
On the de Rham-Witt complex in mixed characteristic

Lars Hesselholt and Ib Madsen*

Abstract. The purpose of this paper is twofold. Firstly, it gives a thor-

ough treatment of the de Rham-Witt complex for Z(p)-algebras, a construc-

tion we first considered in [9]. This complex is the natural generalization to

Z(p)-algebras of the de Rham-Witt complex for Fp-algebras of Bloch-Deligne-

Illusie [13] (for p odd). We also give an explicit formula for the de Rham-Witt

complex of a polynomial ring in terms of that of the coefficient ring. Secondly,
we generalize the main theorem C of [9] to smooth algebras over a discrete

valuation ring of mixed characteristic (0, p) with perfect residue field and p

odd.
Résumé. Le but de cet article est double. D’abord, il donne un traitement
complet du complexe de de Rham-Witt pour les Z(p)-algèbres, une construc-

tion que nous avons considérée précédemment dans [9]. Ce complexe est la

généralisation naturelle aux Z(p)-algèbres du complexe de de Rham-Witt pour

les Fp-algèbres de Bloch-Deligne-Illusie [13] (pour p impair). Nous donnons

aussi une formule explicite pour le complexe de de Rham-Witt d’un anneau
polynomial en termes de celui de l’anneau des coefficients. Ensuite, nous

généralisons le théorème principal de [9] (Theorem C) aux algèbres lisses sur

un anneau de valuation discret de non-égale caractéristique (0, p) avec corps
résiduel parfait et p impair.

Introduction

For every ring A, the cyclotomic trace is a map of pro-abelian groups

tr : Kq(A)→ TC·
q(A; p)

from the algebraic K-theory of A to the topological cyclic homology of A [2]. This
is a highly non-trivial invariant. For instance, it induces an isomorphism with Z/pv-
coefficients in non-negative degrees, if A is a finite algebra over the ring W (k) of
Witt vectors of a perfect field of characteristic p > 0. There is a natural long-exact
sequence

· · · → TC·
q(A; p)→ TR·

q(A; p) 1−F−−−→ TR·
q(A; p)→ TC·

q−1(A; p)→ · · ·
and it is the pro-groups TR·

q(A; p) which are our main object of study here. We
recall from [8, theorem A] that the limit TRq(A; p) coincides with the p-typical
curves on Kq+1(A) introduced by Bloch in [1]. Here and throughout we assume
that A is a Z(p)-algebra with p an odd prime.

∗ The first named author was supported in part by a grant from the National Science Foun-

dation. The second named author was support in part by the American Institute of Mathematics.
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Associated with the ring A, one has the topological Hochschild spectrum T (A).
It has an action by the circle group T, and by definition

TRn
q (A; p) = πq(T (A)Cpn−1 )

is the qth homotopy group of the fixed points by the finite subgroup of the indicated
order. Usually these are very large abelian groups. But they are, as n and q varies,
related by a number of operators, and the combined algebraic structure is quite
rigid. We call this structure a Witt complex over A. By definition, this is:

(i) a pro-differential graded ring E∗· and a strict map of pro-rings

λ : W·(A)→ E0
·

from the pro-ring of Witt vectors in A;
(ii) a strict map of pro-graded rings

F : E∗· → E∗·−1

such that λF = Fλ and such that for all a ∈ A,

Fdλ([a]n) = λ([a]n−1)p−1dλ([a]n−1),

where [a]n = (a, 0, . . . , 0) ∈Wn(A) is the multiplicative representative;
(iii) a strict map of graded E∗· -modules

V : F∗E∗·−1 → E∗·

such that λV = V λ and such that
FdV = d,

FV = p.

A map of Witt complexes over A is a strict map f : E∗· → E′·
∗ of pro-differential

graded rings such that λ′ = fλ, F ′f = fF and V ′f = fV .
In the Witt complex E∗· = TR·

∗(A; p), the map F is induced from the obvious
inclusion, V is the accompanying transfer map, and the differential is induced from
the T-action. The structure maps in the pro-system and the map λ are harder to
define. The map λ turns out to be an isomorphism in this case [10, theorem F].
We write WA for the category of Witt complexes over A. Using standard category
theory, we show:

Theorem A. The category WA has an initial object W· Ω∗A. Moreover, the
canonical map π· : Ω∗W·(A) →W· Ω∗A is surjective.

For a ring homomorphism f : A→ A′, we have the direct image functor

f∗ : WA′ →WA

given by viewing a Witt complex over A′ as a Witt complex over A by replacing
the map λ by the composite λW·(f). We show that this functor has a left adjoint

f∗ : WA →WA′ ,

the inverse image functor. The universal properties imply that the canonical map

W· Ω∗A′ → f∗W· Ω∗A
is an isomorphism. The proof of the existence of f∗, again, is by category theory.
However, in the case of the ring homomorphism

π : A→ A[x]
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given by the inclusion of the constant polynomials, we can give an explicit descrip-
tion of the inverse image functor. If E = E∗· is a Witt complex over A, we consider
the pro-graded abelian group

P (E) = P (E)∗·

where P (E)q
n is given by the set of (finite) formal sums of the form∑

j∈N0

a
(n)
0,j [x]jn +

∑
j∈N

b
(n)
0,j [x]j−1

n d [x]n

+
n−1∑
s=1

∑
j∈Ip

(
V s(a(n−s)

s,j [x]jn−s) + dV s(b(n−s)
s,j [x]jn−s)

)
,

with the components a(m)
s,j ∈ Eq

m and b
(m)
s,j ∈ Eq−1

m and with [x]n a formal variable
of degree 0. Addition is component-wise, and the structure maps in the pro-system
are induced from the ones in E. If E′ = E′·

∗ is a Witt complex over A[x] and
if f : E → π∗E

′ is a map of Witt complexes over A, there is an induced map of
pro-graded abelian groups

f̃ : P (E)→ E′

which maps the formal sum above to the sum∑
j∈N0

f(a(n)
0,j )λ′([x]jn) +

∑
j∈N

f(b(n)
0,j )λ′([x]j−1

n )dλ′([x]n)

+
n−1∑
s=1

∑
j∈Ip

(
V s(f(a(n−s)

s,j )λ′([x]jn−s)) + dV s(f(b(n−s)
s,j )λ′([x]jn−s))

)
in E′q

n. The requirement that for all E′ in WA′ , this be a map of Witt complexes
leaves only one possible way to define a product, a differential, and the maps F and
V on P (E). The explicit formulas are given in section 4.2 below.

The construction P (E) may be explained as follows: The first two summands in
the formula above form the sub-pro-differential graded ring

E∗· ⊗Z(p) Ω∗Z(p)[x] ⊂ P (E)∗· ,

the Frobenius on P (E) induces the map of pro-graded rings

F = F ⊗ F : E∗· ⊗Z(p) Ω∗Z(p)[x] → E∗· ⊗Z(p) Ω∗Z(p)[x],

given on the second factor by F ([x]n) = [x]pn−1 and Fd [x]n = [x]p−1
n−1d [x]n−1, and

the Verschiebung on P (E) induces the (partially defined) map of pro-abelian groups

V = V ⊗ F−1 : E∗· ⊗Z(p) F (Ω∗Z(p)[x])→ E∗· ⊗Z(p) Ω∗Z(p)[x].

From this point of view, P (E) is the minimal extension of E∗· ⊗ Ω∗Z(p)[x] that admits
a globally defined Verschiebung operator.

Theorem B. Let E be a Witt complex over A. Then P (E) is a Witt complex
over A[x], and the canonical map

π∗E → P (E)

is an isomorphism.
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This gives, in particular, the promised formula for the de Rham-Witt complex
of A[x] in terms of that of A. Indeed, the canonical map

P (W· Ω∗A)→W· Ω∗A[x]

is the inverse isomorphism. We also show:

Theorem C. The canonical map

P (TR·
∗(A; p))→ TR·

∗(A[x]; p)

is an isomorphism.

The construction given in [13] of the de Rham-Witt complex for Fp-algebras
proceeds in two steps. Firstly, one considers a category W ′

A (denoted VDR(A)
in op. cit.) whose objects in essence are Witt complexes without an F -operator.
This category has an initial object W ′

· Ω
∗
A, which can be constructed somewhat

more concretely. This works for all rings. Secondly, one constructs an F -operator
on W ′

· Ω
∗
A and proves that the combined structure is a Witt complex, which then

necessarily is the initial object of WA. The proof given in op. cit. works only for
Fp-algebras. For it uses that for a polynomial algebra over Fp, the inverse limit
W ′ΩA = limnW

′
nΩ∗A is torsion free, and this is not the case for a polynomial

algebra over Z(p). We give a different proof based on theorem B. Hence, for every
Z(p)-algebra we have:

Theorem D. The forgetful functor WA →W ′
A preserves initial objects.

Let V be a complete discrete valuation ring of mixed characteristic (0, p) with
quotient field K and perfect residue field k. Our second objective in this paper is to
generalize [9, theorem C] to smooth V -algebras. To state the result, we first recall
the notion of a log-differential graded ring from [14].

A log-ring (R,M) is a ring R together with a pre-log structure defined as a map
of multiplicative monoids α : M → R, and a log-differential graded ring (D,M) is a
differential graded ring D, a pre-log structure α : M → D0, and a map of monoids
D log : M → (D1,+) such that dα(a) = α(a)D log a, for all a ∈M . We note that a
pre-log structure on R induces one on Wn(R) by composing with the multiplicative
map [ ]n : R → Wn(R). The notion of a Witt complex and theorem A above
generalize to log-rings; see [9, §3] for details. The universal example is denoted
W· Ω∗(R,M). It generalizes the construction of Hyodo-Kato [12] for log-Fp-algebras.

Let A be a smooth V -algebra, let Ak = A ⊗V k, and let AK = A ⊗V K. The
canonical log-structure on A is given by the inclusion

α : MA = A ∩A∗K ↪→ A.

In this situation, one has the localization sequence in K-theory,

. . .→ Kq(Ak) i!−→ Kq(A)
j∗−→ Kq(AK) ∂−→ Kq−1(Ak)→ . . .

We constructed in [9, §1] a corresponding sequence

. . .→ TR·
q(Ak; p) i!−→ TR·

q(A; p)
j∗−→ TR·

q(A|AK ; p) ∂−→ TRq−1(Ak; p)→ . . .

and a trace map from the sequence above. The groups TR·
∗(A|AK ; p) form a Witt

complex over the log-ring (A,MA) with the map

d logn : MA → TRn
1 (A|AK ; p)

4



given by the composite

MA = A ∩A∗K ↪→ A∗K → K1(AK) tr−→ TRn
1 (A|AK ; p).

Hence, we have the canonical map from the universal Witt complex,

W· Ω∗(A,MA) → TR·
∗(A|AK ; p).

If we assume that µpv ⊂ K, there is, in addition, a unique ring homomorphism

SZ/pv (µpv )→ TR·
∗(A|AK ; p,Z/pv),

which takes a generator ζ ∈ µpv to the image by the trace map of the corresponding
Bott element bζ ∈ K2(K,Z/pv). In all we have a map of Witt complexes

W· Ω∗(A,MA) ⊗Z SZ/pv (µpv )→ TR·
∗(A|AK ; p,Z/pv),

where on the left, the maps R, F , and V act as the identity on the second tensor
factor. The differential acts trivially on the second tensor factor.

Theorem E. Let V be a discrete valuation ring of mixed characteristic (0, p)
with quotient field K and perfect residue field k, and assume that p is odd and that
µpv ⊂ K. Then for every smooth V -algebra A, the canonical map

W· Ω∗(A,MA) ⊗Z SZ/pv (µpv )→ TR·
∗(A|AK ; p,Z/pv)

is an isomorphism of pro-abelian groups.

It appears an interesting problem to formulate and prove the analog of theorem E
for p = 2. In this case, the right hand side of the statement is not a Witt complex
over A with the definition given here. For (d ◦ d)(x) = η · d(x), where η = tr(−1) =
d log·(−1). This class is non-zero, for instance, if A = Z(2), but the square η2 is
always zero, see Rognes [24, theorem 1.5].

Finally, we mention that at the same time as this paper was written, A. Langer
and T. Zink introduced a relative version of the de Rham-Witt complex [15], which
to a map of Z(p)-algebras R→ A associates a Witt complex W· Ω∗A/R. Hence, there
is a canonical map W· Ω∗A →W· Ω∗A/R. This map is always surjective, but it is not
injective if R = Z(p). The elements of the kernel are important for the relation to
K-theory. For example, we show in example 1.2.5 below that the map

d log : Z∗p/Z∗p
v

p →W· Ω1
Zp
/pvW· Ω1

Zp

is an isomorphism of the domain onto the sub-pro-abelian group of the target fixed
by the Frobenius operator. It takes the class of exp(p/(p−1)), which generates the
domain, to the class of

∑
s≥1 dV

s(1). But W· Ω1
Zp/Z(p)

/pvW· Ω1
Zp/Z(p)

, in compari-
son, is zero. See also [4].

