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Introduction

In this paper we establish a connection between the Quillen K-theory of certain
local fields and the de Rham-Witt complex of their rings of integers with logarithmic
poles at the maximal ideal. The fields K we consider are complete discrete valuation
fields of characteristic zero with perfect residue field k of characteristic p > 2. When
K contains the pUth roots of unity, the relationship between the K-theory with
Z/p’-coefficients and the de Rham-Witt complex can be described by a sequence

. . 1-F . o
c = KL (K Z[p°) — W wia ay @ Szype (tpr) —— Wwig ay © Szype (pr) =

which is exact in degrees > 1. Here A = O is the valuation ring and W w(, , is
the de Rham-Witt complex of A with log poles at the maximal ideal. The factor
Sz/pv (Hpv) is the symmetric algebra of pu,. considered as a Z/p"-module located in
degree two. Using this sequence, we evaluate the K-theory with Z/p”-coefficients
of K. The result, which is valid also if K does not contain the p¥th roots of unity,
verifies the Lichtenbaum-Quillen conjecture for K, [26], [38]:

* Supported in part by NSF Grant and the Alfred P. Sloan Foundation.
** Supported in part by The American Institute of Mathematics.
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THEOREM A. There are natural isomorphisms for s > 1,
Koo (K, Z/p") = HO(K, n22) ® H?(K, u2°),

Kos—1(K,Z/p") = Hl(Ka ﬂ?’fs)'

The Galois cohomology on the right can be effectively calculated when & is finite,
or equivalently, when K is a finite extension of Q,, [42]. For m prime to p,

K;(K,Z/m)=K;(k,Z/m) ® K;_1(k,Z/m)
by Gabber-Suslin, [44], and for k finite, the K-groups on the right are known by
Quillen, [36].
For any linear category with cofibrations and weak equivalences in sense of [48],
one has the cyclotomic trace

tr: K(C) — TC(C;p)

from K-theory to topological cyclic homology, [7]. It coincides in the case of the
exact category of finitely generated projective modules over a ring with the orig-
inal definition in [3]. The exact sequence above and theorem A are based upon
calculations of TC,(C;p,Z/p") for certain categories associated with the field K.
Let A = Ok be the valuation ring in K, and let P4 be the category of finitely
generated projective A-modules. We consider three categories with cofibrations
and weak equivalences: the category C?(P4) of bounded complexes in P4 with ho-
mology isomorphisms as weak equivalences, the subcategory with cofibrations and
weak equivalences C%(P4)¢ of complexes whose homology is torsion, and the cat-
egory C%(Pa) of bounded complexes in P4 with rational homology isomorphisms
as weak equivalences. One then has a cofibration sequence of K-theory spectra

K(CY(Pa)?) 5 K(CY(Pa)) L K(CE(Pa)) 2 SK(CH(PA)Y),

and using Waldhausen’s approximation theorem, the terms in this sequence may be
identified with the K-theory of the exact categories Py, P4 and Pg. The associated
long-exact sequence of homotopy groups is the localization sequence of [37],

S Ki(k) S K(A) IS KK S K (k) —

The map 0 is a split surjection by [15]. We show in section 1.5 below that one has
a similar cofibration sequence of topological cyclic homology spectra

TC(CY(Pa):p) = TC(CE(Pa);p) L TC(CE(Pa);p) & STC(CE(PA): p),
and again Waldhausen’s approximation theorem allows us to identify the first two
terms on the left with the topological cyclic homology of the exact categories Py
and P4. But the third term is different from the topological cyclic homology of
Pr. We write

TC(A|K;p) = TC(Cy(Pa);p),
and we then have a map of cofibration sequences

Kh) —2 k) — " KK —2 S SK(k)

TC(k;p) —2s TC(A; p) —s TC(A|K; p) —2— S TC(k; p).
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By [19, theorem D], the first two vertical maps from the left induce isomorphism
of homotopy groups with Z/p¥-coefficients in degrees > 0. It follows that the
remaining two vertical maps induce isomorphism of homotopy groups with Z/p’-
cofficients in degrees > 1,

tr: K;(K,Z/p") = TCi(A|K;p,Z/p"), i>1.

It is the right hand side we evaluate.

The spectrum TC(C; p) is defined as the homotopy fixed points of an operator
called Frobenius on another spectrum TR(C;p), so there is a natural cofibration
sequence

TC(C;p) — TR(C; p) — TR(C;p) — STC(C;p).

The spectrum TR(C; p), in turn, is the homotopy limit of a pro-spectrum TR'(C; p),
its homotopy groups given by the Milnor sequence

0 — lim' TR, ,(C; p) — TR4(C; p) — lim TR, (C5p) — 0,
R R

and there are maps of pro-spectra
F: TR™(C;p) — TR (C; p),
V: TR"}(C;p) — TR™(C;p).

The spectrum TR (C;p) is the topological Hochschild homology T(C). It has an
action by the circle group T and the higher levels in the pro-system by definition
are the fixed sets of the cyclic subgroups of T of p-power order,

TR"(C;p) = T(C)“~".

The map F is the obvious inclusion and V is the accompanying transfer. The struc-
ture map R in the pro-system is harder to define and uses the so-called cyclotomic
structure of T'(C), see section 1.1 below.

The homotopy groups TR, (A|K;p) of this pro-spectrum with its various opera-
tors have a rich algebraic structure which we now describe. The description involves
the notion of a log differential graded ring from [24]. A log ring (R, M) is a ring R
with a pre-log structure, defined as a map of monoids

a: M — (R, ),

and a log differential graded ring (E*, M) is a differential graded ring E*, a pre-log
structure a: M — E° and a map of monoids dlog: M — (E',+) which satisfies
dodlog = 0 and da(a) = a(a)dloga for all @ € M. There is a universal log
differential graded ring with underlying log ring (R, M): the de Rham complex
with log poles wE‘R,M).

The groups TR.(A|K;p) form a log differential graded ring whose underlying
log ring is A = Ok with the canonical pre-log structure given by the inclusion

a: M=ANK* — A.
We show that the canonical map

WEkA,M) - TRi(A|K;10)
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is an isomorphism in degrees < 2 and that the left hand side is uniquely divisible in
degrees > 2. We do not know a natural description of the higher homotopy groups,
but we do for the homotopy groups with Z/p-coefficients. The Bockstein

TRy (A|K;p, Z[p) = , TRy (A|Kp)

is an isomorphism, and we let k¥ be the element on the left which corresponds to
the class dlog(—p) on the right. The abstract structure of the groups TRL(4;p)
was determined in [27]. We use this calculation in §2 below to show

THEOREM B. There is a natural isomorphism of log differential graded rings
wiaan @z Sr, {K} = TRL(A|K: p, Z/p),
where dk = kdlog(—p).

The higher levels TR} (A|K; p) are also log differential graded rings. The under-
lying log ring is the ring of Witt vectors W,,(A) with the pre-log structure

M2 A— W, (A),

where the right hand map is the multiplicative section a,, = (a,0,...,0). The maps
R, F and V extend the restriction, Frobenius and Verschiebung of Witt vectors.
Moreover,
F: TRIA|K;p) — TR (A|K;p)
is a map of pro-log graded rings, which satisfies
Fdlog, a =dlog,_;a, foralae M =ANK™,

Fda, = a’”da for all a € A,

n—1
and V is a map of pro-graded modules over the pro-graded ring TR, (A|K : p),
V: F*TRI™H(A|K; p) — TRI(A|K; p).
Finally,
FdV = d,
FV =p.

The algebraic structure described here makes sense for any log ring (R, M), and we
show that there exists a universal example: the de Rham-Witt pro-complex with
log poles W. wZ‘R M) For log rings of characteristic p > 0, a different construction

has been given by Hyodo-Kato, [23].
We show in §3 below that the canonical map
w. ‘UEKA,M) — TR, (4| K;p)

is an isomorphism in degrees < 2 and that the left hand side is uniquely divisible
in degrees > 2. Suppose that p,» C K. We then have a map

Szype (pe) — TRL(AIK; p, Z/p®)

which takes ¢ € pp» to the associated Bott element defined as the unique element
with image dlog, ¢ under the Bockstein

TR (A|K;p, Z/p") = »» TR (A|K;p).

The following is the main theorem of this paper.
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THEOREM C. Suppose that p,» C K. Then the canonical map
W.wia ) ®2z Szp (Hpe) — TRL(A|K;p, Z/p")

is a pro-isomorphism.

We explain the structure of the groups in the theorem for v = 1; the structure
for v > 1 is unknown. Let E* stand for either side of the statement above. The
group E? has a natural descending filtration of length n given by

Fil* B! =V*E! _+dV°*E"L CcE!, 0<s<n.
There is a natural k-vector space structure on E!, and for all 0 < s < n and all
1 >0, _
dimy gr®* E} = ek,
the absolute ramification index of K. In particular, the domain and range of the
map in the statement are abstractly isomorphic.

The main theorem implies that for s > 0,

TCQS(A|K;p’ Z/p”) _ HO(K, ,LL®vS) ® HQ(K, :U'®(S+1)),

P P

T023+1(A|K;p7 Z/pv) _ Hl(K, ILL®(S—|-1))7

o
and thus in turn theorem A.
It is also easy to see that the canonical map
K. (K, Z/p") — KK, Z/p")
is an isomorphism in degrees > 1. Here the right hand side is the Dwyer-Friedlander
étale K-theory of K with Z/pY-coefficients. This may be defined as the homotopy
groups with Z/p?-coeflicients of the spectrum
K%(K) = holimH (G /x, K (L)),
L/K

where the homotopy colimit runs over the finite Galois extensions L/K contained in
an algebraic closure K /K, and where the spectrum H (G, k, K (L)) is the group
cohomology spectrum or homotopy fixed point spectrum of G,k acting on K(L).
There is a spectral sequence

B2, = H (K, u5?) = K& (K, Z/p"),

pv
where the identification of the E?-term is a consequence of the celebrated theorem
of Suslin, [43], that

K, (k7 Z/p'u) — ’u?u(t/ﬂ_

For K a finite extension of Q,, the p-adic homotopy type of the K (K) is known
by [45] and [8]. Let F'U" be the homotopy fiber

FU™ — 7 x BU Y=L BU.
It follows from this calculation and from the isomorphism above that
THEOREM D. If K is a finite extension of Qp, then after p-completion
a—1 a—1
7 x BGL(K)" ~ FU9 * x BFUY * x U1K @l

where d = (p — 1) /|K(pp) : K|, a = max{v | upo C K(up)}, and where g € Z) is a
topological generator.
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The proof of theorem C is given in §6 below. It is based on the calculation in §5
of the Tate spectra for the cyclic groups Cp~» acting on the topological Hochschild
spectrum T'(A|K): Given a finite group G and G-spectrum X, one has the Tate
spectrum H(G, X) of [11], [12]. Its homotopy groups are approximated by a spec-
tral sequence

E?, = H (G, mX) = ey H(G, X),

which converges conditionally in the sense of [1]. In §4 below we give a slightly
different construction of this spectral sequence which is better suited for studying
multiplicative properties. The cyclotomic structure of T'(A|K) gives rise to a map

Pic: TR™(A|K;p) — H(Cpn, T(AK)),

and we show in §5 that this map induces an isomorphism of homotopy groups with
Z/p¥-coeflicients in degrees > 0. We then evaluate the Tate spectral sequence for
the right hand side.

Throughtout this paper, A will be a complete discrete valuation ring with field of
fractions K of characteristic zero and perfect residue field k of characteristic p > 2.
All rings are assumed commutative and unital without further notice. Occasionally,
we will write 7.(—) for homotopy groups with Z/p-coeflicients.

This paper has been long underway, and we would like to acknowledge the finan-
cial support and hospitality of the many institutions we have visited while working
on this project: Max Planck Institut fiir Mathematik in Bonn, The American Insti-
tute of Mathematics at Stanford, Princeton University, The University of Chicago,
Stanford University, the SFB 478 at Universitdt Miinster, and the SFB 343 at Uni-
versitit Bielefeld. It is also a pleasure to thank Mike Hopkins and Marcel Bokstedt
for valuable help and comments. We are particularly indebted to Mike Mandell for
a conversation which was instrumental in arriving at the definition of the spectrum
T(A|K) as well as for help at various other points. Finally, we thank an unnamed
referee for valuable suggestions on improving the exposition.

1. Topological Hochschild homology and localization

1.1. This paragraph contains the construction of TR"(A|K;p). The main
result is the localization sequence of theorem 1.5.6, which relates this spectrum to
TR"(A;p) and TR"(k;p). We make extensive use of the machinery developed by
Waldhausen in [48] and some familiarity with this material is assumed.

The stable homotopy category is a triangulated category and a closed symmetric
monoidal category, and the two structures are compatible, see e.g. [22, appendix].
By a spectrum we will mean an object in this category, and by a ring spectrum we
will mean a monoid in this category. The purpose of this paragraph is to produce
the following. Let C be a linear category with cofibrations and weak equivalences
in the sense of [48, section 1.2]. We define a pro-spectrum TR (C;p) together with
maps of pro-spectra

F: TR™(C;p) — TR""1(C; p),
V: TR"Y(C;p) — TR"(C;p),

p: S ATR™(C;p) — TR™(C; p).
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The spectrum TR'(C; p) is the topological Hochschild spectrum of C. The cyclo-
tomic trace is a map of pro-spectra

tr: K(C) — TR'(C;p),
where the algebraic K-theory spectrum on the left is regarded as a constant pro-

spectrum.

Suppose that the category C has a strict symmetric monoidal structure such
that the tensor product is bi-exact. Then there is a natural product on TR'(C;p)
which makes it a commutative pro-ring spectrum. Similarly, K(C) is naturally a
commutative ring spectrum and the maps F and tr are maps of ring-spectra.

The pro-spectrum TR'(C; p) has a preferred homotopy limit TR(C;p), and there
are preferred lifts to the homotopy limit of the maps F, V and u. Its homotopy
groups are related to those of the pro-system by the Milnor sequence

0 — lim" TR}, (C;p) — TR4(C; p) — lim TR, (C;p) — 0.
R R

There is a natural cofibration sequence
TC(C:p) — TR(C;p) = TR(C;p) — £TC(C;p),

where TC(C; p) is the topological cyclic homology spectrum of C. The cyclotomic
trace has a preferred lift to a map

tr: K(C) — TC(C;p),

and in the case where C has a bi-exact strict symmetric monoidal product, the
natural product on TR'(C; p) have preferred lifts to natural products on TR(C;p)
and TC(C;p), and the maps F' and tr are ring maps.

Let G be a compact Lie group. One then has the G-stable category which is a
triangulated category with a compatible closed symmetric monoidal structure. The
objects of this category are called G-spectra, and the monoids for the smash product
are called ring G-spectra. Let H C G be a closed subgroup and let Wy G = NoH/H
be the Weil group. There is a forgetful functor which to a G-spectrum X assigns
the underlying H-spectrum Uy X. We also write |X| for U3 X. It comes with a
natural map of spectra

px: G AX] — | X].

One also has the H-fixed point functor which to a G-spectrum X assigns the Wy G-
spectrum XH. If H C K C G are two closed subgroups, there is a map of spectra

K K H
v [ X — [ X
and if |K : H| is finite, a map in the opposite direction
K H K
T | XU = | X
If X is a ring G-spectrum then Uy X is an ring H-spectrum and X is a ring

Wea H-spectrum.

Let T be the circle group, and let C,. C T be the cyclic subgroup of order r. We
then have the canonical isomorphism of groups

pr: T 5 T/C, = WaC,y
7



given by the rth root. It induces an isomorphism of the T/C,-stable category and
the T-stable category by assigning to a T/C,-spectrum Y the T-spectrum pfY.
Moreover, there is a transitive system of natural isomorphisms of spectra

ere 7Y = Y],
and the following digrams commute

* H *
T A|pfY | ——[p}Y|

l/)/\ipr J"PT

T/Cpy AY| —E— |V,

We will define a T-spectrum T'(C) such that
TR™(C;p) = |pjn—1T(C) 5|

with the maps F' and V given by the composites

— C n— C n— C n—
F = atc @1t [ppna DO | = [ aT(C) T2

_ C n_
V= @p711—1TC:n721§0pn—2 : |p;n_2T(C)CP"’2| — |P;7L_1T(C)CP"’1 |

and the map p given by

C C
B=t et T Ao T = I T(C) ).
pn

There is a natural map
K(C) —T(C)",
and the cyclotomic trace is then the composite of this map and wgnl,lz%p The

definition of the structure maps in the pro-system TR'(C;p) is more complicated
and uses the cyclotomic structure on T'(C) which we now explain.

n—1"

There is a cofibration sequence of T-CW-complexes
E,—S8" - FE-3XE,,

where F is a free contractible T-space, and where the left hand map collapses F
to the non-base point of S°. It induces upon smashing with a T-spectrum T a
cofibration sequence of T-spectra

E.NT -T —EANT — SEL AT,
and hence the following basic cofibration sequence of spectra
P (B AT)O | = 5T | = i (B AT)%" | = Sps (By AT)C),

natural in 7. The left hand term is written H.(Cyn,T) and called the group ho-
mology spectrum or Borel spectrum. Its homotopy groups are approximated by a
strongly convergent first quadrant homology type spectral sequence

E2, = Hy(Cpn,mT) = TostH.(Cpn, T).
The cyclotomic structure on T'(C) means that there is a natural map of T-spectra

r: pi(EAT(C)“r — T(C)

such that Ug .7 is an isomorphism of Cps-spectra, for all s > 0. More generally,
since

a1 (P (B AT(C))Cr)Crmt
8
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the map r induces a map of T-spectra
Pt 03 (B AT(C)" — g s T(C) O
such that Ug,. 7,41 is an isomorphism of Cs-spectra, for all s > 0. The map
R: TR"(C;p) — TR"}(C;p)
is then defined as the composite
P s O | = o2 (B ATE) = 125 |t T(C) 2],

where the left hand map is the middle map in the cofibration sequence above. We
thus have a natural cofibration sequence of spectra

H.(Cpur, T(C)) = TR™(C; p) & TR 1(C;p) L SH.(Cps, T(C)).

When C has a bi-exact strict symmetric monoidal product, the map r is a map of
ring T-spectra, and hence R is a map of ring spectra. The cofibration sequence
above is a sequence of TR"(C;p)-module spectra and maps.

For any T-spectrum X, one has the function spectrum F(E,, X), and the pro-
jection E; — SO defines a natural map

v: X = F(E4, X).

This map induces an isomorphism of group homology spectra. One defines the
group cohomology spectrum and Tate spectrum,

H(Cpn, X) = |ppn F(B4, X) 7,
H (Cpr X) = |5 (B A F(E4, X))% .
Their homotopy groups are approximated by homology type spectral sequences
E2, = H*(Cpr,mX) = msr H (Cpn, X),
E2, = H*(Cpn,mX) = mop il (Cpr, X),

both of which converges conditionally in the sense of [1, definition 5.10]. The latter
sequence, called the Tate spectral sequence, will be considered in great detail in
paragraph 4 below. Taking T'= F(E,, X) in the basic cofibration sequence above,
we get the Tate cofibration sequence of spectra

h h ~ ah
H.(Cpr, X) 25 H (Cpr, X) E5 H(Cye, X) 25 SHL(Cpe, X).
Finally, if X = T(C), the map
7:T(C) — F(E4, T(C))
induces a map of cofibration sequences

H.(Cpn, T(C)) —— TR™(C; p) —2— TR"(C; p) —— SH.(Cp, T(C))

I I

H.(Cpe, T(C)) —X H(Cpr, T(C)) s FI(Cp, T(C)) — L SHL (Cp, T(C)),

in which all maps commute with the action maps p. Moreover, if C is strict sym-
metric monoidal with bi-exact tensor product, the four spectra in the middle square
are all ring spectra and R, R" T and I are maps of ring spectra. In this case, the
diagram is a diagram of TR™ ! (C; p)-module spectra, [19, pp. 71-72].
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1.2. In order to construct the T-spectrum T(C) we need a model category
for the T-stable category. The model category we use is the category of symmetric
spectra of orthogonal T-spectra, see [31] and [21, theorem 5.10]. We first recall the
topological Hochschild space THH(C). See [7], [10] and [19] for more details.

A linear category C is naturally enriched over the symmetric monoidal category
of symmetric spectra. The symmetric spectrum of maps from ¢ to d, Hom(c, d),
is the Eilenberg-MacLane spectrum for the abelian group Home(c, d) concentrated
in degree zero. In more detail, if X is a pointed simplicial set, then

L(X) = Z{X}/Z{xo}

is a simplicial abelian group whose homology is the reduced singular homology of
X. Here Z{X} denotes the degree-wise free abelian group generated by X. Let
S be the i-fold smash product of the standard simplicial circle ST = A[1]/9A[1].
Then the spaces {|Z(S")|}i>0 is a symmetric ring spectrum with the homotopy type
of an Eilenberg-MacLane spectrum for Z concentrated in degree zero, and we define

Hom,(c,d); = |Home(c, d) @ Z(S%)|.
Let I be the category with objects the finite sets
i={1,2,...,i}, i>1,

and the empty set 0, and morphisms all injective maps. It is a strict monoidal
category under concatenation of sets and maps. There is a functor V4 (C; X) from
I¥+1 to the category of pointed spaces which on objects is given by

Vi(C; X)(to, - - -+ k) = \/ Home (co, cx)io A -+ A Home (ck, ck—1) i A X
Co,...,ck€O0bC

It induces a functor G (C; X) from I**! to pointed spaces with
Gk(CvX)(Zjv s 71716) = F(Sio ARERNA Slk,v(ch)(Zjv s 7%));

and we define
THH,,(C) = holim G (C; S°).

Ik+1
This is naturally the space of k-simplices in a cyclic space and, by definition,
THH(C) = |[k] — THHg(C)|.
It is a T-space by Connes’ theory of cyclic spaces, [28, 7.1.9].

More generally, let (n) be the finite ordered set {1,2,...,n} and let (0) be
the empty set. The product category I™ is a strict monoidal category under
component wise concatenation of sets and maps. Concatenation of sets and maps
according to the ordering of (n) also defines a functor

Uy I — T,

but this does not preserve the monoidal structure. By convention I(9) is the cate-
gory with one object and one morphism, and Lly includes this category as the full
subcategory on the object 0. We let G,(Cn) (C; X) be the functor from (I(™)*+1 to
the category of pointed spaces given by

G (C; X) = GR(C; X) o (Un)" T,
10



and define
THH™(C; X) = holim G{™(C; X).
(I(WWA

In particular, THH,(CO) (C; X) = N7 (C) A X, where
NZ(C) = \/ Home(co, ci) A - -+ AHome (¢, cx—1)
co,...,ckEObC
is the cyclic bar construction of C. Again this is the space of k-simplices in a cyclic
space, and hence we have the X, x T-space
THH™(C; X) = |[k] — THH{™ (C; X)|.
There is a natural product
THH™ (C; X) A THH™(D;Y) — THH™ ™ (C @ D; X AY),

which is ¥, x 3J,, X T-equivariant if T acts diagonally on the left. Here the category
C ® D has as objects all pairs (¢, d) with ¢ € obC and d € D, and

Homegp((c,d), (¢',d")) = Home(c, ') @ Homp(d, d').

For any category C, the nerve category N.C is the simplicial category with k-
simplicies the functor category
N;.C = ¢,
where the partially ordered set [k] = {0,1,...,k} is viewed as a category. An order
preserving map 6: [k] — [/] may be viewed as a functor and hence induces a functor
9* : NZC — NkC
The objects of N.C is the nerve of C, N.C. Clearly, the nerve category is a functor
from categories to simplicial categories.
Suppose now that C is a category with cofibrations and weak equivalences in the
sense of [48, section 1.2]. We then define
N¥YCcN.C
to be the full simplicial subcategory with
obNYC = N.wC.

There is a natural structure of simplicial category with cofibrations and weak equiv-
alences on N*C: coN”C and wINYC are the simplicial subcategories which contain
all objects but where morphisms are natural transformations through cofibrations
and weak equivalences in C, respectively. With these definitions there is a natural
isomorphism of bi-simplicial categories with cofibrations and weak equivalences

(1.2.1) N.S.C = S.N.C,

where S.C is Waldhausen’s construction, [48, section 1.3].

Let V be a finite dimensional orthogonal T-representation. We define the (n, V)th
space in the symmetric orthogonal T-spectrum T'(C) by

(1.2.2) T(C),y = | THH™ (N*S™¢; 5V)).

There are two T-actions on this space: one which comes from the topological

Hochschild space, and another induced from the T-action on SV. We give T(C),,v

the diagonal T-action. There are also two X,-actions: one which comes from the
11



Y,-action on the topological Hochschild space, and another induced from the per-
mutation of the simplicial directions in the m-simplicial category S.(n)& compare

[10, 6.1]. We also give T'(C),,v the diagonal ¥,-action. In particular, the (0,0)th
space is the cyclic bar construction
T(C)o,o = [NF(N¥C)|.
In general, the T-fixed set of the realization of a cyclic space X. is given by
1X.|T = {z € Xo|s0(z) = t150(2)},
and hence, we have a canonical map
lobN»S™e A SV = (T(C)ny)".

The space on the left is the (n, VT)th space of a symmetric orthogonal spectrum,
which represents the spectrum K (C) in the stable homotopy category, and the map
above defines the cyclotomic trace. Moreover, by a construction similar to that of
[19, §2], there are T-equivariant maps

p;;(T(C)n,V)Cp - T(C)n,PZVCIH

and one can prove that for fixed n, the object of the T-stable category defined by
the orthogonal spectrum V' +— T'(C),, v has a cyclotomic structure.

Suppose that C is a strict symmetric monoidal category and that the tensor
product is bi-exact. There is then an induced X, X X,-equivariant product

sime e ste — site,
and hence
TC)m,y ANT(Chnw = T(C)mtn,vaow-

This product makes T'(C) a monoid in the symmetric monoidal category of sym-
metric orthogonal T-spectra.

1.3. We need to recall some of the properties of this construction. It is con-
venient to work in a more general setting.

Let ® be a functor from a category of categories with cofibrations and weak
equivalences to the category of pointed spaces. If C. is a simplicial category with
cofibrations and weak equivalences, we define

®(C.) = |[n] — @(Cp)|-
We shall assume that ® satisfies the following axioms:

(i) the trivial category with cofibrations and weak equivalences is mapped to a
one-point space.

(ii) for any pair C and D of categories with cofibrations and weak equivalences,
the canonical map
®(C x D) = @(C) x (D)
is a weak equivalence.

(iii) if f.: C. — D. is a map of simplicial categories with cofibrations and weak
equivalences, and if for all n, ®(f,): ®(C,) — ®(D,,) is a weak equivalence, then

B(f): B(C.) — B(D.)

is a weak equivalence.
12



In [48], ¥ is the functor which to a category assigns the set of objects. Here our
main concern is the functor THH and variations thereof.

We next recall some generalities. Let
f,9:C. —» D.

be two exact simplicial functors. An ezact simplicial homotopy from f to g is an
exact simplicial functor
h: A[l]. xC. — D.

such that ho (d! x id) = f and ho (d° x id) = g. Here A[n]. is viewed as a
discrete simplicial category with its unique structure of a simplicial category with
cofibrations and weak equivalences. An exact simplicial functor f: C. — D. is an
exact simplicial homotopy equivalence if there exists an exact simplicial functor
g: D. — C. and exact simplicial homotopies of the two composites to the respective
identity simplicial functors.

LEMMA 1.3.1. An ezact simplicial homotopy A[1]. xC. — D. induces a homotopy
All] x ®(C.) — ®(D.).

Hence ® takes exact simplicial homotopy equivalences to homotopy equivalences.

PRrROOF. There is a natural transformation
A[l}k X @(Ck) — @(A[l]k X Ck)

Indeed, A[1]xx ®(Ck) and A[1], xCy, are coproducts in the category of spaces and the
category of categories with cofibrations and weak equivalences, respectively, indexed
by the set A[1];. The map exists by the universal property of coproducts. ([l

LEMMA 1.3.2. An exact functor of categories with cofibrations and weak equiv-
alences f: C — D induces an exact simplicial functor N* f: N¥C — N¥D. A
natural transformation through weak equivalences of D between two such functors
f and g induces an exact simplicial homotopy between N f and N¥g.

