)) ∼−→ lim−→
L/K

H∗(GL/K , ( lim−→
N/L

π∗F (N))GL)

= H∗(K, lim−→
N/K

π∗F (N)).

This isomorphism, which can be found in [41, §2 proposition 8], is a special case of
the general fact that on a site with enough points, the Godement construction of a
presheaf calculates the sheaf cohomology of the associated sheaf.

Theorem 6.1.10. The canonical map is an isomorphism in degrees ≥ 1:

γK : K∗(K, Z/pv)→ K ét
∗ (K, Z/pv).

Proof. It suffices to consider the case v = 1. In the diagram

K(K)
γK //

tr

��

K ét(K)

tr

��

TC(A|K; p)
γK // TCét(A|K; p),

the left hand vertical map induces an isomorphism on homotopy groups with Z/p-
coefficients in degrees ≥ 1. This follows from addendum 1.5.7 and [19, theorem
D]. We use theorem 6.1.6 to prove that the right hand vertical map induces an iso-
morphism on homotopy groups with Z/p-coefficients and that the lower horizontal
map induces an isomorphism on homotopy groups with Z/p-coefficients in degrees
≥ 0.

We first prove the statement for the map induced from the cyclotomic trace

K ét(K)→ TCét(A|K; p).
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The spectral sequence (6.1.9) for K-theory with Z/p-coefficients takes the form

E2
s,t = H−s(K, µ⊗(t/2)

p )⇒ K ét
s+t(K, Z/p).

Indeed, since K-theory commutes with filtered colimits, this follows from

Kt(K̄, Z/p) = µ⊗(t/2)
p ,

which is proved in Suslin’s celebrated paper [43] or follows from theorem 6.1.6
above. Similarly, it follows immediately from theorem 6.1.6 that also the spectral
sequence (6.1.9) for topological cyclic homology takes the form

E2
s,t = H−s(K, µ⊗(t/2)

p )⇒ TCét
s+t(A|K; p, Z/p).

Finally, it is clear that the cyclotomic trace induces an isomorphism of E2-terms.
It remains to show that the map

γK : TCi(A|K; p, Z/p)→ TCét
i (A|K; p, Z/p)

is an isomorphism for i ≥ 0. The domain and range of γK are abstractly isomorphic
in this range, so we just need to show that γK is an isomorphism for i ≥ 0. By the-
orem 2.4.3 we may assume that µp ⊂ K and that the residue field k is algebraically
closed. When µp ⊂ K, we have a commutative square

TCε(A|K; p, Z/p)⊗ µ⊗s
p

γK⊗id
//

∼

��

TCét
ε (A|K; p, Z/p)⊗ µ⊗s

p

∼
��

TC2s+ε(A|K; p, Z/p)
γK⊗id

// TCét
2s+ε(A|K; p, Z/p),

and the vertical maps are isomorphism for s ≥ 0 and 0 ≤ ε ≤ 1. Hence, it suffices
to show that γK is an isomorphism in degrees 0 and 1. And for k algebraically
closed, the term H2(K, µp)

∼−→ H1(k, Z/p) in degree zero vanishes. Thus the edge
homomorphism of the spectral sequence (6.1.9),

εK : TCét
0 (A|K; p, Z/p)→ H0(K, Z/p),

is an isomorphism, and since the composite

TC0(A|K; p, Z/p)
γK−−→ TCét

0 (A|K; p, Z/p) εK−−→ H0(K, Z/pZ)

is an isomorphism, then so is γK . In degree one, we use the spectral sequence (6.1.9)
for topological cyclic homology with Qp/Zp-coefficients. As a GK-module

lim−→
L/K

TC1(B|L; p, Qp/Zp)
∼←− lim−→

L/K

K1(L, Qp/Zp)
∼−→ K1(K̄, Qp/Zp) = µp∞ ,

and the composite

TC1(A|K; p, Qp/Zp)
γK−−→ TCét

1 (A|K; p, Qp/Zp)
εK−−→ H0(K, µp∞)

is an isomorphism. It follows that γK is an isomorphism in degree one. �
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Appendix A. Truncated polynomial algebras

A.1. Let π = πK ∈ A be a uniformizer and let e = eK be the ramifica-
tion index. Then A/pA = k[π]/(πe). The structure of the topological Hochschild
spectrum of this k-algebra was examined in [18]. We recall the result.

