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Topological Hochschild homology and the de Rham-Witt
complex for Z,)-algebras

Lars Hesselholt

ABSTRACT. This paper shows that for a Z,)-algebra (p odd), the equivari-
ant homotopy groups in degrees less than or equal to one of the topological
Hochschild T-spectrum are given, as functors, by the de Rham-Witt complex.

Introduction

Let A be a commutative and unital Z,)-algebra with p odd. The topological
Hochschild spectrum TH(A) has a natural action by the circle T, and one defines

TR"(A;p) = TH(A)

as the fixed point spectrum for the cyclic subgroup of the indicated order. Typically,
the homotopy groups

TR, (4;p) = m TR (4;p)
are very large, but they have a rich algebraic structure. There is a universal example
of this structure, the de Rham-Witt complex, and the canonical map

A W.Q% — TRL(A;p)
is in many ways analogous to the map from Milnor K-theory to Quillen K-theory.
For example, it is an isomorphism of pro-abelian groups if A is a regular Fp-algebra
by [4, theorem B]. In this paper we prove the following result whose K-theory
analog is well-known.

THEOREM. Let A be a Zy-algebra with p odd. Then the canonical map
AW, Q4 — TRy (A;p)
is an isomorphism, for ¢ < 1.

The statement was known previously in a number of special cases. The case of
a polynomial algebra over Z,, proved in [5], is the starting point of the argument
given here. We also mention that in his thesis [9], Kare Nielsen has verified the
case of a truncated polynomial algebra in a finite number of variables over a perfect
field of characteristic p > 0. He shows further that if A = Fp[z]/(z?) and ¢ = 2,
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the map A is not pro-isomorphism. However, it seems reasonable to expect that A
is a pro-isomorphism for ¢ = 2, if A is regular.

In this paper, a pro-object in a category C'is a functor from the set of positive
integers, viewed as a category with one arrow from n + 1 to n, to C, and a strict
map between pro-objects is a natural transformation.

1. The de Rham-Witt complex

1.1. We briefly recall the definition of the de Rham-Witt complex and refer
to [5] for details. This definition extends to Z,-algebras (with p odd) the original
definition for Fp-algebras of Bloch-Deligne-Illusie [8].

Let A be a Zp)-algebra (with p odd). By a Witt complex over A, we mean the
following data:

(i) a pro-differential graded ring E* and a strict map of pro-rings

A: W.(A) — E°

from the pro-ring of Witt vectors in A;

(ii) a strict map of pro-graded rings

F:Ef—E" |,
such that A\F' = FA and such that for all a € A,
Fd)a),, = a2~} d\a],_1,

where [a], = (a,0,...,0) € W,(A) is the multiplicative representative;

(iii) a strict map of pro-graded E*-modules

V:F.E" | — E7,

such that AV = VX and such that FV = p and FdV = d. (Here F,E}_; denotes
the E*_;-module EZ_; considered as an E-module via F': Ef — E*_|.)

By a map of Witt complexes we mean a strict map of pro-differential graded
rings f: E*¥ — E/* such that fA=XNf, fF =F'f,and fV =V'f. We write R for
the structure map in the pro-graded ring E¥* and call it the restriction map.

By definition, the de Rham-Witt complex W. Q% is the universal Witt complex
over A. The existence is proved in [5, theorem A], which also shows that the
canonical map

Qi (a) > W

is surjective. Hence, every element of W, Q% can be written, non-uniquely, as a
sum of forms w = apdas . .. dag with a; € W,,(A). In particular, the restriction map
is surjective. For the de Rham-Witt complex, the structure map

A W, (A) = W, Q%
is an isomorphism, and therefore, we frequently omit it from the notation.

1.2. The definition of the ring W, (I) of Witt vectors does not require that
the ring I be unital.

LEMMA 1.2.1. Let A be a ring and I C A an ideal. Then W, (I) C W, (A) is
an ideal and the natural projection induces an isomorphism

Wi (A)/ Wi (I) = Wn(A/I).
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PROOF. Only the last statement needs proof. We argue by induction on n
starting from the case n = 1 which is trivial. In the induction step we consider the
3x3-diagram with exact columns:

0 0 0

Vn—l Vi1 anl

00— Wil) ——— Wy(4) ———= Wi (A/I) ——0

04>W _1(1) %Wn—l(A) %Wn—l(A/I> —0

0 0 0

The top and bottom row are exact by induction. Hence, so is the middle row. [J

The following result is [2, lemma 2.2.1]; for the convenience of the reader we
include it here.

