
Contemporary Mathematics

Topological Hochschild homology and the de Rham-Witt
complex for Z(p)-algebras

Lars Hesselholt

Abstract. This paper shows that for a Z(p)-algebra (p odd), the equivari-

ant homotopy groups in degrees less than or equal to one of the topological
Hochschild T-spectrum are given, as functors, by the de Rham-Witt complex.

Introduction

Let A be a commutative and unital Z(p)-algebra with p odd. The topological
Hochschild spectrum TH(A) has a natural action by the circle T, and one defines

TRn(A; p) = TH(A)Cpn−1

as the fixed point spectrum for the cyclic subgroup of the indicated order. Typically,
the homotopy groups

TR·
∗(A; p) = π∗ TR·(A; p)

are very large, but they have a rich algebraic structure. There is a universal example
of this structure, the de Rham-Witt complex, and the canonical map

λ : W· Ω∗
A → TR·

∗(A; p)

is in many ways analogous to the map from Milnor K-theory to Quillen K-theory.
For example, it is an isomorphism of pro-abelian groups if A is a regular Fp-algebra
by [4, theorem B]. In this paper we prove the following result whose K-theory
analog is well-known.

Theorem. Let A be a Z(p)-algebra with p odd. Then the canonical map

λ : Wn Ωq
A → TRn

q (A; p)

is an isomorphism, for q ≤ 1.

The statement was known previously in a number of special cases. The case of
a polynomial algebra over Z(p), proved in [5], is the starting point of the argument
given here. We also mention that in his thesis [9], K̊are Nielsen has verified the
case of a truncated polynomial algebra in a finite number of variables over a perfect
field of characteristic p > 0. He shows further that if A = Fp[x]/(xp) and q = 2,
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the map λ is not pro-isomorphism. However, it seems reasonable to expect that λ
is a pro-isomorphism for q = 2, if A is regular.

In this paper, a pro-object in a category C is a functor from the set of positive
integers, viewed as a category with one arrow from n + 1 to n, to C, and a strict
map between pro-objects is a natural transformation.

1. The de Rham-Witt complex

1.1. We briefly recall the definition of the de Rham-Witt complex and refer
to [5] for details. This definition extends to Z(p)-algebras (with p odd) the original
definition for Fp-algebras of Bloch-Deligne-Illusie [8].

Let A be a Z(p)-algebra (with p odd). By a Witt complex over A, we mean the
following data:

(i) a pro-differential graded ring E∗
· and a strict map of pro-rings

λ : W·(A) → E0
·

from the pro-ring of Witt vectors in A;
(ii) a strict map of pro-graded rings

F : E∗
· → E∗

·−1,

such that λF = Fλ and such that for all a ∈ A,

Fdλ[a]n = λ[a]p−1
n−1dλ[a]n−1,

where [a]n = (a, 0, . . . , 0) ∈ Wn(A) is the multiplicative representative;
(iii) a strict map of pro-graded E∗

· -modules

V : F∗E
∗
·−1 → E∗

· ,

such that λV = V λ and such that FV = p and FdV = d. (Here F∗E
∗
n−1 denotes

the E∗
n−1-module E∗

n−1 considered as an E∗
n-module via F : E∗

n → E∗
n−1.)

By a map of Witt complexes we mean a strict map of pro-differential graded
rings f : E∗

· → E′
·
∗ such that fλ = λ′f , fF = F ′f , and fV = V ′f . We write R for

the structure map in the pro-graded ring E∗
· and call it the restriction map.

By definition, the de Rham-Witt complex W· Ω∗
A is the universal Witt complex

over A. The existence is proved in [5, theorem A], which also shows that the
canonical map

Ω∗
W·(A) � W· Ω∗

A

is surjective. Hence, every element of Wn Ωq
A can be written, non-uniquely, as a

sum of forms ω = a0da1 . . . daq with ai ∈ Wn(A). In particular, the restriction map
is surjective. For the de Rham-Witt complex, the structure map

λ : Wn(A) ∼−→ Wn Ω0
A

is an isomorphism, and therefore, we frequently omit it from the notation.

1.2. The definition of the ring Wn(I) of Witt vectors does not require that
the ring I be unital.

Lemma 1.2.1. Let A be a ring and I ⊂ A an ideal. Then Wn(I) ⊂ Wn(A) is
an ideal and the natural projection induces an isomorphism

Wn(A)/Wn(I) ∼−→ Wn(A/I).
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Proof. Only the last statement needs proof. We argue by induction on n
starting from the case n = 1 which is trivial. In the induction step we consider the
3x3-diagram with exact columns:

0

��

0

��

0

��

0 // I //

V n−1

��

A //

Vn−1

��

A/I //

V n−1

��

0

0 // Wn(I) //

R

��

Wn(A) //

R

��

Wn(A/I) //

R

��

0

0 // Wn−1(I) //

��

Wn−1(A) //

��

Wn−1(A/I) //

��

0

0 0 0

The top and bottom row are exact by induction. Hence, so is the middle row. �

The following result is [2, lemma 2.2.1]; for the convenience of the reader we
include it here.