PROOF. The first statement is clear. We view the partially ordered set [1] as
a category with cofibrations and weak equivalences where the non-identity map is
a weak equivalence but not a cofibration. Then the natural transformation defines
an exact functor [1] x C — D, and the required exact simplicial homotopy is given
by the composite

Al]. x N¥C — N¥[1] x N*C — N*([1] x C) — N“D,

where the first and the middle arrow are the canonical simplicial functors, and the
last is induced from the natural transformation. (Note that N™[n] is not a discrete
category.) O

LEMMA 1.3.3. ([48, lemma 1.4.1]) Let f,g: C — D be a pair of exact functors of
categories with cofibrations. A natural isomorphism from f to g induces an exact
simplicial homotopy

A[l]. x S.C — S8.D

from S.f to S.g. (]
13



COROLLARY 1.3.4. Let C be a category with cofibrations, and let iC be the subcat-
egory of isomorphisms. Then the map induced from the degeneracies in the nerve
direction induces a weak equivalence

B(5.C) = B(NIS.C).

PROOF. For each k, the iterated degeneracy functor
s:C=NiC — NiC,
has the retraction .
0*: Ni.C — C,
where 0: [0] — [k] is given by 0(0) = 0. Moreover, there is a natural isomorphism
id = 6*, and hence by lemma 1.3.3,
S.s:8.C — S.Ni,C=N:S.C

is an exact simplicial homotopy equivalence. The corollary follows from lemma 1.3.1
and from property (iii) above. O

Let A, B and C be categories with cofibrations and weak equivalences and sup-
pose that A and B are subcategories of C and that the inclusion functors are exact.
Following [48, p. 335], let E(A,C,B) be the category with cofibrations and weak
equivalences given by the pull-back diagram

BAC,B) % 4 xcx B

J (dz2,d1,do) J

S ——C xC xC.
In other words, E(A,C, B) is the category of cofibration sequences in C of the form
A—-C—-»B, AcA BebkB.

The exact functors s, t and ¢ take this sequence to A, C' and B, respectively. The
extension of the additivity theorem to the present situation is due to McCarthy,
[34]. Indeed, the proof given in op.cit. for ® the cyclic nerve functor generalizes
mutatis mutandis to prove the statement (1) below. The equivalence of the four
statements follows from [48, proposition 1.3.2].

THEOREM 1.3.5. (Additivity theorem) The following equivalent assertions hold:

(1) The ezact functors s and q induce a weak equivalence
®(NYS.E(A,C,B)) = ®(NYS.A) x ®(NYS.B).
(2) The ezxact functors s and q induce a weak equivalence
®(NYS.E(C,C,C)) = ®(NYS.C) x ®(N“S.C).
(3) The functors t and sV q induce homotopic maps
O(NYS.E(C,C,C)) — P(N"S.0).

(4) Let F' — F — F" be a cofibration sequence of exact functors C — D. Then the
ezact functors F and F' VvV F" induce homotopic maps
B(N™S.C) — B(NS.D). O
14



Let f: C — D be an exact functor and let S.(f: C — D) be Waldhausen’s relative
construction, [48, definition 1.5.4]. Then the commutative square

(1.3.6) O(NVS.C) — B(N™S.S.(id: C — C))
O(N¥S.D) — ®(N¥S.S.(f: C — D))

is homotopy cartesian, and there is a canonical contraction of the upper right hand
term. In particular, if we let D be the category with one object and one morphism,
this shows that the canonical map

O(NVS.C) = QP(N™S.5.0)
is a weak equivalence.

DEFINITION 1.3.7. A map f: X — Y of T-spaces is called an F-equivalence if
for all 7 > 1 the induced map of C,-fixed points is a weak equivalence of spaces.

PROPOSITION 1.3.8. Let C be a linear category with cofibrations and weak equiva-
lences, and let T(C) be the topological Hochschild spectrum. Then for all orthogonal
T-representations W and V', the spectrum structure maps

TC)pv = F(S™ASY, T(C)minwav)

are F-equivalences, provided that n > 1.

PROOF. We factor the map in the statement as
T(C)n,V - F(SmaT(C)WH-n,V) - F(vaF(SWaT(C)m-&-n,W@V))-

Since S™ is C,-fixed the map of C.,-fixed sets induced from the first map may be
identified with the map

(T(C)H,V)CT - Qm(T(C)ermV)CTv
and by definition, this is the map
THH™ (N*S™¢e; §V)r — m THH™ ) (Nw s e; §V)Or.

By the approximation lemma, [2, theorem 1.6] or [30, lemma 2.3.7], we can replace
the functor THH® (—; —) by the common functor THH(—; —), and the claim now
follows from (1.3.6) applied to the functor

®(C) = THH(C; SV)%".
Finally, it follows from the proof of [19, proposition 2.4] that
(T(C)m+n,V)C7' - F(Sva(C)m—&-n,WGBV))CT
is a weak equivalence. [
We next extend Waldhausen’s fibration theorem to the present situation. We
follow the original proof in [48, section 1.6], where also the notion of a cylinder

functor is defined.
15



LEMMA 1.3.9. Suppose that C has a cylinder functor, and that wC satisfies the
cylinder axiom and the saturation axiom. Then

O(N”C) = &(N“C)
is a weak equivalence. Here wC = wC NcoC.
PROOF. The proof is analogous to the proof of [48, lemma 1.6.3], but we need
the proof of [37, theorem A] and not just the statement. We consider the bi-

simplicial category T(C) whose category of (p,q)-simplices has objects pairs of
diagrams in C of the form

(Ag— -+ — Ag,Ag = By — --- — By),
and morphisms all natural transformations of such pairs of diagrams. We let
T"*(C) C T(C)

be the full subcategory with objects the pairs of diagrams with the left hand dia-
gram in wC and the right hand diagram in wC. There are bi-simplicial functors

N7(CP)R £ T (C) 25 N*(C)L,

where for a simplicial object X, the bi-simplicial objects X L and X R are obtained
by pre-composing X with projections pr; and pr, from A x A to A, respectively.
Applying ® in each bi-simplicial degree, we get corresponding maps of bi-simplicial
spaces. We show that both maps induce weak equivalences after realization.

For fixed ¢, the simplicial functor
p1: TU(C) — Ng(CP)

is a simplicial homotopy equivalence, and hence induces a homotopy equivalence
upon realization. It follows that

@(p1): (T (C)) — ®(NT(CP))
is a weak equivalence of spaces.

Similarly, we claim that for fixed p, the simplicial functor
p2: Ty (C) — N (C)
is a simplicial homotopy equivalence. The homotopy inverse o maps
(By— - — By)— (Bo S ... 4 By, By XL By — -+ — By).
Following the proof of [48, lemma 1.6.3] we consider the simplicial functor
t: Tg”’,w C) — Tﬁlw )
which maps
(Ag — -+ — Ag,Ag — By — ... B,)
s (T(A, — By) — -+ — T(Ag — Bo), T(Ag — By) & By — --- — B,),

where T is the cylinder functor. There are exact simplicial homotopies from o o py
to t and from the identify functor to t. Hence

O(p2): (T™™(C)) = ®(N"(C))

is a weak equivalence of spaces.
16



Finally, consider the diagram of bi-simplicial categories
N@(CoP)R +— T (C) —22— N*(C)L
P2 (C)L,

N¥(CP)R 21— Tww(C) —2 Nv

where ¢ is the obvious inclusion functor. Applying ® the horizontal functors all
induce weak equivalences. The lemma follows. ([

Let C be a category with cofibrations and two categories of weak equivalences
vC and wC, and write
NV = NY(N™C) 2 N*(NYC).

This is a bi-simplicial category with cofibrations which again has two categories of
weak equivalences.

LEMMA 1.3.10. (Swallowing lemma) If vC C wC then
O(N*C) = ((NYC)R) = &(N™()

is a homotopy equivalence with a canonical homotopy inverse.

PRrROOF. We claim that for fixed m, the iterated degeneracy in the v-direction,
N¥C — N¥(Ny C),

is an exact simplicial homotopy equivalence. Given this, the lemma follows from
the lemma 1.3.1 and from property (iii). The iterated degeneracy above is induced
from the (exact) iterated degeneracy map C — NZ C in the simplicial category
N?C. This map has a retraction given by the (exact) iterated face map which takes
co — -+ — ¢y to ¢g. The other composite takes ¢g — - -+ — ¢, to the appropriate
sequence of identity maps on cy. There is a natural transformation from this functor
to the identity functor, given by

Co Co s Co
l lf Jff
CO fl Cl f2 . fm Cm .

The natural transformation is through arrows in vC, and hence in wC. The claim
now follows from lemma 1.3.2. ([l

The proof of [48, theorem 1.6.4] now gives:

THEOREM 1.3.11. (Fibration theorem) Let C be a category with cofibrations
equipped and two categories of weak equivalences vC C wC, and let C* be the sub-
category with cofibrations of C given by the objects A such that x — A is in wC.
Suppose that C has a cylinder functor, and that wC satisfies the cylinder axiom, the
saturation axiom, and the extension axiom. Then

D(NVS.CY) —— B(NS.CY)

| |

D(NUS.C) — B(N¥S.C)
17



is a homotopy cartesian square of pointed spaces, and there is a canonical contrac-
tion of the upper right hand term. ([

1.4. Let A be an abelian category. We view A as a category with cofibrations
and weak equivalences by choosing a null-object and taking the monomorphisms
as the cofibrations and the isomorphisms as the weak equivalences. Let £ be an
additive category embedded as a full subcategory of A, and assume that for every
exact sequence in A,

0—-A —-A—- A" =0,

if A’ and A” are in £ then A is in &, and if A and A” are in € then A’ is in £. We
then view £ as a subcategory with cofibrations and weak equivalences of A in the
sense of [48, section 1.1].

The category C?(A) of bounded complexes in A is a category with cofibrations
and weak equivalences, where the cofibrations are the degree wise monomorphisms
and the weak equivalences zC%(A) are the quasi-isomorphisms. We view the cat-
egory C°(€) of bounded complexes in £ as a subcategory with cofibrations and
weak equivalences of C®(A). The inclusion & — C?(€) of € as the subcategory of
complexes concentrated in degree zero, is an exact functor. The assumptions of the
fibration theorem 1.3.11 are satisfied for C*(€).

THEOREM 1.4.1. With £ as above, the inclusion induces an equivalence

B(N'S.E) = B(NZS.CH(E)).

PROOF. We follow the proof of [46, theorem 1.11.7]. Since the category C®(€)
has a cylinder functor which satisfies the cylinder axiom with respect to quasi-
isomorphisms, the fibration theorem shows that the right hand square in the dia-
gram

P(N!S.EH) —— B(N!S.CP(£)*) —— ®(N?S.CY(£)?)

| J J

D(NiS.E) — B(NIS.CH(E)) — B(N=S.C(E))

is homotopy cartesian. Moreover, the composite of the maps in the lower row is
equal to the map of the statement, and the upper left hand and upper right hand
terms are contractible. Hence the theorem is equivalent to showing that the left
hand square, and thus the outer square, is homotopy cartesian.

Let C® be the full subcategory of C*(E) consisting of the complexes F, with
E; =0fori>bandi < a Then C°) is the colimit of the categories C as a
and b tends to —oo and +oo, respectively. We consider C° as a subcategory with
cofibrations of C?(€). We first show that there is a weak equivalence

ONIS.Ch) — ] ®N'S.E),  E.w (Ey,Byr,...,Ea).
a<s<b
The map is an isomorphism for b = a. If b > a, the functor
e: CL— B(C2,Cl,ChL ),
which takes F, to the extension

JS(LE* — E* —» J>aE*7
18



is an exact equivalence of categories. Here o<, E, is the brutal truncation, [49,
1.2.7]. The inverse, given by the total-object functor, is also exact. Hence, the
induced map

B(NIS.Ch) = B(N'S.E(CE,CL,CLL ),

is a homotopy equivalence by lemma 1.3.2. The additivity theorem 1.3.5 then shows
that

(s,q): ®(N!S.E(CS,Ch,CoL ) — ®(N!S.CH) x ®(N!S.Ch, ),
so in all, we have a weak equivalence
P(NIS.CE) = O(NS.E) x (N'S.CL,,),  E. (B 050Ey).
It now follows by easy induction that the map in question is a weak equivalence.
Next, we claim that the map
oN'S.Clr) — ] ®(N!S.E), E.— (By-1,Boa,...,Ba),
a<s<b

where B; C E; are the boundaries, is a weak equivalence. Note that the exactness
of the functors F, — B; uses that the complex F, is acyclic. If a = b—1 the functor
E, — By,_1 is an equivalence of categories with exact inverse functor. Therefore, in
this case, the claim follows from lemma 1.3.2. If b — 1 > a, we consider the functor

cx — B(Cyz,,Clr,ch%),
which takes the acyclic complex F, to the extension
sz—lE* — E* d T<b—1E*a

where 7>, F, is the good truncation, [49, 1.2.7]. The functor is exact, since we only
consider acyclic complexes, and it is an equivalence of categories with exact inverse
given by the total-object functor. Hence the induced map

B(NUS.CP7) = d(NUS.E(CP? |, Cb2, cb—12))
is a homotopy equivalence by lemma 1.3.2. The additivity theorem now shows that
P(NIS.CP*) = d(N'S.E) x B(NIS.CP™Y), B, (By_1,7<p_1E.),
is a weak equivalence, and the claim follows by induction.

Statement (4) of the additivity theorem shows that there is a homotopy commu-
tative diagram

D(NIS.CL) —— Tlucoep PNIS.E)

| |

D(NIS.CH) —— [lucocpy PNIS.E)

where the horizontal maps are the equivalences established above, and where the
right hand vertical map takes (x5) to (xs + 25—1). It follows that the diagram

O(N!S.CY7) —— ®(NS.Ch*)

| |

d(NS.CJ) —— ®(NIS.C)),
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where the maps are induced by the canonical inclusions, is homotopy cartesian.
Indeed, the map of horizontal homotopy fibers may be identified with the map

[I eoNise)— [ oeNs.e),
a<s<b a<s<b,s#0
which takes (z5) to (xs+xs—1), and this, clearly, is a homotopy equivalence. Taking
the homotopy colimit over a and b, we see that the left hand square in the diagram
at the beginning of the proof is homotopy cartesian. O

1.5. In the remainder of this paragraph, A will be a discrete valuation ring
with quotient field K and residue field k. The main result is theorem 1.5.2 below.
It seems unlikely that this result is valid in the generality of the previous section.
Indeed, the proof of the corresponding result for K-theory uses the approximation
theorem [48, theorem 1.6.7], and this fails for general ®, topological Hochschild
homology included. Our proof of theorem 1.5.2 uses the equivalence criterion of
Dundas-McCarthy for topological Hochschild homology, which we now recall.

If C is a category and n > 0 an integer, we let End,,(C) be the category where an
object is a tuple (¢;v1,...,v,) with ¢ an object of C and vy, ..., v, endomorphisms
of ¢, and where a morphism from (c;v1,...,v,) to (d;ws,...,w,) is a morphism
f:e—din C such that fv; = w;f, for 1 <i < n. We note that Endy(C) = C.

PROPOSITION 1.5.1. ([7, proposition 2.3.3]) Let F': C — D be an ezxact functor
of linear categories with cofibrations and weak equivalences, and suppose that for
alln >0, the map |obN"S.End, (F)| is an equivalence. Then

F,: THH(N"S.C) ~> THH(N"S.D)
is an F-equivalence (see definition 1.53.7). O

Let M 4 be the category of finitely generated A-modules. We consider two cat-
egories with cofibrations and weak equivalences, C2(My) and Cf(My), both of
which have the category of bounded complexes in M 4 with degree-wise monomor-
phisms as their underlying category with cofibrations. The weak equivalences are
the categories zO%(M 4) of quasi-isomorphisms and qC®(M 4) of chain maps which
become quasi-isomorphisms in C®(M ), respectively. We note that C*(M%) and
CY(M4)9 are the categories of bounded complexes of finitely generated torsion
A-modules and bounded complexes of finitely generated A-modules with torsion
homology, respectively.

THEOREM 1.5.2. The inclusion functor induces an F-equivalence
THH(N?S.C*(MY%)) = THH(NZS.CY(M4)?).

PROOF. We show that the assumptions of proposition 1.5.1 are satisfied. The
proof relies on Waldhausen’s approximation theorem, [48, theorem 1.6.7], but in a
formulation due to Thomason, [46, theorem 1.9.8], which is particularly well suited
for the situation at hand.

For n > 0, let A, be the ring of polynomials in n non-commuting variables
with coefficients in A, and let My, C My, be the category of A,-modules
which are finitely generated as A-modules. Then the category End, (C®(My))
(resp. End,,(C*(M4))?, resp. End,,(C®(M?Y%))) is canonically isomorphic to the
category C*(Ma ) (resp. CP(Ma )%, resp. C°(MY ). Here C*(Ma,)? C
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C®(M ) is the full subcategory of complexes whose image under the forgetful
functor C®*(Ma4 ) — C?(M4) lies in C?(M 4)9, and similarly for M . We must
show that the inclusion functor induces a weak equivalence

|obNZS.C*(MY )| = [obNZS.C*(Ma )Y,

for which we use [46, theorem 1.9.8]. The categories Cb(M?47n) and C*(M 4 ,)? are
both complicial bi-Waldhausen categories in the sense of [46, 1.2.4], which are closed
under the formation of canonical homotopy pushouts and homotopy pullbacks in
the sense of [46, 1.9.6]. The inclusion functor

F: C* (MY ,) = C*(Man)

is a complicial exact functor in the sense of [46, 1.2.16]. We must verify the con-
ditions [46, 1.9.7.0-1.9.7.3]. These conditions are easily verified with the exception
of condition 1.9.7.1 which reads: for every object B of C?(M 4 ,)?, there exists an
object A of C*(MY ) and a map FA = B in 2C°(My4 ,)?. This follows from
lemma 1.5.3 below. 0

LEMMA 1.5.3. Let A be a commutative noetherian ring, and let B be a mot
necessarily commutative A-algebra. Let C, be a bounded complex of left B-modules
which as A-modules are finitely generated and suppose that the homology of C, is
annihilated by some power of an ideal I C A. Then there exists a quasi-isomorphism

C. = D,

with D, a bounded complex of left B-modules which as A-modules are finitely gen-
erated and annihilated by some power of I.

PROOF. Let n be an integer such that for all ¢ > n, C; is annihilated by some
power of I. We construct a quasi-isomorphism C =+ C” to a bounded complex
C" of left B-modules which as A-modules are finitely generated and such that for
all i > n — 1, C/ is annihilated by some power of I. The lemma follows by easy
induction. To begin we note that the exact sequences

OHZn_)Cni)anl_)Ov
0— anl - anl _>an1 _)07

show that Z,,_ is annihilated by some power of I, say, by I". As an A-module Z,,_;
is finitely generated because C),_1 is a finitely generated A-module and because A is
noetherian. Hence, by the Artin-Rees lemma, [32, theorem 8.5], we can find s > 1
such that Z,_1NI*C,_1 C I"Z,_1 = 0. We now define C” to be the complex with
Cl'=Ci, it #n—1,n—-2, with C/!_; = C,_1/I°C,,_1, and with C]/_, given by
the pushout square

d
Cn—l — Cn—Q

P
Crly —— Cils.

There is a unique differential on C” such that the canonical projection C — C” is

a map of complexes. The kernel complex C’ is concentrated in degrees n — 1 and

n — 2. The differential C},_; — C/,_, is injective, since Z,,_1 N I°C,_1 is zero, and
21



surjective, since the square is a pushout. Hence, the homology sequence associated
with the short exact sequence of complexes

0—-C'-C—=C"=0

shows that C' — C” is a quasi-isomorphism. And by construction, some power of
I annihilates C/, if i > n — 1. O

We thank Thomas Geisser and Stefan Schwede for help with the argument above.

Let C%(P4) and C§(Pa) be the category of bounded complexes of finitely gener-
ated projective A-modules considered as a subcategory with cofibrations and weak
equivalences of CY(M ) and C5(M ), respectively.

PRrROPOSITION 1.5.4. The inclusion functor induces an F-equivalence

THH(NZ?S.C(P4)?) = THH(N?S.C®(M4)?).

Proor. Let A, and M4, be as in the proof of theorem 1.5.2, and let Py,
be the full subcategory of M 4 ,, consisting of the A,-modules which as A-modules
are finitely generated projective. Then End,,(C®(M4))? and End,,(C?(P4))? are
canonically isomorphic to C*(Ma ,)? and C®(Pan)?, respectively, and we must
show that the inclusion functor induces a weak equivalence

|obNZS.C%(Pan)?| = |obNZS.CY(M.a ).
Again, we use [46, theorem 1.9.8], where the non-trivial thing to check is condition
1.9.7.1: for every object C, of C®*(M4.,)?, there exists an object P of C*(Pa )9
and a map P, — C, in 20°(Ma,)9. But this follows from [5, chap. XVII,
prop. 1.2]. Indeed, let e: P, . — C, be a projective resolution of C, regarded as
a complex of A-modules. We may assume that each P;; is a finitely generated
A-module, and since A is regular, that P; ; is zero for all but finitely many (4, j).
Furthermore, it is proved in loc.cit. that there exists an A,,-module structure on P .
such that € is A,-linear. Hence, the total complex P, = Tot(P. .) is in C*(P4.,)
and Tot(e): P, — C, is in 2C®(May,,). It follows that Py is in C®(Pa )9 as
desired. (]

DEFINITION 1.5.5. We define ring T-spectra
T(A|IK) = T(Cq(Pa)), T(A) =T(C2(Pa)), T(k)=T(CLPa))

and let TR"(A|K;p), TR™(A;p), and TR"™(k; p) be the associated Cn-1-fixed point
ring spectra.

We show that the definition of spectra TR" (A; p) and TR" (k; p) given here agrees
with the usual definition. By Morita invariance, [7, proposition 2.1.5], it suffices to
show that there are canonical isomorphisms of spectra

TR"(4;p) ~ TR"(Pa;p), TR"(k;p) =~ TR"(Py;p),

compatible with the maps R, F', V, and u. Here the exact category Pg is considered
a category with cofibrations and weak equivalences in the usual way. It follows from
theorem 1.4.1, applied to the functor ®(C) = THH(C)®", and proposition 1.3.8 that
the map induced by the inclusion functor
T(Pa) — T(C2(Pa)) = T(A)
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is an F-equivalence. This gives the first of the stated isomorphisms of spectra. A
similar argument shows that the inclusion functor induces an F-equivalence

T(Py) = T(My) — T(CU(My)).
By devisage, [6, theorem 1], the same is true for
T(C2(My)) — T(C2(MY)).

Finally, theorem 1.5.2 and proposition 1.5.4 show that the maps induced from the
inclusion functors

T(C(MY)) = T(CLMa)?) <= T(CL(Pa)?) = T(k)

are both F-equivalences. This establishes the second of the stated isomorphisms of
spectra. Let

ix: TR™(A;p) — TR"(k;p)
be the map induced from the reduction.
THEOREM 1.5.6. For all n > 1, there is a natural cofibration sequence of spectra
TR" (k;p) = TR"(A;p) 25 TR™(A|K;p) & S TR (k;p),

and all maps in the sequence commute with the maps R, F, V, and pu. The map
j« is @ map of ring spectra, and the maps i' and O are maps of TR"(A;p)-module
spectra. Here TR"(k;p) is considered a TR"(A;p)-module spectrum via the map
ix. Moreover, the preferred homotopy limits form a cofibration sequence of spectra.

PROOF. We have a commutative square of symmetric orthogonal T-spectra

T(CY(Pa)®) —— T(Cq(Pa)?)

T(CY(Pa)) — T(Cq(Pa)),

and the fibration theorem 1.3.11 applied to the functor ®(C) = THH(C)®" shows
that the corresponding square of C,-fixed point spectra is homotopy cartesian. It
follows that there is natural cofibration sequence of spectra

TR"(k; p) - TR™(A;p) 2 TR™(A|K;p) 2 S TR (k; p),

compatible with R, F'; V and p. It is clear that this is a sequence of TR"(A4;p)-
module spectra. ([

ADDENDUM 1.5.7. There is a natural map of cofibration sequences

it Jx o

K(A) K(K)

K(k
Pl

)
TC(k; p) —— TC(A; p) —2 TC(A|K; p) —2—s S TC(k: p)

DK (k)

and the vertical maps are all maps of ring spectra. (I
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REMARK 1.5.8. Let X be a regular affine scheme and let i: ¥ < X be a closed
subscheme with open complement j: U < X. Then, more generally, the proof of
theorem 1.5.6 gives a cofibration sequence of spectra

TR'™(Y;p) > TR™(X;p) L5 TR™(X|U;p) & STR™ (Y p),

where the three terms are defined as in definition 1.5.5 with P4 replaced by the
category Px of locally free Ox-modules of finite rank. The weak equivalences
are the quasi-isomorphisms, 2C%(Px), and the chain maps which become quasi-
isomorphisms after restriction to U, gC®(Px), respectively. Similarly, the argument
following definition 1.5.5 gives canonical isomorphisms of spectra

TR"(X;p) ~ TR"(Px;p), TR™(Y;p) ~TR"(My;p),

where My is the category of coherent Oy-modules. Moreover, if Y is regular,
the resolution theorem, [7, prop. 2.2.3], shows that TR"(My;p) is canonically
isomorphic to TR" (Py;p).

2. The homotopy groups of T(A|K)

2.1. In this paragraph we evaluate the homotopy groups with Z/p-coefficients
of the topological Hochschild spectrum T'(A|K). We first fix some conventions.

Let G be a finite group and let £ be a commutative ring. The category of
chain complexes of left kG-modules and chain homotopy classes of chain maps is
a triangulated category and a closed symmetric monoidal category, and the two
structures are compatible. The same is true for the category of G-CW-spectra
and homotopy classes of cellular maps. We fix our choices for the triangulated and
closed structures in such a way that the cellular chain functor preserves our choices.

We first consider complexes. If f: X — Y is a chain map, we define the mapping
cone C'y to be the complex

(Cpn =Yn @ Xo1,  dy,z) = (dy — f(z), —dx),

and the suspension XX to be the cokernel of the inclusion ¢: Y — Cj of the first
summand. More explicitly,

(ZX)n = Xn—17 dEX(x) = —dx(l‘).

Then, by definition, a sequence X Ly %z sXisa triangle or a cofibration
sequence if it isomorphic to the distinguised triangle

xLyieo 2 ek,

where 0 is the canonical projection. If X 1. v % Z is a short exact sequence of
complexes then the projection p: Cy — Z, p(y,z’) = g(y), is a quasi-isomorphism
and the composite

H,Z & H,0p 2 H,NX = H, 1 X

is equal to the connecting homomorphism.
Let X and Y be two complexes. We define the tensor product complex by
(XeY),= P X.0V; daey) =dioy+(-)"zady,

s+t=n
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and the complex of (k-linear) homomorphisms by
Hom(X,Y), = [[ Hom(X,Yor);  d(f (@) = (df) (@) + (=) f(da).
SEZ

We note that Zy Hom(X,Y) is equal to the set of chain maps from X to Y and that
HyHom(X,Y) is equal to the set of chain homotopy classes of chain maps from X
to Y. The adjunction and twist isomorphisms are given by

¢: Hom(X ®Y, Z) — Hom(X,Hom(Y, 7)),  ¢(f)(z)(y) = f(z ®@y),
XY -YeX, Aoy =)y

The triangulated and closed symmetric monoidal structures are compatible in the
sense that

2XRY)=(EX)®Y

and that if W is a complex and X Ly % zMhsXisa triangle, then so is

Xow il yew L zow B vx o w,

Indeed, the isomorphism
p: Cr@W = Craw,  p((y,2) ®w) = (y @ w,z Q@ w),
and the identity map of X @ W, Y ® W, and ¥X ® W defines an isomorphism of

the appropriate distinguished triangles.
We define the homology of X with Z/m-coefficients by

H.X,Z/m)=H, M, ® X),
where M, is the Moore complex given by the distinguished triangle
k2 k5 M, S Sk

Suppose that X is m-torsion free such that X *» X 2x /mX is a short-exact
sequence of complexes. Then the composite

Ho(X/mX) & Hy(C) < Hy (M, @ X) 2 Hy(SX) = Hy_ 1 (X)

is equal to the connecting homomorphism.

We next consider the category of G-CW-spectra and homotopy classes of cellular
maps, see [25, chap. I, §5]. This category, we recall, is equivalent to the G-stable
category. In one direction, the equivalence associates to a G-CW-spectrum X the
underlying G-spectrum U X. In the other direction, we choose a functorial G-CW-
replacement I'X such that UTX = X.

If X and Y are two G-CW-spectra, the smash product UX AUY has a canonical
G-CW-structure. But the function spectrum F(UX,UY") usually does not. Instead
we consider I'F(UX,UY'). This defines the closed symmetric monoidal structure.