Unless otherwise stated, all rings considered in this paper will be commutative
and unital Z(p)-algebras with p an odd prime. We denote by N (resp. by N0,
resp. by Ip) the set of positive integers (resp. non-negative integers, resp. positive
integers prime to p). By a pro-object of a category C we mean a functor from N,
viewed as a category with one arrow from n + 1 to n, to C, and by a strict map
between pro-objects we mean a natural transformation. A general map between
pro-objects X and Y of C is an element of

Hompro−C(X,Y ) = lim
n

colim
m

HomC(Xm, Yn).

We view objects of C as constant pro-objects of C.
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1. Witt complexes

1.1. We briefly recall Witt vectors and the de Rham complex. For a fuller
discussion, we refer the reader to [23, appendix] and [21], respectively.

The de Rham complex of a ring A is characterized by the following universal
property: given a differential graded ring E∗ and a ring homomorphism λ : A→ E0,
there exists a unique map of differential graded rings

Ω∗A → E∗,

which in degree zero is given by the map λ. It is also easy to construct. Let I be
the kernel of the multiplication A⊗A→ A. It is generated as an A-module by the
elements a⊗ 1− 1⊗ a, a ∈ A. The two A-module structures on I define the same
A-module structure on Ω1

A = I/I2, and the map

d : A→ Ω1
A

which takes a to (a⊗1−1⊗a)+ I2 is a derivation. This is the universal derivation
from A to an A-module. One now defines the de Rham-complex to be the exterior
algebra

Ω∗A = Λ∗AΩ1
A

with differential
d(a0da1 . . . dan) = da0da1 . . . dan.

It is a differential graded ring and clearly has the universal property stated above.
The ring Wn(A) of Witt vectors of length n in A is the set of n-tuples in A but

with a new ring structure characterized by the requirement that the “ghost” map

w : Wn(A)→ An

which takes the vector (a0, a1, . . . , an−1) to the sequence (w0, w1, . . . , wn−1) with

wi = api

0 + papi−1

1 + · · ·+ piai,

be a natural transformation of functors from rings to rings. If the ring A is p-
torsion free, the ghost map is injective. If, in addition, there exists a ring homo-
morphism f : A→ A with the property that f(a) ≡ ap modulo pA, then a sequence
(x0, . . . , xn−1) is in the image of the ghost map if and only if

xi ≡ f(xi−1) modulo piA,

for all 0 < i < n. The latter statement, the lemma of Dwork, encodes the congru-
ences needed to construct every map involving Witt vectors. As an example of how
this works, we construct the addition on Wn(A).

By naturality, it suffices to consider A = Z[a0, . . . , an−1, b0, . . . , bn−1] and define
the sum of the vectors a = (a0, . . . , an−1) and b = (b0, . . . , bn−1). The ring homo-
morphism f : A → A, which raises the variables to the pth power, is a lift of the
Frobenius, so we can use the lemma of Dwork to identify the image of the ghost
map. One verifies immediately that the sequence w(a)+w(b) is in the image of the
ghost map. Hence, there exists a vector s = (s0, . . . , sn−1) such that

w(s0, . . . , sn−1) = w(a0, . . . , an−1) + w(b0, . . . , bn−1),

and since A is p-torsion free, the vector s is unique. The only possible definition,
therefore, is that a+ b = s.
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The projection on the first n− 1 factors is a ring homomorphism

R : Wn(A)→Wn−1(A),

called restriction, and this makes W·(A) a pro-ring. There is a second ring homo-
morphism, the Frobenius,

F : Wn(A)→Wn−1(A),

characterized by the formula

w(F (a0, . . . , an−1)) = (w1(a), . . . , wn−1(a)),

and a Wn(A)-linear map, the Verschiebung,

V : F∗Wn−1(A)→Wn(A)

given by
V (a0, . . . , an−2) = (0, a0, . . . , an−1).

Here the notation F∗Wn−1(A) indicates that Wn−1(A) is considered a Wn(A)-
module via the Frobenius F : Wn(A) → Wn−1(A). Thus, the linearity of the Ver-
schiebung is the statement that for all x ∈Wn(A) and y ∈Wn−1(A), the Frobenius
reciprocity formula xV (y) = V (F (x)y) holds. The Frobenius and Verschiebung
both commute with the restriction. The Teichmüller map is the multiplicative
map

[ ]n : A→Wn(A),

given by [a]n = (a, 0, . . . , 0). In particular, [1]n is the multiplicative unit in Wn(A).
The following relations hold

F ([a]n) = [a]pn−1, FV = p,

where on the right, p denotes multiplication by p = [1] + · · · + [1] (p times). In
general, it is very difficult, to describe the coordinates of the vector p · a in terms
of the coordinates of a. It is often convenient to display a Witt vector as

(a0, . . . , an−1) =
n−1∑
i=0

V i([ai]n−i).

1.2. The definition of a Witt complex over A was given in the introduction.
The following result will be used repeatedly throughout the paper.

Lemma 1.2.1. Let E∗· be a Witt complex over A. Then

dF = pFd, V d = pdV, V (xdy) = V (x)dV (y).

Proof. Let x, y ∈ E∗n. Then

V (xdy) = V (xFdV (y)) = V (x)dV (y);

dF (x) = FdV F (x) = Fd(V (1)x) = F (dV (1)x+ V (1)dx)

= FdV (1)F (x) + FV (1)Fdx = d(1)F (x) + pFdx = pFdx;

V d(x) = V (1)dV (x) = d(V (1)V (x))− dV (1) · V (x)

= dV (FV (1)x)− V (FdV (1)x) = dV (px)− V (d(1)x) = pdV (x).

This completes the proof. �
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Proof of theorem A. The existence of an initial object follows from the
Freyd adjoint functor theorem, [18, p. 116]. The category WA clearly has all small
limits, so it suffices to verify the solution set condition. To this end, we show that
for every E = E∗· in WA, the image of the map induced from λ,

λ : Ω∗W·(A) → E∗· ,

is a (sub) Witt complex of E. Since the isomorphism classes of such images form a
set, the proposition will follow. We must show that the Frobenius and Verschiebung
of E∗· preserves the image of the canonical map. To prove the statement for the
Frobenius, it suffices, since F is multiplicative, to show that for all n ≥ 1 and all
a ∈Wn(A), Fdλ(a) is in the image of the canonical map. But, using the formula

a = [a0]n + V ([a1]n−1) + V 2([a2]n−2) + · · ·+ V n−1([an−1]1),

we find

Fdλ(a) = λ([a0]n−1)p−1dλ([a0]n−1) + dλ([a1]n−1) + · · ·+ dV n−1λ([an−1]1),

and this sum clearly is in the image of the canonical map. The statement for the
Verschiebung follows immediately from lemma 1.2.1. This proves that an initial
object exists.

Finally, we show that the map π· is surjective, or equivalently, that the inclusion
of the image E of this map is a surjection. Since E is a Witt complex, there is a
unique map W· Ω∗A → E∗· of Witt complexes. But then also the composition

W· Ω∗A → E∗· →W· Ω∗A
is a map of Witt complexes. And since W· Ω∗A is the initial object, this composite
is the identity map. The statement follows. �

Remark 1.2.2. Theorem A shows, in particular, that the canonical map

W·(A)→W· Ω0
A

is surjective. In effect, this is an isomorphism. For E∗· = W·(A) is a Witt com-
plex over A. We will prove later that also the canonical map Ω∗A → W1Ω∗A is an
isomorphism. The proof of this, however, requires theorem D.

The direct image functor f∗ : WB →WA associated with a ring homomorphism
f : A→ B takes E∗· to E∗· and replaces the map λ by the composite λW·(f).

Proposition 1.2.3. The direct image functor f∗ has a left adjoint

f∗ : WA →WB ,

the inverse image functor.

Proof. The proof, which is similar to the proof of theorem A, is an application
of the adjoint functor theorem, [18, p. 116]. Given an object E = E∗· in WA, the
object f∗E in WB is the initial object in the over category E/f∗. This category
has small limits, so we must verify the solution set condition.

We first construct, for all n ≥ 1, a non-commutative graded ring T ∗n which
depends only on E. Assume, inductively, that T ∗n−1 has been constructed (we let
T ∗0 = {0}), and let

S∗n = {e, de | e ∈Wn(B)⊗Wn(A) E
∗
n} ∪ {V (e′), dV (e′) | e′ ∈ T ∗n−1}
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be the graded set, where e and V (e′) are assigned the degree of e and e′, respectively,
and where the degree of de and dV (e′) is one higher than the degree of e and e′.
Then we define T ∗n to be the free non-commutative graded ring generated by the
graded set of S∗n.

Given an object (D,ϕ : E → f∗D) of the over category E/f∗, we recursively
define maps of graded rings

ψn : T ∗n → D∗n.

The given map of graded Wn(A)-algebras ϕn : E∗n → f∗D
∗
n induces a map of graded

Wn(B)-algebras
ϕ̂n : Wn(B)⊗Wn(A) E

∗
n → D∗n,

and with ψn−1 : T ∗n−1 → D∗n−1 already defined, we let ψ′n : S∗n → D∗n be the map of
graded sets given by ψn(e) = ϕ̂n(e), ψn(de) = d(ϕ̂n(e)), for e ∈Wn(B)⊗Wn(A)E

∗
n,

and by ψn(V (e′)) = V (ψn−1(e′)), ψn(dV (e′)) = dV (ψn−1(e′)), for e′ ∈ T ∗n−1. Then
ψn : Tn → Dn is the unique map of graded rings which extends ψ′n.

One shows, as in the proof of theorem A, that the images I(D,ϕ) = {im(ψn)}n≥1

form a Witt complex over B, and that the map ϕ′ : E → f∗I(D,ϕ), which takes
e ∈ Ed

n to ψn(1 ⊗ e) ∈ I d
(D,ϕ),n, is a map of Witt complexes over B. Hence, the

canonical inclusion I(D,ϕ) → D defines a map

(I(D,ϕ), ϕ
′ : E → f∗I(D,ϕ))→ (D,ϕ : E → f∗D)

in the over category E/f∗. Since the isomorphism classes of the objects of E/f∗
of the form (I(D,ϕ), ϕ

′ : E → f∗I(D,ϕ)) form a set, the solution set condition is
satisfied. �

Example 1.2.4. We consider W· Ω∗Z(p)
. In general, an integer invertible in A is

also invertible in Wn(A), and hence, the ring Wn(Z(p)) is a Z(p)-algebra. We claim
that as a Z(p)-module,

Wn(Z(p)) =
n−1∏
i=0

Z(p) · V i(1)

with the product given by

V i(1) · V j(1) = piV j(1),

for 0 ≤ i ≤ j < n. The first statement follows by an induction argument based on
the exact sequences

0→ Z(p)
V n−1

−−−→Wn(Z(p))
R−→Wn−1(Z(p))→ 0,

and the product formula is an immediate consequence of the relations FV = p and
xV (y) = V (F (x)y). In general, it is difficult to find the coordinates of a ∈Wn(Z(p))
with respect to the basis V i(1), 0 ≤ i < n.

We can use the canonical surjection

Ω∗Wn(Z(p))
→WnΩ∗Z(p)

to get an upper bound for the right hand side. The map is an isomorphism in
degree zero, and in degree one we have the relations that for 0 ≤ i ≤ j < n,

V i(1)dV j(1) = V i(F idV j(1)) = V idV j−i(1) = pidV j(1),

V j(1)dV i(1) = V j(F jdV i(1)) = V jF j−id(1) = 0.
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It follows that pidV i(1) and dV i(1)dV j(1) are zero, for all 0 ≤ i, j < n. Hence
WnΩq

Z(p)
vanishes for q > 1, and there is canonical surjection

n−1∏
i=0

Z/piZ · dV i(1) � WnΩ1
Z(p)

.

In fact, this is an isomorphism. To prove injectivity, it suffices to find a Witt
complex E = E∗· such that the canonical map

n−1∏
i=0

Z/piZ · dV i(1)→ E1
n

is injective. We show in proposition 2.6.1 below that TR·
∗(Z(p); p) is such a Witt

complex.

Example 1.2.5. We next consider W· Ω∗Zp
. One proves by induction on n ≥ 1

that for all q ≥ 0 and v ≥ 1, that the completion map induces an isomorphism

WnΩq
Z(p)

/pvWnΩq
Z(p)

∼−→WnΩq
Zp
/pvWnΩq

Zp
.

We wish to evaluate the map

d logn : Z∗p/Z∗p
v

p →WnΩq
Zp
/pvWnΩq

Zp
,

which to the class of x ∈ Z∗p assigns the class of [x]−1
n d[x]n ∈WnΩ1

Zp
. We have

[x]n = x · [1]n +
∑

0<s<n

p−s(xps

− xps−1
) · V s([1]n−s),

where we use that the Z(p)-module structure on WnΩ1
Zp

extends to a Zp-module
structure by continuity. Indeed, as one readily verifies, the two sides of the equality
have the same image by the ghost map, and the ghost map is injective. If we
differentiate this formula and multiply by [x]−1

n = [x−1]n, we find that

d logn x =
∑

0<s<n

p−s(xps−1(p−1) − 1) · dV s([1]n−s).