Lemma 1.2.2. Let I ⊂ A be an ideal, and let Wn Ω∗
(A,I) be the differential graded

ideal of Wn Ω∗
A generated by Wn(I) ⊂ Wn(A). Then the canonical projection

Wn Ωq
A/Wn Ωq

(A,I)

∼−→ Wn Ωq
A/I

is an isomorphism.

Proof. We first show that W· Ω∗
A/W· Ω∗

(A,I) is a Witt complex over A/I. The
definition and lemma 1.2.1 show that it is a pro-differential graded ring with un-
derlying pro-ring W·(A/I). Hence, we need only show that the operators F , R and
V on W· Ω∗

A descend to operators on W· Ω∗
A/W· Ω∗

(A,I), or equivalently, that

RWn Ωq
(A,I) ⊂ Wn−1 Ωq

(A,I),

FWn Ωq
(A,I) ⊂ Wn−1 Ωq

(A,I),

V Wn Ωq
(A,I) ⊂ Wn+1 Ωq

(A,I).

The elements of Wn Ωq
(A,I) are sums of forms ω = a0da1 . . . daq, where ai ∈ Wn(A),

for all i, and where ai ∈ Wn(I), for some i. The statement for the Verschiebung
map then follows from the formula

V (ω) = V (a0 FdV (a1) . . . FdV (aq)) = V (a0)dV (a1) . . . dV (aq).

In the case of the Frobenius map, we first note that

F (ω) = Fa0 · Fda1 · . . . · Fdaq.

If a0 ∈ Wn(I) then F (a0) ∈ Wn−1(I). If ai ∈ Wn(I), for some 1 ≤ i ≤ q, we write
out ai in Witt coordinates,

ai = [ai,0]n + V [ai,1]n−1 + · · ·+ V n−1[ai,n−1]1.
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We then have

Fdai = [ai,0]
p−1
n−1d[ai,0]n−1 + d[ai,1]n−1 + dV [ai,2]n−2 + · · ·+ dV n−2[ai,n−1]1,

which shows that Fdai ∈ Wn−1 Ω1
(A,I). Hence, in either case F (ω) ∈ Wn−1 Ωq

(A,I).
The statement for R is clear. This shows that W· Ω∗

A/W· Ω∗
(A,I) is a Witt complex

over A/I. One immediately verifies that it is the universal one. �

Corollary 1.2.3. The abelian group Wn Ω1
(A,I) is generated by elements of the

form dV s[x]n−s, V s([x]n−sd[a]n−s) and V s([a]n−sd[x]n−s) with 0 ≤ s < n, a ∈ A,
and x ∈ I.

Proof. The group Wn Ω1
(A,I) is generated by elements of the form adx and

xda with a ∈ Wn(A) and x ∈ Wn(I). Writing a and x out in Witt coordinates,

a = [a0]n + V [a1]n−1 + · · ·+ V n−1[an−1]1,

x = [x0]n + V [x1]n−1 + · · ·+ V n−1[xn−1]1,

we see that only the generators V s[a]n−s · dV t[x]n−t and V s[x]n−s · dV t[a]n−t with
a ∈ A, x ∈ I, and 0 ≤ s, t < n, are needed. The generators V s[a]n−s · dV t[x]n−t

with s ≥ t may be rewritten

V s[a]n−s · dV t[x]n−t = V s([a]n−sF
sdV t[x]n−t) = V s([a]n−s[x]p

s−t−1
n−s d[x]n−s),

which is of the desired form. And if s ≤ t, we have

V s[a]n−s · dV t([x]n−t = d(V s([a]n−sV
t([x]n−t)))− dV s([a]n−s)V t([x]n−t)

= dV t([a]p
t−s

n−t [x]n−t)− V t([a]p
t−s−1

n−t [x]n−td[a]n−t).

Similarly, for the generators V s[x]n−s · dV t[a]n−t. �

2. The relative theory TR·
∗(A, I; p)

2.1. Let I ⊂ A be an ideal and let

TH(A, I) = TH(A → A/I)

be the (cyclotomic) spectrum defined in [1, appendix]. Then for all n ≥ 1, there is
a natural cofibration sequence of TRn(A; p)-module spectra

TRn(A, I; p) → TRn(A; p) → TRn(A/I; p) → Σ TRn(A, I; p).

This is proved in loc.cit. under a certain connectivity requirement. But, as a con-
sequence of [10, theorem 4.2.8], this requirement may be dropped. For the module
structure we refer to [6, section 2.7]; see also [3, appendix].

Lemma 2.1.1. There is a canonical isomorphism I
∼−→ TH0(A, I), and as an

abelian group, TH1(A, I) is generated by elements of the form xda and adx with
a ∈ A and x ∈ I.

Proof. The spectrum TH(A, I) is defined as the geometric realization of a
simplicial symmetric spectrum [s] 7→ TH(A, I)s. The spectrum TH(A, I)s in sim-
plicial degree s has the homotopy type of the homotopy colimit of the punctured
s-cube which to T $ {1, 2, . . . , s} associates the smash product

A1 ∧A2 ∧ · · · ∧As,
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where Ai = A (resp. Ai = I) if i ∈ T (resp. if i /∈ T ). (Here we denote a ring
and its Eilenberg-MacLane spectrum by the same symbol.) It follows that in the
skeleton spectral sequence

E1
s,t = πt(TH(A, I)s) ⇒ THs+t(A, I),

we have

E1
0,t =

{
I, if t = 0,
0, if t > 0,

E1
1,0 = I ⊗A⊕I⊗I A⊗ I.