The mapping cone of a celluar map f: X — Y is defined by
Cy =Y Ux ([0,1] A X),

where we use 1 as the base point for the smash product. The interval is given
the usual CW-structure with a single 1-cell oriented from 0 to 1, and the mapping
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cone is given the induced G-CW-structure. Collapsing the image of the canonical
inclusion i: Y — Cf to the base point defines the map
0:Cy — S'AX =3%X,

where S! = [0,1]/8[0,1] with the induced CW-structure. We then define the dis-
tiguished triangles to be the sequences of the form

xLyie 2 ex

Again, the triangulated and the closed symmetric monoidal structures are compati-
ble. Indeed, the associativity isomorphism, which is part of the monoical structure,
gives rise to canonical isomorphisms

W R(XAW) S (BX)AW,  p: Cp AW =5 Craw.

The choices made above are preserved by the cellular chain functor. To be more
precise, if X (resp. f: X — Y) is a G-CW-spectrum (resp. a cellular map), then
the suspension isomorphism gives rise to a canonical isomorphism of complexes
SCL(X;k) = Cu(EX;k) (resp. Ci(Cy;k) = Cy,). Under these identifications,
the cellular chain functor carries the distinguished triangles of G-CW-spectra to
the distinguished triangles of complexes of left kG-modules. Similarly, if X and
Y are two G-CW-complexes, then the Kiinneth isomorphism gives a canonical iso-
morphism C,(X; k) ® C.(Y;k) = Cu(X AY;E).

We define the homotopy groups of X with Z/m-coefficients by

(X, Z/m) = 7w (M, A X),
where M, is the Moore spectrum given by the distriguished triangle
S0 504, Logt
and the homotopy groups with Z,-coefficients by
74 (X, Zp) = m(holim(Mp» A X)).

The latter are related to the former by the Milnor sequence

0— liLnlﬂ'q-i-l(X’ Z[p") — 7g(X, Zp) — limmy (X, Z/p") — 0.
We shall often abbreviate 7, (X, Z/p) and write 7, (X). Let HZ/m be the Eilenberg-
MacLane spectrum for Z/m. It is a ring spectrum, and we let € € m (HZ/m,Z/m)
to be the unique element such that 3(e) = 1. Then for left HZ/m-module spectra
X, we have a natural sum-diagram

LAid BAid
(2.1.1) X = M, AX — X,

where s is the composite

eNnid id Ap

S'AX LS M, NHZ/m A X =25 M, A X,

and where r is determined by the requirement that r o+ =id and r o s = 0.

We recall Connes’ operator. Let T be the space S(C) of complex numbers of
length 1 considered as a group under multiplication. We give T the orientation
induced from the standard orientation of the complex plane, and let [T] € H;(T)
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be the corresponding fundamental class. The reduced homology of a T-space X has
a natural differential given by the composite

- T -~ ~
d: Hy(X) — Hy1 (T A X) 5 Hya (X),
where the left hand map is given by the Kiinneth isomorphism and the right hand
map is induced by the action map. There is a sum-diagram
e h
Z)2-n=m5(S%) e wf(Ty) 2 Hy(T) = Z-[T]

where h the Hurewitz homomorphism, e is induced from the map S° — T, which
takes the non-base-point of S° to 1 € T, c is induced from the map T, — S° which
collapses T to the non-base-point of S°, and ¢ is determined by ho = id and co = 0.
Let T be a T-spectrum. Then Connes’ operator is the map

(2.1.2) d: wg(T) D07 ot (T AT) 25 i (T).

If T'= HH(A) is the Hochschild spectrum of a ring A, then this definition agrees
with Connes’ original definition, [16, proposition 1.4.6]. We recall from op. cit.,
lemma 1.4.2, that, in general, dd = dn = nd. Hence, d is a differential, provided that
multiplication by 7 is trivial on . (7). This is the case, for instance, if multiplication
by 2 on m,(T) is an isomorphism.

2.2. We next recall the notion of differentials with logarithmic poles. The
standard reference for this material is [24]. A pre-log structure on a ring R is a
map of monoids

a: M — R,
where R is considered a monoid under multiplication. By a log ring we mean a ring
with a pre-log structure. A derivation of a log ring (R, M) into an R-module F is
a pair of maps
(D, Dlog): (R, M) — E,
where D: R — F is a derivation and Dlog: M — E a map of monoids, such that
for all a € M,
a(a)Dloga = Da(a).

A log differential graded ring (E*, M) consists of a differential graded ring E*, a
pre-log structure a: M — E°, and a derivation (D, Dlog): (E°, M) — E' such
that D is equal to the differential d: E° — E' and such that d o Dlog = 0.

There is a universal example of a derivation of a log ring (R, M) given by the
R-module

w(lR,M) = (9% ® (R®z M*®))/{da(a) — ala) ® a | a € M),
where M®P is the group completion (or Grothendieck group) of M and (... ) denotes
the submodule generated by the indicated elements. The structure maps are
d: R—wipy,  do=da®0,
dlog: M — wip ), dloga =06 (1®a).
The exterior algebra

wEkR,M) = A}(W(lR,M))
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endowed with the usual differential is the universal log differential graded ring whose
underlying log ring is (R, M). We stress that here and throughout we use Q}, to
mean the absolute differentials.

Let A be a complete discrete valuation ring with quotient field K and perfect
residue field k of mixed characteristic (0,p). We recall the structure of A from
[40, §5, theorem 4]. Let W (k) be the ring of Witt vectors in k, and let Ky be the
quotient field of W (k). There is a unique ring homomorphism

fW(k)— A

such that the induced map of residue fields is the identity homomorphism. We
will always view A as an algebra over W (k) via the map f. Moreover, if 7k is a
generator of the maximal ideal myx C A, then

(2.2.1) A=W(k)rk]/(¢x(7K)),
and the minimal polynomial takes the form
K (r) = 2K 4 pOg (),

where e = |K: Ky| is the ramification index and where 6k (x) is a polynomial of
degree less that ey such that 0k (0) is a unit in W (k). It follows that Ok (k) is a

unit and that

—p =T O (mx) L
We will use this formula on numerous occasions in the following. The valuation
ring A has a canonical pre-log structure given by the inclusion

a: M=ANK* — A.
Let vg: K* — Z be the valuation.
PROPOSITION 2.2.2. There is a natural short exact sequence
0— QY = wian —k—0,
where res(adlogb) = avk (b) + mg.
PRrROOF. If a € AN K* then avk(a) € mg, and hence, the composition of the

two maps in the statement is zero. Only the exactness in the middle needs proof.
Let adlogb be an element of w(lA ) and write b = mu with uw € A*. Then

adlogb = iadlog T + au du.
Suppose that res(adlogb) = ia + mg is trivial. Then ia € mg, which implies that

imr;{l € A, and hence, iadlogmg = iaw}ldm(. O

We define the module of relative differentials
w(lA7M)/W(k) = (Q}L‘/W(k) ® Az K*))/{do—a®a|ac ANK*).

Again, there is a natural exact sequence

0= Qi ywiw) = Wi wry — k= 0.

LEMMA 2.2.3. Let mg € A be a uniformizer with minimal polynomial ¢k (x).
Then the element dlog i generates the A-module w(lA M)W (k) and its annihilator
is the ideal generated by ¢ (wx)mx. This ideal contains p.
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PROOF. Since every element of K* can be written as a product wiu with i € Z
and u € A*, the formula

dlog(mu) = idlog g +utdu
shows that w(l AM) /W (k) is generated by dlog . The relation identifies

P (mr)mrdlognk = d(¢k (k) =0,

so the annihilator ideal is generated ¢ (Tx )7k . O

LEMMA 2.2.4. For all i > 0, there is a natural exact sequence
i

A®w ) V() = Wann = Yaanw = 0

and the left hand group is uniquely divisible.

ProoOF. The stated sequence for ¢ = 1 follows from the diagram

0 Q4 w(lA,M) —k——0

| |

0 —— QL jwk) — Wlannw — k—0

with horizontal exact sequences and from the standard exact sequence

We show that the group Q‘l/v(k) = HHy (W (k)) is a uniquely divisible group or,
more generally, that HH;(W (k)) is uniquely divisible, for all ¢ > 0. Since W (k) is
torsion free and since W (k)/p = k, the coefficient sequence takes the form
s HH s (k) — HE (W (k) 2 HEL (W (k) — HH, () — -

But HH;(k) = 0, for ¢ > 0, since k is perfect, [19, lemma 5.5]. This proves the
lemma for ¢ = 1. In particular, the maximal divisible sub-A-module of w(l A M)
is equal to the image of A @y, Q%,V(k), and w(lA’M) is the sum of this divisible
module D and the cyclic torsion A-module w(lA MYJW (k)" It follows that for ¢ > 1,
wéA My = A% D, and this in turn is the image of left hand map of the statement. [

COROLLARY 2.2.5. The p-torsion submodule of w(1A7M) 18
panny = A/p- dlog(—p).

PRroOOF. It follows from lemma 2.2.4 that the canonical map

~

p‘“(lA,M) - p“(lA,M)/Ww)

is an isomorphism. Let wx be a uniformizer with minimal polynomial ¢ (x). Then
by lemma 2.2.3,

Wianw = A/ (T dy (TK)) - dlog Tk .
We write ¢ () = 2% + pfg (x) such that —p = 7350 (7). Hence, on the one
hand, we have

T (TK) = ex g + prgbi(nk) = (ex — Ty (Tx )0k (mK) )7L,
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and on the other hand,
dlog(—p) = d]Og(?T%KoK(ﬂ'K)il) = (BK - WKG%(WK)QK(T(K)il)dIOgﬂ'K.
The claim follows. (]

Let L be a finite extension of K, let B be the integral closure of A in L, and
let e;/x = er/ex be the ramification index of L/K. Then the following diagram

commutes
res A

Wiana wi — > Afmi

J]i* leL/K'i

resp

(B, mp) W)~ B/mu,
Recall that B ® 4 Q}L‘/W(k) — Q}B/W(k) is an isomorphism if and only if e;, /x = 1.
LEMMA 2.2.6. The canonical map

B ®awana)wk) = @ B.Mg)/WE)

is an isomorphism if and only if p does not divide er, k.

PROOF. Suppose that p does not divide ey k. If e x =1 the lemma follows
from the natural exact sequence

0= Qyjwy = @annwi = A/mix =0
and from the isomorphism mentioned before the lemma. So replacing K by the

maximal subfield of L which is unramified over K, we may assume that the extension
is totally ramified. Then there exists mx € A such that

L=K(ml"").

Indeed, if mx and 77, are uniformizers of A and B over W (k), then mx = um;”'*,

where u € B* is a unit. But the sequence
1—-Uf—B* Lk =1

is split by the composition of the Teichmiiller character 7: k* — W (k)* and the
inclusion W (k)* < B*. Therefore, replacing 7x by 7(r(u)) " 'mk, we can assume
that the unit u lies in the subgroup U} of units in B which are congruent to 1 mod
my. But every element of Uj has an er/kth root, so replacing 7z, by ul/er/x g
we may assume that u = 1.

Let mx and 7y, be uniformizers of A and B over W (k) such that nx = sz/K,
and let ¢ (x) be the minimal polynomial of 7x. Then

oL (x) = P (xH/)
is the minimal polynomial of 7. The A-module w(lA’MA)/W(k) is generated by
dlog mr with annihilator (¢ (7x)7k), and similarly, the B-module w(lB7MB)/W(k)
is generated by dlogmy with annihilator (¢} (7 )m). But

€L/K

dlog Ty = dlog(m, """ ) = e gdlogmy,
and

P (rr)mr = () - ep k" = en ¥k (i),
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so the claim follows since ey x is a unit. It is also clear from this argument that
the map of the statement cannot be an isomorphism if the extension L/K is wildly
ramified. ([l

2.3. In this section we show that the homotopy groups (7. T'(A|K), M) form
a log differential graded ring. In effect, we prove the more general statement:

PROPOSITION 2.3.1. The homotopy groups (TR} (A|K;p), M) form a log differ-
ential graded ring, if p is odd orn = 1.

The homotopy groups TR (A| K; p) form a graded-commutative differential graded
ring with the differential given by Connes’ operator (2.1.2), [16, §1]. It remains to
define the maps

(2.3.2) an: M — TR{(A|K;p), dlog,: M — TRY(A|K;p)

and to verify the relation ay,(a)dlog, a = da,(a). We define «,, as the composite
of the inclusion M = AN K* — A and the multiplicative map

_nt A— TRG(A|K;p).
This, we recall, is the map of components induced from the composite

AL N (N1C)| Br2Br, | N (N9C) O = TR™(A| K poo,

where C = C!(P,) of definition 1.5.5, i(a) is the 0-simplex A L A and r=pn L.
We refer the reader to [3, §1] for the definition of the maps A, and D,..

In general, if C is a category with cofibrations and weak equivalences and if X
is an object of C, there is a natural map in the stable category

det: S B Aut(X) — K(C),
where Aut(X) is the monoid of endomorphisms of X in the category wC of weak
equivalences. The inclusion of Aut(X) as a full subcategory of wC induces
BAut(X) = |N. Aut(X)| — |[N.wC| = K(C)o,
but this map does not preserve the basepoint (unless X is the chosen null object).
However, we still get a map of symmetric spectra

det: B Aut(X); — K(C).

To get the map c?gt, we use that for every pointed space B, there is a natural
isomorphism S° vV ¥*°B = B, in the stable category. The inverse is induced
from the map which collapses B to the non-base point in S° and the map which
identifies the extra base point with the base point in B.

We again let C = C’f; (Pa) and view A as a complex concentrated in degree zero.
Then Aut(A) = AN K* = M such that we have a map of monoids

M — mBM = 1 K (C),

and we define dlog,, to be the composite of this map and the cyclotomic trace.
Spelling out the definition, dlog,, is given by the composite

SHUA M, TN SUAT, A M, 2 SEA N (NIC)|

Lt 1A NS (NIC)| 25 TR (AN p)ro

~
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where the map j, when restricted to T x {a}, traces out the loop in the realization
given by the 1-simplex (in the diagonal simplicial set):

A——A——A
Lol L
A——A—— A
LEMMA 2.3.3. For all a € M, da,(a) = a,(a)dlog, a
PrOOF. Spelling out the definitions, one readily recognizes that it will suffice
to show that following diagram homotopy-commutes:

T A M, —922 T A My A M, 2 N (NTC)| A [N (NYC)]

lid A Luo,o

T, AN (NC)| - N (N?C)|.

Since M is discrete, we may check this separately for each a € M. The composite
of the upper horizontal maps and the right hand vertical map, when restricted to
T x {a}, traces out the loop in the realization given by the 1-simplex (in the diagonal
simplicial set) on the left below. Similarly, the composite of the left hand vertical
map and the lower horizontal map, when restricted to T x {a}, traces out the loop
given by the 1-simplex on the right below:

A—2sA—L54

A A
R E
A—"sA——A A——A—> A
Note that both loops are based at the vertex A = A. We must show that the two
loops are homotopic through loops based at A = A. To this end, we consider the
2-simplices

a 1 1 1 1 a

A A A
1
A A A

I

The 2-simplex on the left gives a homotopy through loops based at A % A between
the loop given by the left hand 1-simplex above and the loop given by the 1-simplex

T

A—sA—54
Pl
A—sA—"5 A
Similarly, the 2-simplex on the right gives a homotopy through loops based at

A % A between this loop and the loop given by the right hand 1-simplex above. [
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PROPOSITION 2.3.4. The canonical map
wEIA,M) — mqT(A|K)
is an isomorphism, for ¢ < 2, and a rational isomorphism, for all ¢ > 0.
ProOF. We consider the long exact sequence of homotopy groups associated
with the sequence of theorem 1.5.6,
T(k) S T(A) 25 T(AK) S ST(k),

and note that i': 7,7(k) — 7,T(A) is zero, if ¢ = 0,1. Indeed, for ¢ = 0 this is
a map from a torsion group to a torsion-free group, and for ¢ = 1 the domain is
isomorphic to the group Qi which vanishes since k is a perfect, [19, lemma 5.5].
This proves the statement for ¢ = 0. It also shows that the top sequence in the
following diagram of A-modules and A-linear maps,

0 —— mT(A) —2 mT(AIK) —2 moT(k) — 0

b

0 9}4 W(1A7M) = k 0,

is exact. The lower sequence is the exact sequence of proposition 2.2.2 and the
vertical maps are the canonical maps. The left hand square commutes since j.
preserves the differential. The commutativity of the right hand square is equivalent
to the statement that 0.(dlogz) = vk (x), for all x € M. But this follows from
the definition of the map dlog in (2.3.2) and from the commutativity of the right
hand square in addendum 1.5.7. Since the left and right hand vertical maps in the
diagram are isomorphisms, so is the middle vertical map. This proves the statement
for ¢ = 1.

We next argue that the map of the statement is a rational isomorphism, for all
g > 0. Since 7, T'(k) is torsion the long exact sequence associated with cofibration
sequence above shows that

jo: mT(A) ©Q = mT(AK) © Q
is an isomorphism. Moreover, the linearization map induces an isomorphism
I: m.T(A)®Q = HH,.(A) ® Q,

and the right hand side is canonically isomorphic to HH,(K). It thus remains to
prove that the canonical map Qf — HH,(K) is an isomorphism. This in turn
follows from [20] and the fact that K can be written as a filtered colimit of smooth
Q-algebras, [13, IV.17.5.1].

It remains to show that mT(A|K) is uniquely divisible. The structure of the p-
adic homotopy groups m.(T'(A), Z,) is known from [27, theorem 5.1]. (The assump-
tion that the residue field be finite is not needed. For op. cit., proposition 5.3 and 5.4
and [1, theorem 7.1] shows that the Bockstein spectral sequence converges strongly.)
The result is that for m > 0, me,,(T(A),Z,) vanishes and ma,,—1(T(A),Z,) is iso-
morphic to A/(m¢’ (mk)). The latter is a torsion group of bounded exponent. It
follows that for m > 0, ma,,T(A) is a uniquely divisible group and ma,,—1T(A) is
the sum of a uniquely divisible group and the torsion group may,—1(T(A),Z,). Since
m T (k) is trivial, we see that moT(A|K) is uniquely divisible as stated. O
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2.4. It follows from proposition 2.3.1 that the homotopy groups with Z/p-
coefficients 7, T(A|K) form a log differential graded k-algebra. We now evaluate
this log differential graded k-algebra and prove theorem B of the introduction.

The proof of theorem B is based on the calculation in [27, theorems 4.4, 4.6] of
the graded k-algebra 7, T(A) = m.(T(A),Z/p). The result, which we now recall,
depends on whether p divides ex or not. We consider the graded k-algebra

B=A/p® AMa1} ® S{as}

with the generators in the indicated degrees. Let C' C B be the subalgebra gener-
ated by all elements aa$ab® for which a € mg /pA or € =1 or p divides m, and let
I C C be the ideal generated by all elements acyaf'™* for which a € mﬁ(K_l/pA
and m is prime to p. Then as graded k-algebras,

* T (A) = B, if p divides eg,
T =
C/I, if p does not divide eg.

We note that, in the former case, the dimension of the k-vector space 7,T(A) is
equal to eg, for all ¢ > 0. In the latter case, this dimension is equal to ek, if ¢ is
congruent to either —1 or 0 modulo 2p, and is equal to ex — 1, otherwise.

We also recall from [19, theorem 5.2, corollary 5.5] that as a graded k-algebra,
T (k) = AMe} ® S{o},
with the generators € and o characterized as follows: the Bockstein takes e to 1 and
Connes’ operator (2.1.2) takes € to o. It follows from the proof of [27, theorems
4.4, 4.6] that the reduction map
i TT(A) = 7T (k)

is induced from a k-algebra map B — 7,.T'(k), which in degree zero is given by the
reduction A/p — k, and which takes the generators a; and «as to zero and a unit
times o, respectively.

Since the group mT(A|K) is uniquely divisible, by proposition 2.3.4, the integral
Bockstein induces an isomorphism
ﬁ: ﬁQT(A|K) = pﬂ'lT(A|K)

We define k € TT(A|K) to be the class which corresponds to the generator
dlog(—p) on the right. (Note that k € TT(Zy|Qp).) We now prove theorem B
of the introduction:

THEOREM 2.4.1. There is a natural isomorphism of log differential graded rings
Wi,y ®z Sz/p{K} = 1T (A|K),
where dk = kdlog(—p).

PrROOF. It is clear that there is a map of graded k-algebras as stated. We show
that this is an isomorphism.

Suppose first that p divides ex. We know from proposition 2.3.4 that the map
of the statement is an isomorphism in degrees ¢ < 1. So it suffices to show that
multiplication by x induces an isomorphism

K 7T (A|K) = #g42T(AK).
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To this end, we consider the long-exact sequence associated with the cofibration
sequence of theorem 1.5.6,
o 2 T(k) 5 7, T(A) 25 7, T(AIK) S 7y 1 T(k) — -+

This is a sequence of graded 7, T (A)-modules, where 7. T(A|K) (resp. 7. T(k)) is
viewed as a graded 7,.T(A)-module via the map j. (resp. i.). We claim that the
map j, is an isomorphism for ¢ = 2. Granting this for the moment, there exists
R € mT(A) such that k = j.(k). And since ToT(A) and 7T (A|K) are both free
A/p-modules of rank one, the class & is necessarily a generator. It follows that in
the diagram

R Tk — s 7 T(A) — L 7 T(AK) —2— 7y T(k) —— -

oo Ty T (k) —— Ty o T(A) —5 Ty s T(A|K) —2— 7y 1 T(k) —— -+,

two out of three of the vertical maps are isomorphisms. Hence, so are the remaining
vertical maps. To prove the claim, we consider the diagram of A/p-modules

AT (A) — 2 mT(A) > QY

J l |

T (A|K) —— pmT(A|K) «~— pW(a ar)

The left hand horizontal maps are isomorphisms since m37'(A) and mT'(A|K) are
(uniquely) divisible. It follows from proposition 2.3.4 that the right hand horizontal
maps are isomorphisms and that the right hand vertical map is a monomorphism.
But the domain and range of the latter are both k-vector spaces of dimension eg.
Hence, this map is an isomorphism. This proves the claim.

Suppose now that p does not divide ex. Let L/K be a totally ramified extension
such that p divides ey, g, and let B be the integral closure of A in L. Then we
have a commutative diagram

wEkA7MA) ® S{k} —— 7. T(A|K)

wZ(B,MB) ® S{rk} =~ 7, T(B| L),

and the lower horizontal map is an isomorphism. It is easy to see that there exists
L/K for which the left hand vertical map is a monomorphism. For example, one
can take L = K[mp]/(n;"'* + ng(mr + 1)). Hence, the upper horizontal map is
a monomorphism. The domain and range of this map are graded k-vector spaces
concentrated in non-negative degrees. The dimension of domain is equal to ex in
each degree. Hence the dimension of the range is at least ey in each degree. We
can estimate the dimension of the range further by means of the exact sequence of
k-vector spaces
o 2 T(k) 5 7, T(A) L5 7, T(AIK) S 7y 1 T(k) — - --
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The dimension of 7,T(A) is equal to ek, if ¢ = —1,0 (mod 2p), and is equal to
ex — 1, otherwise. The dimension of 7,T(k) is equal to one, for all ¢ > 0. It follows
that the dimension of T,T'(A|K) is equal to either ex or ex +1, if ¢ = —1,0 (mod
2p), and is equal to ek otherwise. We must argue that for ¢ = —1, 0, the dimension
of 7, T(A|K) is equal to ex. This happens if and only if for all s > 0, the map

Z.IZ ’/'_TQpS,lT(k) — ﬁgpsflT(A)

is non-zero. We show that the class ﬂ%"*lala’gs_l on the right is in the image of

i', or equivalently, that it maps to zero under j,. If ex > 1, we can write

ex—1 ps—1 _ _ex—2 ps—1
T Q1 0y =Tk Q- TR Oy .

The image of this class under j, is equal to a unit in A/p times the class

exg—1 s—1
m T dlog i - mr RPN

But this class is in the image of the ring homomorphism
wia,n) ®z Szp{k} — TT(A|K)
and the product is equal to zero on the left. Hence j*(ﬂ%’(_lalagsfl) is equal to

zero. Finally, in the unramified case we choose a totally ramified extension K/Kj
such that p does not divide ex and consider the diagram

Tops—1T (k) —— Tops_1 T(W (k)

=

’/'_T2ps_1T(k) *’L> 7_1'2ps_1T(A).

We have just proved that the lower horizontal map is a monomorphism, for all
s > 0. And the left hand vertical map is an isomorphism since eg is prime to p.
Hence the top horizontal map is a monomorphism. We have proved that the map
of the statement is an isomorphism of graded k-algebras for all K. In particular,
the class dk on the right is the image of an element on the left. To determine this
element, we may assume that K = @Q,,. In the diagram

73T (Zy|Q,) —2— 7, T(F,)
d d
70T (Zp|Qp) —2— 71 T(F,)

the horizontal maps and the right hand vertical map are isomorphisms. Hence also
the left hand vertical map is an isomorphism. This shows that dk = urdlog(—p)
with u € F 7. We show in remark 5.3.3 below that in fact u = 1. ]

REMARK 2.4.2. An argument similar to [27, §5] shows that for m > 0, there
exists a non-canonical isomorphism

Tom—1(T(A|K),Zy) =2 Af(mmg ¢y (TK))

and that mo,,(T'(A|K),Z,) vanishes. It would be interesting to give a functorial
description of the left hand group analogous to proposition 2.3.4.
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Let L/K be a Galois extension with Galois group G /x. The descent problem
for topological Hochschild homology asks under what conditions the canonical map

T(A|K) — H (Gr/x, T(B| L))
is a weak equivalence. It is not hard to see from theorem 2.4.1 that this is false in
general, e.g. for a cyclotomic extension Qp(pn)/Qp with n > 1. However:
THEOREM 2.4.3. Let L/ K be a finite and tamely ramified Galois extension. Then
the canonical map induces an isomorphism
mT(AK) = 7H (G k., T(B|L)).
Proo¥F. It will suffice to show that for all ¢t > 0, the G, x-module 7;T(B| L)
is isomorphic to B/p. Indeed, a classical theorem of Noether, [9, 1.3, theorem 3],

states that B is isomorphic to A[G k] as a G/g-module, if and only if L/K is
tamely ramified. Hence, the spectral sequence

E?,=H *(Gp k,©T(B|L)) = 7 H (G, T(B| L))
collapses to yield the isomorphism of the statement.
We use theorem 2.4.1 to get the natural isomorphisms
k' T T(B| L) = g T(B| L).
Hence, we only need to consider 7T (B| L) and 7, T(B| L). The former is naturally
isomorphic to B/p regardless of whether L/K is tamely ramified or not, and the
latter is naturally isomorphic to w(137 My) /p. We have from lemma 2.2.3 that
Wiy /P = A/p-dlogTi,
and since L/K is tamely ramified, lemma 2.2.6 shows that
W(IB,MB)/p = B/p-dlogmg.

Hence, also w(lB,MB)/p is is isomorphic to B/p as a G'1,/x-module. O

3. The de Rham-Witt complex and TR, (A|K;p)

3.1. In this paragraph, we evaluate the integral homotopy groups TR;(A|K; p),
for i < 2. We first consider Witt vectors, see e.g. [35, appendix].

The ring W,,(R) of Witt vectors of length n in R is the set of n-tuples in R but
with a new ring structure characterized by the requirement that the “ghost” map
w: W,(R) — R",
which to the vector (aq,,...,an—1) associates the sequence (wy, ..., w,_1) with

s s—1
ws =af +pai -+ pa,,

be a natural transformation of functors from rings to rings. If R has no p-torsion
then the ghost map is injective. If, in addition, there exists a ring endomorphism
¢: R — R such that a? = ¢(a) (mod pR), then a sequence (wy, ..., w,_1) is in the
image if and only if wy = ¢(ws—1) (mod p°R), for all 0 < s < n. If R = Z[X,], the
ring homomorphism which maps X, to X? is such an endomorphism. Let

_n: R— W,(R)

be the multiplicative section given by a, = (a,0,...,0).
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LeMMA 3.1.1. If p is odd then V(1) = —p and =1, = —1 modulo pW,(R).

PRrROOF. By naturality, we may assume that R = Z. We have
wip, + VD) =p(L,1+p" L1+ 14 p" L,
and therefore it is enough to show that the sequence
(L14+pP 1477 14 Y

is in the image of the ghost map. The identity ¢: Z — Z has the property that
aP = ¢(a) (mod pZ). Hence, this sequence is in the image of the ghost map if and
only if for all 1 < s < n,

1+pP =1 —|—ppSilf1 (mod p?).