In particular, the class of exp(p/(p − 1)), which generates the domain of d logn, is
mapped to the class of

∑
0<s<n dV

s(1). It is not difficult from example 1.2.4 to
see that as n ≥ 1 varies, the latter class generates the sub-pro-abelian group of the
target of d logn that is fixed by the Frobenius operator.

2. The Witt complex TR·
∗(A; p)

2.1. In this paragraph we recall the Witt complex TR·
∗(A; p) associated with

a ring A. Details may be found in [10], [9], [8], and [5]. See also [19].
Let G be a compact Lie group. The G-stable category is a triangulated category

and a closed symmetric monoidal category, and the two structures are compatible,
[16, II.3.13]. The objects of the G-stable category are called G-spectra. A monoid
for the smash product is called a ring G-spectrum. We denote the set of maps
between two G-spectra T and T ′ by [T, T ′]G.

10



Associated with a pointed G-space X one has the suspension G-spectrum which
we denote by suspG(X) or simply by X. If V is an orthogonal G-representation, we
denote by SV the one-point compactification. Then the suspension homomorphism

[T, T ′]G
∼−→ [T ∧ SV , T ′ ∧ SV ]G

is an isomorphism, [16, I.6.1]. Let H ⊂ G be a closed subgroup, let q be an integer,
and let T be a G-spectrum. We define the (derived) homotopy group

πH
q (T ) = [G/H+ ∧ Sq, T ]G,

where the subscript + indicates the addition of a disjoint G-fixed basepoint. There
is a canonical isomorphism

πH
q (T ) ∼= πq(TH),

where TH is the H-fixed point WGH-spectrum. More generally, given a pair of
closed subgroupsK ⊂ H ⊂ G withK normal inH, there is a canonical isomorphism

πH
q (T ) ∼= πH/K

q (TK).

A map in the G-stable category is an isomorphism if and only if the induced map
of homotopy groups is an isomorphism, for all H ⊂ G and all q, [16, I.5.12].

Let H ⊂ G be a closed subgroup. The diagonal map of the space G/H induces
a map in the G-stable category

∆: G/H+ → G/H+ ∧G/H+,

and if T and T ′ are G-spectra, this gives rise to a pairing

πH
q (T )⊗ πH

q′ (T
′)→ πH

q+q′(T ∧ T ′).

If T is a ring G-spectrum, we may compose with the map of homotopy groups
induced by the multiplication µ : T ∧T → T . This way the homotopy groups πH

∗ (T )
form a graded ring, and if T is commutative, this graded ring is commutative in
the graded sense.

Finally, we mention the Segal-tom Dieck splitting, [25, Satz 2]. If H ⊂ G is
finite and if X is a pointed G-space, there is a canonical isomorphism

(2.1.1)
⊕
(K)

πq(susp(E(WHK)+ ∧WHK XK)) ∼−→ πH
q (suspG(X)),

where the sum is over conjugacy classes of subgroups of H, and E(WHK) is the
universal cover of the classifying space B(WHK).

2.2. Let T be the circle group. Associated with every ring A one has the
topological Hochschild spectrum T (A). This is a ring T-spectrum, and by definition,

TRn
q (A; p) = [Sq ∧ T/Cpn−1+, T (A)]T,

where Cpn−1 ⊂ T denotes the finite subgroup of the indicated order. The maps

(2.2.1)

F : TRn
q (A; p)→ TRn−1

q (A; p),

V : TRn−1
q (A; p)→ TRn

q (A; p),

d : TRn
q (A; p)→ TRn

q+1(A; p),
11



which are part of the structure of a Witt complex, are induced by maps in the
T-stable category

(2.2.2)

f : T/Cpn−2+ → T/Cpn−1+,

v : T/Cpn−1+ → T/Cpn−2+,

δ : T/Cpn−1+ ∧ S1 → T/Cpn−1+,

the definition of which we briefly recall.
The map f is induced by the canonical projection of T-spaces, and v is the

corresponding transfer map defined as follows. Let i : T/Cpn−2 ↪→ V be an em-
bedding into an orthogonal T-representation, and consider the product embedding
(pr, i) : T/Cpn−2 ↪→ T/Cpn−1 × V . The normal bundle of the latter is trivial, and
the linear structure on V gives a preferred trivialization. Hence, by the Pontryagin-
Thom construction, which collapses the complement of a tubular neighborhood to
the base point, we have a map of pointed T-spaces

T/Cpn+ ∧ SV → T/Cpn−1+ ∧ SV ,

and (under the suspension isomorphism) this induces the map v. Finally, the map
δ is induced from a map of pointed T-spaces

δ : T/Cpn−1+ ∧ Sm+1 → T/Cpn−1+ ∧ Sm.

The set of T-homotopy classes of such maps, if m ≥ 2, is a direct sum of an infinite
cyclic group and a cyclic group of order 2, and the map δ is a generator of an
infinite cyclic summand. The induced map on reduced homology,

H̃m+1(T/Cpn−1+ ∧ Sm+1) δ−→ H̃m+1(T/Cpn−1+ ∧ Sm),

takes the generator on the left which, under the canonical isomorphism

H̃q(X+ ∧ Sm) ∼= Hq−m(X),

corresponds to class of the point Cpn−1 in H0(T/Cpn−1) to the generator on the
right which corresponds to the fundamental class [T/Cpn−1 ] ∈ H1(T/Cpn−1).

If we ignore 2-torsion, these maps satisfy the following relations

(2.2.3)
vf = p · id, fδ = pδf, δv = pvδ,

vδf = δ, δδ = 0,

and hence the dual relations hold among the maps (2.2.1). Moreover, there are
further relations among the maps f , v, δ, and the diagonal map ∆. The relations

(f ∧ f)∆ = ∆f, (f ∧ id)∆v = (id∧v)∆,
shows that F is a map of graded rings, and that V is a map of graded modules.
And the relation

∆δ = (δ ∧ id∨ id∧δ) τ ∇∆,
valid up to 2-torsion, shows that d is a derivation. Here τ permutes the appropriate
smash factors, and ∇ is the fold map. The proof of these facts may be found in
[10, lemma 3.3] and [8, 1.4.2, 1.5.1].

Remark 2.2.4. Up to 2-torsion, the full subcategory of the T-stable category
with objects T/Cpn−1+ ∧ Sq, where 0 ≤ q ≤ 2 and n ∈ N, is equal to the ringoid
generated by the maps (2.2.2) subject to the relations (2.2.3). In more detail, if m
is the minimum of r and s, then:
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(i) The maps from T/Cps+ to T/Cpr+ form a free abelian group of rank m+ 1
generated by fr−ivs−i with 0 ≤ i ≤ m.

(ii) The abelian group of maps from T/Cps+ ∧S1 to T/Cpr+ is, up to 2-torsion,
the sum of a free abelian group of rank m+ 1 and, for every 1 ≤ i ≤ m, a copy of
Z/piZ. If r ≥ s (resp. if r ≤ s) then fr−ivs−iδ (resp. δfr−ivs−i) is a generator
of a summand Z, and in either case, pr−mδfr−ivs−i − ps−mfr−ivs−iδ generates a
summand Z/pm−iZ.

(iii) The abelian group of maps from T/Cps+∧S2 to T/Cpr+ is, up to 2-torsion,
the sum for 1 ≤ i ≤ m, of a copy of Z/pm−iZ generated by δfr−ivs−iδ.

(iv) If q > 0 then every map from T/Cps+ to T/Cpr+ ∧ Sq is zero.
This follows from the Segal-tom Dieck splitting, (2.1.1).

2.3. An isomorphism f : G ∼−→ G′ of compact Lie groups induces an equiv-
alence of categories f∗ from the G′-stable category to the G-stable category, [16,
II.1.7]. If H ⊂ G is a closed subgroup, we let H ′ ⊂ G′ be the closed subgroup
H ′ = f(H). Then for every closed subgroup H ⊂ G and every integer q, there is a
canonical isomorphism of G-spectra

G/H+ ∧ Sq ∼= f∗(G′/H ′ ∧ Sq),

and this induces, for every G′-spectrum T ′, a canonical isomorphism

πH
q (f∗(T ′)) ∼= πH′

q (T ′).

In the case of the circle group, we have the isomorphism

ρp : T ∼−→ T/Cp

given by the pth root. If T is a T-spectrum, then TCp is a T/Cp-spectrum, and
hence, ρ∗p(T

Cp) is a T-spectrum. We have the canonical isomorphisms

π
Cpn−2
q (ρ∗p(T

Cp)) ∼= π
Cpn−1/Cp

q (TCp) ∼= π
Cpn−1
q (T ),

and these are compatible with the maps F , V , and d induced from (2.2.2).
The topological Hochschild T-spectrum T (A) is a cyclotomic spectrum in the

sense of [10, definition 2.2]. This implies that there is a a map of T-spectra

r : ρ∗p(T (A)Cp)→ T (A).

Hence, we have the map

R : TRn
q (A; p)→ TRn−1

q (A; p)

defined as the composite

π
Cpn−1
q (T (A)) ∼= π

Cpn−2
q (ρ∗p(T (A)Cp)) r−→ π

Cpn−2
q (T (A)),

and this map commutes with the operators F , V , and d. Moreover, r is a map of
ring T-spectra, and hence R is a map of graded rings.

13



2.4. In order to construct the T-spectrum T (A) we need a model category
for the T-stable category. The model category we use is the category of symmetric
spectra of orthogonal T-spectra, [20]. This model has a closed symmetric monoidal
product which induces the smash product on the T-stable category. We first recall
the topological Hochschild space THH(A). See [5, §1] and [10, §2] for more details.

If A is a ring and X a pointed simplicial set, the homotopy groups of the space

A(X) = |A{X}/A{x0}|

are canonically isomorphic to the reduced singular homology groups of |X| with
coefficients in A [22, theorem 22.1]. Here A{X} denotes the degree-wise free A-
module generated by X. Let S1 = ∆[1]/∂∆[1] be the standard simplicial circle and
let Si be the smash product of i copies of S1. Then

Ãi = A(Si)

is an Eilenberg-MacLane space for A concentrated in degree i. It has a natural
Σi-action given by permuting the smash factors in Si. Moreover, there are natural
maps

e : Si → Ãi, µ : Ãi ∧ Ãi′ → Ãi+i′ ,

which are Σi-equivariant and Σi ×Σi′ -equivariant, respectively. This constitutes a
symmetric ring spectrum Ã in the sense of [11], commutative if A is. The space
THH(E) is defined for every symmetric ring spectrum E.

Let I be the category with objects the finite sets

i = {1, 2, . . . , i}, i ≥ 0,

and morphisms all injective maps. It is a strict monoidal (but not symmetric
monoidal) category under concatenation of sets and maps. Let E be a symmetric
ring spectrum and let X be a pointed space. There is a functor Gk(E;X) from
Ik+1 to pointed spaces, which on objects is given by the pointed function space

Gk(E;X)(i0, . . . , ik) = F (Si0 ∧ · · · ∧ Sik , Ei0 ∧ · · · ∧ Eik
∧X).

The homotopy colimit

THHk(E;X) = holim
−→
Ik+1

Gk(E;X)

is naturally the space of k-simplices in a cyclic space, and by definition

THH(E;X) = |[k] 7→ THHk(E;X)|.

This is a T-space, [17, 7.1.4].
More generally, let (n) be the finite ordered set {1, 2, . . . , n}. The product cate-

gory I(n) is a strict monoidal category under component-wise concatenation of sets
and maps. (The category I(0) is the category with one object and one morphism.)
Concatenation of sets and maps according to the ordering of (n) defines a functor

tn : I(n) → I,

but this does not preserve the monoidal structure. (The functor t0 takes the unique
object to 0.) We let G(n)

k (E;X) be the functor from (I(n))k+1 to the category of
pointed spaces given by

G
(n)
k (E;X) = Gk(E;X) ◦ (tn)k+1,
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and define
THH(n)

k (E;X) = holim
−→

(I(n))k+1

G
(n)
k (E;X).

This again is the space of k-simplices in a cyclic space, and we define

THH(n)(E;X) = |[k] 7→ THH(n)
k (E;X)|.

It is a Σn × T-space. If E is commutative, there is a natural product

THH(m)(E;X) ∧ THH(n)(E;Y )→ THH(m+n)(E;X ∧ Y ),

which is Σm × Σn × T-equivariant with T acting diagonally on the left.
Let V be a finite dimensional orthogonal T-representation. We define the (n, V )th

space in the symmetric orthogonal T-spectrum T (E) by

(2.4.1) T (E)n,V = THH(n)(E;SRn⊕V ).

There are two T-actions on the this space: one which comes from the topological
Hochschild space, and another induced from the T-action on SV . There are also
two Σn-actions: one which comes from the Σn-action on the topological Hochschild
space, and another induced from the permutation representation of Σn on Rn. We
give T (E)n,V the diagonal Σn×T-action. If E is commutative, there is, in addition,
a Σm × Σn × T-equivariant product

T (E)m,V ∧ T (E)n,W → T (E)m+n,V⊕W .

This product makes T (E) a monoid in the symmetric monoidal category of sym-
metric orthogonal T-spectra.

2.5. A pointed monoid is a monoid Π in the category of pointed spaces and
smash product. The unit and multiplication are maps

e : S0 → Π, µ : Π ∧Π→ Π.