LEMMA 1.2.2. Let I C A be an ideal, and let W, Q’("A,I) be the differential graded
ideal of Wy, Q% generated by W, (I) C W, (A). Then the canonical projection
Wa Q4 /W, Q((ZA,I) = Wy Q?A/I
is an isomorphism.

PrOOF. We first show that W. Q% /W. Q4 1y is a Witt complex over A/I. The
definition and lemma 1.2.1 show that it is a pro-differential graded ring with un-
derlying pro-ring W.(A/I). Hence, we need only show that the operators F', R and
V on W. Q% descend to operators on W. Q% /W. Q’(“AJ), or equivalently, that

RW, Q‘(IAJ) C Wpoy Q‘(IAJ),
FW, Q‘(ZAJ) C Wh_q Q?A,I)’
Vv, Q'gAJ) C Whit Q‘(’AJ).

The elements of W), Q?A 7y re sums of forms w = agdas . .. dag, where a; € W, (4),
for all ¢, and where a; € W, (I), for some i. The statement for the Verschiebung
map then follows from the formula

V(w) =V(ap FdV(ay)...FdV(a,)) = V(ag)dV(a1)...dV(ay).
In the case of the Frobenius map, we first note that
F(w) = Fag-Fda; - ... Fda,.

If ag € W, (I) then F(ag) € Wy_1(I). If a; € W, (I), for some 1 < i < g, we write
out a; in Witt coordinates,

a; = [aioln + Viagi)n—1+--+ Vnil[ai,n—ﬂy
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We then have
Fda; = [ai,O]z:lld[ai,O]n—l +daiiln-1+dV]a;oln_o+ -+ aniQ[ai n—1]1,

which shows that Fda; € W,,_1 Q%A n- Hence, in either case F(w) € W, Q(A D
The statement for R is clear. This shows that W. Q% /W. Qfa py Is a Witt complex
over A/I. One immediately verifies that it is the universal one. O

COROLLARY 1.2.3. The abelian group W, Q%A n is generated by elements of the
form dV?[x]n_s, VE([2]pn—sd[a]n—s) and V*([a]n_sd[x]n—s) with0 < s <mn, ac A,
and z € 1.

PrOOF. The group W, Q% AT is generated by elements of the form adx and
xda with a € W,,(A) and z € Wn(I) Writing @ and = out in Witt coordinates,

a = [ao]n + V]ai]n—1 -+ Vnil[an—lh,
x = [zoly + V[z1]po1 + -+ V* Hzpoa]h,

we see that only the generators V*[a],_s - dV[x],_; and V*[z],_s - dV[a],,—; with
a€ A, xel, and 0 < s,t < n, are needed. The generators V*[a],_s - dV[z],_;
with s > t may be rewritten

V(s - dV'alues = VO ([alu-s F*dV' [e)os) = V*(lalumslall ", dlada-s),
which is of the desired form. And if s < ¢, we have
Velaln—s - dV([z]n—t = d(V*([a]n-s V' ([2]n—¢))) — dV*([aln—s) V" ([2]n—t)
= V' ({alf " [e)a-e) = V' ([0l alu-rdlals)-
Similarly, for the generators V*[z],_s - dV*[a],—;. O

2. The relative theory TR, (A4, I;p)
2.1. Let I C A be an ideal and let
TH(A, I) = TH(A — A/I)

be the (cyclotomic) spectrum defined in [1, appendix]. Then for all n > 1, there is
a natural cofibration sequence of TR"(A;p)-module spectra

TR"(A,I;p) — TR"(A;p) — TR™(A/I;p) — X TR"(A, I;p).

This is proved in loc.cit. under a certain connectivity requirement. But, as a con-
sequence of [10, theorem 4.2.8], this requirement may be dropped. For the module
structure we refer to [6, section 2.7]; see also [3, appendix].

LEMMA 2.1.1. There is a canonical isomorphism I = THy(A,I), and as an
abelian group, THy(A,I) is generated by elements of the form xzda and adx with
ac€Aandxel.