This is true, if p is odd, but fails for p = 2 and s = 2. The second congruence of
the statement is proved in a similar manner. O

In general, (z + y)n and z,, +y are not equivalent modulo pW,(A4). However,
we have the following

LEMMA 3.1.2. For all x,y € R,
(@ +y)y = (z, +y,)" =z, +y,

modulo pWp,(R).
PROOF. The right hand congruence is valid in any ring. To prove the left hand
congruence, we place ourselves in the universal case R = Z[z,y]. The ghost map
w: Wyp(R) — R"
is an injection and maps the vector zf, +y? — (z + yn)P to the sequence

(‘Tp +yp - (x+y)p7.”’xp" +yp" - (x+y)p").

As an element of R™ this is divisible by p. We must show that the quotient is in
the image of the ghost map. By the criterion recalled above, we must show that

@ 4y =@y ) p= @ 4y = @4 y?) ) /p (mod pY),

or equivalently, that
(""" =@ +y)" (mod p*).
But this follows from
(z+y)P =2 +y" (modp)

and from the fact, valid in any commutative ring, that a = b (mod p) implies
a?” = b (mod p**!). Indeed, one easily sees that a = b (mod p*) implies that
a? = bP (mod p**1), and the desired formula then follows by simple induction. [

It follows from lemma 3.1.2 that for every ring R, the map

R — Wn(R) = Wi (R)/p,

which takes = to the class of zP, is a ring homomorphism. Let A be a complete

discrete valuation ring with quotient field K and perfect residue field k£ of mixed
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characteristic (0,p). We recall from (2.2.1) that there is a unique ring homomor-
phism f: W(k) — A such that the induced map of residue fields is the identity
homomorphism. Hence, we have a ring homomorphism

(313) Pk — Wn(A)

which to x assigns f(xflz’)i + pW,(A). Here 2l/p € W (k) is any element whose

residue class modulo p is the unique pth root of x. We will always view W,,(A) as
a k-algebra via the map p,. We note that

R(pn()) = pn-1(x),  F(pn(2)) = pn-1(2?).
Let m = 7k be a uniformizer with minimal polynomial z¥ + pfg (z). We introduce
the modified Verschiebung

(3.1.4) Vi Wao1(A) = Wn(A), Vi(a) = 0x(x,)V(a),

where 0 (x,,) is the image of Ok (x) under the k-algebra map k[z] — W,,(A) which
to x assigns the class of w,,. The composite F'V; is zero modulo p.

PROPOSITION 3.1.5. Suppose that p is odd. Then the k-algebra W, (A) is gener-
ated by the elements Vﬁ(gi) with 0 < s <n and i > 0 subject to the relations

(%) ViP'), if0=s<t<n,
T =
N 03 ZfO <s<t< n,
V2 (ree ) = Vet (@),

PROOF. The k-vector space W,,(A) is generated by V*(z’) with 0 < s < n and
i > 0. Indeed, write a € A as a = xgn? + - - - + 1o with x; € W (k). Then

Vi) = Vi(zan?) + -+ V*(20) = V¥ (pu-s(@a)z?) + -+ + V*(pn-s(20))
modulo V1, (A), and

V(pu_s(@0)1) = pu(@ /7 )V ().

Since Ok (m) is a unit, we instead can use the elements V*(z%) as generators. In
general, for s < t, we have
Vi) - Va(@!) = Vi(F'Vi(z') - o)
from which the first relation follows. Next, lemmas 3.1.1 and 3.1.2 show that
% = —p-Ok(m) = V(1) (r) = V((0x(T))")

= V(03 (zP)) = V(1)bk () = Vi (1),

where F);) () denotes the image of Ok (z) under the automorphism of k[z] induced
by the Frobenius of k. The second relation is an immediate consequence. It remains
to prove that there are no further relations. The sequences
n—1 — —
0— Afp T Wiy(4) % Wooa(4) = 0
are exact, since W, (A) is torsion free, and show that W,,(A) is an ne g-dimensional
k-vector space. The relations of the statement implies that
gry Wi (A) = k{V:(z") | 0<i<ex},
which is an ex-dimensional k-vector space. Thus there can be no further relations
among the V5(r?). O
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3.2. A pre-log structure o: M — R on a ring R induces one on W,,(R) upon
composition with the multiplicative section _,,: R — W,,(R). We write (W,,(R), M)
for this log ring. We now assume that p is odd and that R is a Z,)-algebra.

DEFINITION 3.2.1. A log Witt complex over (R, M) counsists of:
(i) a pro-log differential graded ring (E*, Mg) together with a map of pro-log
rings A\: (W.(R), M) — (E°, Mg);
(ii) a map of pro-log graded rings
F:E' —E'_|,
such that AF' = F'A and such that
Fdlog, a =dlog,_;a, for all a € M,

Fda, = a’~\da, ,, forallaeR;

Ay 104,
(iii) a map of pro-graded modules over the pro-graded ring E*,
V:F'E, — E; 4,
such that AV =V A, FV =p and FdV =d.
A map of log Witt complexes over (R, M) is a map of pro-log differential graded
rings which commutes with the maps A, F' and V.
The following relations are valid in any log Witt complex
dF =pFd, Vd=pdV, V(zdy)="V(z)dV(y).
Indeed, V(xzdy) = V(xFdV (y)) = V(x)dV (y), and
dF(z) = FAVF(z) = Fd(V(1)z) = FdV(1)F(x) + FV(1)F(dz)
— d(1)F(2) + pFd(z) = pFd(z),
Vd(z) =V(1)dV(z) =d(V(1)V(x)) —dV(1)V (z)
=dV(zFV (1) = V(zd(1))) = pdV (z).
PROPOSITION 3.2.2. The category of log Witt complexes over (R, M) has an
initial object W. wE‘R)M). Moreover, the canonical map is surjective:
A wiw. ry,my =~ Wewir m)-
PRrOOF. This is a fairly straightforward application of the Freyd adjoint functor
theorem, [29, p. 116]. For a detailed proof, we refer the reader to [17, §1]. O

We note that W. w?R,M) = W.(R). For we may consider (W.(R), M) a log Witt
complex concentrated in degree zero. Moreover, from [17, theorem D] we have:
ADDENDUM 3.2.3. The canonical map is an isomorphism:
At wig A =W W(R,M)- O
The filtration of a log Witt complex by the differential graded ideals
Fil* B! = V'E!__+dV*E."\ C E},
is called the standard filtration. It satisfies
F(Fi* E) CFil* ' EL |
V(Fil* EY) C Fil*T EL
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but in general is not multiplicative.
LEMMA 3.2.4. The restriction map induces an isomorphism
Wo wig any/ Fil* Wa wig ary = Wswigan-
PRrOOF. For a fixed value of n — s, the filtration quotients
"Wew(gar = Wanwigan/ Fil Wn wig an

form a log Witt complex over (R, M). We show that it has the universal property.
Let (E*, Mg) be a log Witt complex over (R, M). Then there exists a map of log
Witt complexes over (R, M):

'"W.w(gar — BT
Indeed, the standard filtration is natural, so we have maps
Wa (g ary/ Fil* Wy wig o) — E,,/ Fil* E;, — E,
where the right hand map is induced from the restriction maps in E7. We must

show that this map of log Witt complexes is unique. To prove this, it will suffice
to show that the canonical map

u)fws(R),M) — W wéRM)

is surjective. But this follows from the commutativity of the diagram

Wiw,(ryar) — Wn (g ar)

| l

Ww,ryan — Wslran)
since the top horizontal and right hand vertical maps are surjective. O
We define a map F"~'d: W,,(R) — w(g s by the formula

F" ld(a) = agnil_ldao + afnﬂ_ldal + - +day,_1,

where a = (ag, ...,a,_1). One easily verifies that F"~1d is a derivation of W,,(R)
into the W, (R)-module (F' "‘1)*w(lR ay and that the following relation holds:

an—l — pn—an—ld-
It follows immediately from the derivation property that the formula
a-(wy,wy) = (F" Y a)wy, F* Ya)wy — F" 'da - wy)
defines a Wy, (R)-module structure on wZE}M) @wéR’M). And the relation shows that
n—1

(F" ) wimhny = “lran @@y, @ (0" w, —dw),

is a map of W, (R)-modules. We let ,W, wER’M) be the quotient W, (R)-module.
This definition is motivation by lemma 3.3.3 below.

LEMMA 3.2.5. There is a natural exact sequence of Wy, (R)-modules
n—1\%* i— d n—1\*, 1
(F 1) pn—lw(R}M) — (F 1) W(R,M)
= W W, WER,M) o (Fn_l)*(wZR}M)/pn_l) — 0.
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PROOF. Indeed, as an abelian group, W, wz R,M) is equal to the push out

1—1 d 7
Yaray) T Y(RM)

[ESR

1—1 L1 7
Y(R,n) » hWa iR ar)

so the underlying sequence of abelian groups is exact. One readily verifies that the
various maps are W, (R)-linear. d

PROPOSITION 3.2.6. For any log ring (R, M), there is a natural exact sequence
of Wy (R)-modules,

. N . R .
Wi (g ary = Wawig vy — Wnorwig ) — 0,

where N (w1, ws) = dV" X\ (wy) + V1A (ws).

PRrROOF. It follows immediately from definition 3.2.1 that for all a € W, (R),
MF" Yda) = F" 1d)\(a),

and hence N is W,,(R)-linear. Since the image of N is equal to Fil"~tw, wéR M)
the statement follows from lemma 3.2.4.

COROLLARY 3.2.7. Let A be a complete discrete valuation ring of mized char-
acteristic (0,p) with perfect residue field, and let a: M — A be the canonical log
structure. Then for alln > 1 and i > 2, W, wéA M) 18 a uniquely divisible group.

PROOF. Lemma 2.2.4 shows that WEA,M) is uniquely divisible, if 7 > 2. It
follows that , W, wz AM) is uniquely divisible, if ¢ > 3, and an induction argument
based on proposition 3.2.6 shows that so is W, wéA}M). The group W, w(QA,M)
is a direct sum of a uniquely divisible group and the group w(1 A, M)/ p*~ 1. Hence
W w(2 A, M) is a direct sum of a uniquely divisible group and a finitely generated

torsion W (k)-module. It is therefore enough to show that the modulo p reduction
Wi, w(2 AM) is trivial. Inductively, it suffices to show that the map

dV"_lz (D%A,M) — 7nw(2A,M)

is trivial. The map is k-linear, and the domain is generated as a k-vector space by
the elements 7, dlog mx with 0 <4 < ex. Now the relation

S+ 0k (m,)V (1),

valid in W,,(A), shows that V"~ (ni.dlogmx) = V"~ 1(ni )dlog, 7k is either triv-
ial or contained in the span of elements of the form 7). dlog, 7. But these
—2n
elements have vanishing differential. (I
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3.3.  We refer the reader to [17, §2] for a fuller discussion of the following
result.

PROPOSITION 3.3.1. The homotopy groups TR, (A|K; p) form a log Witt complex
over (A, M), provided that p is odd. In particular, there is a canonical map

W.wiamy — TRL(A|K; p).

PROOF. We recall from proposition 2.3.1 above that for all n > 1, the homotopy
groups TR} (A|K;p) form a log differential graded ring whose underlying log ring
is (W (R), M). The relation that for all a € M,

Fdlog, a =dlog,_, a,
is immediate from the definition of the maps F' and dlog,, and the remaining
relations are proved in [19, lemma 3.3] and [16, lemmas 1.5.1 and 1.5.6]. O
The homotopy groups of the homotopy orbit spectra,
WTRE(A[K; p) = ma (H.(Cpn -1, T(A|K))),

are differential graded modules over TR (A|K;p), and there are TR (A|K; p)-linear
maps

F:  TRI(A|K;p) — F* (TR (A|K:p)),
V: F*(,TRITH(A|K;p)) — # TR (A|K p),

which satisfy that F'dV = d and FV = p. Moreover, there is a natural spectral
sequence of W,,(A)-modules,

(3.3.2) E2, = Hy(Cpn-r, (F" )" mT(A|K)) = », TRL,(A|K;p).
The reader is referred to [16, §1] and [19, §5] for a proof of these statements.
LEMMA 3.3.3. Let ¢: wéAVM) — m;T(A|K) be the canonical map. Then the map
WWa wiaar — n TR} (A|K;p),
(w1, wa) = AV (wr) + V" i (ws),

is a map of W, (A)-modules. It is an isomorphism, for i <1, and for i = 2, there
is an exact sequence

(F" 1) (A/p" ") = aWn wlaary — nTRE(A|K;p) — 0,

where the map on the left takes a to (da,0).

PROOF. If a € W, (A), w; € wEZ}M) and we € wEA,M), then

a-dV"l(wy) = d(a- V" (wy)) —da- VP (wy)
=dV" Y F" a - u(w)) = VLU F N a - 1(wr))
=dV" W(F" e w) = VP LY(F da - wy)),
a- V" (wy) = VU L 1(ws))

— V7L—1L<Fn—1a . w2)7
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which shows that the map of the statement is indeed a map of W,,(A)-modules. The
map ¢ is an isomorphism for ¢ < 2. So the spectral sequence gives an isomorphism
of W,,(A)-modules
w: (F"1H*A % . TRE(A|K; p)
and a natural exact sequence of W,,(A)-modules
0 — (F* 1)'wianr — nTRY(A[K;p) — (F"7H)*(4/p" ") — 0.

The sequence of lemma 3.2.5 maps to the sequence above, and the map of the left
hand terms is an isomorphism. It remains to show that the same holds for the map
of the right hand terms. This map is induced from the composite
A — hWn w(lA,M) — h TR{L(A|K1P) - A/pn71
which in turn may be identified with the map
Hy(Cpn-1,A) = Hi(Cpn-1, A)

given by multiplication by the fundamental class [T/Cp»-1]. This map is an epi-
morphism with kernel p”~1 A, and the lemma follows for i = 1. The statement for
1 = 2 is proved in an entirely similar manner, using the spectral sequence in total
degree < 3 and proposition 4.4.3 below. (Il

REMARK 3.3.4. For ¢ < 1, the proof above does not use that A is a discrete
valuation ring beyond the definition of T'(A|K). In effect, the same proof gives an
isomorphism

Wi Q= mH.(Cpn-1, T(R)),
for any Z,)-algebra R.

Since w(Q A,M) is a uniquely divisible group, by lemma 2.2.4, the spectral sequence
(3.3.2) gives an exact sequence of W, (A)-modules

(F™= 1 (A/p" 1) 5 (F" ) (wlaan /p"") = nTRE (A|K; p, Z,)) — 0,
and d is W, (A)-linear since dF™~1 = p"~1F"~1d. If 7y is a uniformizer, then
dlog Tk represents a class in the cokernel. We denote this class by [dlog mk],.
LEMMA 3.3.5. The map of W, (A)-modules
F: ,TRS(A|K;p, Zy) — TRy (A|K;p, Z))

is a surjection whose kernel is generated by p"~2[dlog Ty

PROOF. The exact sequence above shows that the map of the statement is a
surjection and that the kernel is a quotient of the cokernel of the following map

n—1\*/, n— n— d n—1\*/, n— n—
(FP= ("2 A p" P A) S (F™ ) (0" 2wiaan /" wiaan)-

Hence, it suffices to show that this cokernel is generated by p"~2[dlog mr],. We
consider the polynomial ring P = W (k)[x] with the pre-log structure a: Ny — P
given by «a(i) = x'. The map of W (k)-algebras ¢: P — A, €(z) = 7k, preserves
the pre—log structure agd induces a surjection w(lp’ No) = w(l aan- 1t follows that
the map plw(lR No) p’w(lAM) is a surjection, for i > 0, and therefore, it will be
enough to show that the cokernel of the map

n—1\*x/, n— n— d nm—1\x/, n— n—
(F 1) (p 2P/P 1P) = (F 1) (p 2w(1P,N0)/p lw(lP,No))
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is generated as a W,,(P)-module by the canonical image of p"~2dlogz. Now as a
P-module, the quotient p”*Qw(lP, N0)/]7’“1@«)(1137 No) is generated by p"2dlog x, and
hence the W, (P)-module (F”_ll)*(p”_Qw(lP’NO)/p"_lw(lp’ No) is generated by the
elements p"~2dlog x and p" 2P dlogx, 0 < i < n—1. But the last n—1 generators
are all in the image of the map d:

p"*2xpidloga: = p”*Q*id(:cpi).
Hence the cokernel of d is generated by p"~2dlogz, and the lemma follows. (I
PRrROPOSITION 3.3.6. The sequences
0 — i TR} (A[K;p) - TR} (A|K:p) = TRYH(A|K:p) — 0
are exact, for i <1, and TRy (A|K;p) is uniquely divisible.

PROOF. The statement for ¢ = 0 is [19, proposition 3.3] and for i = 1 is
equivalent to the statement that the norm map is injective. The corresponding
sequence of maximal uniquely divisible subgroups is exact, since F*~1oN is injective
on this part. Hence, it suffices to show that TRS ™ (A|K; p) is uniquely divisible.

We show by induction on m > 1 that TR (A|K;p) is uniquely divisible, or
equivalently, that TR5"(A|K;p,Z,) vanishes. The basic case m = 1 follows from
proposition 2.3.4 and lemma 2.2.4. In the induction step, we show that

Ox.m: TRYY(A|K;p,Z,) — L TRy (A|K;p, Z,)

is surjective. We first consider the case m = 2. In the diagram of Ws(A)-modules

1 02 2
TRB(A|Kap7 Zp) — }LTR2(A|K5P7 Zp)

s s
Oy
TR (k;p) ——— 4, TR (k; p),

the lower horizontal map and the left hand vertical map are both surjections. In-
deed, for the former, this was proved in [19, theorem 5.5], and for the latter, it
follows from the fact, proved in [27, ], that TR3(4;p, Z,) is trivial. The upper
right hand group @ is a quotient of the W5(A)-module M = F*(w(lAM)/p). We
claim that M is annihilated by the ideal I = VW3(A) + pW5(A). Indeed, as an
abelian group M is p-torsion and F'V = p. It follows that also ) is annihilated by
I, and we can therefore view it as a module over the quotient ring W5(A)/I. This
ring is isomorphic to A/p, the isomorphism given by

Wo(A)/I = A/p, a+ 1w R(a)+pA,
and we let g: A/p — W5(A)/I denote the inverse. The A/p-module g*@ is gener-
ated by the class [dlog Tk]2. The image of this class under the right hand vertical
map is a generator ¢; of the Wy(A)-module , TR?(k;p), which is isomorphic to
k. We now pick a € TR}(A|K;p,Z,) such that §(Ox2(a)) = 1. The difference
B =0k 2(a) — [dlog mk]2 is in the kernel of §, and therefore, we can write
B =gzrk) - [dlog k],
for some x € A/p. We then have

g(1+zmg) - [dlog ]2 = Ok 2(@),
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and since (1 +zmg) € (4/p)*,
[dlog T2 = (g(1 + 27k) ") - O 2(a).
We would like to know that the map of units
Wa(A)* — (Wa(A)/1)"

is a surjection. This will follow if we know that the I-adic topology on W5(A) is
complete and separated. But the formula

V(z)-V(y) = V(FV(x)y) = V(pry) = pV (zy)

implies that the I-adic and p-adic topologies on W5(A) coincide, and the p-adic
topology is complete and separated. So we can find a unit u € Wa(A)* such that
u+ I =g(l+zmg). Since Ok o is Wa(A)-linear, we have

[dlog ke = u*lam(a) = BKyg(ufla),

which concludes the proof for m = 2.

We now proceed inductively, and consider the diagram

OK.m
TR (A|K;p, Z,) —=—  TRE(A|K; p, Z,) —— TRY(A|K; p, Zy)

| I |
m—2 Or,m_1 m—1 N m—1
TRy (A|K;p, Zy) —» W TRY™(A|K; p, Zp) —— TRy (A|K;p, Zy).

Inductively, the map Ok ,—1 is surjective, and the left hand vertical map F' is
surjective by lemma 5.6.1. Moreover, the kernel of the middle vertical map is
generated as a W,,(A)-module by the class p™~2[dlog 7k ]m. It therefore suffices
to show that this class is in the image of Ok, in the top row, and this in turn will
follow if we show that the class [dlog mk]m is in the image of Ok .. To see this,
we pick a € TR (A|K;p),Z,) such that 9k 1 (F(a)) = [dlog Tk]m_1. Then
B8 = Ok m(a) — [dlog mk]m is in the kernel of the middle vertical map, so we can
write 3 = x - p™~2dlog g, for some x € W,,(A). But then

(1+p™22)[dlog TK]m = Ox.m(a),
and hence
[dlog 71-K]m = (1 +pm_2x)_18K,m(a) = 8K,m((1 +pm—2x)—1a)’

where the inverse exists since the p-adic topology on W,,(A) is complete and sep-
arated. (]

ADDENDUM 3.3.7. The group TRY(A;p) is uniquely divisible for all n.

PrOOF. It suffices to show that TR3(A;p,Z,) is trivial. We prove this by
induction, and refer to the proof of proposition 2.3.4 for the case n = 1. Since
TR (A|K;p, Zy) vanishes, we have an exact sequence

TRE(A|K;p, Z,) 2% TRE (k;p) — TRE(A;p, Z,) — 0,
46



and we must prove that the map §,, is surjective. We consider the diagram

n on n
TR3 (A|K; p, Z,) ——— TR (k; p)

S
TRy (A|K:p. Z,) ——» TRy (kip).
The map J,,_1 is surjective by induction, and the left hand vertical map is surjective

by lemma 5.6.1. Moreover, it was proved in [19, theorem 5.5] that the right hand
vertical map F' is a surjection whose kernel is equal to the image of the map

V: TRE ™' (k; p) — TR (k; p).
Since the square
TREV(A|K; p, Z,) 25 TR (k: )
I |
TR (A|K: p, Z,) —"— TR3 (ks p)
commutes and the top horizontal map is a surjection, the proof of the induction

step is complete. O

THEOREM 3.3.8. The canonical map

W, w?A,M) — TRy (A|K;p)

is an isomorphism, for q < 2, and a rational isomorphism, for all ¢ > 0.

PROOF. The proof is by induction on n starting from proposition 2.3.4. In the
induction step, we use the exact sequences of lemma 3.2.6 and proposition 3.3.6,

WWh w?A7M) — W, ng,M) 4R) W1 W?A,M) —0

| | I

0 —— n TR} (A|K;p) —— TR} (A|K;p) — 5 TR Y(A|K; p) —— 0,

where the lower sequence is exact, for ¢ < 1, and exact modulo torsion, for all g.
If ¢ < 1, the left hand vertical map is an isomorphism by lemma 3.3.3, and hence
the statement follows in this case. When ¢ = 2, the left hand vertical map is an
epimorphism with torsion kernel. Since the domain and range of the middle and
right hand vertical maps are both divisible groups, the statement follows. O

In the proof of the proposition 3.3.6, addendum 3.3.7, and theorem 3.3.8 above
for n > 3 we have used lemma 5.6.1 below. However, the lemma is not needed to
prove these statements for n < 3. In particular, the proof of following result does
not use lemma 5.6.1.

ADDENDUM 3.3.9. The connecting homomorphism
0: TRy(A|K;p, Z/p) — n'TRI(A|K:p. Z/p)

maps k to dV (1) — V(dlog(—p)).
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PRrROOF. To prove the statement, we apply lemma 3.3.10 below to the 3 x 3-
diagram obtained from the smash product of the coefficient cofibration sequence

S0 L g0 L, £ogt
and the fundamental cofibration sequence
WTR™(A|K;p) = TR™(A|K;p) = TR" ™ (A|K;p) 2 S(TR"(A|K; p)).

Since TR2(A|K; p) is uniquely divisible and TRo(A|K; p) torsion free, the lemma
shows that the connecting homomorphism of the statement is equal to the opposite
of the connecting homomorphism associated with the diagram

0 —— 4 TRI(A|K:p) —— TR(A|K:p) —— TR} (A|K;p) —— 0
Jp Jp I
0~ TRE(A|K;p) —— TRI(A|K;p) —— TR}(A|K;p) — 0.
And by theorem 3.3.8, this diagram is canonically isomorphic to the diagram

0 —— 1Wawiy 1) —— Wawly vy —= Wiw{a ay) 70

I & k
0—— hWQw(lAJVI) L WQW(IA,M) i) Wlw(lA7M) — 0.

The Bockstein maps & to dlog(—p) € Wy w(lA,M), which is the image by the restric-

tion of dlogy(—p) € Wh (.u(lA vy To evaluate pdlogy(—p) we use the formula
—(=p), + V(1) =p(1 +p"?V (1)),

which one readily verifies using the ghost map. If we differentiate, we find
—d(—p), +dV(1) = 2V (1) =0,

and if we multiply by dlog,(—p), we get

—d(=p), + V(dlog(~p)) = pdlogy(—p) + "~V (dlog(—p)) = pdlogy(—p).
This shows that pdlog,(—p) = V(dlog(—p)) — dV (1) as desired. O
LEMMA 3.3.10. Given a 3 x 3-diagram of cofibration sequences
fis

Ell E12 E13 ZJ-E‘ll
gi1 g12 913 2911

By f21 Eys faz2 Eas fa3 o
g21 g22 g23 2921

Ea f31 Esp f32 Ess f33 S Es
931 932 933 (—1) —Xg11

b)) b > -3
SEy N s B, 2 wE, T vep

and classes e;; € m, E;; such that gszs(ess) = Lfi2(e12) and fzz(ess) = Lga1(e21).
Then the sum fo1(e21) + gi2(e12) is in the image of m F11 — miFEoaa. O
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3.4. The k-algebra W, (A) was evaluated in proposition 3.1.5 above. We now
evaluate the differential graded k-algebra W, w{ AM) Let m = mx be a uniformizer.
Then the modified Verschiebung from (3.1.4) satisfies

FdV,(a) = 0k (m)Pda.
Let r =r(i,ex) = vp(i — pex/(p — 1)).
PROPOSITION 3.4.1. The differential graded k-algebra E* = W, w ) s con-

(A,M
centrated in degrees 0 and 1 and satisfies:

(i) a k-basis for EL is given by the elements V! (z'dlog ), where 0 < i < ex and
0<s<r, and dV:(x"), where 0 <i < ex andr < s <mn. Moreover, V. (x'dlogr)
vanishes, if s > r, dV,*(z') vanishes, if s <r, and

AV (z') = p~"(i —pex/(p — 1)) - V7 (z'dlog 7).
(ii) the E°-module structure on E} is given by

AV (P9 — iV (aP i dlog ) if0=s<t,
VE(xh)dVi(x?) = _iV;(aK(ﬂ)ptﬁ(z)fifl—1)Ept—si+jdlog7r)’ iF0<s<t
SV ()P B D it g log ), if s > 4,
Vi(zP'tidlogm), ifs=0,
Vi (a)Vi(aldlogm) = { Vi (x P idlog), ift =0,

0, otherwise.

Proor. It follows from propositions 3.1.5 and 3.2.2 that E} is generated,
as a graded k-vector space, by the monomials in the variables V?(x?), dV,(x?),
V2 (xidlog ), and dV:(m'dlogm) with 0 < s < n and i > 0. And theorem 3.3.8
and corollary 3.2.7 show that E? vanishes, for ¢ > 2. In particular, the latter
generators, which are of degree two, must vanish.
We verify the relations in (i). If s < r then p~*(i + pex(p®* — 1)/(p — 1)) is an
integer, and iterated use of the second relation in proposition 3.1.5 shows that
pS—1

V(e = ¥ e D),

It follows that dV?(x®) vanishes, if s < r, and that dV," (%) and V/ (z’dlog ) are
related as stated. And since V,d is the zero homomorphism, this also shows that
for s > r, Vi(zidlogm) = VS "V (x'dlog 7) vanishes.

The formulas in (ii) are readily obtained by differentiating the first set of relations
in proposition 3.1.5. If, for instance, 0 < s <t < n, we find that

VA )dVi(a') = —dVi(x')Vi(a') = =VHF'dV} (z")x)
t—s pStl— t—s.:, -
O 1) +idlog ),

and the remaining formulas are verified in a similar manner. It remains to prove
that this gives all relations in E}. This is the case if and only if E} is an neg-
dimensional k-vector space. We prove in proposition 6.1.1 below that this is indeed
the case, and hence there can be no further relations. O
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4. Tate cohomology and the Tate spectrum

4.1. Let G be a finite group and let £ be a commutative ring. The norm
element Ng € kG is defined as the sum of all the elements of G. If M is a left
kG-module, mulplication by N¢ defines a map

Ng: Mg — M€

from the coinvariants Mg = k e M to the invariants M = Homyq(k, M). We
note that for left kG-modules M and N, there are canonical isomorphisms

(M@ N)g=c*M &g N,  Hom(M,N)® = Homyq(M, N),

where ¢*M denotes the right kG-module with m - g = g~ 'm.