The (k + 1)-fold smash product

N cy
k (Π) = Π∧(k+1)

is the k-simplices of a cyclic space. The geometric realization

N cy(Π) = |[k] 7→ N cy
k (Π)|

is a pointed T-space called the cyclic bar construction of Π, see [17, 7.3.10]. It
comes equipped with a natural T-equivariant homeomorphism [2, 1.1, 2.3]

∆: N cy(Π) ∼−→ ρ∗pn−1(N cy(Π)Cpn−1 ).

If E is a symmetric ring spectrum, then the 0th space E0 is a pointed monoid.
In the case E = Ã, this is the underlying multiplicative monoid of the ring A with
basepoint 0. In the symmetric orthogonal T-spectrum T (E) defined above, the
(0, 0)th space is

T (E)0,0 = N cy(E0).
Hence, there is a canonical map

k : πq(ρ∗pn−1N cy(E0)Cpn−1 )→ πq(ρ∗pn−1T (E)Cpn−1 ) = TRn
q (E; p).

We define a map of pointed sets

ωn : π0(E0)→ TRn
0 (E; p)
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to be the composite

π0(E0)→ π0(N cy(E0))
∆−→ π0(ρ∗pn−1N cy(E0)Cpn−1 ) k−→ π0(ρ∗pn−1T (E)Cpn−1 ),

where the left hand map is induced by the inclusion of the vertices. If E is commu-
tative, this is a multiplicative map. It is proved in [8, lemma 1.5.6] that for every
x ∈ π0(E0),

(2.5.1) Fdωn(x) = ωn−1(x)p−1dωn−1(x).

For E = Ã, we now define the map

(2.5.2) λ : Wn(A)→ TRn
0 (A; p)

by the formula

λ(a0, . . . , an) =
n−1∑
s=0

V s(ωn−s(as)).

It is proved in [10, theorem F] that this is an isomorphism of rings. This completes
our recollection of the Witt complex TR·

∗(A; p).

2.6. Let S be the symmetric ring spectrum with Si = Si. This is the sphere
spectrum. It was proved in [2, 3.7], but see also [19, 4.4.4], that the unit for the
ring spectrum structure

suspT(S0)→ T (S)
induces an isomorphism of homotopy groups, for all integers q and all finite sub-
groups of T. Hence, we have a canonical isomorphism

TRn
q (S; p) ∼= [T/Cpn−1+ ∧ Sq, S0]T.

The groups on the right are well-known, at least for small values of q, by (2.1.1). We
will use the result for 0 ≤ q ≤ 2. Under the isomorphism above, the multiplicative
unit corresponds to the map of T-spectra

e : T/Cpn−1+ → S0

induced from the projection which collapses T/Cpn−1 to the non-basepoint in S0.
Composition with e defines a map

[T/Cpn−1+ ∧ Sq,T/Cpn−1+]T → [T/Cpn−1+ ∧ Sq, S0]T.

If 0 ≤ q ≤ 2, the group on the left was described, up to 2-torsion, in 2.2.4 above.
Since d is a derivation, eδ is zero. This is the only extra relation. Hence:

(i) The maps from T/Cpn−1+ to S0 form a free abelian group of rank n generated
by efsvs with 0 ≤ s < n.

(ii) The abelian group of maps from T/Cpn−1+ ∧ S1 to S0 is, up to 2-torsion,
the sum for 1 ≤ s < n, of a copy of Z/psZ generated by efsvsδ.

(iii) Up to 2-torsion, every map from T/Cpn−1+ ∧ S2 to S0 is null.

The unit map S → Z̃ induces an isomorphism of homotopy groups with Z(p)-
coefficients in degrees less than 2p − 3. And the functor TRn(−; p) preserves con-
nectivity. Thus we have:

Proposition 2.6.1. The group TRn
0 (Z(p); p) is a free Z(p)-module of rank n

generated by V s(1), 0 ≤ s < n. The group TRn
1 (Z(p); p) is a sum for 1 ≤ s < n, of

a copy of Z/psZ generated by dV s(1). The group TRn
2 (Z(p); p) is zero. �
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3. Polynomial extensions

3.1. In this section we prove theorem C of the introduction. We briefly recall
the statement. The ring homomorphism given by the inclusion of the constant
polynomials,

π : A→ A[x],

induces a map of Witt complexes over A,

f : TR·
∗(A; p)→ π∗ TR·

∗(A[x]; p),

where on the right π∗ is the direct image functor. And as part of the structure of
a Witt complex, we have the map of pro-rings

λ : W·(A[x])→ TR·
0(A[x]; p).

We wish to show that for all n ≥ 1 and q ≥ 0, every element of TRn
q (A[x]; p) can

be written uniquely as finite sum

(3.1.1)

f(a(n)
0,0 ) +

∑
j∈N

(
f(a(n)

0,j )λ([x]jn) + f(b(n)
0,j )λ([x]j−1

n )dλ([x]n)
)

+
n−1∑
s=1

∑
j∈Ip

(
V s(f(a(n−s)

s,j )λ([x]jn−s)) + dV s(f(b(n−s)
s,j )λ([x]jn−s))

)
with am

s,j ∈ TRm
q (A; p) and b(m)

s,j ∈ TRm
q−1(A; p).

We recall that, by definition, the group TRn
q (A[x]; p) is the qth homotopy group

of the T-spectrum

(3.1.2) ρ∗pn−1T (A[x])Cpn−1 .

Let Π = {0, 1, x, x2, . . . } be the sub-pointed monoid of A[x] generated by the vari-
able x. The T-space N cy(Π) decomposes as a wedge sum∨

i∈N0

N cy(Π, i) ∼−→ N cy(Π),

where the ith summand is the realization of the pointed cyclic subset of N cy
· (Π)

generated by the 0-simplex 1, if i = 0, and by the (i − 1)-simplex x ∧ · · · ∧ x, if
i > 0. Hence, the T-spectrum (3.1.2) can then be expressed as a wedge sum

(3.1.3)

∨
j∈N0

ρ∗pn−1T (A)Cpn−1 ∧N cy(Π, j)

∨
n−1∨
s=1

∨
j∈Ip

ρ∗ps(ρ∗pn−1−sT (A)Cpn−1−s ∧N cy(Π, j))Cps .

We recall below how this equivalence is defined and show that the homotopy groups
of (3.1.3) are given by the finite sums of the form (3.1.1). This will prove theorem C.

3.2. We prove in [10, theorem 7.1] that the composite

T (A) ∧N cy(Π)
f∧ι−−→ T (A[x]) ∧N cy(A[x])

µ−→ T (A[x]),
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where ι is the inclusion, is a natural equivalence of T-spectra. Since A and Π are
commutative, this equivalence is multiplicative with the componentwise multipli-
cation on the left. This induces an equivalence of T-spectra

ρ∗pn−1(T (A) ∧N cy(Π))Cpn−1 ∼−→ ρ∗pn−1T (A[x])Cpn−1 ,

and the wedge decomposition of the T-space N cy(Π) induces one of T-spectra∨
i∈N0

ρ∗pn−1(T (A) ∧N cy(Π, i))Cpn−1 ∼−→ ρ∗pn−1(T (A) ∧N cy(Π))Cpn−1 .

Regrouping the wedge summands after the p-adic valuation of the index, we can
write the left hand side in the following way.∨

j∈N0

ρ∗pn−1(T (A) ∧N cy(Π, pn−1j))Cpn−1

∨
n−1∨
s=1

∨
j∈Ip

ρ∗ps(ρ∗pn−1−s(T (A)Cpn−1−s ∧N cy(Π, pn−1−sj))Cpn−1−s )Cps .

Finally, we have the the equivalence of T-spectra given by the pairing

ρ∗pvT (A)Cpv ∧ ρ∗pvN cy(Π, pvj)Cpv ∼−→ ρ∗pv (T (A) ∧N cy(Π, pvj))Cpv

and the T-equivariant homeomorphism

∆: N cy(Π, j) ∼−→ ρ∗pvN cy(Π, pvj)Cpv .

This gives the desired equivalence of T-spectra from the wedge sum (3.1.3) to the
T-spectrum (3.1.2).

3.3. We first consider the restriction of the equivalence described above to
the top summand in (3.1.3). This amounts to a map of T-spectra

ρ∗pn−1T (A)Cpn−1 ∧N cy(Π)→ ρ∗pn−1T (A[x])Cpn−1 ,

which is multiplicative, if the left hand side is given the componentwise multiplica-
tion. Hence, the induced map on homotopy groups

π∗(ρ∗pn−1T (A)Cpn−1 ∧N cy(Π))→ TRn
∗ (A[x]; p)

identifies the left hand side with a sub-differential graded ring of the differential
graded ring on the right.

We recall the structure of the T-spaces N cy(Π, i), but see also [10, section 7.2]
and [8, section 2.2]. The space N cy(Π, 0) is the discrete space {0, 1}, and for i > 0,
there is a canonical T-equivariant homeomorphism Λi−1/Ci

∼−→ N cy(Π, i). Here
Λi−1 is the cyclic standard (i−1)-simplex, and the cyclic group Ci acts through the
(co)cyclic operator τi−1. We show in [10, section 7.2] that there is a T-equivariant
homeomorphism Λi−1 ≈ T×∆i−1 such that, on the right, the cocyclic operator acts
on T by multiplication by e2π

√
−1/i and on ∆i−1 by the affine map which cyclically

permutes the vertices. It follows that the inclusion of the barycenter of ∆i−1 gives
rise to a strong deformation retract of T-spaces

T/Ci+
∼−→ N cy(Π, i).
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The multiplication on N cy(Π) restricts to a pairing of the ith and i′th summands
to the (i+ i′)th summand. The equivalences above are compatible with this pairing
in that there is a homotopy commutative diagram of pointed T-spaces

N cy(Π, i) ∧N cy(Π, i′)
µ

// N cy(Π, i+ i′)

T/Ci+ ∧ T/Ci′+

∼

OO

// T/C(i+i′)+,

∼

OO

where the lower horizontal map takes (zCi, z
′Ci′) to (ziz′i

′
)1/(i+i′)Ci+i′ .

Lemma 3.3.1. The map of differential graded rings

TRn
∗ (A; p)⊗ Ω∗Z[x] → TRn

∗ (A[x]; p)

which takes a ⊗ 1 to f(a) and 1 ⊗ x to λ([x]n) is an isomorphism onto the sub-
differential graded ring π∗(ρ∗pn−1T (A)Cpn−1 ∧N cy(Π)).

Proof. We first show that the map of the statement lands in the indicated
sub-differential graded ring. The map of components induced from the composite

Π→ N cy(Π) ∆−→ ρpn−1N cy(Π)Cpn−1 → ρ∗pn−1T (A[x])Cpn−1

takes xi to λ([x]in). For by definition, the map A[x]→ TRn
0 (A[x]; p), which takes g

to λ([g]n), is the map of components induced by the composite

A[x]→ N cy(A[x]) ∆−→ ρpn−1N cy(A[x])Cpn−1 → ρ∗pn−1T (A[x])Cpn−1 .

And the composite

ρ∗pn−1T (A)Cpn−1 ∼−→ ρ∗pn−1T (A)Cpn−1 ∧N cy(Π, 0)→ ρ∗pn−1T (A[x])Cpn−1 ,

where the left hand map is the canonical isomorphism, is equal to the map induced
from π : A→ A[x].

Let xi ∈ H̃0(N cy(Π) be the image of the generator of H̃0(T/Ci+) given by the
point Ci. We show that the map of differential graded rings

Ω∗Z[x]
∼−→ H̃∗(N cy(Π)),

which takes x to x1 is an isomorphism. The map in homology induced by the
product

T/Ci+ ∧ T/Ci′+ → T/C(i+i′)+

takes the cycles Ci ⊗ Ci′ to the cycle Ci+i′ , and hence, xixi′ = xi+i′ . This proves
that the map is an isomorphism in degree zero. To prove that it is an isomorphism
in degree one, it suffices to show that xi−1dx is a generator of H̃1(N cy(Π, i)). But
ixi−1dx = d(xi) and d(xi) is i times a generator; compare [9, (2.1.2)] and (2.2.1)
and (2.2.2) above.

Since the homology of N cy(Π) is torsion free, the spectral sequence obtained
from the skeleton filtration of N cy(Π) takes the form

E2 = TRn
∗ (A; p)⊗ H̃∗(N cy(Π))⇒ π∗(ρ∗pn−1T (A)Cpn−1 ∧N cy(Π)).
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The spectral sequence is concentrated on the lines E2
0,∗ and E2

1,∗, and hence all
differentials are zero. In particular, the edge homomorphism is an isomorphism.
We can write this as the composite

TRn
∗ (A; p)⊗ Z[x]→ TRn

∗ (A; p)⊗ Ω∗Z[x] → π∗(ρ∗pn−1T (A)Cpn−1 ∧N cy(Π)),

where the left hand map is the inclusion and the right hand map is the map of the
statement. It remains to show that the induced map

(TRn
∗ (A; p)⊗ Ω∗Z[x])/(TRn

∗ (A; p)⊗ Z[x])→ TR∗(A; p)⊗ H̃1(N cy(Π))

is an isomorphism. The domain and range are both free TR∗(A; p)⊗Z[x]-modules
of rank one. And the generator 1⊗ dx = d(1⊗x) on the left maps to the generator
1⊗ dx on the right. This completes the proof. �

3.4. It remains to prove that the homotopy groups of the lower wedge sum-
mands in (3.1.3) correspond to the lower summands in (3.1.1). This follows from
lemma 3.3.1 and the following

Lemma 3.4.1. Let T be a T-spectrum, let j ∈ Ip, and let ι : Cj/Cj → T/Cj be
the canonical inclusion. Then for all integers q and v ≥ 0, the map

V vι+ dV vι : πq(T )⊕ πq−1(T ) ∼−→ πq(T ∧ T/Cj+)Cpv

is an isomorphism.