PrOOF. The spectrum TH(A,I) is defined as the geometric realization of a
simplicial symmetric spectrum [s] — TH(A, I)s. The spectrum TH(A, I); in sim-
plicial degree s has the homotopy type of the homotopy colimit of the punctured
s-cube which to T'G {1,2,..., s} associates the smash product

AT NAg A - AN As,



TOPOLOGICAL HOCHSCHILD HOMOLOGY 5

where A; = A (resp. A; = 1) ifi € T (resp. if i ¢ T). (Here we denote a ring
and its Eilenberg-MacLane spectrum by the same symbol.) It follows that in the
skeleton spectral sequence

B}, =m(TH(A,I),) = TH, (A, 1),

I, ift=0,
Eé,t_{

we have

0, ift>0,
Elg=IQA®er AR
Since A is commutative, the differential
d': Eg, — Ej
is zero, and hence, the edge-homomorphism I = THg(A,I) is an isomorphism.

Finally, the elements xda (resp. adx) with a € A and x € I are represented in the
spectral sequence by = ® a (resp. a ® x) in Ej ;. d

REMARK 2.1.2. The generators zda and adz of TH;(A,I) are subject to the
additivity relations

(a1 + az)d(x1 + x2) = a1dxy + ardxs + asdx; + asdxs,
(z1 + z2)d(a1 + a2) = z1da; + x1das + xzada; + xadas,
where aq,as € A and x1, x5 € I, and to the Leibniz rule
apd(aiaz) = apardas + asapday,

where a; € A, for all ¢ = 0,1,2, and a; € I, for some i = 0,1,2. Indeed, the
additivity relations follows from the definition of the tensor product, which gives
E11,07 and the Leibniz rule follows from the differential d': E&z — E(%,r

Since TH(A, I) is cyclotomic in the sense of [6, definition 2.2], we have a natural
cofibration sequence

WTR™(A, I;p) 25 TR™(A, I;p) & TR (A, I;p) & £, TR™(A, I; p);
see [6, theorem 2.2]. The left hand term
R TR™(A, I;p) = H.(Cpn—1, TH(A, I))

is the group homology spectrum (or Borel construction) whose homotopy groups
are the abutment of a first quadrant spectral sequence

E2, = Hy(Cpn-1, TH (A, 1)) = , TR} (A, I; p).

We refer the reader to [7, paragraph 4] for a thorough treatment of the construction
of this spectral sequence. The Cpn-1-module TH; (A, I) is trivial, since the Cpn-1-
action on TH(A, I) comes from a circle action.

LEMMA 2.1.3. The map I & TH;(A,I) — ,TRY (A, I;p), which to (z,w) asso-
ciates V" "tz + V" 1w, is a surjection.

PROOF. The spectral sequence above amounts to an exact sequence
2 n—1
I 5 THy (A, 1) Y ,TRI(A, I;p) & I/p" ' — 0,

where 7 is the edge-homomorphism to the baseline. Moreover, the composite

IV TRE(A, I p) S W TRIMA, I p) = 1/p" U
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may be identified with the map Ho(Cpn-1,1) — Hi(Cpn-1,1) given by multipli-
cation by the fundamental class [T/Cpn-1]. It is well-known that this map is an
epimorphism. O

PROPOSITION 2.1.4. As a non-unital ring, TR{ (A, I;p) is canonically isomor-
phic to W,,(I), and as an abelian group, TRY (A, I;p) is generated by elements of
the form dV?([x]n—s), V*([t]n-sd]a]n—s) and V([a]n—sd[z]n—s), where 0 < s < m,
a€ A, and x € 1.

PROOF. The first statement follows from the proof of [6, theorem F]. Indeed,
it is not necessary for this proof that the ring I be unital. The second statement
follows from lemmas 2.1.1 and 2.1.3 by an induction argument based on the exact
sequence

n TR (A, I;p) — TR (A, I;p) — TR (A, I;p) — 0.

The maps in the sequence commute with d and V (and F). O

PROOF OF THE THEOREM. The statement for ¢ = 0 is [6, theorem F], so con-
sider ¢ = 1. If A is a polynomial algebra over Z,), the statement was proved in [5].
In the general case, we write A = R/I with R a polynomial algebra over Z,, and
consider the following diagram with exact rows

0——WaQlppy ——— W, 0k ——— WoQp,r ———0

TRY (R, I;p) —— TRY(R;p) —— TRY(R/I;p) —— 0

Then the middle vertical map is an isomorphism, and hence, it suffices to show that
the image of the composite

W Qg1 — Wa Q= TR] (R:p)
coincides with the image of the canonical map
TRY (R, I;p) — TRY(R;p).

But corollaries 1.2.3 and 2.1.4 identifies both images with the subgroup generated
by elements of the form dV*|[x],,—s, V*([x]n—sd[a]n—s) and V*([a],—sd[x],—s), where
0<s<mn,a€ R,and x € I. This concludes the proof. O
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