Let e¢: P — k be a projective resolution and let P be the mapping cone of € such
that there is a distinguished triangle (see section 2.1 above)

PrSrsplyp

DEFINITION 4.1.1. Let M be a left kG-module. The Tate cohomology of G with

coefficients in M is given by
H*(G,M) = H_.((P ® Hom(P, M))%).
It is clear that the Tate cohomology groups are well-defined up to canonical iso-

morphism. We show that the definition given here agrees with the usual definition
in terms of complete resolutions, [5, chap. XII, §3].

LEMMA 4.1.2. The following maps are quasi-isomorphisms:

(P& M)g — N (P e M)C M2, (P @ Hom(P, M))C.

PRrROOF. We first show that the norm map is an isomorphism of complexes. It

will suffice to show that the norm map
(kG ® M) 25 (kG ® M)©
is an isomorphism. For both sides commute with the formation of arbitrary direct
sums. Let n: k — kG and e: kG — k be the unit and counit of the Hopf algebra
kG, respectively. Then we have an isomorphism of left kG-modules
ERGReENM S kG M, ((goz)=g® g

The left hand side is isomorphic to a direct sum indexed by the elements of G of
copies of M, and G acts by permuting the summands. Hence IV is an isomorphism.

In order to show that the right hand map of the statement is a quasi-isomorphism,
we filter the double complex on the right after the first tensor factor. This gives,
by [1, theorem 6.1], a strongly convergent fourth quadrant spectral sequence

EL, = H,((P; ® Hom(P, M))¥) = Hy((P ® Hom(P, M))),
and hence, it suffices to show that for all s > 0, the map
(P, @ M)¢ M2, (P, @ Hom(P, M))©

is a quasi-isomorphism. Since both sides commute with filtered colimits in the first
tensor factor, we can further assume that the projective kG-module P; is finitely
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generated. In this case, the dual DP; = Hom(Ps, k) again is a (finitely generated)
projective kG-module, and there is a commutative diagram

(P, ® M)¢ —22< 5 (P, ® Hom(P, M))?

oo
Hom(DP,, M)¥ — ( N Hom(P ® DP,, M)€%,
with the vertical maps isomorphisms. The map

e®id: P® DP, = DP,

is a quasi-isomorphism between bounded below complexes of projective kG-modules.
Therefore, it is a chain homotopy equivalence, and hence, so is the lower horizontal
map in the diagram above. The lemma follows. ([

REMARK 4.1.3. The triangle preceeding definition 4.1.1 and lemma 4.1.2 give
rise to natural isomorphisms

HY(G,M) = {

and to a natural exact sequence
0— H-4G, M) S HyG, M) X HOG, M) S BO(G, M) — 0.

Hence, the defintion of Tate cohomology given here agrees with the original one
in terms of complete resolutions, [5, chap. XII, §3]. This can also be seen more
directly as follows. Let e: P — k be a complete resolution in the sense of loc. cit.,
and let P and P~ be the complexes whose non-zero terms are P; = P;, if i > 0,
and P, = P, if i <0, respectively. Then e: P — k is a resolution of & by finitely
generated projective left kG-modules and there is a canonical triangle

P PP YP .

Hi{(G,M) ifi >1
H_; 1(G,M) ifi<-—1

An argument similar to the proof of lemma 4.1.2 shows that the canonical maps
Hom (P, M) = (P @ Hom(P, M))® = (P ® Hom(P, M))%
are quasi-isomorphisms.
DEFINITION 4.1.4. The cup product
H*(G,M)® H*(G,M') — H*(G,M © M')
is the map on homology induced by the composite
(P ® Hom(P, M))® @ (P ® Hom(P, M'))Y — (P ® P ® Hom(P ® P,M ® M'))“
— (P ® Hom(P, M ® M"))¢,

where the first map is the canonical map, and the second map is induced from a
choice of chain maps P - P® P and P ® P — P compatible with the canonical
isomorphisms k — k ® k and k ® kK — k, respectively.

It is well-known that the chain map P — P ® P exists and is unique up to
chain homotopy. The analogous statement for the map P ® P — P is proved in an
entirely similar manner. Hence, the cup product is well-defined. It makes H* (G, k)
a graded commutative graded ring and H *(G, M) a graded module over this ring.
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4.2. Let C be a cyclic group of order r and let g € C' be a generator. We let
e: W — k be the standard resolution which in degree s > 0 is a free kC-module on
a single generator zs with differential

Nzg_q, s even,
drg =
(9 — Dxs—1, sodd,

and with augmentation e(zg) = 1. Then W is the complex which in degree s > 0
is a free kC-module on the generator y; = (0,2,_1) and in degree s = 0 is a trivial
kC-module on the generator yo = (1,0). The differential is

(9= 1Dyer, s even,
dys =< —Nys_1, s> 1 odd,
—Yo s=1.
The dual of x4 is the element z* € DW, = Hom(W,, k) given by z%(g'xs) = ;0.

Note that gll-;kl = (gll.n)* and that the map (gz)*: DWS N DWS maps x: o gflsr:.
Thus
de* — (g7t =1Dat,y, seven,
’ Nzgiy, s odd.

LEMMA 4.2.1. Suppose that the order of C' is odd and congruent to zero in k.
Then as a graded k-algebra

H*(C,k) = Mu} ® S{t*1}

where t and u are the classes of yo @ Nx5 and yo @ Nx¥, respectively. Moreover,
the classes 1, ut=! and t=1 are represented by the elements yo @ Nxj, —Ny; @ N},
and Nys ® Nxf, respectively.

PRrROOF. We first evaluate the homology of the complex
(W @ Hom(W, k))¢ = (W @ DW)C.
This is the total complex of a double complex, and the filtration after the first

tensor factor gives rise to a fourth quadrant homology type spectral sequence which
converges strongly to the homology of the total complex, [1, theorem 6.1]. We have

Eslv,t = Hs-i-t(Ws ® DW)C = Hg ¢ (Hom(W, Ws)c)a
which vanishes unless one of s and ¢ are zero. Hence Eit = EJ5 and it is easy to
see that if either s or t is zero, this is a free k-module of rank one generated by the

classes of yo @ Nz*, and Ny, ® Nz, respectively. We note that these elements are
also cycles in the total complex.

To evaluate the multiplicative structure, we choose liftings
VW -wWeWw

PWRW - W
of the canonical maps k — k ® k and k ® k — k, respectively:
Z 9Pz @ gz, m and n odd

i ( s ) s<p<q<s
‘r =
m,n{9 Tm+n G Tm ® gz, m odd, n even
G T @ ¢ T m even
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and
Z 9 Yman m and n odd

» q ) p<s<g<p
@i (9PYm @ 9%yn) = Opat19" Ymin m odd, n even
5p,quym+n m even,

where in the first line the sum ranges over the g° between ¢ and ¢?~!, both
included, in the cyclic ordering of C' specified by the generator g. The sum is zero
if and only if p = g. The map ¥ induces a product map on the dual DW given by
the composite

U*: DW @ DW % D(W @ W) 2% DW,

or
_ Z g °xy, ., mandn odd
N —pox —q. %\ _ p<s<qg<p
‘I’m,n(g T @ g~ ay,) = Op.q+19 2T m odd, n even
5p,qgfpl”fn+n m even.
We find that
r(r—1)
. y S S Nax* d dd
(Yo ® Nay,) - (yo ® Nay,) = g W@ N Emen ARG O
Yo ® Netjy else
and
r(r—1) N
(Nyom ® Na) - (Nyn @ Nat) = —5 NYm+n ® Nxg m and n odd
Nym+n 0 Nx(*) else.

Moreover, the product
(yo ® Naj) - (Ny2 ® Nag) = Ny2 @ Naj

is homologous to yp ® Nz{, which represents the multiplicative unit in the coho-
mology ring. Indeed,

A(A(N)(y1 @ 25) + AN)(y2 @ 27)) = —yo @ Naj + Ny @ Nas.
Hence Ny; ® Nz represents the class t~1. Finally, for any element o € kC,
(1®a)A(N) =(a®1)A(N),

where & = ¢(a) is the antipode. Therefore, if a € kC' is such that (¢ —1)a=r— N
(for example o = 14 2g + - -+ +rg"~! is such an element), then

d(( @ DA(N)(y2 ® 2;))
=—((g-D @) (a® AN)(y1 ® x5)
—(1®(@-1)10a)AN)(y2 ® 1)
= Ny; @ Naf+ Nya @ Naj — rA(N) (11 @ x5 + y2 @ x7),

and hence, Ny; ® Nz} represents the class —ut~! in the cohomology ring. O

ADDENDUM 4.2.2. The boundary map 9: H='(C,k) — Ho(C, k) takes ut™" to
the class of —1.
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PRrROOF. The boundary map, by definition, is induced by the composite

(W @ Hom(W, k)¢ 224 (S @ Hom(W, k)€ 42 (W @ k)

~

L =W k)e E5 Ske.

The class ut~! is represented by the element —Ny; ® Naj, whose image under d®id
is —Nzg @ Nzj. This element is equal to (id ®€e*)(—Nzo ® 1) and —Nzg ®@ 1 =
N(—z9®1). Finally (e ® id)(—z¢ ® 1) is equal to the class of —1. O

4.3. We recall that for spectra X and Y, there are natural maps
131 N s X QmY — mep (X AY),
(43.1) Vi e F(X,Y) — Hom(m_ s X, mY'),

where A is the external product and V is the adjoint of the composite
Tt F(X,Y) @ m_ X 2 m(F(X,Y) A X) <5 mY.
Let X be a G-CW-spectrum with an increasing filtration {X,} by sub-G-CW-
spectra. Then the exact couple
Divip1 = Doy 2 By & Dy
with
Dy (X) = 7Ts+t((XS)G)

4.3.2
( ) Es,t(X) = 7Ts+t((XS/XS—1)G)

gives rise to a spectral sequence which abuts the homotopy groups of X“. The spec-
tral sequence converges conditionally in the sense of [1, definition 5.10], provided
that | J X, = X and holim(X,)¢ is contractible.

If X and X’ are two G-CW-spectra with such filtrations, we give the smash
product X A X’ the usual product filtration

(XAX)n= |J X.nXL.
s+s'=n
with filtration quotients
(XAX)/(XAX" )y = \/ X /Xe g ANXo/Xg_1.
sts'=n
The external product (4.3.1) and the inclusions
X AXL 5 (XAXsrs
Xo/Xso1 NXg /X1 — (XNANX) sy /(X NANX)sps—1
then give rise to pairings
D t(X)® Dy /(X') = Doysr pre (X N X'),
Est(X)® By ¢(X') = Espor e (X AN X').
These, in turn, give rise to an external pairing of the associated spectral sequences,
that is, pairings

E;t(X) ® E;,t' (X/) - EsT-i-s',t-s—t’(X A X/)v
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for all 7 > 1, which satisfies the Leibnitz rule
d"(za') = d"za’ + (—1)1®lzd 2.

Here |x| is the total degree of z. A filtration preserving product map X A X —
X induces a map of the associated spectral sequences which, pre-composed by
the external product, gives an internal product on the spectral sequence E*(X).
The differentials act as derivations for this product, and if the product on X is
associative, commutative or unital, the same holds for the internal product in the
spectral sequence. Commutativity in the spectral sequence is up to the usual sign.

Let G be a finite group and let E be a free contractible G-CW-complex. Let F
be the mapping cone of the projection pr: E; — S° which collapses E to the non-
base point of SY. The associated suspension-G-CW-spectra (we make no change in
notation) form a distinguished triangle of associated

B, 280 S ELyE,.
Let P and P be the cellular complexes of E, and E with coefficients in a commu-
tative ring k. We then have a distinguished triangle
P2 pP-3xP

in the category of chain complexes.

The Tate spectrum of a G-spectrum 7T is defined by
B(G,T) = (B ATF(E,T))C,

where I'’X = X is a functorial G-CW-substitute. If T and 7" are two G-spectra,
we define a pairing

(4.3.3) H(G,T) NH(G, T') — H(G, T AT)

as follows. By elementary obstruction theory, there are cellular G-homotopy equiv-
alences B, — E_AFE, and EAE — E compatible with the canonical isomorphisms
S0 — SOAS% and SO A SO — SO, respectively, and any two such equivalences are
G-homotopic. The pairing then is given by

(EATF(EL, T) AN(EATF(EL, T))¢ - (EANEANTF(EL NE,., TANT')®
— (EATF(EL, TAT)C,
where the first map is the canonical map and the second is induced from the chosen
G-equivalences. If T is a G-ring spectrum, the composition of the external product
with the map of Tate spectra induced from the product map on T', makes H(G, T')

a ring spectrum. This ring spectrum is a associative, commutative or unital if the
G-ring spectrum T is associative, commutative or unital, respectively.

The CW-filtrations of E and E give rise to a double filtration of the Tate spec-
trum. In more detail, we define
X,.=E.NTF(E/E_, 1,T)
Y,s=FE./E,_ y N\TF(E/E_,_1,T)
Zys = B, N\TF(E_/E_,_1,T))
Wy = E/E,.y \TF(E_,/E_,_1,T)).
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To get an honest filtration by sub-G-CW-spectra, we let

XT_S = hOlier/ s’
) *) >

where the homotopy colimit runs over all 0 < 7/ < r and s’ < s < 0. There is a
canonical homotopy equivalence X = X, s and X, ; is a sub-G-CW-spectrum of
the G-CW-spectrum X = X, o. We also let

Yr,s = Xr,s/erl,s
Zr,s = Xr,s/Xr,sfl
_7',5 = _7',5/)_(7'—1,8 U Xr,s—l

and define
o= |J ZocX

r+s<n

The exact couple (4.3.2) associated with the filtration {X,,} gives rise to a condi-
tionally convergent spectral sequence

E*(G,T) = E*(X) = m.(H(G,T)).
LEMMA 4.3.4. There is a canonical isomorphism of complexes
Ei,t(G7T) = (]5 ® Hom(P, ’/TtT))G

and hence Eg,t(G,T) >~ Hs(G,mT).

ProoF. The inclusions Xr,s — XHS induce an isomorphism
\ Wes = Xo/Xna
r+s=n
such that the boundary map
X0/ Xn 1 =YX 1 — S(Xn1/Xn_2)

maps the summand W, s to the summands SW,_; 5 and W, s_1 by the maps

O Wyg —=SY, s 1 — SW, 51,

O Wys =21 = ISW, s,
respectively. We identify

Tt srt(Wrs)9) 2 (P, @ Hom(P_g, 7:T))¢
as follows: If X and Y are two G-spectra, we have the canonical map
T (X AY)Y) = (m (X AY))C.

This is an isomorphism, for example, if X is a wedge of free G-cells. The desired
isomorphism is the composition of the inverse of this map with X = E,./E,_; and
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Y =TF(E_4/E_s_1,T) and the map of G-fixed sets induced by
Trtsrt(Br/Er 1 A\TF(E_,/E_s1,T))
& (B /Br 1) @ mop DF(E_y/E_y1,T)
s 1 (B ) Bret) @ most F(B_y ) E—_1,T)
2 Ho(EBy ) Bry) @ Hom(n (B o/ E—s 1), mT)

2N [ (B,)E,_1) ® Hom(H_y(E_,/E_s_1),mT).

Here h is the Hurewitz homomorphism. One readily shows that under this identi-
fication, m.(9") and m,(9") correspond to the differentials in the algebraic double
complex. 0

The pairing (4.3.3) induces a pairing X (T) A X(T") — X (T AT’), and since the
equivalences By — E, A E, and E A E — E were chosen cellular, this pairing
preserves the filtration by the sub-CW-spectra {X,,}. Hence, we get an induced
pairing of the associated spectral sequences.

PROPOSITION 4.3.5. Let T and T’ be two G-spectra. Then the pairing of Tate
spectra (4.3.3) induces a pairing of the associated spectral sequences. On E?-terms,
this pairing corresponds to the pairing on Tate cohomology

H*(G,m,T) @ H (G, 7, T") — H*(G, 7, (T ANT"))

under the isomorphism of lemma 4.3.4. In particular, if T is an associative G-ring
spectrum, then E? = H*(G,m,T) as a bi-graded ring.

PROOF. The equivalences E, — E, A E, and EAE — E induces chain maps
P — P®P and P®P — P which lift the canonical maps k — k®k and k@ k — k,
respectively. Now suppose T and T” are two G-spectra and consider the spectral
sequences corresponding to the filtrations {(X(T) A X(T")),} and {X(T A T"),}.
An argument analogous to the proof of the lemma 4.3.4 identifies the E'-terms of
the associated spectral sequences with the complexes

(P ® Hom(P, 7. T) ® P ® Hom(P,,T"))%

and

(P ® Hom(P, . (T AT")))%,
respectively. We claim that under these identifications, the pairing

X(T)ANX(T") — X(T ANT")
corresponds to the composition

(P ® Hom(P, 7, T))¢ @ (P ® Hom(P, 7, T"))¢
— (P® P®Hom(P® P,n,T @ m,T))¢ — (P®Hom(P,m.(T ®T")))%,

where the first map is canonical map of chain complexes (which inv~olve~s sig{l
changes) and the second map is induced from the maps P - PQ P and PQ P — P

and from the exterior product (4.3.1). This is straightforward to check. Similarly,
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under the isomorphism of lemma 4.3.4 and the analogous isomorphism above, the
external pairing corresponds to the canonical map (no sign changes)
(P ® Hom(P, 7. T))¢ ® (P ® Hom(P, 7, T"))¢
— (P @ Hom(P, 7, T) ® P ® Hom(P, , T"))¢.

But this was our definition of the paring in Tate cohomology, see (4.1.4). (I

REMARK 4.3.6. We show that the spectral sequence E* (G, T) considered here is
canonically isomorphic to the spectral sequence obtained from Greenlees’ Z-graded
“filtration’ of F, [11], [12]. This is the sequence of G-CW-spectra,

= FE._ 1 —FE —-E.41— ...,
where, for r > 0, E, is the suspension G-spectrum of the r-skeleton of E, and for
r <0, E, is the dual D(E,T) = FF(E,T, S9). In particular, Ey = 5° is the sphere
G-spectrum. The maps E,_; — E, are induced from the canonical inclusions,
and for » = 0, from the canonical map D(SY) = S°. In the definition of the
G-CW-spectra X, 5 and X,,, we now may vary r over all integers. Let X,’,VS and

X! denote the G-CW-spectra so obtained. Then, for » > 0, the canonical inclusion
X, s — X!, is a homotopy equivalence. We have maps of filtrations

r,s
{Xn}nez - {X;L}nez — {X;,O}TEZ:

and the filtration on the right is Greenlees’ filtration. We show that both maps
induce isomorphisms of the E2-terms of the associated spectral sequences. In order
to identify the E'-terms, let ¢: P — k be the complete resolution, where

(SP), = Hy(E, UCE,_1; k)
with differential

susp ~

HS(ES U C(E‘s—l) d—*> HS(ZES—l) — s—l(Es—l) Z_*) s—l(Es—l U CE~S—2)
and with structure map
susp

€: Po = Hl(El U CE()) 8—*> Hl(ZEQ) — Ho(Eo) = k.

The map of distinguished triangles

P———k p Y P
P——YPp——2p——3%P

defines a quasi-isomorphism of the mapping cones of the two middle vertical maps.
(See remark 4.1.3 for the definition of the lower triangle.) Now an argument similar
to the proof of lemma 4.3.4 identifies the maps of E'-terms induced from the above
maps of filtrations with the canonical maps

(P ® Hom(P, M))¢ — (SP ® Hom(P, M)) — (2P @ Hom(k, M))€.

Finally, an argument similar to the proof of lemma 4.1.2 shows that both maps are
quasi-isomorphisms.
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4.4. Again let C be a cyclic group of order r and let g be a generator. As our
model for F, we choose the unit sphere
E = 5(C),
where the generator ¢ acts on C by multiplication by €*™/". We give F the usual
C-CW-structure with one free cell in each dimension. The skeleta are

{S((Cd) n=2d-1

n —

S(CHx(C-1) n=2d,
where in the latter case, we identify the join with its image under the canonical
homeomorphism S(C™) % S(C) = S(C™ @ C). The attaching maps
an: D" xC — E,
are defined in even dimensions by the composite
D* x ¢ 5 D(C?) x ¢ 5 S(C) « (C - 1),

where £(z,9°) = (¢° - z,¢°) and 7 is the canonical projection. We define

Oz1($,gs) _ gs . eﬂ'i(a:Jrl)/r

and let aipgy1 be the composite
D¥ % D' x ¢ & D(C?) x D! x ¢ 224, D(C4) x S(C) = S(C4) « 5(C).

We give D(C?) the complex orientation and D' = D(R) = [~1, 1] the standard
orientation from —1 to 1. We may then identify the cellular complex of E with the
standard complex W by the isomorphism

W = C.(E; k)

which maps the generator x,, € W,, to the image of the fundamental class under
the composite

H,(D", 8" ) X% H, (D" x C,5" ' x C) 2% H,(Ep, En_1).
Here 1o: D™ — D™ x C maps z to (z,1).

The C-CW-structure on F induces one on E and the isomorphism above induces
an isomorphism of chain complexes

W = Cu(E: k).
We identify E with SC~ by the homeomorphism
CS(C®), US® = D(C>)/S(C™)

which maps ¢ A z +— tz. Note that under this homeomorphism, the orientation of
the cells in E corresponds to the complex orientation of S~ . In particular, the
composite

Hy(SC) & Hy(Ep) = Hy(Eo, Er) < Wy
maps the fundamental class [SC] to the class Nys.
Let C C T be the subgroup of order r. We give T the C-CW-structure of

S(C) = E;. Then the multiplication is cellular, and hence, the cellular complex

A=C.(T;k)
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is naturally a differential graded Hopf algebra with unit 1 = xy. The differential
maps z1 to (¢ —1)-xq, x1 is primitive, the coproduct on g is g® g, and the antipode

is given by c¢(z1) = —x1. We note that z; represents the fundamental class [T].
The C-action on E = S(C*) naturally extends to a T-action, and the action map
wTxE—FE

is cellular. The induced action on E,
~ CL ~
ILNLI T+ /\EZT+ /\Cpr L C’]I‘+/\pr =%, Cpr :E,

again is cellular. The induced left A-module structures on the cellular complexes
W and W are given by

oy Ts41 S even - )0 s even
P TY00 sodd T VYT T Syan s odd

Let T be a T-spectrum and let X = X (7T') be the filtered T-CW-spectrum, which
gives rise to the spectral sequence E’*(C, T). We give T/C the skeleton filtration
such that Ao = C,(T/C;k). Then the T-actions on E, E, and T induce a filtration
preserving map

w: T/Cy AXY = XC©.
An argument similar to the proof of lemma 4.3.4 identifies the induced map of
El-terms of the associated spectral sequences with the map

Ac @ (W @ Hom(W, 7,T))¢ — (W @ Hom(W, , T))¢
given by the composite
Ac @ (W @ Hom(W, 7.7)¢ 225 A€ @ (W @ Hom (W, 7.T))“
— (A ® W ® Hom(W, 7,.T))¢ <2 (W @ Hom(W, 7, T))°.
ProPOSITION 4.4.1. Let T be a T-spectrum. Then EA’*QC7 T) is a spectral se-
quence of left Ac-modules. Moreover, if the class a € . (H(C,T)) is represented

by the infinite cycle z € EL,, and if x1 -z € El,, , is non-zero, then x - z is an
infinite cycle and represents the class of da € m,(H(C,T)). O

Let k be a perfect field of odd characteristic p and let T'(k) be the topological
Hochschild spectrum of k. Then as a differential graded k-algebra,
m(T(k),Z/p) = Me} ® S{o}

with the classes € € m1(T'(k),Z/p) and o € (T (k), Z/p) characterized by B(e) =1
and d(€) = o. The Tate spectral sequence takes the form

E*(Cy T(K)) = Mu, e} ® S{t*!, 0} = m(T(k), Z/p),

where u; = u and t are the generators of H* (Cp, k) from lemma 4.2.1. The non-zero
differentials are multiplicatively generated from d?(e) = to.

COROLLARY 4.4.2. The image of the classes € and o under the map induced from
Dy: T(k) — H(C,, T(k))

are represented by the infinite cycles ut™' and t~1, respectively.
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PROOF. We recall from section 1.1 that ' is defined as the composite

T(k) < gt (B AT)Cr — piy (E A F(Es,T)) .

Both maps are T-equivariant, so I' commutes with Connes’ operator. It also com-
mutes with the Bockstein operator. Hence, it suffices to show that ut~! ® 1 repre-
sents the unique class whose Bockstein is the multiplicative unit 1, and that t ' ®1
represents the image under Connes’ operator of this class. To this end, we recall
from lemma 4.2.1 that the classes 1, ut~" and t~' in H*(C,,F,) are represented
by the elements yo ® Nz§, —Ny; ® Nzf and Ny ® Nxf, respectively. We recall
from section 2.1 above that the Bockstein

B: f{*(Cpa Fp) — i (Cp, Z)
is equal to the connecting homomorphism associated with the exact sequence
0 — (W @ Hom(W, Z)) L (W @ Hom(W, Z))%» 25 (W @ Hom(W, F,))%» — 0.
This takes —Ny; ® Nzj to yo ® Nz, and hence B(ut~1) = 1. Next,
x1-(=Ny1 ® Nag) = =N (21 - 1) @ Nag 4+ Ny1 @ N (21 - 25) = Ny ® Nag,
so by proposition 4.4.1, the image under Connes’ operator of the class represented
by ut~! ® 1 is represented by t ™! @ 1. O
Finally, for a T-spectrum T', we will also consider the T-Tate spectrum
B(T,T) = (B ATF(E, 1)),
where again F = S(C*). The filtration of F by the odd skeleta Foq_1, d > 1,
and the associated filtration of E both are preserved by the T-action. The induced
filtration of the Tate spectrum gives a conditionally convergent spectral sequence
E2(T,T) = S{t*'} @ m(T) = m, (H(T, T)),
with the generator ¢ in bi-degree (—2,0). Let C' C T be a subgroup. Then the
canonical inclusion H(T,T) — H(C,T) induces a map of spectral sequences
E*(T,T) — E*(C,T).

If the order of C is odd and annihilates 7, (T) then, on E2-terms, this map is the
canonical inclusion which maps ¢ to the generator ¢ of lemma 4.2.1. This is the
case, for instance, if T'= M, AT(A|K) and C = Cpn.

PRrROPOSITION 4.4.3. Let T be a T-spectrum and let C C T be a subgroup whose
order r is odd and annihilates m.(T). Then the d?-differential in

E*(C,T) = H*(C,Z/r) ® m.(T) = m, (H(C, T))
is given by d*(y ® ) = vt ® dr, where d is Connes’ operator.

PRrROOF. It was proved in [16, lemma 1.4.2] that in the in the T-Tate spectral
sequence, the d?-differential is given by the formula of the statement. Moreover, ev-
ery C-spectrum 7 is a module C-spectrum over the sphere C-spectrum S°. Hence,
it suffices to show that the class u is a d2-cycle in the spectral sequence E* (C,S9).
But 71(S°, Z/r) vanishes since  is odd. O
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5. The Tate spectral sequence for T(A|K)

5.1. The Tate spectral sequence E*(Cpn, M, T(A|K)) is a spectral sequence
of bi-graded k-algebras in a canonical way, which we now explain. (We will abuse
notation and write E*(Cyn, T(A|K))). For every Cpn-ring spectrum T', H(Cyn, T)
is a T%n-algebra spectrum, and the Tate spectral sequence is one of bi-graded
7. (TC»" )-algebras,

E2(Cpn, T) = H*(Cpr, F*7,(T)) = 7 (H(Cpr, T)),

where F™: T¢" — T is the natural inclusion. Here F™*7, T denotes the graded ring
7.7 = 7.(T,Z/p) considered as a 7,(T»")-algebra via the ring homomorphism
induced by F™. In the case at hand, we consider this a spectral sequence of bi-
graded k-algebras via the ring homomorphism (3.1.3),

pri1: k= Wiii(A) = To(T(A[K)“).