Let Π = Πe be the pointed monoid {0, 1, π, . . . , πe−1} with base-point 0 and with
πe = 0 such that A/p is the pointed monoid algebra k(Π) = k[Π]/k{0}. Then we
have from [19, theorem 7.1] a natural F-equivalence of T-spectra

T (k) ∧ |N cy
· (Π)| ∼−→ T (k(Π))

defined as follows: Let Cb(Pk(Π)) be the category of bounded complexes of finitely
generated projective k(Π)-modules and consider Π as a category with a single object
and endomorphisms Π. The functor Π→ Cb(Pk(Π)), which takes the unique object
to k(Π) viewed as a complex concentrated in degree zero and which takes πi ∈ Π
(resp. 0 ∈ Π) to multiplication by πi ∈ k(Π) (resp. 0 ∈ k(Π)), induces

|N cy
· (Π)| → |N cy

· (Cb(Pk(Π)))| = T (k(Π))0,0,

and then the desired map is given as the composite

T (k) ∧ |N cy
· (Π)| → T (k(Π)) ∧ T (k(Π))

µ−→ T (k(Π)).

Since k and Π are commutative, the equivalence is multiplicative with component-
wise multiplication on the left. In particular, the induced map on homotopy groups
is an isomorphism of differential graded k-algebras

π∗(T (k) ∧ |N cy
· (Π)|) ∼−→ π∗T (k(Π)),

where the differential is given by Connes’ operator (2.1.2). We give the realization
|N cy

· (Π)| the usual CW-struture, [33, theorem 14.1], (with the simplices ∆n and
the disks Dn identified through a compatible family of orientation preserving home-
omorphisms). Then the skeleton filtration gives a spectral sequence of differential
graded k-algebras

E2
s,t = πtT (k)⊗ H̃s(|N cy

· (Π)|; k)⇒ πs+t(T (k) ∧ |N cy
· (Π)|).

The same statements are true for ordinary Hochschild homology. If k is a perfect
field of characteristic p > 0, π∗HH(k) = k concentrated in degree zero (see e.g. [19,
lemma 5.5]). Hence, the spectral sequence collapses and the edge homomorphism
gives an isomorphism of differential graded k-algebras

(A.1.1) π∗(HH(k) ∧ |N cy
· (Π)|) ∼−→ H̃∗(|N cy

· (Π)|; k).

The spectral sequence also collapses for T (k). Indeed, the inclusion of the zero-
skeleton gives a map of ring spectra H(k) → T (k) from the Eilenberg-MacLane
spectrum for k, so we have a multiplicative map

(A.1.2) π∗T (k)⊗ H̃∗(|N cy
· (Π)|; k) ∼−→ π∗(T (k) ∧ |N cy

· (Π)|)
given as the composite of the external product

π∗T (k)⊗ π∗(H(k) ∧ |N cy
· (Π)|) ∧−→ π∗(T (k) ∧H(k) ∧ |N cy

· (Π)|)
and the map induced from µ : T (k) ∧ H(k) → T (k). It follows that the spec-
tral sequence collapses and that this map is an isomorphism of graded k-algebras.
However, the map H(k) → T (k) is not equivariant, so this isomorphism does not
preserve the differential.
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Let N∗(k(Π)) be the normalized standard complex, [5, chap. IX, §7]. The
Künneth isomorphism determines an isomorphism of complexes

k(Π)⊗k(Π)e N∗(k(Π)) ∼−→ C̃∗(|N cy
· (Π)|; k),

and since N∗(k(Π))
µ−→ k(Π) is a resolution of k(Π) by free k(Π)e-modules, we have

a canonical isomorphism of graded k-algebras

Tork(Π)e

∗ (k(Π), k(Π)) ∼−→ H̃∗(|N cy
· (Π)|; k).

To evaluate this, we consider instead the resolution R∗(k(Π)) ε−→ k(Π) of [14],

R∗(k(Π)) = k(Π)e ⊗ Λ{c1} ⊗ Γ{c2},

δ(c1) = π ⊗ 1− 1⊗ π, δ(c[d]
2 ) =

πe ⊗ 1− 1⊗ πe

π ⊗ 1− 1⊗ π
· c1c

[d−1]
2 ,

where Γ{c2} is a divided power algebra and c
[d]
2 the dth divided power of c2. An

augmentation preserving chain map g : R∗(k(Π))→ N∗(k(Π)) is given by

g(c[d]
2 ) =

∑
1⊗ xk0 ⊗ x⊗ xk1 ⊗ · · · ⊗ x⊗ xkd ,

g(c1c
[d]
2 ) =

∑
1⊗ x⊗ xk0 ⊗ · · · ⊗ x⊗ xkd ,

where both sums run over tuples (k0, . . . , kd) with k0 + · · · + kd = d(e − 1) and
0 ≤ ki < e. (The summands with some ki = 0, for 0 ≤ i < d, are zero.) Hence, if e
annihilates k, we have an isomorphism of differential graded k-algebras

(A.1.3) k(Π)⊗ Λ{c1} ⊗ Γ{c2}
∼−→ H̃∗(|N cy

· (Π)|; k),

where dπ = c1 and dc
[d]
2 = 0. The value of the differential is readily verified using

the standard formula, [16, proposition 1.4.6].