Proof. If X is a pointed Cpv -CW-complex, the skeleton filtration gives rise
to a spectral sequence

E1
s,t = πs+t((T ∧Xs/Xs−1)Cpv )⇒ πs+t((T ∧X)Cpv ).

And if the Cpv -action on X is free away from the base point, the canonical map

πs+t((T ∧X)Cpv ) ∼−→ (πs+t(T ∧X))Cpv

is an isomorphism. And since, non-equivariantly, Xs/Xs−1 is a wedge of s-spheres,
there are Cpv -equivariant isomorphisms

πs+t(T ∧Xs/Xs−1)
∼←− πt(T )⊗ πs(Xs/Xs−1)

∼−→ πt(T )⊗ H̃s(Xs/Xs−1).

Here the left hand map is the natural pairing and the right hand map is the Hurewitz
homomorphism. Hence, we have a natural isomorphism of chain complexes

E1
∗,t
∼= (πt(T )⊗ C̃∗(X))Cpv ,

where C̃∗(X) is the reduced cellular complex of X.
In the case at hand, we give X = T/Cj a Cpv -CW-structure with one free cell in

dimensions zero and one. Let g be the generator e2πi/pv ∈ Cpv . Then the attaching
maps

αs : Ds × Cpv → Xs

are given by α0(gn) = gnCj and α1(x, gn) = gneπi(x+1)/pv

Cj , respectively. We
define W (j) to be the complex of Z[Cpv ]-modules which in degrees s = 0, 1 is a free
Z[Cpv ]-module on a single generator ys with differential d(y1) = (gj − 1)y0. Then
the attaching maps define an isomorphism of complexes

W (j) ∼−→ C∗(T/Cj),
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which takes ys to the image of the generator of Hs(Ds, ∂Ds) corresponding to the
standard orientation of Ds. Since T is a T-spectrum the action of Cpv on πt(T ) is
trivial. Hence

E1
s,t
∼= πt(T ) ·Nys, s = 0, 1,

where N ∈ Z[Cpv ] is the norm element. Moreover,

(gj − 1)N = N −N = 0,

so the d1-differential vanishes. The higher differentials are zero for degree reasons,
and hence, the groups πq((T ∧T/Cj+)Cpv ) are as stated, at least up to an extension.

It remains to show that the map of the statement is an isomorphism. We also
have a spectral sequence

E1
s,t = πs+t(T ∧Xs/Xs−1)⇒ πs+t(T ∧X).

In the case at hand, the same reasoning as above gives a natural isomorphism of
complexes

E1
∗,t
∼= πt(T )⊗W (j).

It follows that E2
0,t
∼= πt(T ) · y0 and E2

1,t
∼= πt(T ) ·Ny1. The map

V v : π∗(T ∧ T/Cj+)→ π∗((T ∧ T/Cj+)Cpv )

induces a map of spectral sequences. With our identification of the E1-terms, this
corresponds to the norm map

N : πt(T )⊗W (j)→ (πt(T )⊗W (j))Cpv .

The induced map on E2
0,t maps x · y0 to x ·Ny0, and hence, is an isomorphism. We

also note that the induced map on E2
1,t maps x ·Ny1 to x ·NNy1 = pvx ·Ny1.

Finally, we show that under the above identifications, the composite

E2
0,t � πt((T ∧ T/Cj+)Cpv ) d−→ πt+1((T ∧ T/Cj+)Cpv ) � E2

1,t

takes x · Ny0 to jx · Ny1. By naturality, we may assume that πt(T ) is torsion
free. For given x ∈ πt(T ), we can find a map of T-spectra St ∧ T+ → T such that
the induced map on homotopy groups maps a generator of πt(St ∧ T+) ∼= Z to x.
Hence, it suffices to show that the composite

E2
0,t � πt((T ∧ T/Cj+)Cpv )

pvd−−→ πt+1((T ∧ T/Cj+)Cpv ) � E2
1,t

takes x ·Ny0 to pvjx ·Ny1. But x ·Ny0 = V v(x · y0), and hence it suffices to show
that the composite

E2
0,t � πt(T ∧ T/Cj+) d−→ πt+1(T ∧ T/Cj+) � E2

1,t

takes x · y0 to jx ·Ny1. This is the statement that the map

H1(T)⊗H0(T/Cj)
×−→ H1(T× T/Cj)

µ−→ H1(T/Cj)

takes [T]⊗ y0 to jNy1, which is standard. �
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4. The functor P (−)

4.1. We first evaluate the Witt ring Wn(A[x]).

Lemma 4.1.1. Let A be a ring. Then every element f (n) ∈ Wn(A[x]) may be
written uniquely

f (n) =
∑
j∈N0

a
(n)
0,j [x]jn +

n−1∑
s=1

∑
j∈Ip

V s(a(n−s)
s,j [x]jn−s)

with a(n−s)
s,j ∈Wn−s(A), and where all but finitely many a(n−s)

s,j are zero.

Proof. Let Qn be the set of expressions of the form

f (n) =
∑
j∈N0

a
(n)
0,j [x]jn +

n−1∑
s=1

∑
j∈Ip

V s(a(n−s)
s,j [x]n−s),

with the components a(n−s)
s,j ∈ Wn−s(A), all but finitely many of which are zero.

We consider Qn an abelian group under componentwise addition. Moreover, inter-
preting the expression f (n) as an element of Wn(A[x]) defines an additive map

Qn →Wn(A[x]),

and it is clear that this is an isomorphism, for n = 1. The proof of the general case
is by induction on n based on the diagram

0 // Q1
V n−1

//

��

Qn
R //

��

Qn−1
//

��

0

0 // A[x] V n−1
// Wn(A[x]) R // Wn−1(A[x]) // 0.

The lower sequence is exact and the right and left vertical maps are isomorphisms
by the inductive hypothesis. It thus suffices to show that the upper sequence is
exact. The restriction R : Qn → Qn−1,

Rf (n) =
∑
j∈N0

Ra
(n)
0,j [x]jn−1 +

n−2∑
s=1

∑
j∈Ip

V s(Ra(n−s)
s,j [x]n−1−s),

is surjective since R : Wn(A)→Wn−1(A) is surjective, and V n−1 : Q1 → Qn,

V n−1(f (1)) =
∑
j∈N0

V n−1(a(1)
0,pn−1j)[x]

j
n +

n−1∑
s=1

∑
j∈Ip

V s(V n−1−s(a(1)
0,pn−1−sj)[x]

j
n−s),

is injective since the maps V m : A → Wm(A), 1 ≤ m < n, are injective. It is
also clear that the composite RV n−1 is zero. Finally, Rf (n) vanishes if and only
if each a

(n−s)
s,i is in the kernel of R : Wn−s(A) → Wn−1−s(A), or equivalently, if

a
(n)
s,j = V n−1−s(a(1)

pn−1−sj). Hence f (n−1) = V n−1(
∑

j∈N0
a
(1)
j xj). �
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4.2. Let π : A → A[x] be the inclusion of the constant polynomials. In this
paragraph, we give an explicit construction of the inverse image functor

π∗ : WA →WA[x].

Let E = E∗· be a Witt complex over A, we let P (E) = P (E)∗· be the pro-graded
abelian group with P (E)q

n equal to the set of all (finite) formal sums of the form

(4.2.1)

∑
j∈N0

a
(n)
0,j [x]jn +

∑
j∈N

b
(n)
0,j [x]j−1

n d[x]n

n−1∑
s=1

∑
j∈Ip

(
V s(a(n−s)

s,j [x]jn−s) + dV s(b(n−s)
s,j [x]jn−s)

)
,

with components a(m)
s,j ∈ Eq

m and b
(m)
s,j ∈ Eq−1

m . Addition is component-wise, and
the structure maps in the pro-system are induced from the ones in E. Given a Witt
complex E′ = E′·

∗ over A[x] and a map f : E → π∗E
′ of Witt complexes over A,

the induced map of pro-graded abelian groups

(4.2.2) f̃ : P (E)→ E′

maps the formal sum (4.2.1) to the sum∑
j∈N0

f(a(n)
0,j )λ′([x]jn) +

∑
j∈N

f(b(n)
0,j )λ′([x]n)j−1dλ′([x]n)

n−1∑
s=1

∑
j∈Ip

(
V s(f(a(n−s)

s,j )λ′([x]n−s)) + dV s(f(b(n−s)
s,j )λ′([x]jn−s))

)
in E′q

n. The requirement that for all E′ in WA′ , this be a map of Witt complexes
leaves only one possible way to define a product, a differential, and the maps F
and V on P (E). We give the formulas which define these operations. There are
several special cases to consider, and to enhance readability, we suppress all non-
essential indices. It is understood that the formulas are valid for all possible values
of non-restricted indices.

The differential

(4.2.3) d : P (E)q
n → P (E)q+1

n

is given by the following formulas:

d(V s(a[x]j) = (da)[x]j + (−1)qja[x]j−1d[x], if s = 0,

= dV s(a[x]j), if s > 0;

d(b[x]j−1d[x]) = (db)[x]j−1d[x];

d(dV s(b[x]j) = 0.

The Frobenius

(4.2.4) F : P (E)q
n → P (E)q

n−1
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is given by

F (V s(a[x]j)) = F (a)[x]pj , if s = 0,

= pV s−1(a[x]j), if s > 0;

F (b[x]j−1d[x]) = F (b)[x]pj−1d[x];

F (dV s(b[x]j)) = dV s−1(b[x]j).

The Verschiebung

(4.2.5) V : P (E)q
n−1 → P (E)q

n

is given by

V (V s(a[x]j)) = V s+1(a[x]j),

V (b[x]j−1d[x]) = (−1)q−1 p

j
dV (b[x]j)

− (−1)q−1 1
j
V ((db)[x]j), if vp(j) = 0,

= V (b)[x]p
−1j−1d[x], if vp(j) > 0;

V (dV s(b[x]j)) = pdV s+1(b[x]j).

The product

(4.2.6) µn : P (E)q
n ⊗ P (E)q′

n → P (E)q+q′

n

is given by

V s(a[x]j)V s′(a′[x]j
′
) = psV s′(F s′−s(a)a′[x]p

s′−sj+j′), if 0 ≤ s < s′,

= psV s′−v(V v(aa′)[x]p
−v(j+j′)), if 0 ≤ s = s′ and

v = vp(j + j′) < s′,

= psV s′(aa′)[x]p
−s′ (j+j′), if 0 ≤ s = s′ and

v = vp(j + j′) ≥ s′;

V s(a[x]j)b′[x]j
′−1d[x] = ab′[x]j+j′−1d[x], if s = 0,

= (−1)q+q′ 1
j + psj′

V s(d(aF s(b′))[x]j+psj′)

− (−1)q+q′ ps

j + psj′
dV s(aF s(b′)[x]j+psj′),

if 0 < s;

dV s(b[x]j)V s′(a′[x]j
′
) = V s′(F s′−s(db)a′[x]p

s′−sj+j′)

+
ps′j

ps′−sj + j′
dV s′(F s′−s(b)a′[x]p

s′−sj+j′)

− j

ps′−sj + j′
V s′(d(F s′−s(b)a′)[x]p

s′−sj+j′),

if 0 ≤ s < s′,
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= V s′−v(V v(d(b)a′)[x]p
−v(j+j′))

+
ps′j

j + j′
dV s′−v(V v(ba′)[x]p

−v(j+j′))

− pvj

j + j′
V s′−v(dV v(ba′)[x]p

−v(j+j′)),

if 0 < s = s′ and

v = vp(j + j′) < s′,

= V s′(d(b)a′)[x]p
−s′ (j+j′)

− (−1)q+q′jV s′(ba′)[x]p
−s′ (j+j′)−1d[x],

if 0 < s = s′ and

v = vp(j + j′) ≥ s′,

= (−1)qV s(bF s−s′(da′)[x]j+ps−s′ j′)

+
ps′j

j + ps−s′j′
dV s(bF s−s′(a′)[x]j+ps−s′ j′)

+
j′

j + ps−s′j′
V s(d(bF s−s′(a′))[x]j+ps−s′ j′),

if 0 ≤ s′ < s;

b[x]j−1d[x] b′[x]j
′−1d[x] = 0;

dV s(b[x]j)b′[x]j
′−1d[x] = (−1)q−1+q′ 1

j + psj′
dV s(dbF s(b′)[x]j+psj′)

+ (−1)q′ 1
j + psj′

V s(dbF s(db′)[x]j+psj′),

if 0 < s;

dV s(b[x]j)dV s′(b′[x]j
′
) = (−1)qdV s′(F s′−s(db)b′[x]p

s′−sj+j′)

− (−1)q j

ps′−sj + j′
dV s′(d(F s′−s(b)b′)[x]p

s′−sj+j′),

if 0 ≤ s < s′.