We recall that F™ o p,+1 = p1 0 ™, where ¢: k — k is the Frobenius. The latter
is an automorphism, by our assumption that k be perfect, and hence

EQ(CPW,,T(A|K)) = Mup,dlogmk} @ S{rk, K, til}/(ﬂ';{),

where u,, and ¢ are the canonical generators from lemma 4.2.1. The differential
structure of this spectral sequence is evaluated in this paragraph. It is in order to
briefly outline the argument.

The d2-differential in E*(Cpn, T(A|K)) is given by proposition 4.4.3 in terms of
Connes’ operator (2.1.2) on 7, T(A|K). Hence, by theorem 2.4.1,

d*rg =tdlog T - Tk, d’k = tdlog(—p) - K,

and we can use the equation —p = 730k (7x) ! to express dlog(—p) as a poly-
nomial in g times dlog mg. In section 5.2, we replace xk by a new generator ag,
defined as a certain linear combination of the elements ﬂ'}(n with 0 < i < ek, which
satisfies that dax = exdlogmi - ax. In particular, ax is a d?-cycle, if p divides
ex. We also replace t by a new generator 7x defined in a similar manner.

The key results that make it possible to completely evaluate the spectral sequence
are consequences of the map

P s T(AIK)Sm 1 — H(Cyn, T(A|K)),
and of the unit map of the ring spectrum on the right,
(: 8 — H(Cpn, T(A|K)).

We show in section 5.3 that for n < v,(ex), wﬁ’(n and —Trgay are infinite cycles
which represent the classes r Ak (7x ) and r Al (TS /P, respectively. We also
show that —7xal, is always an infinite cycle which represents the image by the
unit map of the canonical generator vy € 7ap_2(S?). Given these infinite cycles
together with the value of the differentials on the p-powers of 7, which we examine
by a universal example in section 5.5, one can evaluate the spectral sequence, if
n < vp(er). The final part of the argument consists of a somewhat complicated
induction argument, which we present at the end of section 5.5. The key for this
part is naturality, going back and forth between T(A|K) and T(B|L) for suitable
ramified extensions L/K.
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The handling of the spectral sequences is algebraically somewhat complex. To
ease the presentation we first consider in section 5.4 the case of E*(C,, T(A|K)).
This section also contains the proof that the map r Ak induces an isomorphism of
homotopy groups with Z/p-coefficients in non-negative degrees.

5.2. Let L be a finite and totally ramified extension of K, and let B be
the integral closure of A in L. Then B is a complete discrete valuation ring with
quotient field L and residue field k. Let mx and w7 be uniformizers of A and B,
respectively. The minimal polynomial of 7, over K has the form

br K (x) = 2°L/K + R 0p i (2),

where 01k () is a polynomial over A of degree < ey /x and 01,k (0) € A*. More-
over, the canonical map

A[TFL]/(QbL(WL/K)) = B

is an isomorphism. When K = K is the quotient field of W (k), we will always use
Tk, = p and write write 07 (x) instead of 01, ().

LEMMA 5.2.1. Suppose that ,, C K. Then a choice of a generator ( € p, and
a uniformizer 7 € A determines a polynomial ug (x) € W (k)[x] of degree < ek
such that ug (7 )P~ ! = Ok (7). Moreover, in w(lA M)

dlog¢ = —ﬂ;K/(pfl)uK(ﬂ'K)_ldlog(—p).

PRrROOF. Consider the power series f(z) = px + 2P and g(z) = 1+ x)? — 1
and recall from [39, §3, proposition 3] that there exists a unique power series ¢(x)
such that f(¢(x)) = ¢(g9(z)) and ¢(z) = z modulo (2?). Hence, if ¢ € p, is a
generator then ¢(¢ —1) is a (p — 1)st root of —p. We define ux (x) to be the unique
polynomial of degree < ex such that

uge () = i (¢~ )7
To prove the second statement, we first note that
de(¢ = 1) = (¢ — 1)dlog p(¢ — 1)
= w5 D ug (i) - (p — 1) dlog(—p)

-

ug (mx) " - dlog(—p),

where the last equality uses that dlog(—p) is p-torsion. Hence, it suffices to show
that dp(¢ —1) = dlog (. We may assume that K = Q,(u,), where as a uniformizer,
we take m1g = ( — 1. Then w(lA’M) is annihilated by 77?{1, and since dp(¢ — 1) =
©'(¢ — 1)¢dlog ¢, we have left to show that ¢'(z) = (1 + x)~! modulo (zP~1),
or equivalently, that ¢(z) = log(1 + =) modulo (2P). But this follows from the
uniqueness of p(z) and from the calculation in Zy[z]/(xP):

log(1 + g(x)) = log((1 + z)P) = plog(1 + x) = f(log(1l + x)). ]

ADDENDUM 5.2.2. Let L/K be a finite and totally ramified extension. Then the
inclusion of valuation rings, 1: A — B, maps

Wug (mx)) = (=0 () =</ P Dy (mp).

63



PROOF. We can write the ¢(¢(¢ — 1)) = (¢ — 1) as

L(W;(K/(pil)uf{(ﬂ'[{)_l) _ WZL/(pil)’U/L(ﬂ'L)_l.

Since ¢(mx) = Op/x (7) "2/, the left hand side also is equal to
(—QL/K(WL)_lsz/K)CK/(p_l)L(uK(WK)_l).
The formula follows since eg, JKEK = €L and since 7y, is a non-zero-divisor. O

Suppose that p, C K. We choose a generator ¢ € u, and a uniformizer 7x € A
and let ug(z) be the polynomial from lemma 5.2.1. Let x € 7T (A|K) be the
unique class with 8(k) = dlog(—p) and define ax = ug (7r) k.

PROPOSITION 5.2.3. As a differential graded k-algebra
T T(A|K) = A{dlogmk} @ S{ak, mk}/(75)
with drg = Tgdlogmg and dag = egagdlog i .
PRrROOF. It follows from theorem 2.4.1 and lemma 2.2.3 that as a differential
graded k-algebra
7. T(AK) = Mdlog i} ® S{s, mic} /(1)
with the differential given by drgx = mxdlogmk and dk = kdlog(—p). Moreover,
differentiating the equation —p = 73 0 (7)1, we find
dlog(—p) = (exdlogmx — dlog Ok (k).
Finally, 0x (7x) = ux (7x)P~1, and hence
dlag) = —ug(mx) tdloguk (1) - & +uk ()" - kdlog(—p)
= —agdloguk (mx) + ax(exdlognig — (p — 1)dloguk (7K ))
=egagdlog i

as stated. O

We recall the Bott element. Since p is odd, the Bockstein is an isomorphism,
T2 (X% Bpup+.) = pT1 (X% By < Hops

and by definition, the Bott element b = b, is the class on the left which corresponds
to the chosen generator ¢ on the right. The spectrum 3°° B, is a ring spectrum
and the (p — 1)st power b»~!, which is independent of the choice of generator, is
the image by the unit map of a generator v; in 7_I'2p_2(50). If 4, C K, we have the
maps of ring spectra
5% By, 2% K(K) 5 T(A|K)Cn-1,

and let b, = b, ¢ be the image of the Bott element in 7 (T(A|K)“»"~1). We note
that 3(b,) = dlog, ¢ and that since my(T(A|K)“» 1) is uniquely divisible, this
equation characterizes b,,. In particular, the calculation

B(br) = dlog ¢ =~/ P Vg (nxc) " dlog(—p) = B~/ P Vag)
shows that
5.2.4 b = — ex/(p—1)
( /N ) 1 7TK [(67:¢

The elements b,, for n > 1, however, are not well understood.
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Let L/K be a finite and totally ramified extension, and let :: A — B be the
inclusion of valuation rings. Then the map

(5.2.5) ts: T T(A|K) — 7. T(B|L)
is given by
L(mg) = =0 k() o,

t«(dlogmy) = er gdlogmx — dlogfr/k(7L),

(o) = (—0px (wL)) </ P Day,.
The first two equalities follows immediately from the definition of 6, (7r.), and
the last equality follows form addendum 5.2.2.

Let f(x) € k[z] and let n be an integer. We write f(™)(z) for the image of f(x)
under the automorphism ¢"[z]: k[z] — k[z], which applies ¢™ to the coefficients
of a polynomial. If R is a k-algebra and if 7 € R then, as usual, f(7) denotes the
image of f(z) by the unique k-algebra homomorphism k[z] — R which takes = to
7. We note that f(=™) (1) € ¢"*R and f(r) € R is the same element.

Suppose either p1, C K or K = Ky. In the former case, let 7x be a uniformizer,
let ¢ € p, be a generator and let ug (x) be the polynomial from lemma 5.2.1. In
the latter case, let ug,(x) = 1. Then as a bi-graded k-algebra,

(5.2.6) E2(Cpn, T(A|K)) = My, dlog g} @ S{mr, ax, 75"}/ (7°%),
with the new generators given by

(—n)(

O = U WK)_IH, TK:’LL%_”)(’ITK)pt.

We note the relations Tgax = Oggn)(m()tfs and Tk, = tkP.

It will be important to know how these new generators behave under extensions.
For integers a,r,d with 0 < r < ex and d > 0, we define

{a7r7 d}K = (pa - d)@K/(p - 1) +r.
If up, C K then p — 1 divides e such that {a,r,d}k is an integer. Let L/K be a

finite and totally ramified extension, and let ¢t: A — B be the inclusion of valuation
rings. Then {a,er g7, d}r = er/x{a,r, d}x and

(5.2.7) L E2(Cpn, T(A|K)) — E*(Cpn, T(BJL)),
is given by
(riemicate) = (<07 () ~lr Dagal < of,
0(_n)/(7TL)7TL
ta(dlogm) = (er/x — L/(%)dlogﬂu
01K (7r)

5.3. In this section, we produce a number of infinite cycles in the spectral
sequence E*(Cpn, T(A|K)). This uses the maps of differential graded k-algebras

7 T(AIK) <= 7,T(A) 2= 7,T(A/p),
where the right hand map is induced from the reduction. We evaluate these maps
assuming that v,(ex) > 0. The left hand map may be identified with the map of
graded k-algebras

Je: Mdrg} @ S{k, 7}/ (m5E) — Mdlogmr} ® S{k, T }/(755),
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which takes mx to Tk, dm g to T dlog Tk and K to k. (See the discussion preceeding
theorem 2.4.1.) The group moT'(A) is uniquely divisible so the Bockstein induces an
isomorphism : 7T (A) = ,mT(A) and the class & corresponds to the generator

dlog(—p) = —((ex /p)mgE " + O (nk))0k (7x) Ndric

on the right. The differential graded k-algebra 7.T(A/p) is evaluated in proposi-
tion A.1.4 of the appendix. We refer to loc. cit. for the notation.

PROPOSITION 5.3.1. If v,(ex) > 0 the map ps.: T (A) — 7.T(A/p) may be
identified with the inclusion of differential graded k-algebras

pet Mdrg} @ S{m, R}/ (ny) — Mdrk, e} ® S{o, 7 }/(7y) @ I{ea}
which takes T to T and K to the class

0—9}((77'}()7152—6-((61(/])) OKT 1—|—9,K(77T'K))0K(77'K)71dﬁ'1(.

PROOF. Only the formula for p, (%) requires proof. Consider the diagram

T(4) — 2 T(A) — s M, AT(A) — 5 $T(4)

lT(p) JT(p) J{Mp/\T(p) J{ET(p)

T(A/p) 2= T(A/p) —s M, NT(A/p) = ST(A/p),

with horizontal triangles. The lower triangle split by the maps r and s of section 2.1
above. It shows that

px(R) = € (XT(p))s 0 Bi)(R) + (ix 0 74 0 (M AT (p))) (F).
The value of the first summand is easily determined from the diagram

susp

o (M, A T(A)) —2 5 1y (ST(A)) 2P 7 (T(A)) > Q,

l(Mp/\T(p))* J(ET(p))* T(p)« J{P*

susp

B
mo(Mp AT (A/p)) —— m2(ET(A/p)) «——~ m1(T(A/p)) Uy,
and the formula for the Bockstein of & above:

(BT (p))s 0 B)(R) = —((ex/p)TEE ™" + 0k (7)) 0k (Tc) " diT e

It remains to show that
(re o (My AT(p)):)(R) = 0 — Ox (Tr) "o
We first show that the linearization I,: m.T(A/p) — m. HH(A/p) takes this class

to —0 (7Tx)~1é2. The following diagram
(M, NT(A)) — T (Mp NT(A/p)) - m.T(A/p)
Jl* f* Jl*
7. (M, AHH(A)) —2 7, (M, AHH(A/p)) —— . HH(A/p)
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commutes and the composite of the lower horizontal maps is an isomorphism. Let
c1, C[Qd] € m.(M, NHH(A)) be the classes which correspond to ¢i, E[Qd] € m,. HH(A/p)

under this isomorphism. We claim that co = —0x (7 )&. The diagram

ma (M, AT(A)) —2—s ,mT(A)

Nll* NJZ*

o(M, A HH(A)) —2— i HH(A),

~

where all maps are isomorphisms, shows that to prove this, it will suffice to show
that the lower Bockstein takes ¢y to ((¢/p)m5X ™' + 0% (7x))dmx. This Bockstein,
in turn, may be identified with the connecting homomorphism in the diagram

0 A-co P A'CQ*‘J>A/}7'52*>O
Jﬁk(ﬂk) Jd’k(ﬂx) Jdﬁk(ﬂx)—o
0 Aco—L A eg—L5Afp-ey——0

and the claim follows; compare section A.1 below. We consider again the diagram
from the beginning of the proof. This may be further refined to a diagram of
horizontal triangles

T(AA) — 2 S T(AA) —— s My AT(A; A) — 574 A)

JT(A;P) J{T(A;p) lMp/\T(A;ﬂ) JET(A;p)

T(A; A/p) —— T(A; A/p) s M, AT(A; Afp) s ST(4; A/p)
J{T(p;A/p) JT(MA/P) lMp/\T(P;A/P) JZT(p;A/p)

T(A/p: Afp) "= T(A/p: Afp) = My AT(A[p; A/p) —— ST(A/p: Afp),

where for an A-A-bimodule M, T(A; M) is the topological Hochschild spectrum of
A with coeffcients in M. It shows that

(rv o (Mp ANT(p))+)(R) = (T(p; A/p)« 0 7s © (My NT(A; p))s ) ().
The map T'(p; A/p)« is equal to the edge homomorphism of the spectral sequence
B2, = mT(A/p, Torf (A/p, A/p)) = me T(A; A/p)

considered in [27]. Hence, loc.cit., proposition 4.3, shows that there is a unique
class in the image of

T(p; A/p)s: mT(A; A/p) — moT(A/p; A/p) = mT(A/p)

whose image under [,: mT(A/p) — m HH(A/p) is —0x (7x ) ‘¢ and that this
class has the form X - o — 0 (7x) ¢y, where A € (Z/p)* is a unit. Finally, the
following lemma shows that A = 1 (or equivalently, that the class o of loc.cit. agrees
with our class o). O

LEMMA 5.3.2. The reduction i,: T.T(A) — 7. T(k) maps & to o.
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PrROOF. We proved in addendum 3.3.9 that in the diagram

T T(A|K) 2 7T(A) —— s 7,T(k)

Joun o [

mH.(Cp, T(AIK)) L mH.(Cp, T(A)) SN mH.(Cp, T(k))

the left hand vertical map takes x to dV (1) — V(dlog(—p)). It follows that the
middle vertical map takes & to dV (1) — V(dlog(—p)) + aV (755 'dny) for some
a € A. Since Q} vanishes, we conclude that the right hand vertical map takes i, (7)
to dV(1), and since 72T (k) is a one-dimensional k-vector space, it thus suffices to
show that also Ox(0) = dV(1). To this end, we consider the diagram

#T (k) L 5 T (k) ———— 7 H(C,, T(k))
jak 1 l |
7 H.(Cy, T(k)) 24— 7oH.(C,, T(k)) == 7oH.(C,, T(k)),

where the left hand square anti-commutes by our conventions from section 2.1
above. The class o, by definition, is the image of € under the top differential, and
the bottom differential takes V(1) to dV(1). Hence, it suffices to show that dx(€) =
—V(1). We recall from corollary 4.4.2 that the class I'(e) is represented in the
spectral sequence E*(C,, T'(k)) by the infinite cycle ui¢~!. Hence, addendum 4.2.2
shows that the image of this class by the right hand vertical map is —V(1). (]
REMARK 5.3.3. It follows from propositions 5.3.1 and A.1.4 that in 7, T(A),
dik = —QIK(WK)GK(TFK)ildﬂ'K - K.
This implies that dk = kdlog(—p) in 7. T(A|K) as stated in theorem 2.4.1.

We construct a number of infinite cycles. Recall the map of ring spectra
D T(A|K)m =t — H(Cpn, T(A|K)).
PROPOSITION 5.3.4. For all K, the element dlogmy € EQ(Cpn,T(A|K)) is an
infinite cycle and represents the homotopy class f‘A|K(dlogn TK).

Proor. We consider the diagram

T(AJK) "~ T(A[K)

J/FAK lf‘AlK

H (Cy, T(A|K)) 2 FI(C,p, T(A ).
In the spectral sequence
E?(Cpn, T(AIK)) = AMu,, dlogTr} @ S{mK, t,k}/(m5E)
= T (H (Cpn, T(A|K))).
the element dlog 7k is an infinite cycle and represents I' 4 i (dlog,, ; Tk ). Indeed,
if we compose I' 4 and the edge-homomorphism of this spectral sequence, we

get the map F": 7, T(A|K)%" — 7, T(A|K) which takes dlog, | 7k to dlogm.
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The map R" induces the obvious inclusion on E?-terms. Hence, the element
dlog g of E*(Cpn, T(A|K)) is an infinite cycle and, since not a boundary, rep-

resents R"(I 4k (dlog, ., Tk)) = fA|K(R(dlogn+1 TK)) = IA“A‘K(dlogn TK). O

Let oy = u
j*(TA):TK.

(7n)(7TK)_1I~*€ and 74 = u(fn)(ﬂK)pt such that j.(a4) = ax and
LEMMA 5.3.5. Suppose that p, C K and let n < vp(ex). Then the elements
71';;’: and —7acca of E2(Cyn, T(A)) are infinite cycles and represent the homotopy

classes fA(Mn) and fA(KiK/pn), respectively.

Proor. We consider the diagram

T'a

7 (T(A)Cpnfl ) — s (H(Op", T(A)))

7 (T(Afp)Orm1) —2% 7 (B(Cye, T(4))),

with the vertical maps induced from the reduction p: A — A/p. The lower hori-
zontal map is studied in the appendix. By addendum A.1.6,

E*(Cyn, T(A/p)) = Muy, dric, €} @ S{t 7y, 0}/ (m5F) @ T{ea},
E*(Cpr, T(A/p)) = Mun, drg} @ S{t*, w}/(n3F) @ T{ea},
and E3(Cyn, T(A/p)) = E=(Cpn,T(A/p)). We compare this to
E2(Cpn, T(A)) = My, drg} @ S{T5, ca, mre }/ (755,
B¥(Con T(A)) = Mun, 7l Mdrich @ S{rE" an, i b/ ().
The map p.: T.T(A) — 7T.T(A/p) was evaluated above. The induced map
B3 (Cy, T(A)) — E¥(Cpe, T(A/p)

is the monomorphism which takes 744 to —t&. Indeed, the map of E?-terms
takes the element 744 to —téy + Ok (mK)to — te - 0% (T )drk, and the last two
summands are equal to the image by the d2-differential of €0 (7x ). For 0 < s < 1,
we have the diagram

Eis,s(cp" ) T(‘A)) — EES,S(CP" ) T(A/p))

| I

E%, (Cpn, T(A)) —— EX, (Cpn, T(A/p))

and we conclude that the lower horizontal map is a monomorphism. We show in
proposition A.1.7 that the classes fA/p(Mn) and fA/p(sz/p") are represented
in the spectral sequence E*(Cyn, T(A/p)) by the infinite cycles ﬂf: and téy, re-
spectively. It follows immediately that Ia (Kn) is represented by ﬂf: as stated.
To conclude that T A(MZK / p") is represented by —74a4 we must rule out that an
element of EE&S(CM,T(A)) with 0 < s < 1 represent this class. But this follows
from the injectivity of the lower horizontal map in the diagram above. (]
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PROPOSITION 5.3.6. Suppose that u, C K and let n < vy(ex). Then the ele-
ments T and —Trak of EAQ(CpnA, T(A|K)) are infinite cycles and represent the
homotopy classes I' i (7x ) and FA|K(7T7KZK/” ), respectively.

PROOF. The map j.: E*(Cpn,T(A)) — E*(Cpn,T(A|K)) takes the infinite

P (resp. —Taa4) to the element 7T€<7 (resp. —Txag) which therefore is an

cycle 7
infinite cycle. It follows Trf,’: (resp. —Txag) either represents I' Al (K ) (resp.
I Al (KK /P")) or else it is a boundary. The element 7'('];: cannot be a boundary,
but we must check that —7xax is not a d-boundary. To this end we consider the
diagram

A d3 ~
B} o(Cpr, T(AIK)) —— B2 5(Cpr, T(A|K))

{j* ﬁj*
A~ d3 A
Eio(cp"’ T(A) —— E52,2(Cp",T(A))

with vertical isomorphisms. The right hand vertical map takes —Tq4a4 to —Ta,
and since —T4a4 is not a d>-boundary, neither is —Txag . O

Let £: S© — H(Cpn, T(A|K)) be the unit map and let v, € Ta(p—1)(SY) be the
canonical generator. If p, C K, then £, (vi) = fA‘K(bn)p’l.
ADDENDUM 5.3.7. The elements —ts? and (—tk)?" of E*(Cpn, T(A|K)) are in-

finite cycles which, if not boundaries, represent the homotopy classes {.(v1) and
V (1), respectively.

PROOF. The elements —tx? and (—tx)P" are in the image of
bt E2(Cpn, T(W (k)| Ko)) — E*(Cpn, T(A|K))

so the statement, if valid for some K, is valid for all K. So suppose that u, C K
and that vy(ex) > n. We may argue as in the proof of proposition 5.3.4 that
IA—‘A‘K(bn) is represented by the infinite cycle 77;;(/(17—1)&](. Indeed, b, = R(b,11)
and F"(b,+1) = by and from (5.2.4) we know that b; = —W;K/(pfl)a;(. Now

_ﬂ_;(x/(pfl)aK — _(71.1;(”)exr(/p"(p—l)oéK7
and it follows from proposition 5.3.6 that 73~ /=1 ig an infinite cycle and rep-

resents fA|K(7r7KZK/p" (p_l)). Hence, also ak is an infinite cycle, and since not a
boundary, represents a homotopy class, say, k. Since the classes I Al k(bn) and
—fA|K(MZK/pn(p_1))dK are represented in the spectral sequence by the same el-
ement so are their (p — 1)st powers. We know from proposition 5.3.6 that

eK/p"(pfl))pfl ex/p")

D aj (i = Dy (T

is represented by —7xar. And a’}{l, if not a boundary, represents 6/1”;1. It follows
that —7xal, if not a boundary, represents f‘A|K(bﬁ_1) = L. (v1).
We recall from lemmas 3.1.1 and 3.1.2 that in the Witt ring W,,(A),

V(1) =0k (rk,) TS,
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and hence, in 7, H(Cpn, T(A|K)),
V(1) = V(A1) = Ta (VD) = Tajx O (7)) 7xt)

= fA\K(9K(7LKn))71 : 1qA|K(Q{ZK/M)pn-

It follows that the infinite cycle

n n

Orc(me ) (—ricar )" = (=05 " (i) i) = (—tr)"
if not a boundary, represents V(1) as stated. O
5.4. In this section we evaluate the spectral sequence E*(Cp, T(A|K)).

LEMMA 5.4.1. Let k be a field of characteristic p > 0, let f(x) be a power series
over k with non-zero constant term, and let

f'(a)x
f(z)

be the logarithmic derivative. Then ap; = af, for all i > 1.

:a1x+a2x2+...

PrROOF. We may assume that f(z) is a polynomial with f(0) € k*. Moreover,
replacing k by a splitting field for f(z), we can assume that f(z) splits as a product
of linear factors. And since the logarithmic derivative takes products of power series
to sums, we are reduced to the case of a linear polyonomial. The result in this case
is readily verified by computation. [

PROPOSITION 5.4.2. Suppose either u, C K or K = Ky. Then, up to a unit, the
non-zero differentials in the spectral sequence E*(Cp, T(A|K)) are generated from

d2<7'?<7'r%a%l(> =T dlog Tk - T}l(ﬂ';(a(}{, if vp{a,r,d} g =0,
d2p+1(u1) = (trar)PTK

and from dlog i being an infinite cycle.

PRrROOF. The d?-differential follows from proposition 4.4.3. If K = K, we have
E3(Cy, T(W (k)| Ko)) = AMuq, dlog(—p)} @ S{t!, kP},
and for degree reasons, the first possible differential is d??*'. The canonical map
EPPHUT, T(W (K)| Ko)) < B> (Cp T(W (K)|Ko))

may be identified with the inclusion of the subalgebra generated by t, P, and
dlog(—p). The d**!-differential on these elements in the left hand spectral se-
quence are zero for degree reasons. Hence, the d?P+!-differential on these classes in
the right hand spectral sequence are zero as well. We claim that, up to a unit,

d2p+1ul — tplep

For if not, tkP would survive the spectral sequence and represent the homotopy class
—v1-1. But H(C,, T(W|Kj)) is a module spectrum over the generalized Eilenberg-
MacLane spectrum T'(W), and therefore, is itself a generalized Eilenberg-MacLane
spectrum. Hence, multiplication by v, on 7, H(C,, T(W|Kj)) is identically zero.
All further differentials must vanish for degree reasons.

If p, C K and vp(ex) > 1, we have

E3(C,, T(A|K)) = Muy, dlogmg } @ S{nb., ax, 75"}/ (nS5),
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and by proposition 5.3.6, 7h- and Tk« are infinite cycles. From the previous case,
we know that ¢ is an infinite cycle, and hence, so is 7 = ug(7h)t. It follows
that also ax is an infinite cycle. Hence, the remaining non-zero differentials are
generated from the differential on w;. Again all further differentials vanish for
degree reasons.

Finally suppose that u, C K, but with no restriction on v,(ex). Then
E3(C,, T(A|K)) = Muy, dlog mx } @ k{remhal |v,{a,r,d}x > 1},

and we need to show that the elements 7& 75 a% with v,{a,r,d}x > 1 are d4-cycles,
for 3 < ¢ < 2p+ 1. To this end, we let L/K be a totally ramified extension such
that v,(er) > 1 and consider

1 B9(C,, T(AIK)) — E%(C,, T(B|L)).
We have from (5.2.7) and lemma 5.4.1 that
o (rfemicad) = (O ac(e) (o I g o,
0, 17

dlogmy,
Or/r (7)) Jdlogms

ti(dlogmr) = (er/x —

where in the first line, v,{a,r, d}x > 1. We know from the previous case that the

di-differential on ¢, (%77 %) vanishes, and hence, it will suffice to show that we

can find L/K for which the map ¢, is injective.
If vy(er/x) > 1 and 01k (x) = — 1 then, up to a unit,

e r+p
L(uiTE T oY dlog ) = uSTim K P el dlog

and hence, for ¢, to be injective, we need that ey xr +p < er. Since r <ex — 1
and ef, = ep ke, this is equivalent to the requirement that ey, > p. We also
need v,(er) > 1. The extension L with ey, = p* and 01k (x) = x — 1 satisfies
both requirements. It follows that the d?-differentials vanish, if 3 < ¢ < 2p, and
that the non-zero d?P*!-differentials are generated from the differential on u;. All
further differentials vanish for degree reasons. O

THEOREM 5.4.3. For all K, and for i > 0, the map is an isomorphism:

Dag: 7T (AIK) = 7H(C,, T(A|K)).

Proor. If we let L = K (), then in the diagram

Faix .
7 T(AK) — = 7, 11(C,, T(A|K))

oL

7T (B|L)Cr/c —= 7, H(C,, T(B|L))%e/x,

the vertical maps are isomorphisms. Indeed, this follows from theorem 2.4.3 and
from the Tate spectral sequence, since the order of G,k is prime to p. Hence, we
can assume that p, C K.