Proposition A.1.4. Let k be a perfect field of characteristic p > 0 and suppose
p divides e. Then there is a canonical isomorphism of differential graded k-algebras

S{σ} ⊗ k(Π)⊗ Λ{c1} ⊗ Γ{c2}
∼−→ π∗T (k(Π)),

where dπ = c1 and d(c[d+1]
2 ) = −(e/p)πe−1c1c

[d]
2 σ.

Proof. The map of the statement is given by the maps (A.1.2) and (A.1.3).
Since both are isomorphisms of graded k-algebras, it remains only to verify the
differential structure. The formula for dπ is clear since the edge homomorphism

πq(T (k) ∧ |N cy
· (Π)|)→ H̃q(|N cy

· (Π)|; k)

is an isomorphism for q ≤ 1 and commutes with the differential. But the proof of
the formula for dc

[d]
2 is more involved and uses the calculation in [18, theorem B]

of the homotopy type of the T-CW-complex |N cy
· (Π)|. As cyclic sets

(A.1.5) N cy
· (Π) =

∨
s≥0

N cy
· (Π; s),

where the sth summand has n-simplices (πi0 , . . . , πin) with i0 + . . . in = s, and the
realization decomposes accordingly. If we write s = de + r with 0 < r ≤ e then
under the isomorphism of the statement

π∗(T (k) ∧ |N cy
· (Π; s)|) ∼=

{
S{σ} ⊗ k{πrc

[d]
2 , πr−1c1c

[d]
2 }, if 0 < r < e,

S{σ} ⊗ k{πe−1c1c
[d]
2 , c

[d+1]
2 }, if r = e.
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The formula we wish to prove involves the case r = e. In this case [18, theorem B]
gives a canonical triangle of T-CW-complexes

T/C(d+1)+ ∧ SVd
pr−→ T/Cs+ ∧ SVd

i−→ |N cy
· (Π; s)| ∂−→ ΣT/C(d+1)+ ∧ SVd ,

where Vd = C(1) ⊕ · · · ⊕ C(d). If we form the smash product with T (k) and take
homotopy groups, the triangle gives rise to a long-exact sequence, which we now
describe. Let x0 (resp. y0) be the class of the 0-cycle Cd+1/Cd+1 (resp. Cs/Cs)
and let x1 (resp. y1, resp. z2d) be the fundamental class of T/Cd+1 (resp. T/Cs,
resp. SVd). Then

π∗(T (k) ∧ T/Cn+ ∧ SVd) ∼=

{
S{σ} ⊗ k{x0z2d, x1z2d}, if n = d + 1,
S{σ} ⊗ k{y0z2d, y1z2d}, if n = s,

and the differential is π∗T (k)-linear and maps

d(y0z2d) = (d + 1)y1z2d, d(y1z2d) = 0,

d(x0z2d) = sx1z2d, d(x1z2d) = 0.

The induced maps in the long-exact sequence of homotopy groups associated with
the triangle above all are π∗T (k)-linear and

pr∗(y0z2d) = x0z2d, pr∗(y1z2d) = ex1z2d,

i∗(x0z2d) = 0, i∗(x1z2d) = πe−1c1c
[d]
2 ,

∂∗(πe−1dπ · c[d]
2 ) = 0, ∂∗(c

[d+1]
2 ) = −y1z2d.

The statements for the maps pr∗ and i∗ are clear from the construction of the
triangle in [18]. We verify the statement for the map ∂∗. To this end we first
choose a cellular homotopy equivalence

α : Cpr
∼−→ |N cy

· (Π; s)|

such that we have a map of triangles from the distinguised triangle given by the
map pr to the triangle above. Since the cellular chain functor carries distinguised
triangles of CW-complexes to distinguised triangles of chain complexes, we have

∂∗(α∗((0, y1z2d))) = y1z2d,

α∗((x1z2d, 0)) = πe−1c1c
[d]
2 .