Finally, the map

(4.2.7) λ : Wn(A[x])→ P (E)0n

is given by
λ(V s(a[x]j)) = V s(λ(a)[x]j).

Here we use lemma 4.1.1 to write every element of Wn(A[x]) as a sum of elements
of the form V s(a[x]j) with a ∈Wn−s(A).

Theorem 4.2.8. The formulas (4.2.3)–(4.2.7) make P (W· Ω∗A) a Witt complex
over A[x]. Moreover, the canonical map

W· Ω∗A[x] → P (W· Ω∗A)

is an isomorphism.
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Proof. Suppose that P (W· Ω∗A) is a Witt complex over A[x]. Then the com-
position of the map of the statement and the map

P (W· Ω∗A)→W· Ω∗A[x]

induced from the unique map W· Ω∗A → π∗W· Ω∗A[x] is a self map of W· Ω∗A[x]. But
the only self map of an initial object is the identity, and hence the map of the
statement is injective. It is surjective because the composition

Ω∗W·(A[x]) →W· Ω∗A[x] → P (W· Ω∗A)

is surjective. We proceed to prove that P (W· Ω∗A) is a Witt complex. The proof is
in two steps.

Suppose first that A is a finitely generated polynomial algebra over Z(p). We
prove by induction on the number of variables that P (W· Ω∗A) is a Witt complex
and that the canonical map

W· Ω∗A[x] → TR·
∗(A[x]; p)

is injective. The proof of the basic case A = Z(p) and the induction step are similar.
In both cases, the starting point is the fact that the canonical map

W· Ω∗A → TR·
∗(A; p)

is injective. We proved in proposition 2.6.1 that this true if A = Z(p), and in the
induction step, it follows from the previous case. It follows that the induced map

P (W· Ω∗A)→ P (TR·
∗(A; p))

is injective. But the canonical map

P (TR·
∗(A; p))→ TR·

∗(A[x]; p)

is an isomorphism by theorem C, and hence the canonical map

P (W· Ω∗A)→ TR·
∗(A[x]; p)

is injective. The definitions (4.2.3)–(4.2.7) were made such that this map is multi-
plicative and commutes with the maps d, F , V , and λ. Hence, since TR·

∗(A[x]; p)
is a Witt complex over A[x], so is P (W· Ω∗A). Finally, in the diagram

P (W· Ω∗A) � � //

∼
��

P (TR·
∗(A; p))

∼
��

W· Ω∗A[x]
// TR·

∗(A[x]; p)

the top horizonal map is injective and the vertical maps are isomorphisms. Hence
the lower horizontal map is injective.

Let A be a general Z(p)-algebra. To show that P (W· Ω∗A) is a Witt complex
over A[x] we must verify a number of relations. Each relation involves only a finite
number of elements from W· Ω∗A. Hence, it suffices to show that given a finite set
of elements of W· Ω∗A, we can find a ring homomorphism A′ → A from a finitely
generated polynomial algebra over Z(p) such that this finite set of elements is in
the image of the induced map

W· Ω∗A′ →W· Ω∗A.
26



Indeed, we already know that P (W· Ω∗A′) is a Witt complex, so the corresponding
relations hold there. It is clear that given a finite set of elements of Ω∗W·(A), we can
find A′ → A, where A′ is a finitely generated Z(p)-algebra, such that these elements
are in the images of Ω∗W·(A′) → Ω∗W·(A). And since Ω∗W·(A) → W· Ω∗A is surjective,
we are done. �

Proposition 4.2.9. Let E be a Witt complex over A. Then the product (4.2.6)
and the differential (4.2.3) makes P (E) a pro-differential graded ring, and the
map (4.2.7) is a map of pro-rings. The Frobenius (4.2.4) is multiplicative, and
the Frobenius (4.2.4) and Verschiebung (4.2.5) satisfies Frobenius reciprocity.

Proof. This is a long straightforward but tedious calculation which we omit.
Along the way one uses the relations among F , d and V in E. As an example, we
verify the associativity relation

(dV s(a[x]j)b′[x]j
′−1d[x])b′′[x]j

′′−1d[x] = dV s(a[x]j)(b′[x]j
′−1d[x]b′′[x]j

′′−1d[x]).

The right hand side, by definition, is zero, so we must show that the left hand side,
too, is zero. This is easy if s = 0, so we consider the case s > 0. The product in
the parenthesis is equal to the unit (−1)q′/(j + psj′) times

(−1)q−1dV s(dbF s(b′)[x]j+psj′) + V s(dbF s(db′)[x]j+psj′).

If we multiply the first summand by b′′[x]j
′′−1d[x] from the right, we get the unit

(−1)q′′/(j + psj′ + psj′′) times

(−1)q′dV s(d(dbF s(b′))F s(b′′)[x]j+psj′+psj′′)

+ (−1)q−1V s(d(dbF s(b′))F s(db′′)[x]j+psj′+psj′′)

= (−1)q+q′psdV s(dbF s(db′)F s(b′′)[x]j+psj′+psj′′)

− psV s(dbF s(db′)F s(db′′)[x]j+psj′+psj′′).

Here we use the relation dF s = psF s in E. Similarly, the product of the second
summand with b′′[x]j

′′−1d[x] is the same unit (−1)q′′/(j + psj′ + psj′′) times

(−1)q+q′V s(d(dbF s(db′))F s(b′′)[x]j+psj′+psj′′)

− (−1)q+q′psdV s(dbF s(db′)F s(b′′)[x]j+psj′+psj′′)

= psV s(dbF s(db′)F s(db′′)[x]j+psj′+psj′′)

− (−1)q+q′psdV s(dbF s(db′)F s(b′′)[x]j+psj′+psj′′).

The sums cancel as desired. �

Proof of theorem B. To show that P (E) is a Witt complex over A[x], it
remains to verify that for all f ∈ A[x],

Fdλ([f ]n) = λ([f ]n−1)p−1dλ([f ]n−1).

This is a relation between elements in the image of the map P (W· Ω∗A) → P (E)
induced by the unique map W· Ω∗A → E. And the relation holds in P (W· Ω∗A) by
theorem 4.2.8. Hence it also holds in P (E).

The second part of the theorem is equivalent to the statement that the map

HomWA
(E, π∗E′)→ HomWA[x](P (E), E′),
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which takes f : E → π∗E
′ to the induced map f̃ : P (E) → E′ is a bijection. The

inverse map takes g : P (E)→ E′ to the composite

E
η−→ π∗P (E)

π∗g−−→ π∗E
′,

where the right hand map takes a ∈ Eq
n to a[x]0 ∈ P (E)q

n. �

Remark 4.2.10. The proof of [15, proposition 1.3] shows that

r(f) = Fdλ([f ]n)− λ([f ]n−1)p−1dλ([f ]n−1)

is an additive function of f . This makes it possible to prove that r(f) = 0 without
the use of theorem 4.2.8, hence completing a purely algebraic proof of theorem B.

We conclude with the following result, which we shall need in paragraph 7 below.

Lemma 4.2.11. Let E′, E, and E′′ be Witt complexes and suppose there is a
long-exact sequence of strict maps of pro-abelian groups

. . .→ E′·
q fq

−→ Eq
·

gq

−→ E′′·
q hq

−→ E′·
q−1 → . . .

such that the maps commute with F , d, and V . Then there is an induced long-exact
sequence of strict maps of pro-abelian groups

. . .→ P (E′)q
·

fq

−→ P (E)q
·

gq

−→ P (E′′)q
·

hq

−→ P (E′)q−1
· → . . .

and the maps commute with F , d, and V .

Proof. Indeed, as an abelian group P (E)q
n is the direct sum of copies of Eq

m

and Eq−1
m with 1 ≤ m ≤ n. �

5. The de Rham-Witt complex of Bloch-Deligne-Illusie

5.1. For Fp-algebras, [13] contains a construction of the de Rham-Witt com-
plex that is somewhat more concrete than the construction in theorem A. In this
paragraph we extend Illusie’s method to Z(p)-algebras. We recall from [13, I] that
a V -pro-complex over A consist of:

(i) a pro-differential graded ring D∗· and a strict map of pro-rings

λ : W·(A)→ D0
· ;

(ii) a strict map of pro-graded abelian groups

V : D∗·−1 → D∗·

such that λV = V λ and such that for all x, y ∈ D∗· and a ∈ A,

V (xdy) = V (x)dV (y),

V (x)dλ([a]n) = V (xλ([a]n−1)p−1)dV (λ([a]n−1)).

A map of V -pro-complexes over A is a strict map of pro-differential graded rings
f : D∗· → D′·

∗ such that λ′ = fλ and V ′f = fV .
There is a natural forgetful functor from the category of Witt complexes over A

to the category of V -pro-complexes over A,

WA →W ′
A.
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Indeed, the calculation

V (xdy) = V (xFdV y) = V (x)dV (y),

V (y)dλ([a]n) = V (yFdλ([a]n)) = V (yλ([a]p−1
n−1)dλ([a]n−1))

= V (yλ([a]p−1
n−1))dV (λ([a]n−1)),

shows that a Witt complex is a V -pro-complex upon forgetting the Frobenius.
The proof of theorem A shows that the category W ′

A has an initial object. A
more constructive proof is given by Illusie in [13, theorem I.1.3]. We will need this
construction later on, so we include it here.

Proposition 5.1.1. The category W ′
A has an initial object W ′

· Ω∗A, and the
canonical map Ω∗W·(A) →W ′

· Ω∗A is surjective.

Proof. One recursively defines the differential graded rings W ′
mΩ∗A and the

maps R, V , and λ, starting from W ′
1 Ω∗A = Ω∗A. So suppose that for all n < m, the

differential graded ring W ′
n Ω∗A and the maps

R : W ′
n Ω∗A →W ′

n−1Ω
∗
A,

V : W ′
n−1Ω

∗
A →W ′

n Ω∗A,

λ : Wn(A)→W ′
k Ω0

A,

have been constructed such that R is a map of differential graded rings, V is addi-
tive, λR = Rλ, λV = V λ, and such that for all x, y ∈W ′

n−1Ω
∗
A and a ∈ A,

V (xdy) = V (x)dV (y),

V (x)dλ([a]n) = V (xλ([a]n−1)p−1)dV (λ([a]n−1)).

Suppose, in addition, that for all n < m, the canonical map

Ω∗Wn(A) →W ′
n Ω∗A

is surjective. Then, one defines

W ′
mΩ∗A = Ω∗Wm(A)/N

∗
m,

where N∗
m is the differential graded ideal generated by the elements

(5.1.2)
∑
α

V (λ(xα))dV (λ(y1,α)) . . . dV (λ(yi,α)),

for all xα, yi,α ∈Wm−1(A) such that the sum∑
α

λ(xα)dλ(y1,α) . . . dλ(yi,α)

is equal to zero in W ′
m−1 Ω∗A, and by the elements

(5.1.3) V (λ(x))dλ([a]m)− V (λ(x)λ([a]m−1)p−1)dV (λ([a]m−1)),

for all a ∈ A and x ∈Wm−1(A). The unique map of differential graded rings

Ω∗Wm(A) →W ′
m−1Ω

∗
A,

which extends λR : Wm(A)→W ′
m−1Ω

0
A, factors to give a map of differential graded

rings
R : W ′

m Ω∗A →W ′
m−1Ω

∗
A.
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The additive map
V : W ′

m−1 Ω∗A →W ′
mΩ∗A

given by

V (λ(x)dλ(y1) . . . dλ(yi)) = V (λ(x))dV (λ(y1)) . . . dV (λ(yi))

is well-defined and satisfies that λV = V λ and that for all x, y ∈ W ′
m−1Ω

∗
A and

a ∈ A,
V (xdy) = V (x)dV (y),

V (x)dλ([a]m) = V (xλ([a]m−1)p−1)dV (λ([a]m−1)).
This gives a V -pro-complex W ′

· Ω∗A. One verifies immediately that this is the inital
object in W ′

A. �

Lemma 5.1.4. The relation V d = pdV holds in W ′
· Ω∗A.

Proof. It follows from the construction above that the map V is a map of
graded Wn(A)-modules

V : F∗W ′
n−1Ω

∗
A →W ′

n Ω∗A,
where on the left, W ′

n−1Ω
∗
A is considered a Wn(A)-module via the Frobenius F :

Wn(A)→Wn−1(A). Hence,

V (dx) = V (1)dV (x) = d(V (1)V (x))− dV (1) · V (x)

= dV (FV (1)x)− V (d(1)x) = pdV (x).

This proves the lemma. �

Lemma 5.1.5. Suppose that for the ring A, the canonical map

W ′
· Ω∗A →W·Ω∗A

is an isomorphism. Then the same is true for A[x].