If pp C K and vp(ex) > 1 or if K = Ky, then

E>(Cp, T(A|K)) = Mdlogmi} @ S{nf, ax, mic }/ (nic, o),
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and by proposition 5.3.6, there is a multiplicative extension (w%)e/ P = —tgag in
the passage to the actual homotopy groups. Hence, as a k-algebra

T H(Cy, T(AIK)) = ML a i (dlog i)} ® S{Lajxc (), T}/ (L apic () %),

where the class 7x is a lifting of 7. It follows that 7. T(A|K) and the non-
negatively graded part of 7.H(C,, T(A|K)) are abstractly isomorphic k-algebras,
and that the map f‘A|K is an isomorphism for ¢ = 0 and i = 1. To show that f‘A|K
is an isomorphism, for ¢ > 0, it will therefore suffice to show that

Dy () k0 2 T2 T (WKo) = wH(Cp, T(W|Ko))
is an isomorphism. To this end, we consider the diagram

_ B8 _
T T(W|Ky) —————— 1 T(W|Kp)

lf‘w(k)lKo le‘w(k)lKo

N 61 .
TH(Cy, T(W[Ko)) — mH(Cy, T(W|Ko)),

where the upper horizontal map and right hand vertical maps are isomorphisms.
Since all groups in the diagram are one-dimensional k-vector spaces, the left hand
vertical map and lower horizontal map must also be isomorphisms. This shows
that the map of the statement is an isomorphism if p, C K and v,(ex) > 1 or if
K = K.

If pup, C K, but with no restrictions on v,(ex),
E=(C,, T(A|K)) = Mdlognx } @ k{rgmla%k |v,{a,r,d}x > 1, d < p},

where 0 < r < ex, d € Ny and a € Z. Again, the domain and range of f‘A|K
are abstractly isomorphic k-vector spaces. We choose an extension L/K such that
vp(er) > 1 and such that ¢: 7, T(A|K) — 7. T(B|L) is a monomorphism. Since
fB| £ Is an isomorphism in non-negative degrees, r A|K is a monomorphism, and
hence an isomorphism, in non-negative degrees. O

ADDENDUM 5.4.4. For all K, for all n,v > 1, and for all i > 0, the maps
Fac: mlT(AIK) S0 Z/p%) S m(H(Cyn, T(AIK)), Z/p"),
Pajics m(T(AIK)S"  2/p") = m(H (Cy, T(AIK)), Z/p"),
are isomorphisms.
PROOF. If v =1 this follows from theorem 5.4.3 and the main theorem of [47],
and the general case follows by easy induction based on the Bockstein sequence. [
5.5.  We now evaluate the spectral sequences E*(Cyn, T(A|K)).

THEOREM 5.5.1. Suppose either p, C K or K = Ky. Then the non-zero differ-
entials in the spectral sequence

E?(Cpn, T(A|K)) = Muy, dlogmi } @ S{mse, ax, 7'}/ (76E)

= 7. (H(Cpn, T(A|K)))



are multiplicatively generated from

2(pv+171) d pUtlo1 d
AV (R mak) = A (Trag) Pl Tk dlog Tk - TR,
n+1
2 -1 P -1l g
T ) = - (o) T,

and from dlogmg being an infinite cycle. Here A and p are units in A/p and in
the first line v = vp{a,r,d} ik, where {a,r,d}x = (pa — d)ex /(p— 1)+ .

REMARK 5.5.2. We show that the units A and p above are given by
A== 'piv{a7 r, d}K : U(Kv_n) (7_(%”)7;;’ B = Un - UK(”?(H)ipa
where )\, and u, are units in IF, independent of K.
The proof of theorem 5.5.1 is similar to the proof of proposition 5.4.2 above, but

the individual steps are more involved. It will be necessary to know to the structure
of the E"-terms, given the differential structure.

LEMMA 5.5.3. Suppose p, C K or K = Ky, and assume that theorem 5.5.1 is
true for K. Let B9 = Eq(Cpn,T(A|K)). Then for 0 < s <mn,

s—1

o pil v
B2 = @A{un} ® k{rgnicakdlogmy | vp{a,rd}x=v,d < p;_lf -1}
v=1
S A{un, dlogmi} @ k{rEmia%k | vp{a,r,d} x> s},
n—1
B = P Mun} © k{riniatdlogmi | v{a,r dbg = v, d < E251 1)
v=1

& Mdlogrx} @ k{rfemical | vp{a,r, d}ie = n, d < ot — 1},

where 0 < r < ey, d € Ng and a € 7Z.

PROOF. Assuming the result for s < n — 1, theorem 5.5.1 implies that

ps+271 ps+171

EAQ( p—1 ):EQ( p—1 )+1’

and inductively, B2 s given by the statement of the lemma. Indeed, this is
clear in the basic case s = 0. The differential d2(?"" =1/(=1) only affects the last
summand on the right hand side of the statement and does not involve the tensor
factor A{u,}. If we rewrite
Mdlog T} @ k{r&nlad |v{a,rd} i > s} =
kol [v{a,r,d} = s} @
s+1

E{rentaldlogng|vpla,rdix =s,d > 2L —1} @

p—1
~1}a®

s+1_1
p—1
A{dlogﬂ-K} ® k{T;’(IT%O&?A vp{a, T, d}K > s+ 1}7

P

k{rgntcaldlogni|vy{a,r,d}x = s, d <

the differential @2(P"" =1/(=1) yvanishes on the last two summands and maps the

first summand isomorphically onto the second. Indeed,

1 P11 _ potl
4 —1}K—{a,r,d}K+—p71.
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Assuming that theorem 5.5.1 holds for K, we have

pn+171

E“u2(pp”':11)+1:EA2( T )—1’

and the common value has already been determined. Up to a unit,

nt1 nt1
22 —1y_q p —1_
Py, = (Tkag) 71 TK,

which vanishes on all but the last summand. If we rewrite
AMun,dlog i} @ k{rgnhal |v,{a,r,d}x >n} =
Mdlog i} @ k{rimical [vp{a,rd}x > n, d > 27t 1} @

Mdlog T} ® Munrimieat |vpla,r,d}x > n} @

+1_q

Mdlog g} @ k{rinial |vy{a,rdb g > n, d < 2oL —1},

p

the differential ¢2*""" —1/(P=D-1 maps the second summand isomorphically onto
the first summand and vanishes on the last summand unchanged. ([l

PROPOSITION 5.5.4. Let T =T (W (k)|Kp). In the spectral sequence
E2(Cpn, T) = My, dlog(—p)} @ S{t* k} = 7. (H(Cpn, T)),

the higher differentials are multiplicatively generated from

pvtl 1 v—1

2 prtl1 1 v—1
AT Ty = N, - (tk) 7T Mdlog(—p) P, 1<wv<n,

pn+1 1

PETTD N ) = - (1) T

where Ay, i, € Fp, are units, and from txP and dlog(—p) being infinite cycles.
Moreover, the infinite cycles (ftfi)psﬂdlog(fp), 1 < s < n, represent dV"5(1).

PRrROOF. The proof is by induction on n and is similar to the proof in [4] of the
differential structure of the spectral sequences E*(Cpn, T (W (k))). The basic case
n = 1 was proved in proposition 5.4.2. So assume the statement for n — 1.

We first argue that in 7, (H(Cpn,T)), the class v]" is non-zero if and only if
m < (p" —1)/(p —1). By addendum 5.4.4, the maps

T (H(CP” ) T)) (i T (TCP”?I ) i T (H ' (Cp"*I ) T))

are isomorphisms in non-negative degrees, and hence, we may instead consider the
class v{" in 7, (H (Cpn-1,T)). To this end, we use the spectral sequence

E*(Cyn—1,T) = Mup—1,dlog(—p)} @ S{t,k} = . (H (Cp-1,T))

whose differential structure is determined by the statement for n — 1. We evaluate
the E"-term by an argument similar to the proof of lemma 5.5.3. To state the
result, let P(a,d,v) be the statement

v41

«@ P —1 pUJrlfl _ 9
a < - or d< =1 1, or both”.
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Then for 0 <s<n-—1,

s—1
sl
B2 = @ Mup—1} ® k{t“ﬁ;ddlog(—p) | vp(pa — d) = v and P(a,d,v)}
v=0
@ A{un—ladlog(_p)} & k{taK’d ‘ vp(pa - d) > S}a
n—2
E*> = @ Mup—1}® k{ta/{ddlog(—p) | vp(pa — d) = v and P(a,d,v)}
v=0

& A{dlog(—p)} ® k{t*s* | vy(pa —d) >n—1 and P(a,d,n —1)}.
We know from addendum 5.3.7 that the infinite cycle (—t+<?)™, if not a boundary,
represents the class v{*. The smallest power mg such that (—tkP)™0 is a boundary
is mog = (p" — 1)/(p — 1), (—=tkP)™ = d*>"0~1(u,,_1xP"). Hence, v}" is non-zero, if
m < mg, and v} is represented by an element of E;"é(p_l)mo_s with s < —2myg.
But these groups are all zero, and therefore, so is v]"™°.
We next show that in E*(Cpn, T), (—m)”sﬂdlog(—p), 1 <'s < n—1, represents
dV"=5(1), and that (—tx)P"dlog(—p), if not a boundary, represents dV(1). The
latter follows from proposition 5.3.4 and addendum 5.3.7, since, by lemma 3.1.1,

dV (1) =d(=p,) = —p, dlog,(—p) = V(1)dlog, (—p).
To prove the former, we consider the map
F: 7 (H(Cpn, T)) — 71 (H(Cpn1,T)),
which, by lemma 3.3.3 and proposition 3.4.1, is a surjection whose kernel is gener-
ated by dV (1). Moreover, it takes dV"~%(1) to dV" 17%(1) and the induced map
of spectral sequences
F: E*(Cpn 5 T) — E*(Opnfl 5 T)

takes (—tr)?" dlog(—p) to (—tx)?"" dlog(—p). The claim follows, inductively,
since the generator dV (1) of the kernel of F is represented by an element of
Ef 1 (Cpe, T) with m < —2p™.

We now begin the proof of the statement of the proposition for n. Suppose first
that 2 <r < 2(p™—1)/(p—1). The statement for n — 1 implies that in the spectral
sequence

E*(T,T) = Mdlog(—p)} ® S{t*', k} = 7.H(T,T),
the d"-differential is multiplicatively generated from the stated differentials on A
and from dlog(—p) and ¢« being infinite cycles. Indeed, one shows inductively that
the canonical map induces an isomorphism
Yn-1: M1} @ E"(T,T) = E"(Cpn-1,T).
We claim that for r in the stated range, d" (u,,) is zero. To see this, we consider the
map of spectral sequences induced from V': 7, (H(Cpn-1,T)) — 7o (H(Cpn, T)),
V:E"(Cpn1,T) — E"(Cpn, T).
The map of E?-terms is given by the transfer map in Tate cohomology. It follows
that u, = V(un—1), and hence, d"(u,) = V(d"(un—1)), which is zero for r in the
stated range. We now conclude, by induction on r, that
i Mun} ® B7(T,T) = B (Cy, T)
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is an isomorphism and that the d"-differential is as stated. Before we proceed, we
note that in £*(T,T), and hence in E*(Cpn, T), the elements t's7dlog(—p) are
infinite cycles. This follows, by arguments similar to [19, section 5.3], from the fact
that the homotopy groups of 1" with Z,-coeflicients are concentrated in degree zero
and in odd positive degree.

If r =2(p™ — 1)/(p — 1), the possible non-zero differentials are generated from
& (") = Ao - (t7) 77 Htdlog(—p) -7,
& (un) = vn - (t5) =7 ~td log(—p) - tn,
where A\,_1,v, € F,. We first show that \,_; is a unit. If n = 2, the k-vector

space T (H(sz ,T)) is generated by the classes dlog,(—p) and dV(1). The former is
represented by dlog(—p) and the latter by an element of EAfn’lfm(sz ,T) with m <
—2p?. Hence, the infinite cycle (tx)Pdlog(—p) must be hit by a differential, and this
can happen only if \; is a unit. If n > 2, we consider dV2(1) € 7 (H(Cpn,T)) which

is represented by (—tx)?"  dlog(—p). We know that vgpn_zfl)/(pfl) annihilates
1 € T (H(Cpn-2,T)) and hence also dV?(1) € 71 (H(Cpn,T)). Therefore,

prlg

(—trP)@" 7D/ =D ()" dlog(—p) = (—tk) T tdlog(—p) -t P

must be hit by a differential, and this can happen only if A,_; is a unit.

We next show that v, is zero. If not, then dr(untpn_gc) =0, for some 0 < ¢ < p,

and for degree reasons, the next possible non-zero differential is

n 1—
-2
D n c

BT ") = g () S e,

(p™~'=1)/(p—1)+p" ¢

But this must be zero, or else vy would be zero. For degree

reasons, the next possible non-zero differential is d2®"" ' =1/(p=1) I particular, no

differential can hit " ~"/®~1 S5 we must have v, = 0.

The next possible differential is the stated one on u,,, and since ng T/ g
zero, i, must be a unit. For degree reasons, all further differentials vanish. [
We next prove theorem 5.5.1, if p, C K and n < vp(ex).

PROPOSITION 5.5.5. If u, C K and if n < vy(ek), the non-zero differentials in
the spectral sequence E*(Cyn, T(A|K)) are multiplicatively generated from

v4+1_ v v+1_ v
P (7)) = =\, - (tk) T Mtdlogmg 7l ,  0<wv<n,
n4+1_ n+1_
T ) = o - () T M

and from Tk, ax, and dlogwi being infinite cycles.

PROOF. Since n < w,(eg), proposition 5.3.6 and addendum 5.3.7 show that
TR and TKOéI;( are infinite cycles. Hence if d"a is non-trivial then so is d’“(aI;{)
contradicting that d" is a derivation. It follows that both ax and 7k are infinite
cycles, and dlog 7wk is an infinite cycle by proposition 5.3.4. Hence, theorem 5.5.1
amounts to the statement above.

Suppose first that u/(0) is a unit. We prove the stated formula for dT(Tl'?(v ) by
induction on 0 < v < n. The basic case v = 0 follows from proposition 4.4.3. So
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assume that the d"-differential is as stated, for 2 < r < 2(p” — 1)/(p — 1), and
consider 2(p’—1)/(p—1) <7 < 2(p**1—1)/(p—1). We note that 7 (txP)Idlog 7
is equal to zero in E7(Cpn, T(A|K)), if v,(i) = s < v and j > (p*—1)/(p — 1).

By definition, 7 = u%—") (mr)Pt, so
v— — v v—1
=l

and since 7x is an infinite cycle, we find

oy ()
ui ™" ()
The first factor on the rlght is a unit in ET for r in the stated range, and hence,
we can evaluate dr(ﬂ'K) from the value of d"(t?"" "), which is known by proposi-
tion 5.5.4. It follows that d"(w%, ) is equal to zero, if r < 2(p*+1—1)/(p — 1). If
r=2(p"tt—1)/(p — 1), we have

v— pUTlo1 v—1
dr(tP" ) = Ny - (tr) =1 'tdlog(—p) - tP

(777')/ vt1_
S W(tﬁ)p = dlogmy -7

Up TK

(’U*n)/ pv pv pUtl_ o
=Xy ket 3 (ﬂ—K ):TK (t:%) p—1 l_ltdlogﬂ'K - P '

“(KU " (7% )
The second equation uses —p = 73X 0 (k) ! and Ok (7x) = uk (k)P !, and the
third follows from lemma 5.4.1 since, as noted above, 7} (tkP)’dlog Tk is equal
to zero in ET(Cpn7T(A|K)), if v,(i) = s < v and j > (pS“f 1)/(p — 1). The
stated formula for d’"(7rK) follows. Similarly, we see that d’"(7rK ) is equal to zero,
if r <2(p"*1—1)/(p—1), and the differential on u,, follows from proposition 5.5.4.
For degree reasons, all further differential are zero.

To treat the general case, let I be the pointed monoid {0, 1,7, 72, ... } with base
point 0. The choice of uniformizer mx determines a map of T—spectra
pic: T(W|Ko) A NS (ID)] — T(A|K),
which is multiplicative with component wise multiplication on the left; compare
section A.1 below. As a differential graded k-algebra,
T (T(W|Ko) A NP (I)]) = A{dlog(—p), dr} @ S{k, 7},
and the map of homotopy groups with Z/p-coefficients induced from pg is the
unique map of differential graded k-algebras that is 7, T (W (k)| Ko)-linear and takes
T to mg. We claim that in the spectral sequence
E*(I1) = E*(Cpn, T(W (k)| Ko) A [N (IT)]),
the non-zero differentials are generated multiplicatively from

pv+1

—1 v Pv+1*1 v
PO (") = =N, - (tk) T P "l 0<wv<mn,

from the differentials on the tpv_l, 1 <w < n, and the differential on u,, given by
proposition 5.5.4, and from ¢xP, dlog(—p), 7" and 7P" ~ldr being infinite cycles.
This proves the proposition since E*(Cyn, T(A|K)) is a module spectral sequence
over E*(IT).
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To prove the claim, we choose a totally ramified extension K /K with p, C K
such that n < vp(ex) and u(0) is a unit. The proposition already has been
established for E*(Cyn, T(A|K)). As cyclic sets

N¥() = \/ N¥(TL; s),
s>0

where the sth summand has n-simplices (7%, ... w%) with ig +...4, = s, and the
spectral sequence E*(II) decomposes accordingly. It will suffice to show that for
0 < v < n, the differentials in the p”th summand spectral sequence,

EQ(HJ?U) = AMup,dlog(—p)} ® S{til, K} ® k{wpv’ﬂ_p”—ldﬂ_}
= 7, (H(Cpn, T(W () | Ko) A [N (IL,p")]),

are multiplicatively generated from the stated differentials on 7", the differentials
on the p-powers of ¢, and the differential on u,, and from dlog(—p) and 7?" ~'dr
being infinite cycles. We note that the map pg.: E2(IT,p¥) — E?(Cpn, T(A|K)) is
a monomorphism. Indeed, 7'('];; and

( n)/
u TK )T

KdlogﬂK
ug (Tk)

are non-zero, since p¥ < eg and since u(0) is unit, respectively. It follows, by
induction on r, that pg,: E"(I,p") — E"(Cyn, T(A|K)) is a monomorphism and
that the d"-differential is as stated. For instance, 7P ~'dr is an infinite cycle
because pi. (7" ~tdr) = b, dlog 7 is. O

PROOF OF THEOREM 5.5.1. Let n > 1 and K be given. We prove by induction
on ¢ that the di-differential in E*(Cpn, T(A|K)) is as stated. The basic case ¢ = 2
follows from propositions 4.4.3 and 5.2.3. So assume the statement for ¢ — 1 and
suppose first that 2(p*—1)/(p—1) < ¢ < 2(p*Tt—1)/(p — 1) with s < n. We recall
from lemma 5.5.3 that £ = E9(Cpn, T(A|K)) is given by
s—1

~ vl
b1 = @A{un} ® k{Tf(ﬂrKa}i(dlog i | vp{a,r,d}k=v,d < pp71 L 1}

v=1

& AMup,dlogmi} ® k{tinialk | vp{a,r,d}x > s}.

Since the elements T&7% a?dlog mx are infinite cycles, and since d4(u,,) is zero by
proposition 5.5.4, it suffices to evaluate d?(t& 75 a%) with v,{a,r,d} x > s. To this
end, we find a totally ramified extension

L= K[r]/(mp" + 7kl k(1))
such that n < v,(er) and such that the map
byt Eit(Cme(AIK)) - EAf,t(Cme(BIL))

is a monomorphism, for ¢ > ¢ — 1. Since the differential structure of the right hand

spectral sequence is known from proposition 5.5.5, this allows us to evaluate the

di-differential in the spectral sequence on the left. We consider the extension L/K
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with ey, x = p"*! and 01,k (x) = x — 1, and recall from (5.2.7) that the map of
E2-terms is given by

(o) = (1= mp)~(@rdrni/<Tad

t«(dlogmg) =7 (1 — WL)_ldlong.
Hence, the induced map of E9-terms takes &7t % with v,{a,r,d}x > s to

S _m—S e T
(1= mf)7r Hondhe ppn T ag,

and 7&mh-ad-dlog T with vy{a,r,d}x > sand d > (p*—1)/(p—1) — 1 to

s —s s C N e s
(1—nb)P {amd}KﬂP]gJ (1—72) 1 R aldlogmy,

where the latter statement uses lemma 5.4.1 and that 7% - 787,/ addlog 7y, is

equal to zero in E(Cyn, T(B|L)), if v,(i) < s. It is clear that this map is a
monomorphism in the stated range. Indeed, r < ex — 1 and ep, = er/gex, and
therefore, er gr +p° < er — p"tl 4+ p% < ep — 1. It follows immediately from
proposition 5.5.5 that d?(.(r&mhad)) vanishes, if ¢ < 2(p***—1)/(p — 1), and a
straightforward calculation shows that

s+1_
@11 (Tiemiade)) = te(=As - p{a,my b - (b0) T Mtdlog T - Tiemhad),

if g=2(p**1—1)/(p — 1). Since ¢, is a monomorphism, we conclude that

s+1_
dq(Tj“(w}'(ad )=—-Xs-p *{a,r,d}k - (tn)ppfl 1_1tdlog7rK . 7'?{71'}(0(?(

R s+l
= =\ p o, dbc g " (AR) TP (rica) T lrgdlog e - Tk

as desired. Finally, an analogous argument shows that d4(r&n%-a) is equal to

zero, if 2(p"—1)/(p — 1) < ¢ < 2(p"*1—1)/(p — 1), and the stated differential
on u, follows from proposition 5.5.4. All further differentials vanish for degree
reasons. 0

5.6. We conclude this paragraph with a proof of the following result, which
was used in the proof proposition 3.3.6 above for n > 3.

LEMMA 5.6.1. For all i > 0, the Frobenius is surjective,

F: TR3i+1(A|K§P) - TR;ijrll(A|K§p)~

ProoF. For i > 0, the group TR} (A|K;p) is a sum of a uniquely divisible
group and a p-torsion group of bounded height. Indeed, this is true when n = 1,
and the general case follows inductively from the cofibration sequence

RTR™(A|K;p) 25 TR™(A|K;p) & TR™(A|K; p)

and the spectral sequence (3.3.2). Since F'V = p, the Frobenius induces a surjection
of uniquely divisible summands. Hence, it suffices to prove that the statement of
the lemma holds after p-completion. And, by addendum 5.4.4, we may instead
show that the canonical map

Vot i1 (H(T, T(A[K)), Zp) — maia (H(Cpn, T(A[K)), Zp)
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is surjective. To this end, we consider the spectral sequences
B (T) = H*(BS", m(T(A|K), Zy)) = msre(H' (T, T(A|K)), Zp),
B ((Cpr) = H™(BCyn, m(T(A|K), Zp)) = st (H(Cpr, T(A|K)), Zy),
both of which are strongly convergent second quadrant spectral sequences. This

means that the filtration of 7. (H (G, T(A|K)), Z,) associated with the spectral se-
quence E*(QG) is complete and separated and that there is a canonical isomorphism

gr® mot(H (G, T(A[K)), Zp) = EZ(G).
It will therefore suffice to show that
gr®(yn): gr® w1 (H (T, T(A|K)), Zp) — gr® maip1 (H(Cpn, T(A|K)), Zy)

is a surjection for all s < 0 and i > 0. The induced map of E?-terms is given by the
map on cohomology induced from the inclusion Cp» — T, and hence, is surjective
for s even. Moreover, by remark 2.4.2, 7,(T(A|K),Z,) is concentrated in odd
degrees with the exception of mo(T(A|K),Z,), and hence, the non-zero differentials
in the spectral sequence E"(T) must originate on the line ¢ = 0. It follows that for
s even and t > 0, the map

Tkt E;,t(T) - Esr,t(cp")

is surjective for all 2 < r < oco. (Since these groups do not support non-zero
differentials, they are stable for » > s.) Since only the groups Ef ,(Cpn) with s
even and t > 0 can contribute to w1 (H (Cpn, T(A|K)),Zy), this shows that the
map gr®(v,) is indeed surjective. O

6. The pro-system TR, (A|K;p,Z/p’)

6.1. In this paragraph, we prove the main theorem of this work. Suppose
that p,» C K such that we have the maps

S%° Buyes -5 K(K) 5 TR (A|K; p).

Since p is odd, the Bockstein gives an isomorphism
m2(S% Bhipo 4, Z/p") = pom1 (8% Bpuye, Z/p") <= pye,
and hence, these maps induces
Hpr — Ka(K,Z/p") * TRE(A|K;p, Z/p") = mo( TR" (A|K:p), Z/p")-
It follows that we have a canonical map of log Witt complexes
W.w{ann) @ Szype () — TRL(AIK; p, Z/pY),

where on the second tensor factor on the left, the maps R, F' and V act as the
identity and the differential d acts as zero. We recall from theorem 3.3.8 that this
map is an isomorphism in degrees 0 and 1.

By addendum 5.4.4 the map

Lajre: TRI(A|K;p, Z/p") — m(H(Cpr, T(AIK)), Z/p")
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is an isomorphism in non-negative degrees. The groups on the right, for v = 1,
are given by the spectral sequence E* = E*(Cpn, T(A|K)), which we evaluated in
theorem 5.5.1 above. The result is that

n—1

~ vl

E® = @k‘{u;ﬁ(ﬁ;{of}l{dlogﬂ'fg‘ vpfa,r,d} gk =v,d < pp71 L 1}
v=1

& k{ricriaf(dlogmi)  [vfardhi = n, d < P — 13,
where a € Z, d € Ny, e € {0,1}, and 0 < r < eg, and where
{a,r,d}k = (pa — d)ex/(p— 1) + 7.
We call the basis of E> as a k-vector space exhibited here the standard basis.

ProproSITION 6.1.1. If p, C K or if K = Kq then TRy (A|K;p,Z/p) is an
neg -dimensional k-vector space, for all ¢ > 0.

PrOOF. We fix a total degree ¢ and evaluate the cardinality of the standard
basis of E°(Cpn, T(A|K)). An element of the standard basis is in total degree
g =2m+ ¢ if and only if d — a = m. We let v = v,{a, r,d} x and note that

{a,r,d}k =dex +r —pegm/(p—1).
Hence, the elements of the standard basis of E°°(Cyn, T(A|K)) in total degree g are
indexed by integers 1 < v < n, 0 <r < eg and d > 0 such that either 1 <v <n

and vp(dex + 1 —pexgm/(p—1)) =vand 0 < deg +1r < (pvptll_l

and vy(dex +r—pexm/(p—1)) > vand 0 < deg +r < (pnptll_l — 1)ex. But these
requirements are equivalently to the requirement that for all 1 < v <n, dex +r is

congruent to pexm/(p — 1) modulo p¥ and

—legorv=mn

v vl _ v_
(B —Dex < dex +r < (P57 — Dex = (55 — ek + plex.

It is clear that for each value of 1 < v < n, there are ex pairs (d,r) which satisfy
this requirement. Hence, the dimension is equal to nex as stated. ([l

LEMMA 6.1.2. Suppose that the class € € . (H(Cpn, T(A|K))) is represented in
E>°(Cyn, T(A|K)) by the element uf,m&mha% (dlogmg ). Then the product by, - €

is represented by iu;T?(J“a/WTK/a}?“’H(d log7x)°, where r+ex/(p—1) = d'ex +1'

and 0 <71’ <eg.
PROOF. We show that the map induced from multiplication by b,
ba: E3(Cyr, T(AIK)) — E3(Cp, T(A|K)),
is given by the stated formula. It suffices to consider the case n = 1. Indeed,
F"=1 B3 (G, T(AIK)) — B ,(Cp, T(AK)),
Vi B (G T(AIK)) — E2(Cpn, T(AIK)),
are isomorphisms for s even and odd, respectively, and commute with multiplication
by the Bott element, since F™~!(b,,) = by. Suppose first that v,(ex) > 1 such that
E3(C,, T(A|K)) = Muy, dlogmg } @ S{TiE, 7, age } / (w65,

It will suffice to prove that b; - 7} is equal to :I:Tf(,wg(la}‘(/*'l. This follows from the
“multiplicative extension” m3¥ = —7Txak. More precisely, proposition 5.3.6 shows
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that the elements 7%, and —7x ok represent the classes f‘A‘K(wK) and f‘A|K( o /p),

respectively. We also recall from (5.2.4) that the element —m3 /P~ o rep-
resents the Bott element b;. But ax survives the spectral sequence and repre-

sents a homotopy class, say, ax. Hence, —W;(K /=1, K also represents the class

—FA| (7% ex/p(p= 1))aK. The claim follows, if v,(ex) > 1. In general, we pick a

totally ramlﬁed extension L/K such that v,(er) > 1 and such that the map
i BY(Cy, T(AIK)) — E¥(C, T(BIL))

is a monomorphism. O

We note that multiplication by b, preserves the symbol
{a,r,d} g ={a+d,r,d+ad + 1},
and that the class b? is represented by 7} 7 qoeK/(p D adita
and 0 < gy <p-—1.

with g = q1(p—1)+qo

LEMMA 6.1.3. An element of the standard basis of E(Cpn, T(A|K)) represents
a homotopy class in the image of the composite

Wi wia ar) @ Szyp(ip) — TRI(A|K; p, Z/p) — TH(Cpn, T(A|K))
if and only if {a,r,d}x > 0.