Hence, it suffices to show that α∗((0, y1z2d)) is homologous to −c
[d+1]
2 . To do this,

we consider the diagram

H̃2d+2(|N cy
· (Π; s)|; Z/p) � � β

// H̃2d+1(|N cy
· (Π; s)|; Z)

H̃2d+2(Cpr; Z/p) � � β
//

∼α∗

OO

H̃2d+1(Cpr; Z)

∼α∗

OO

with injective horizontal maps. A straightforward calculation shows that (on the
level of chains) the top Bockstein takes c

[d+1]
2 to (e/p)πe−1c1c

[d]
2 and the bottom

Bockstein takes (0, y1z2d) to −(e/p)x1z2d. We have already noted that the right
hand vertical map takes (x1z2d, 0) to πe−1c1c

[d]
2 . This completes the proof of the

stated formula for ∂∗.
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We now prove the formula for d(c[d]
2 ). First note that we can write

d(c[d]
2 ) = d1(c

[d]
2 ) + d2(c

[d]
2 ),

where d1 (resp. d2) is defined in same way as d but with T acting in the first (resp.
second) smash factor of T (k)∧ |N cy

· (Π; s)| only. Since the differential d2 commutes
with the isomorphism

π∗T (k)⊗ H̃∗(|N cy
· (Π; s)|; k) ∼−→ π∗(T (k) ∧ |N cy

· (Π; s)|),

we find that d2(c
[d]
2 ) = 0. Hence, we can ignore the T-action on |N cy

· (Π; s)|. We
have a map of distinguished triangles of (non-equivariant) CW-complexes

T/C(d+1)+ ∧ SVd
pr

//

f

��

T/Cs+ ∧ SVd
i //

g

��

Cpr
∂ //

∼ h

��

ΣT/C(d+1)+ ∧ SVd

Σf

��

S2d+1
Σ2d+1e // S2d+1

Σ2d+1i // Σ2d+1Me

−Σ2d+1β
// S2d+2,

such that f∗ (resp g∗) maps x1z2d (resp. y1z2d) to the fundamental class of S2d+1.
Hence, it suffices to show that the image of −h∗((0, y1z2d)) = 1 · susp(ε) under

d : π2q+2(T (k) ∧ Σ2d+1Me)→ π2q+3(T (k) ∧ Σ2d+1Me)

is equal to −(e/p)σ · susp(1) = −(e/p)h∗((x1z2d, 0)). To this end, we consider the
diagram

π1(Me ∧ T (k))
susp

//

d

��

(−1)

π2d+2(Σ2d+1Me ∧ T (k))
tw∗ //

d

��

π2d+2(T (k) ∧ Σ2d+1Me)

d

��

π2(Me ∧ T (k))
susp

// π2d+3(Σ2d+1Me ∧ T (k))
tw∗ // π2d+3(T (k) ∧ Σ2d+1Me),

which commutes up the indicated sign. By the definition of the class σ, the left
hand vertical map takes ε · 1 to (e/p)1 ·σ. Hence, the right hand vertical map takes
1 · susp(ε) to −(e/p)σ · susp(1). The stated formula for d(c[d+1]

2 ) follows. �

Addendum A.1.6. The non-zero differentials in the spectral sequence

Ê2(Cpn , T (k(Π))) = Λ{un, c1, ε} ⊗ S{t±1, σ, π}/(πe)⊗ Γ{c2}

⇒ π̄∗(Ĥ(Cpn , T (k(Π))))

are generated from d2ε = tσ, d2π = tc1, and d2c
[d+1]
2 = −(e/p)tπe−1c1c

[d]
2 σ.

Proof. The d2-differential is given by propositions 4.4.3 and A.1.4. It remains
only to show that the higher differentials dr, r ≥ 3, vanish. The decomposition of
cyclic sets (A.1.5) induces one of spectral sequences. And if we write s = de + r
with 0 < r ≤ e, then the E3-term of the sth summand is concentrated on the lines
E3
∗,d and E3

∗,d+1, if 0 < r < e, and on the lines E3
∗,d+1 and E3

∗,d+2, if r = e. In
either case, all further differentials must be zero for degree reasons. �

Proposition A.1.7. Let n ≤ vp(e). The images of πn and π
e/pn

n by the map

Γ̂ : π̄∗(T (k(Π))Cpn−1 )→ π̄∗(Ĥ(Cpn , T (k(Π)))).

are represented in the spectral sequence Ê∗(Cpn , T (k(Π))) by the infinite cycles πpn

and tc2, if vp(e) > n, and by πpn

and −(e/pn)u1π
e−1c1, if vp(e) = n.
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Proof. The statement only involves the summand |N cy
· (Π, e)|. We consider

the map of spectral sequences induced from the linerization map,

l∗ : Ê∗(Cpn , T (k) ∧ |N cy
· (Π, e)|)→ Ê∗(Cpn ,HH(k) ∧ |N cy

· (Π, e)|).