Proof. Only the injectivity of the map of the statement is at issue. The
assumption of the lemma implies that the induced map

P (W ′
· Ω∗A)→ P (W·Ω∗A)

is an isomorphism of pro-graded abelian groups. We proved in theorem 4.2.8 above
that the right hand side is a Witt complex over A[x]. Therefore, the left hand side
is a V -pro-complex over A[x]. But then the canonical map

W ′
· Ω∗A[x] → P (W ′

· Ω∗A)

is an inverse of the map

π̃ : P (W ′
· Ω∗A)→W ′

· Ω∗A[x]

induced from W ′
· Ω∗A → π∗W

′
· Ω∗A[x]. �

Proof of theorem D. We must construct a map

F : W ′
n Ω∗A →W ′

n−1Ω
∗
A

and show that this makes W ′
· Ω∗A a Witt complex over A.

Suppose first that A is a polynomial algebra over Z(p) in a finite number of
variables. Then we claim that the canonical map

W ′
· Ω∗A →W·Ω∗A
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is an isomorphism. By lemma 5.1.5 it suffices to consider the case A = Z(p). And
in this case, the statement follows from example 1.2.4.

In the general case, we first construct a derivation

δ : Wn(A)→W ′
n−1Ω

∗
A

such that, once F is defined, δ = Fdλ. Given a Witt vector

a = [a0]n + V ([a1]n−1) + · · ·+ V n−1([an−1]1),

we define

δ(a) = λ([a0]n−1)p−1dλ([a0]n−1) + dλ([a1]n−1) + · · ·+ dV n−2(λ([an−1]1)).

In order to verify that δ is a derivation, we may assume that A is a polynomial
algebra over Z(p) in a finite number of variables. But in this case, the canonical
map

W ′
· Ω∗A →W·Ω∗A

is an isomorphism, and the composite

Wn(A) δ−→W ′
n−1Ω

∗
A

∼−→Wn−1Ω∗A
is equal to Fdλ, which is indeed a derivation.

There is a unique map of graded Wn(A)-algebras

F ′ : Ω∗Wn(A) → F∗W
′
n−1Ω

∗
A

such that F ′dλ = δ : Wn(A) → W ′
n−1Ω

1
A, and we claim that F ′ annihilates the

differential graded ideal N∗
n. Indeed, it follows immediately from the definition of

δ that δ(V (a)) = da, and hence, F ′ annihilates elements of the from (5.1.2). And
the calculation

F ′(V (λ(x))dλ([a]n−1)− V (λ(x)λ([a]n−1)p−1)dV (λ([a]n−1)))

= p(λ(x)δ([a]n−1)− λ(x)λ([a]n−1)p−1d(λ([a]n−1))) = 0,

show that F ′ annihilates the elements (5.1.3), too. Hence, the map F ′ factors to
give a map of graded Wn(A)-algebras

F : W ′
n Ω∗A →W ′

n−1Ω
∗
A.

It is clear from the way that F was constructed that the canonical map

W ′
· Ω∗A →W·Ω∗A

commutes with Frobenius operators. The map is an isomorphism, if A is a polyno-
mial algebra in finitely many variables over Z(p). Hence, in this case, the operator
F satisfies the relations which makes W ′

· Ω∗A a Witt complex. But then it satisfies
these relations for every Z(p)-algebra; compare the proof of 4.2.8. �

6. Etale extensions

6.1. A map of rings f : A → B, we recall, is étale if it is finitely presented,
flat, and if Ω1

B/A vanishes; see [6, §17]. Let A be a ring in which p is a non-zero-
divisor, and let Wn,v(A) be the reduction modulo pv of the Witt ring Wn(A). We
show in proposition 6.2.2 below that if A→ B is étale, then the induced map

Wn,v(A)→Wn,v(B)
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is étale The analogous statement for Fp-algebras was proved in [13, proposition
0.1.5.8], and the proof in the case we consider is similar.

We need a slight generalization of standard results about flatness and filtra-
tions, [3, chap. III, §5]. Let A be a ring and let FilsA, 0 ≤ s < n, be a finite
descending filtration by ideals,

A = Fil0A ⊃ Fil1A ⊃ · · · ⊃ FilnA = 0.

The filtration is called multiplicative if for 0 ≤ s, t < n, the multiplication maps

FilsA⊗A FiltA→ Fils+tA.

If N is an A-module, we have the induced filtration FilsN , 0 ≤ s < n, where FilsN
is the image of the canonical map FilsA⊗A N → N .

Lemma 6.1.1. Let FilsA, 0 ≤ s < n, be a finite descending multiplicative fil-
tration of the ring A, and let M be an A module. Suppose that gr0M is a flat
gr0A-module and that the canonical map

Fil1A⊗A M → Fil1M

is an isomorphism. Then M is a flat A-module.

Proof. The sequence

TorA
1 (A,M)→ TorA

1 (gr0A,M)→ Fil1A⊗A M →M

shows that TorA
1 (gr0A,M) vanishes. Since gr0M is assumed gr0A-flat, this implies

that TorA
1 (N,M) vanishes for every A-module N which is annihilated by Fil1A.

Indeed, the change of rings spectral sequence

E2
s,t = Torgr

0 A
p (N,TorA

q (gr0A,M))⇒ TorA
s+t(N,M)

has vanishing E2-term in total degree one. In general, the short exact sequences

0→ Fils+1N → FilsN → grsN → 0

give rise to exact sequences

TorA
1 (Fils+1N,M)→ TorA

1 (FilsN,M)→ TorA
1 (grsN,M).

The right hand term vanishes by the above, since the module grsN is annihilated
by Fil1A. But FilnN is zero, and hence by easy induction, TorA

1 (N,M) vanishes.
Thus M is a flat A-module. �

Lemma 6.1.2. Let FilsA, 0 ≤ s < n, be a finite descending multiplicative filtra-
tion of the ring A, and let M be an A module. Suppose that for 0 ≤ s < n, the
canonical map

grsA⊗gr0 A gr0M → grsM

is an isomorphism. Then FilsA⊗A M
∼−→ FilsM is an isomorphism, 0 ≤ s < n.

Proof. The assumptions imply that the canonical map

grsA⊗A M → grsM

is an isomorphism. Indeed, the left hand map in the exact sequence

grsA⊗A Fil1M → grsA⊗A M → grsA⊗A gr0M → 0
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is zero. The statement now follows from the diagram

Fils+1A⊗A M //

��

FilsA⊗A M //

��

grsA⊗A M //

∼
��

0

0 // Fils+1M // FilsM // grsM // 0

by induction, starting from s = n− 1. �

Lemma 6.1.3. Let f : A→ B be a ring homomorphism, let I ⊂ A be a nilpotent
ideal, and suppose that Ω1

(B/IB)/(A/I) vanishes. Then Ω1
B/A vanishes.

Proof. In the short-exact sequence

0→ IΩ1
B/A → Ω1

B/A → Ω1
B/A ⊗A A/I → 0,

the right hand term is isomorphic to Ω1
(B⊗AA/I)/(A/I), which vanishes by assump-

tion. Hence, the left hand map is an isomorphism. By simple induction, so is

InΩ1
B/A

∼−→ Ω1
B/A,

for all n ≥ 0, and since I is nilpotent, Ω1
B/A is zero. �

6.2. If p is a non-zero-divisor in A and if f : A → B is flat, then p is a
non-zero-divisor in B. Indeed, this follows from the diagram

0 // A⊗A B
p

//

∼

��

A⊗A B //

∼

��

A/p⊗A B //

��

0

B
p

// B // B/p // 0.

We recall from [7, XIV, §1, prop. 2] that if f : A→ B is an étale map of Fp-algebras,
then the following diagram, where ϕ is the Frobenius, is cocartesian.

(6.2.1) A
ϕ

//

f

��

A

f

��

B
ϕ

// B.

This means that we can write every b ∈ B as a sum

b =
∑

i

bpi f(ai)

with bi ∈ B and ai ∈ A.

Proposition 6.2.2. Let f : A → B be an étale map and suppose that p is a
non-zero-divisor in A. Then for all n, v ≥ 1 and all 0 ≤ s < n, Wn,v(f) is étale
and the diagrams

Wn,v(A) Rn−s
//

Wn,v(f)

��

Ws,v(A)

Ws,v(f)

��

Wn,v(A) F n−s
//

Wn,v(f)

��

Ws,v(A)

Ws,v(f)

��

Wn,v(B) Rn−s
// Ws,v(B) Wn,v(B) F n−s

// Ws,v(B)

are cocartesian in the category of commutative rings.
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Proof. Suppose first that v = 1. The V -filtrations of Wn,1(A) and Wn,1(B)
are finite and multiplicative. But in order to apply the results of the previous
section, we must first show that the V -filtration of Wn,1(B) is equal to the filtration
induced by the V -filtration of Wn,1(A), or equivalently, that the canonical map

Wn,1(B)⊗Wn,1(A) V
sWn,1(A)→ V sWn,1(B)

is surjective. This, we note, is equivalent to the statement that the left hand square
in the statement of the proposition is cocartesian. Indeed, there is a natural short-
exact sequence of Wn,v(A)-modules

0→ F s
∗Wn−s,1(A) V s

−−→Wn,1(A) Rn−s

−−−→ Rn−s
∗ Ws,1(A)→ 0,

and the left hand map has image V sWn,1(A). In particular, it will suffice to consider
the case s = n− 1. But the map

Wn,1(B)⊗Wn,1(A) F
n−1
∗ A1 → Fn−1

∗ B1

takes [b]n⊗a to bp
n−1

f(a), and hence, is surjective by (6.2.1). Indeed, f1 : A1 → B1

is étale since f : A → B is. Hence, the V -filtration of Wn,1(B) is equal to the
filtration induced from the V -filtration of Wn,1(A). We can now conclude from
lemma 6.1.2 that the canonical map

Wn,1(B)⊗Wn,1(A) V
sWn,1(A)→ V sWn,1(B)

is an isomorphism, or equivalently, that the right hand square in the statement of
the proposition is cocartesian (with s and n− s interchanged). Indeed, the map

grs
V Wn,1(A)⊗gr0V Wn,1(A) gr0V Wn,1(B)→ grs

V Wn,1(B)

is naturally identified with the canonical map

ϕs
∗A1 ⊗A1 B1 → ϕs

∗B1,

and the latter is an isomorphism by (6.2.1).
We can now show that Wn,1(f) is étale. First, Wn,1(f) is finitely presented. To

see this, it suffices to show that gr·
V Wn,1(f) is finitely presented. But this follows

from the isomorphism

B1 ⊗A1 gr·
V Wn,1(A) ∼−→ gr·

V Wn,1(B),

since f1 : A1 → B1 is finitely presented. Next, it follows from lemma 6.1.1 that
Wn,1(f) is flat; for f1 : A1 → B1 is flat and the canonical map

Wn,1(B)⊗Wn,1(A) VWn,1(A)→ VWn,1(B)

is an isomorphism. Finally, since VWn,1(A) ⊂ Wn,1(A) is a square-zero ideal,
and since Ω1

B1/A1
vanishes, lemma 6.1.3 shows that Ω1

Wn,1(B)/Wn,1(A) is zero. This
completes the proof of the proposition, if v = 1.

In the general case v ≥ 1, we consider the p-adic filtration of Wn,v(A), which is
finite and multiplicative. Moreover, the canonical map

psWn,v(A)⊗Wn,v(A) Wn,v(B)→ psWn,v(B),

clearly, is an isomorphism. Hence, one can easily conclude from the case v = 1 that
Wn,v(f) is étale. It remains to prove that the two squares in the statement of the
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proposition are cocartesian. As we noted earlier, this is equivalent to the statement
that for all 0 ≤ s < n, the canonical map

V sWn,v(A)⊗Wn,v(A) Wn,v(B)→ V sWn,v(B)

is an isomorphism. Injectivity follows immediately from the fact that Wn,v(f) is
flat. For surjectivity it suffices to prove the case s = n− 1. It follows by induction
from (6.2.1) that every b ∈ B can be written

b =
∑

aib
pn−1

i + pvb′

with ai ∈ A and bi, b′ ∈ B. Hence

V n−1(b) =
∑

V n−1(ai)[bi] + pvV n−1(b′),

which proves surjectivity. �

Proposition 6.2.3. Let A → B be an étale map and suppose that p is a non-
zero-divisor in A. Then for all n, v ≥ 1 and q ≥ 0, the canonical map

Wn,v(B)⊗Wn,v(A) Wn,vΩq
A →Wn,vΩq

B

is an isomorphism.

Proof. This is proved from proposition 6.2.2 by the argument of [13, propo-
sition I.1.14]: to produce the inverse of the map of the statement one shows that
the left hand side is a V -pro-complex. �

Proposition 6.2.4. Let f : A → B be an étale map and suppose that p is a
non-zero-divisor in A. Then for all n, v ≥ 1 and q ≥ 0, the canonical map

Wn,v(B)⊗Wn,v(A) TRn
q (A; p,Z/pv)→ TRn

q (B; p,Z/pv)

is an isomorphism.

Proof. The proof is by induction on n starting from the case n = 1, which
was proved in [5, proposition 3.2.1]. The proof of the induction step is similar to
the proof of [10, theorem 5.5]. In brief, there is a natural long exact sequence of
Wn,v(A)-modules

· · · → hTRn
q (A; p,Z/pv)→ TRn

q (A; p,Z/pv) R−→ R∗ TRn−1
q (A; p,Z/pv)→ . . .