PrOOF. The map of the statement is an isomorphism in degrees 0 and 1 by
theorem 3.3.8 and addendum 5.4.4. Indeed, in these dimensions {a,r,d}x is au-
tomatically non-negative since a = d. We must thus show that for all ¢ > 0 and
€ = 0,1, the map

@Eae s CIJ ’TA|K @ 52q+€ s Cp 7T(A|K))

s<0 s<0

induced by multiplication by the gth power of the Bott element is a surjection onto
the stated subspace. Suppose for example that a homotopy class is represented
in the spectral sequence by the element 7% m%.a% ¢ and write r — gex /(p — 1) =
—apek +719 with 0 < 7y < ex. The requirement {a,r,a+q}x > 0 is then equivalent

to ap < a, and by lemma 6.1.2

bl - 7L Q%0 = 1l a9,
The other elements of the standard basis are treated similarly. ]

THEOREM 6.1.4. Suppose K contains the pth roots of unity. Then the canonical
map s a pro-isomorphism:

W.wiaar © Szp(ip) — TRL(A|K;p, Z/p).

PROOF. Let E* denote the pro-system on either side of the map in the state-
ment. The standard filtration, given by
Fi'E =V°E: | +dV°E

n—1s
is a descending filtration with s > 0. The filtration has length n in level n, i.e.

Fil" E* is trivial. The map of the statement clearly preserves the filtration. We
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show that for all ¢ > 0, there exists N > 1 such that foralln > 1and0 < s <n—N,
the canonical map

gr® (W wiaary @ Szyp(pp))i — gr® TR (A|K; p, Z/p)
is an isomorphism when 0 < s < n—N. Since the structure maps in the pro-systems
preserve the standard filtration, the theorem follows.

We have already proved that the map of the statement is an isomorphism in
degrees 0 and 1. Hence, it suffices to show that for all ¢ > 0, there exists N > 1
such that for alln > 1,0 < s <n— N and € = 0, 1, multiplication by gth power of
the Bott element induces an isomorphism

gr* TRY(A|K;p, Z/p) = g TR3,, (A|K;p, Z/p).
We claim that any N > 1 with p(q+ 1)eg/(p — 1) < p¥ will do.

For surjectivity we use the lemma 6.1.3. Consider an element of the standard
basis in degree 2¢ + ¢ with symbol {a,r,d} k. Since d > 0 and d = a + ¢, we have
a > —q, and hence

{a,r,d}x = aex —qer/(p—1) +r
> —pgexc/(p— 1) +r > —p".
Therefore, if v,{a,r,d} k > N we have {a,r,d}x > 0. It follows that multiplication
by the gth power of the Bott element induces a surjection of all summands in
E>(Cyn,T(A|K)) except for the summands with v < N. But these summands all
represent homotopy classes of filtration greater than or equal to n — N. Indeed, by
proposition 4.4.1
Vo (U TR0k dlog T ) = un TR 0% dlog Tk,
d(u,timhad dlogny) = e akdlog T,

Thus elements of the standard basis with {a,r,d}x < N are either in the image of
Vn=N of qvn—N,

To prove injectivity, we first note that for an element of the standard basis of
E>(Cpn, T(A|K)) in total degree 2q + €, the requirement that

v+1 _ 1
0<d<PZ "=
p—1
is equivalent to the requirement that
v+1 1
PR e < <P P

We show that vy{a,r,d}x =v > N and {a,7,d}x < ex(p’™* —1)/(p — 1) implies
that "

{a,r,d}k < —zq_eli +erp_ T 1 +r—ex.
Indeed, the largest integer which is both congruent to zero modulo p¥ and smaller
that ex (p*™1 —1)/(p— 1) is exp?™/(p — 1) — p*. Thus {a,r,d}x < exp’™/(p —
1) — p¥, and it suffices to check that

v+1_1
v+1 1) U<7pqu p _ .
eKp /(p ) P p_1+€K p—1 +r—eg
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But this is equivalent to the inequality

1
o> plg+1ex -
p—1
which is satisfied for n < N. This shows that the map induced by multiplication
by the gth power of the Bott element induces a monomorphism of all summands in

E>°(Cyn, T(A|K)) except for the summands with v < N. The theorem follows. [

PrROOF OF THEOREM C. The proof is by induction on v; the basic case v = 1
is theorem 6.1.4. In the induction step, we write ¢ = 2s + € with 0 < e < 1 and
consider the diagram of pro-abelian groups

€

W. wEAM) ® M3871 e W W(A,M) ® M?us e 4 W wEA,M) ® ,U:?S

where, inductively, the right and left hand vertical maps are pro-isomorphisms.
The lower sequence is exact at the middle. Hence, it will suffice to show that the
upper horizontal sequence is a short-exact sequence of pro-abelian groups. Clearly,
we can assume that s = 0. If € = 0, the sequence is exact since W,,(A4) is torsion
free, for all n > 1. (This does not use that p,» C K.) If € = 1, only the injectivity
of the left hand map requires proof. To this end, we consider the diagram

W.(4) @ pp ——— Ww(lAM) RLIp* — W, w(1A7M) ® Z/p®

. J 8 . l - . J .
TRy (A|K; p, Z/p) —— TRy (A|K; p, Z/p*~ ') —— TRy (A|K; p, Z/p"),
where the left hand and middle vertical maps are pro-isomorphisms by induction,

and where the lower sequence is exact. It will suffice to show that the upper left

hand horizontal map is zero. But this map takes x ® ¢ to zdlog. ¢, and since ¢ has
v—1

P root, dlog. ¢ is divisible by p¥~!. ([
REMARK 6.1.5. It follows from theorem C that if j,» C K, the map
W. (A) X /,va ; pv W W(lAJV[),

which takes x ® ¢ to xdlog. (, is a pro-isomorphism. It would be desirable to have
an algebraic proof of this fact.

THEOREM 6.1.6. There are natural isomorphisms, for s > 0:

TCou(A|Kp, Z/p) = HO(K, p*) @ H* (K, py+1),

TCous1(A|K;p, Z/p) = H (K, 1),
PROOF. Since the extension K (p,)/K is tamely ramified, we may assume that

tp C K. Indeed, theorem 2.4.3 shows that the canonical map

TC.(AK:p, 2/p) > TC.(A(py) | K (1,): p. 2/ p) S 2 /1)
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is an isomorphism, and the analogous statement holds for H*(K, uffs). If p, C K,
theorem 6.1.4 shows that for s > 0 and 0 < € < 1, the canonical map

~

TC(A|K;p,Z/p) @ n&* = TCosyc(A|K;p, Z/p)

2
is an isomorphism, and hence, it suffices to prove the statement in degrees 0 and 1.
In degree one, the cyclotomic trace induces an isomorphism

I{X/l{xp ::l{l(f(,Z/p)':;rr(h(f“](;p,Z/p),
and by Kummer theory, the left hand side is H'(K, u,), (40, p. 155]. In degree
zero, we use that addendum 1.5.7 gives an exact sequence

0 — TCo(A;p,Z/p) — TCo(A|K;p, Z/p) — TC_1(k;p, Z/p) — 0.

The left hand term is naturally isomorphic to Z/p = Ko(A,Z/p) by [19, theorem
D], and the left hand map has a natural retraction given by

TCo(A|K;p,Z/p) — TRo(A|K;p, Z/p)" = Z/p.
It remains to show that the right hand term in the sequence is naturally isomorphic
to H%(K, p1,,). We recall from [40, p. 186] the natural short exact sequence

0 — H?(k,pp) — H*(K, pp) — H' (k, Z/p) — 0.

Since k is perfect, the left hand term vanishes, [40, p. 157]. Let k be an algebraic
closure of k. The normal basis theorem shows that H*(k, k) vanishes for i > 0, and
hence the cohomology sequence associated with the sequence

O—>Z/p—>/§;£>l§:—>0

gives a natural isomorphism k, — H'(k,Z/p). Finally, since k is perfect, the
restriction induces a natural isomorphism

TC_1(k;p, Z/p) = W(k)r/pW (k)r = k. O

REMARK 6.1.7. If 4, C K, we can also give the following non-canonical descrip-
tion of the groups TC,(A|K;p,Z/p). Let ¢ € pp be a generator, let b = be be the
corresponding Bott element, and let m = mx € A be a uniformizer. Then for s > 0,

TCos(A|K;p,Z)p) =Z[p-b° &k, - 0(dlogm - b°),
TCos41(A|K;p, Z/p) = Z/p-b°dlog. m ® ky - O(b°T) @ kK,

where £, is the cokernel of 1 —¢: k — kK, ex is the ramification index, and 0 is the
boundary homomorphism in the long-exact sequence

- % TC(AIK; p, Z/p) — TRG(A|K; p, Z/p) > TRy (A|K;p, Z/p) 2 ...

The summand k°¥ in the second line maps injectively to the kernel of 1 — F, the

inclusion
eCK — 1

n: k% = @D k — TRaw1(A|K; p, Z/p)
i=0
given, on the ith summand, by
Lo pttlo . .
mila) =Y a* Dug () PdVY (') - b + > FU(aug () Pd(x')) - b°.
v>0 v>0
The sum on the right is finite and the sum on the left converges.
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We shall need a special case of the Thomason-Godement construction of the
hyper cohomology spectrum associated with a presheaf of spectra on a site, [10,
§3]. Suppose that F is a functor which to every finite subextension L/K in an
algebraic closure K /K assigns a spectrum F(L). For the purpose of this paper, we
shall write

(6.1.8) F&K) = holimH* (G xc, F(L)).
L/K

There is a natural strongly convergent spectral sequence

(6.1.9) EZ, = H (K, limmF(L)) = 7 F*(K),
L/K

which is obtained by passing to the limit from the spectral sequences for the group
cohomology spectra

ESQ,t = H_S(GL/K77TtF(L)) = 7rs+tH‘(GL/Ka F(L))
Indeed, filtered colimits are exact so we get a spectral sequence with abutment

lim 7, H " (Gp )k, F(L)) = m F(K),
L/K

and the identification of the E2-term follows from the isomorphism

lim H* (G e, mF(L)) = lim H* (G, (i m, F(N)) %)

L/K L/K N/L
= H*(K, lim m. F(N)).
N/K

This isomorphism, which can be found in [41, §2 proposition 8], is a special case of
the general fact that on a site with enough points, the Godement construction of a
presheaf calculates the sheaf cohomology of the associated sheaf.

THEOREM 6.1.10. The canonical map is an isomorphism in degrees > 1:

Vi Ko (K, Z/p") — K&K, Z/p").

PRroor. It suffices to consider the case v = 1. In the diagram

K(K) —% 5 K%(K)

Jtr ltr
TC(A|K; p) —— TC(A|K; p),

the left hand vertical map induces an isomorphism on homotopy groups with Z/p-
coefficients in degrees > 1. This follows from addendum 1.5.7 and [19, theorem
DJ]. We use theorem 6.1.6 to prove that the right hand vertical map induces an iso-
morphism on homotopy groups with Z/p-coefficients and that the lower horizontal
map induces an isomorphism on homotopy groups with Z/p-coefficients in degrees
> 0.

We first prove the statement for the map induced from the cyclotomic trace

K®(K) — TC*(A|K;p).
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The spectral sequence (6.1.9) for K-theory with Z/p-coefficients takes the form
B2, = H*(K,12"?) = K& (K,Z/p).
Indeed, since K-theory commutes with filtered colimits, this follows from
Kt(R7 Z/p) = u?(t/Q)a

which is proved in Suslin’s celebrated paper [43] or follows from theorem 6.1.6
above. Similarly, it follows immediately from theorem 6.1.6 that also the spectral
sequence (6.1.9) for topological cyclic homology takes the form

EZ, = H*(K, 5?) = TCE (A|K;p, Z/p).

Finally, it is clear that the cyclotomic trace induces an isomorphism of E?-terms.

It remains to show that the map
it TCi(A|K:p, Z/p) — TC{(AK:p, Z/p)

is an isomorphism for ¢ > 0. The domain and range of yx are abstractly isomorphic
in this range, so we just need to show that v is an isomorphism for ¢ > 0. By the-
orem 2.4.3 we may assume that p, C K and that the residue field k is algebraically
closed. When p,, C K, we have a commutative square

TC(AIK:p, Z/p) ® u° 28 TCH(A| K p, Z/p) @ p&

: :

®id &
TC28+€(A|K;p) Z/p) ’YK—> TCQE+E(A|K;p7 Z/p)y

and the vertical maps are isomorphism for s > 0 and 0 < e < 1. Hence, it suffices
to show that g is an isomorphism in degrees 0 and 1. And for k algebraically
closed, the term H?(K,p,) — H'(k,Z/p) in degree zero vanishes. Thus the edge
homomorphism of the spectral sequence (6.1.9),

ex: TCG'(A|K;p, Z/p) — HO(K,Z/p),
is an isomorphism, and since the composite
TCo(A|K;p, Z/p) ~ TC(A|K;p, Z/p) == H(K,Z/pZ)

is an isomorphism, then so is vk . In degree one, we use the spectral sequence (6.1.9)
for topological cyclic homology with Qy,/Z,-coefficients. As a G g-module

li_r)n TC1(B| L;p, Qp/Zyp) < h_r)nKl(IﬁQp/Zp) = Ki(K,Qp/Zp) = pipe=,
L/K L/K

and the composite
TC1(AlK;p, Qp/Zy) = TC?t(A|K;p, Qp/Zy) - HO(Kv fpe)

is an isomorphism. It follows that g is an isomorphism in degree one. (I
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Appendix A. Truncated polynomial algebras

A.l. Let m = mg € A be a uniformizer and let ¢ = ex be the ramifica-
tion index. Then A/pA = k[r]/(n®). The structure of the topological Hochschild
spectrum of this k-algebra was examined in [18]. We recall the result.

Let IT = II. be the pointed monoid {0, 1, , ..., 7 1} with base-point 0 and with
m¢ = 0 such that A/p is the pointed monoid algebra k(II) = k[II]/k{0}. Then we
have from [19, theorem 7.1] a natural F-equivalence of T-spectra

T(k) A N (ID)] = T(k(ID))

defined as follows: Let C®(Pyrr)) be the category of bounded complexes of finitely
generated projective k(II)-modules and consider II as a category with a single object
and endomorphisms II. The functor II — C? (Pr(rry), which takes the unique object
to k(IT) viewed as a complex concentrated in degree zero and which takes 7 € II
(resp. 0 € II) to multiplication by 7% € k(II) (resp. 0 € k(II)), induces

[N ()] — [N (C*(Prqmy))| = T(k(I1))o,04
and then the desired map is given as the composite
T(k) A [N ()| — T(k(I) A T(k(ID)) = T (k(ID)).

Since k and II are commutative, the equivalence is multiplicative with component-
wise multiplication on the left. In particular, the induced map on homotopy groups
is an isomorphism of differential graded k-algebras

m(T(k) A NP (IT)]) = m.T(k(1D)),
where the differential is given by Connes’ operator (2.1.2). We give the realization
|INY(IT)| the usual CW-struture, [33, theorem 14.1], (with the simplices A™ and
the disks D" identified through a compatible family of orientation preserving home-
omorphisms). Then the skeleton filtration gives a spectral sequence of differential
graded k-algebras

EZ, = mT(k) © Hi(IN® (ID)]; k) = 7o (T(k) A [N (ID)]).

The same statements are true for ordinary Hochschild homology. If k is a perfect
field of characteristic p > 0, m, HH(k) = k concentrated in degree zero (see e.g. [19,
lemma 5.5]). Hence, the spectral sequence collapses and the edge homomorphism
gives an isomorphism of differential graded k-algebras

(A.1.1) m (HH(k) A [N (IT)]) & H, (I[N (IT)]; k).

The spectral sequence also collapses for T'(k). Indeed, the inclusion of the zero-
skeleton gives a map of ring spectra H(k) — T'(k) from the Eilenberg-MacLane
spectrum for k, so we have a multiplicative map

(A.1.2) (k) ® Ho(INY()]; k) = 7 (T (k) A [N (IT)))

given as the composite of the external product
7 (k) @ m (H (k) A NS (D)) 2 . (T(k) A H(k) A [N (1))
and the map induced from p: T(k) A H(k) — T(k). It follows that the spec-
tral sequence collapses and that this map is an isomorphism of graded k-algebras.
However, the map H(k) — T'(k) is not equivariant, so this isomorphism does not
preserve the differential.
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Let N,(k(II)) be the normalized standard complex, [5, chap. IX, §7]. The
Kiinneth isomorphism determines an isomorphism of complexes

B(IT) @k Ne(k(ID) = Co (N ()]s k),
and since N, (k(II)) £ k(II) is a resolution of k(1) by free k(IT)¢-modules, we have

a canonical isomorphism of graded k-algebras
Tor ™" (k(IT), k(D)) = H. (N (ID)]; k).
To evaluate this, we consider instead the resolution R, (k(II)) < k(IT) of [14],
R (k(I)) = k(D) @ Afer} @ T{ea},
T™®R1—-1x ¢ [d—1]
TRl-1®m aa

where T'{cy} is a divided power algebra and c[zd] the dth divided power of ¢y. An

augmentation preserving chain map g: R.(k(II)) — N, (k(II)) is given by

Sle)=r@l—10mr, &)=

g =Y 10 eres" @ ©zcat
g(clcgd])221®x®$k”®--~®x®xkd,

where both sums run over tuples (ko,...,kq) with kg + -+ + kg = d(e — 1) and
0 < k; < e. (The summands with some k; = 0, for 0 < i < d, are zero.) Hence, if e
annihilates k, we have an isomorphism of differential graded k-algebras

(A.1.3) k() @ A{er} @ T{ca} = H.(INT(IT)|; k),

where dm = ¢; and dc[2d] = 0. The value of the differential is readily verified using
the standard formula, [16, proposition 1.4.6].

PROPOSITION A.1.4. Let k be a perfect field of characteristic p > 0 and suppose
p divides e. Then there is a canonical isomorphism of differential graded k-algebras

S{o} @ k(Il) ® A{c1} ® T{ea} = m.T(k(IT)),

where dm = ¢; and d(c[2d+l]) = —(e/p)ﬂe_lclc[zd]a

PROOF. The map of the statement is given by the maps (A.1.2) and (A.1.3).
Since both are isomorphisms of graded k-algebras, it remains only to verify the
differential structure. The formula for dm is clear since the edge homomorphism

g(T(k) AN (I)]) — Hy (N (ID)]; k)

is an isomorphism for ¢ < 1 and commutes with the differential. But the proof of

the formula for dc[zd] is more involved and uses the calculation in [18, theorem B]

of the homotopy type of the T-CW-complex |N7 (IT)|. As cyclic sets

(A.1.5) NY(D) = \/ N¥(IL; s),
s>0
where the sth summand has n-simplices (7%, ... 7% ) with ig +...i, = s, and the

realization decomposes accordingly. If we write s = de 4+ r with 0 < r < e then
under the isomorphism of the statement
S{c} ® k{ﬂTc[Qd],Wr_lclc[Qd]}, if0<r<e,
S{c} ® k:{we_lclc[;], C[Zdﬂ]}, ifr=e.
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The formula we wish to prove involves the case r = e. In this case [18, theorem B]
gives a canonical triangle of T-CW-complexes

T/Clay1y+ AS" +5 T/Cyy A SV L NS (1L 5)| ST/Clasny+ A S,

where V; = C(1) @ - -- & C(d). If we form the smash product with T'(k) and take
homotopy groups, the triangle gives rise to a long-exact sequence, which we now
describe. Let zy (resp. yo) be the class of the 0-cycle Cgi1/Cat1 (resp. Cs/Cs)
and let 21 (resp. yi, resp. zs4) be the fundamental class of T/Cyyq1 (resp. T/Cs,
resp. SV¢). Then

mo(T(R) AT/Cryy A SV4) 2 {S{a} ® k{zoz2d, 1224}, ?f n=d+1,
S{o} ® k{yozad, y1224}, ifn=s,
and the differential is 7,7 (k)-linear and maps
d(yoz2a) = (d + 1)y1224, d(y1224) = 0,
d(xoz24) = sT1224, d(x1224) = 0.

The induced maps in the long-exact sequence of homotopy groups associated with
the triangle above all are 7, T'(k)-linear and

Pr*(y022d) = Toz2d, pr*(ylzgd) = €T1%2d,
iy (20224) = 0, in(21220) = 7 Loy cl
6*(7(6_1dﬂ' . C[Qd]) = 0, 8* (C[2d+1]) = —Y1%24-

The statements for the maps pr, and i, are clear from the construction of the
triangle in [18]. We verify the statement for the map d.. To this end we first
choose a cellular homotopy equivalence

a: Chy = |INSY(IT; 8)|

such that we have a map of triangles from the distinguised triangle given by the
map pr to the triangle above. Since the cellular chain functor carries distinguised
triangles of CW-complexes to distinguised triangles of chain complexes, we have

0w (i ((0,y1224))) = Y1224,
s ((21224,0)) = ﬂeflclcgj].
Hence, it suffices to show that . ((0,y1224)) is homologous to 70[2d+1]' To do this,
we consider the diagram

[ c B r7 c
Haar2(|N (1L ) [; Z/p) — Haaya ([N (1L )] Z)

e ]
Hog19(Cor; Z)p) = Hog11(Cpr; Z)

with injective horizontal maps. A straightforward calculation shows that (on the

level of chains) the top Bockstein takes c[gdﬂ] to (e/p)ﬁe_lclc[gd] and the bottom
Bockstein takes (0,y1224) to —(e/p)z1224. We have already noted that the right
hand vertical map takes (z1224,0) to ﬂeflclcéd]. This completes the proof of the
stated formula for 0,.
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We now prove the formula for d(c[Zd]). First note that we can write
d(es") = di(e5") + dalc”),

where d; (resp. ds) is defined in same way as d but with T acting in the first (resp.
second) smash factor of T'(k) A | N (IT; s)| only. Since the differential da commutes
with the isomorphism

m.T(k) @ Ho(INY (I s)[; k) = m(T(k) A [N (1L 5)]),

we find that dg(c[zd]) = 0. Hence, we can ignore the T-action on |[N7(II;s)|. We
have a map of distinguished triangles of (non-equivariant) CW-complexes

T/C(d+1)+ /\ SVd L T/CS+ /\ SVd : Cpr 9 2T/C(d+1)+ /\ SVd

Jf lg ~lh lzf
»2d+1, n2d+1; _22d+lﬂ

241y = P g2d+2
§2d+1 §2d+1 n2d+1 7 §2d+2

such that f. (resp g.) maps 1294 (resp. yi224) to the fundamental class of S24+1.
Hence, it suffices to show that the image of —h,((0,y1224)) = 1 - susp(e) under

d: Togra(T(k) AS2TIM,) — o0 3(T (k) A B2 M)
is equal to —(e/p)o - susp(1l) = —(e/p)h.((x1224,0)). To this end, we consider the
diagram

susp

7T1(Me A T(k)) —_— 7T2d+2(22d+1Me A\ T(k)) L 7T2d+2(T(k) N 22d+1Me)

J{d (=1) Jd Jd
(Mo AT(R)) 5 s (D2 1M, A T(k)) —s mogys (T(K) A D2H1ML),

which commutes up the indicated sign. By the definition of the class o, the left
hand vertical map takes -1 to (e/p)1-o. Hence, the right hand vertical map takes

1-susp(e) to —(e/p)o - susp(1). The stated formula for d(c[2d+1]) follows. O

ADDENDUM A.1.6. The non-zero differentials in the spectral sequence
EZ(Cpn,T(k(H))) = AMup,c1,€} ® S{til,a, 7}/ (7)) @ T{ea}
= 7. (H(Cpn, T(k(11))))

are generated from d*e = to, d*n = tcy, and dzc[gdﬂ] = —(e/p)twe_lclc[gd]a.
PRrROOF. The d?-differential is given by propositions 4.4.3 and A.1.4. It remains
only to show that the higher differentials d”, r > 3, vanish. The decomposition of
cyclic sets (A.1.5) induces one of spectral sequences. And if we write s = de + r
with 0 < r < e, then the E3-term of the sth summand is concentrated on the lines
E?  and E? ; 1, if 0 <7 < e, and on the lines E? ;| and E? ; ,, if r = e. In
either case, all further differentials must be zero for degree reasons. (Il

p

PROPOSITION A.1.7. Let n < wvy(e). The images of m,, and /P by the map

P 7 (T =) — 7 (H(Cye, T()))).
are represented in the spectral sequence E* (Cpn, T(k(ID))) by the infinite cycles 7"
and tea, if vp(e) > n, and by ™" and —(e/p™)urm® ey, if vp(e) = n.

92



PROOF. The statement only involves the summand [N (I, e)|. We consider
the map of spectral sequences induced from the linerization map,

Lot B*(Cp, T(k) NN (ILe)|) — E*(Cpo, HH(k) A [N (IL, €))).

In the left hand spectral sequence, E> = E*, and in the right hand spectral
sequence, E? = E*. The induced map of E>®-terms may be identified with the
canonical inclusion

A{un} & S{til} & k{’]re_lch co+€- (e/p)ﬂ_e—lcl}
— My, e} @ S{tF1Y @ k{n° ey, o).

Since the map is injective, it suffices to show that l*(f(ﬂf/pn)) is represented in the
sequence on the right by —u, 7 tey, if v,(e) = n, and by tes, if v,(e) > n. In the
proof of this, we shall use the notation and results of sections 4.2 and 4.3 above.

We have from [3, §1] the T-equivariant homeomorphism
D [sdye N (L )| = [NY(IL )],

where on the left, the action by the subgroup Cp» C T is induced from a simplicial
Cprn-action. It follows that this space has a canonical Cpn-CW-structure, and the
homeomorphism D then defines a Cpn-CW-structure on [N (IL, e)|. We fix, as in
the proof of proposition A.1.4, a cellular homotopy equivalence

a: Cpy = [N (I, e)|

with the Cpn-CW-structure on Cp, induced from the Cpn-CW-structure of T =
S(C) = E4 given in section 4.4 above. The cellular complex C, = C.(Cpy; k) is
canonically identified with the complex

K[Cpe] - (0,21) 2 k- (21,0) ® K[Cpa] - (0, 20) > k - (20, 0),

where 8((0,21)) = —(e/p")(21,0) — (g — 1)(0,70), 8((z1,0)) = 0, and 6((0, z0)) =
—(20,0). One shows as in the proof of proposition A.1.4 that the cycles a..((z1,0))
and o, (N (0, 1)) represent the classes 7°~lc; and —ca, respectively.

We now turn to the spectral sequence E* = E*(Cpn, HH(k) A Cp;). There are
canonical isomorphisms of complexes

B!, = (P ® Hom(P, 7 (HH(k) A Cy))) " 2 (P @ Hom(P, Hy(C,)))“"

with the left hand isomorphism given by lemma 4.3.4 and the right hand isomor-
phism by (A.1.1). We claim that in fact

(A.1.8) Tou(H(Cpn, HH(K) A Cpy)) = H. ((P @ Hom(P, C,))%")

and that the spectral sequence E*is canonically isomorphic to the one associated

with the double complex on the right. To see this, we filter M,, £, F, and C},; by
the skeleta. We get, as in section 4.3, a conditionally convergent spectral sequence

E?, = Hy((P @ Hom(P, m HH(k) ® C.))"") = Typ s (H(Cpn, HH(K) A Cpy)),

which collapses since m; HH(k) vanishes for ¢ > 0. The edge homomorphism gives

the desired isomorphism. Moreover, under this isomorphism, the filtration of E

and F, which gives rise to the spectral sequence E*, corresponds to the filtration

of the complexes P and P. Tracing through the definitions, one readily sees that
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the class 1, (F(x/"")) is represented by the element yo ® Naf ® (0,0) € Efo. To
finish the proof, we note that in the total complex (A.1.8),

5(N(yo ® 21 @ (0,21) = yo ® 25 © (0,20)))

= Yo ® Nzg ® (70,0) + 3o @ Noy @ N(0,71) + (¢/p")yo ® Nz ® (1,0),

and in the lower line, the first summand represents l*(f‘(ﬂf/pn)), the second —tca,
and the third (e/p™)u, 7 1c;. The statement follows, since —tcy and u, 7 1c; are
not boundaries. O
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