Since A is commutative, the differential

d1 : E1
0,1 → E1

0,0

is zero, and hence, the edge-homomorphism I
∼−→ TH0(A, I) is an isomorphism.

Finally, the elements xda (resp. adx) with a ∈ A and x ∈ I are represented in the
spectral sequence by x⊗ a (resp. a⊗ x) in E1

1,0. �

Remark 2.1.2. The generators xda and adx of TH1(A, I) are subject to the
additivity relations

(a1 + a2)d(x1 + x2) = a1dx1 + a1dx2 + a2dx1 + a2dx2,

(x1 + x2)d(a1 + a2) = x1da1 + x1da2 + x2da1 + x2da2,

where a1, a2 ∈ A and x1, x2 ∈ I, and to the Leibniz rule

a0d(a1a2) = a0a1da2 + a2a0da1,

where ai ∈ A, for all i = 0, 1, 2, and ai ∈ I, for some i = 0, 1, 2. Indeed, the
additivity relations follows from the definition of the tensor product, which gives
E1

1,0, and the Leibniz rule follows from the differential d1 : E1
0,2 → E1

0,1.

Since TH(A, I) is cyclotomic in the sense of [6, definition 2.2], we have a natural
cofibration sequence

hTRn(A, I; p) N−→ TRn(A, I; p) R−→ TRn−1(A, I; p) ∂−→ ΣhTRn(A, I; p);

see [6, theorem 2.2]. The left hand term

hTRn(A, I; p) = H ·(Cpn−1 ,TH(A, I))

is the group homology spectrum (or Borel construction) whose homotopy groups
are the abutment of a first quadrant spectral sequence

E2
s,t = Hs(Cpn−1 ,THt(A, I)) ⇒ hTRn

s+t(A, I; p).

We refer the reader to [7, paragraph 4] for a thorough treatment of the construction
of this spectral sequence. The Cpn−1-module THt(A, I) is trivial, since the Cpn−1-
action on TH(A, I) comes from a circle action.

Lemma 2.1.3. The map I ⊕ TH1(A, I) → hTRn
1 (A, I; p), which to (x, ω) asso-

ciates dV n−1x + V n−1ω, is a surjection.

Proof. The spectral sequence above amounts to an exact sequence

pn−1I
d2

−→ TH1(A, I) V n−1

−−−→ hTRn
1 (A, I; p) π−→ I/pn−1I → 0,

where π is the edge-homomorphism to the baseline. Moreover, the composite

I
V n−1

−−−→ hTRn
0 (A, I; p) d−→ hTRn

1 (A, I; p) π−→ I/pn−1I
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may be identified with the map H0(Cpn−1 , I) → H1(Cpn−1 , I) given by multipli-
cation by the fundamental class [T/Cpn−1 ]. It is well-known that this map is an
epimorphism. �

Proposition 2.1.4. As a non-unital ring, TRn
0 (A, I; p) is canonically isomor-

phic to Wn(I), and as an abelian group, TRn
1 (A, I; p) is generated by elements of

the form dV s([x]n−s), V s([x]n−sd[a]n−s) and V s([a]n−sd[x]n−s), where 0 ≤ s < n,
a ∈ A, and x ∈ I.

Proof. The first statement follows from the proof of [6, theorem F]. Indeed,
it is not necessary for this proof that the ring I be unital. The second statement
follows from lemmas 2.1.1 and 2.1.3 by an induction argument based on the exact
sequence

h TRn
1 (A, I; p) → TRn

1 (A, I; p) → TRn−1
1 (A, I; p) → 0.

The maps in the sequence commute with d and V (and F ). �

Proof of the theorem. The statement for q = 0 is [6, theorem F], so con-
sider q = 1. If A is a polynomial algebra over Z(p), the statement was proved in [5].
In the general case, we write A = R/I with R a polynomial algebra over Z(p) and
consider the following diagram with exact rows

0 // Wn Ω1
(R,I)

// Wn Ω1
R

//

∼
��

Wn Ω1
R/I

��

// 0

TRn
1 (R, I; p) // TRn

1 (R; p) // TRn
1 (R/I; p) // 0

Then the middle vertical map is an isomorphism, and hence, it suffices to show that
the image of the composite

Wn Ω1
(R,I) → Wn Ω1

R
∼−→ TRn

1 (R; p)

coincides with the image of the canonical map

TRn
1 (R, I; p) → TRn

1 (R; p).

But corollaries 1.2.3 and 2.1.4 identifies both images with the subgroup generated
by elements of the form dV s[x]n−s, V s([x]n−sd[a]n−s) and V s([a]n−sd[x]n−s), where
0 ≤ s < n, a ∈ R, and x ∈ I. This concludes the proof. �
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