The base-change of this sequence along Wn,v(f), which is exact since Wn,v(f) is
flat, maps to the long-exact sequence of Wn,v(B)-modules

· · · → hTRn
q (B; p,Z/pv)→ TRn

q (B; p,Z/pv) R−→ R∗ TRn−1
q (B; p,Z/pv)→ . . .

The map of the right hand terms,

Wn,v(B)⊗Wn,v(A) R∗ TRn−1
q (A; p,Z/pv)→ R∗ TRn−1

q (B; p,Z/pv),

inductively, is an isomorphism, since the left hand square in the statement of propo-
sition 6.2.2 is cocartesian. In order to show that the map of left hand terms,

Wn,v(B)⊗Wn,v(A) hTRn
q (A; p,Z/pv)→ hTRn

q (B; p,Z/pv),

is an isomorphism, we recall that there is a natural first quadrant spectral sequence
of Wn,v(A)-modules

E2
s,t = Hs(Cpn , Fn−1

∗ TR1
∗(A; p,Z/pv))⇒ hTRn

s+t(A; p,Z/pv);
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see the discussion preceeding [10, theorem 5.5] and also [9, §4]. The desired isomor-
phism now follows from the case n = 1, since the left hand square in the statement
of proposition 6.2.2 is cocartesian. �

7. Smooth V -algebras

7.1. In this paragraph we prove theorem E of the introduction. Let V be a
complete discrete valuation ring of mixed characteristic (0, p) with quotient field K
and perfect residue field k. Let A be a smooth V -algebra, let AK = A⊗V K, and
let Ak = A⊗V k.

Lemma 7.1.1. Let A be a smooth V -algebra and let f : A→ B be an étale map.
Then the canonical map is an isomorphism:

Wn,v(B)⊗Wn,v(A) TRn
q (A|AK ; p,Z/pv) ∼−→ TRn

q (B|BK ; p,Z/pv).

Proof. We recall from proposition 6.2.4 that the canonical map

Wn,v(B)⊗Wn,v(A) TRn
q (A; p,Z/pv)→ TRn

q (B; p,Z/pv)

is an isomorphism. We proved in [9, remark 1.5.8] that there is a long-exact se-
quence of Wn,v(A)-modules

. . .→ TRn
q (Ak; p,Z/pv) i!−→ TRn

q (A; p,Z/pv)
j∗−→ TRn

q (A|AK ; p,Z/pv)→ . . . ,

where the left hand term is a Wn,v(A)-module via i∗ : Wn,v(A) → Wn,v(Ak). We
claim that also the canonical map

Wn,v(B)⊗Wn,v(A) TRn
q (Ak; p,Z/pv)→ TRn

q (Bk; p,Z/pv)

is an isomorphism. Since Wn,v(A) → Wn,v(B) is flat by proposition 6.2.2, the
obvious five-lemma argument completes the proof. To prove the claim, we first
recall from [8, proposition 2.4.4] that the canonical map

Wn(Bk)⊗Wn(Ak) TRn
q (Ak; p)→ TRn

q (Bk; p)

is an isomorphism; the proof is analogous to the proof of proposition 6.2.4 above.
A five-lemma argument based on the coefficient sequence

. . .→ TRn
q (Ak; p)

pv

−→ TRn
q (Ak; p)→ TRn

q (Ak; p,Z/pv)
β−→ TRn

q−1(Ak; p)→ . . .

shows that the canonical map

Wn,v(Bk)⊗Wn,v(Ak) TRn
q (Ak; p,Z/pv)→ TRn

q (Bk; p,Z/pv)

is an isomorphism. Hence, it suffices to show that

Wn,v(B)⊗Wn,v(A) Wn,v(Ak)→Wn,v(Bk)

is an isomorphism. The statement for v implies the statement for v − 1, so we can
assume that n ≤ v. Then Wn,v(Ak) = Wn(Ak) and Wn,v(Bk) = Wn(Bk). We
proceed by induction on 1 ≤ n ≤ v starting from the trivial case n = 1. In the
induction step, we consider the short exact sequence of Wn,v(A)-modules

0→ Fn−1
∗ Ak

V n−1

−−−→Wn(Ak) R−→ R∗Wn−1(Ak)→ 0
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(the corresponding sequence for Wn,v(Ak) is not exact, if v < n). We wish to show
that the upper horizontal map in the diagram

Wn,v(B)⊗Wn,v(A) F
n−1
∗ Ak

// Fn−1
∗ Bk

Wn,v(B)⊗Wn,v(A) F
n−1
∗ A⊗A Ak

∼ //

∼

OO

Fn−1
∗ B ⊗A Ak,

∼

OO

is an isomorphism. But proposition 6.2.2 shows that the lower horizontal map is
an isomorphism, and the vertical maps are isomorphisms for trivial reasons. One
shows in a similar fashion that the map

Wn,v(B)⊗Wn,v(A) R∗Wn−1(Ak) ∼−→ R∗Wn−1(Bk)

is an isomorphism. This completes the proof. �

We recall from the introduction that W· Ω∗(A,MA) denotes the universal Witt
complex over the log ring (A,MA); see also [9, section 3.2].

Lemma 7.1.2. Let A be a smooth V -algebra and let f : A→ B be an étale map.
Then the canonical map is an isomorphism:

Wn,v(B)⊗Wn,v(A) Wn,v Ωq
(A,MA)

∼−→Wn,v Ωq
(B,MB).

Proof. This is similar to the proof of proposition 6.2.3. �

Lemma 7.1.3. Let A be a smooth V -algebra. Then the canonical map

P (TR·
∗(A|AK ; p,Z/pv))→ TR·

∗(A[x]|A[x]K ; p,Z/pv)

is an isomorphism.

Proof. By theorem C, the canonical map

P (TR·
∗(R; p))→ TR·

∗(R[x]; p)

is an isomorphism, for every Z(p)-algebra R. The coefficient sequence

· · · → TRn
q (R; p)

pv

−→ TRn
q (R; p)→ TRn

q (R; p,Z/pv)
β−→ TRn

q−1(R; p)→ . . . ,

by lemma 4.2.11, gives rise to a long-exact sequence

· · · → P (TR·
∗(R; p))n

q
pv

−→ P (TR·
∗(R; p))n

q → P (TR·
∗(R; p,Z/pv))n

q → . . .

which maps to the coefficient sequence

· · · → TRn
q (R[x]; p)

pv

−→ TRn
q (R[x]; p)→ TRn

q (R[x]; p,Z/pv)→ . . .

By theorem C, this map is an isomorphism of two out of three terms, and hence, of
the remaning terms. This shows that for every Z(p)-algebra R, the canonical map

P (TR·
∗(R; p,Z/pv))→ TR·

∗(R[x]; p,Z/pv)

is an isomorphism. This applies, in particular, to R = A and R = Ak. A similar
argument based on the sequence

· · · → TRn
q (Ak; p,Z/pv) i!−→ TRn

q (A; p,Z/pv)
j∗−→ TRn

q (A|AK ; p,Z/pv)→ . . .

completes the proof. �

37



Lemma 7.1.4. Let A be a V -algebra. Then the canonical map

P (W· Ω∗(A,MA) ⊗Z SZ/pv (µpv ))→W· Ω∗(A[x],MA[x])
⊗Z SZ/pv (µpv )

is an isomorphism.

Proof. Let π : A → A[x] be the inclusion of the constant polynomials. A
functor which has a right adjoint preserves colimits; in particular, it preserves
initial objects. It follows that the canonical map

W· Ω∗(A[x],MA[x])
→ π∗W· Ω∗(A,MA)

is an isomorphism. Hence, by theorem B, we have a canonical isomorphism

W· Ω∗(A[x],MA[x])
∼−→ P (W· Ω∗(A,MA)).

Finally, the canonical map

P (W· Ω∗(A,MA))⊗Z SZ/pv (µpv )→ P (W· Ω∗(A,MA) ⊗Z SZ/pv (µpv ))

is an isomorphism, since F (resp. d) is the identity map (resp. the zero map) on
the factor SZ/pv (µpv ). For instance,

V s(ω)⊗ ζ = V s(ω ⊗ F s(ζ)) = V s(ω ⊗ ζ).

The lemma follows. �

A pro-abelian group D is Mittag-Leffler zero, if for all n ≥ 1, there exists m ≥ n
such that the structure map Dm → Dn is zero. A strict map f : D → D′ of pro-
abelian groups is an isomorphism of pro-abelian groups if and only if the kernel and
cokernel of f are Mittag-Leffler zero.

Lemma 7.1.5. Let f : E → E′ be a map of Witt complexes and suppose that, as
a map of pro-abelian groups, f is an isomorphism. Then, as a map of pro-abelian
groups, P (f) : P (E)→ P (E′) is an isomorphism.

Proof. Let K be the kernel of f : E → E′ considered as a strict map of pro-
abelian groups, and, by slight abuse of notation, let P (K) denote the kernel of
P (f) : P (E)→ P (E′) considered as a strict map of pro-abelian groups. For n ≥ 1,
we can find t ≥ 0 such that for all 1 ≤ s ≤ n, the structure map Es+t → Es is
equal to zero. By inspection, we see that the structure map P (K)n+t → P (K)n is
zero, and hence, P (K) is Mittag-Leffler zero. A similar argument shows that also
the cokernel of P (f) : P (E)→ P (E′) is Mittag-Leffler zero. �

Proof of theorem E. We recall from [6, corollary 17.11.4] that a V -algebra
A is smooth if and only if there exists relatively prime elements f1, . . . , fr ∈ A and
étale maps

V [x1, . . . , xn]→ Afi = A[
1
fi

].

We first prove the statement for polynomial algebras. The proof is by induction
on the number of variables; the basic case A = V is the statement of [9, theorem
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C]. In the induction step, we assume the statement for A and consider the diagram
following diagram of pro-abelian groups.

P (W· Ω∗(A,MA) ⊗Z SZ/pv (µpv )) ∼ //

∼
��

P (TR·
∗(A|AK ; p,Z/pv))

∼
��

W· Ω∗(A[x],MA[x])
⊗Z SZ/pv (µpv ) // TR·

∗(A[x]|A[x]K ; p,Z/pv).

The left and right hand vertical maps are isomorphism by lemmas 7.1.4 and 7.1.3,
respectively, and the top horizontal map is an isomorphism by lemma 7.1.5 and by
the assumption that the theorem holds for A. This proves the induction step.

Let A be a smooth V -algebra, let f : A→ B be an étale map, and suppose that
the theorem holds for A such that the canonical map

W· Ω∗(A,MA) ⊗Z SZ/pv (µpv )→ TR·
∗(A|AK ; p,Z/pv)

is an isomorphism of pro-graded W·,v(A)-modules. Then the map obtained by base-
change along W·,v(f) again is an isomorphism, and hence, lemmas 7.1.2 and 7.1.1
show that the canonical map

W· Ω∗(B,MB) ⊗Z SZ/pv (µpv )→ TR·
∗(B|BK ; p,Z/pv)

is an isomorphism.
The proof is completed by the following covering argument. Let En be a functor,

which to a smooth V -algebra A associates a Wn,v(A)-module En(A), and suppose
that for all f ∈ A, the canonical map

Wn,v(Af )⊗Wn,v(A) En(A)→ En(Af )

is an isomorphism. Let f1, . . . , fr ∈ A be relatively prime elements. Then the
canonical map A→

∏
1≤i≤r Afi

is faithfully flat, and hence, the Koszul complex

C∗ =
⊗

1≤i≤r

(A→ Afi
)

is exact. Here we view A → Afi as a cochain complex of A-modules with A
located in degree zero. The maps in this complex are alternating sums of A-algebra
homomorphisms. Hence, we obtain complexes Wn,v(C∗) and En(C∗) by applying
Wn,v(−) and En(−), respectively, to each term of the complex C∗. The former
complex is exact by an induction argument based on the natural exact sequences

0→W1,v(Af ) V n−1

−−−→Wn,v(Af ) R−→Wn−1,v(Af )→ 0.

The terms of this complex are flat Wn,v(A)-modules by proposition 6.2.2. Hence,
also the common complex

Wn,v(C∗)⊗Wn,v(A) En(A) ∼−→ En(C∗)

is exact. We now consider the map of Witt complexes E∗· → E′·
∗ from the statement

of theorem E. Then the complexes Eq
· (C∗) and E′·

q(C∗) are exact, for all q ≥ 0,
by lemmas 7.1.2 and 7.1.1, respectively. We can choose f1, . . . , fr ∈ A such that
the map of cochain complexes Eq

· (C∗) → E′·
q(C∗) is an isomorphism in positive

degrees. But then this map is an isomorphism also in degree zero. �
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[25] T. tom Dieck, Orbittypen und äquivariante Homologie II, Arch. Math. (Basel) 26 (1975),

650–662.

Massachusetts Institute of Technology, Cambridge, Massachusetts

E-mail address: larsh@math.mit.edu

Matematisk Institut, Aarhus Universitet, Denmark

E-mail address: imadsen@imf.au.dk

40