In the left hand spectral sequence, E3 = E∞, and in the right hand spectral
sequence, E2 = E∞. The induced map of E∞-terms may be identified with the
canonical inclusion

Λ{un} ⊗ S{t±1} ⊗ k{πe−1c1, c2 + ε · (e/p)πe−1c1}
↪→ Λ{un, ε} ⊗ S{t±1} ⊗ k{πe−1c1, c2}.

Since the map is injective, it suffices to show that l∗(Γ̂(πe/pn

n )) is represented in the
sequence on the right by −unπe−1c1, if vp(e) = n, and by tc2, if vp(e) > n. In the
proof of this, we shall use the notation and results of sections 4.2 and 4.3 above.

We have from [3, §1] the T-equivariant homeomorphism

D : | sdpn N cy
· (Π, e)| ∼−→ |N cy(Π, e)|,

where on the left, the action by the subgroup Cpn ⊂ T is induced from a simplicial
Cpn -action. It follows that this space has a canonical Cpn -CW-structure, and the
homeomorphism D then defines a Cpn -CW-structure on |N cy

· (Π, e)|. We fix, as in
the proof of proposition A.1.4, a cellular homotopy equivalence

α : Cpr
∼−→ |N cy

· (Π, e)|

with the Cpn -CW-structure on Cpr induced from the Cpn -CW-structure of T =
S(C) = E1 given in section 4.4 above. The cellular complex C∗ = C̃∗(Cpr; k) is
canonically identified with the complex

k[Cpn ] · (0, x1)
δ−→ k · (x1, 0)⊕ k[Cpn ] · (0, x0)

δ−→ k · (x0, 0),

where δ((0, x1)) = −(e/pn)(x1, 0) − (g − 1)(0, x0), δ((x1, 0)) = 0, and δ((0, x0)) =
−(x0, 0). One shows as in the proof of proposition A.1.4 that the cycles α∗((x1, 0))
and α∗(N(0, x1)) represent the classes πe−1c1 and −c2, respectively.

We now turn to the spectral sequence Ê∗ = Ê∗(Cpn ,HH(k) ∧ Cpr). There are
canonical isomorphisms of complexes

Ê1
∗,t
∼= (P̃ ⊗Hom(P, π̄t(HH(k) ∧ Cpr)))Cpn ∼= (P̃ ⊗Hom(P, H̄t(C∗)))Cpn

with the left hand isomorphism given by lemma 4.3.4 and the right hand isomor-
phism by (A.1.1). We claim that in fact

(A.1.8) π̄∗(Ĥ(Cpn ,HH(k) ∧ Cpr)) ∼= H̄∗((P̃ ⊗Hom(P,C∗))Cpn )

and that the spectral sequence Ê∗ is canonically isomorphic to the one associated
with the double complex on the right. To see this, we filter Mp, Ẽ, E, and Cpr by
the skeleta. We get, as in section 4.3, a conditionally convergent spectral sequence

E2
s,t = H̄s((P̃ ⊗Hom(P, πt HH(k)⊗ C∗))Cpn )⇒ π̄s+t(Ĥ(Cpn ,HH(k) ∧ Cpr)),

which collapses since πt HH(k) vanishes for t > 0. The edge homomorphism gives
the desired isomorphism. Moreover, under this isomorphism, the filtration of Ẽ
and E, which gives rise to the spectral sequence Ê∗, corresponds to the filtration
of the complexes P̃ and P . Tracing through the definitions, one readily sees that
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the class l∗(Γ̂(πe/pn

n )) is represented by the element y0 ⊗Nx∗0 ⊗ (x0, 0) ∈ Ê1
0,0. To

finish the proof, we note that in the total complex (A.1.8),

δ(N(y0 ⊗ x∗1 ⊗ (0, x1)− y0 ⊗ x∗0 ⊗ (0, x0)))

= y0 ⊗Nx∗0 ⊗ (x0, 0) + y0 ⊗Nx∗2 ⊗N(0, x1) + (e/pn)y0 ⊗Nx∗1 ⊗ (x1, 0),

and in the lower line, the first summand represents l∗(Γ̂(πe/pn

n )), the second −tc2,
and the third (e/pn)unπe−1c1. The statement follows, since −tc2 and unπe−1c1 are
not boundaries. �
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