

Topological Hochschild homology and the de Rham-Witt complex for $\mathbb{Z}_{(p)}$ -algebras

Lars Hesselholt

ABSTRACT. This paper shows that for a $\mathbb{Z}_{(p)}$ -algebra (p odd), the equivariant homotopy groups in degrees less than or equal to one of the topological Hochschild \mathbb{T} -spectrum are given, as functors, by the de Rham-Witt complex.

Introduction

Let A be a commutative and unital $\mathbb{Z}_{(p)}$ -algebra with p odd. The topological Hochschild spectrum $\mathrm{TH}(A)$ has a natural action by the circle \mathbb{T} , and one defines

$$\mathrm{TR}^n(A; p) = \mathrm{TH}(A)^{C_{p^{n-1}}}$$

as the fixed point spectrum for the cyclic subgroup of the indicated order. Typically, the homotopy groups

$$\mathrm{TR}_*(A; p) = \pi_* \mathrm{TR}^*(A; p)$$

are very large, but they have a rich algebraic structure. There is a universal example of this structure, the de Rham-Witt complex, and the canonical map

$$\lambda: W_* \Omega_A^* \rightarrow \mathrm{TR}_*(A; p)$$

is in many ways analogous to the map from Milnor K -theory to Quillen K -theory. For example, it is an isomorphism of pro-abelian groups if A is a regular \mathbb{F}_p -algebra by [4, theorem B]. In this paper we prove the following result whose K -theory analog is well-known.

THEOREM. *Let A be a $\mathbb{Z}_{(p)}$ -algebra with p odd. Then the canonical map*

$$\lambda: W_n \Omega_A^q \rightarrow \mathrm{TR}_q^n(A; p)$$

is an isomorphism, for $q \leq 1$.

The statement was known previously in a number of special cases. The case of a polynomial algebra over $\mathbb{Z}_{(p)}$, proved in [5], is the starting point of the argument given here. We also mention that in his thesis [9], Kåre Nielsen has verified the case of a truncated polynomial algebra in a finite number of variables over a perfect field of characteristic $p > 0$. He shows further that if $A = \mathbb{F}_p[x]/(x^p)$ and $q = 2$,

1991 *Mathematics Subject Classification.* Primary 13K05, 55P91; Secondary 13N05, 19D55.
Supported in part by the National Science Foundation.

the map λ is not pro-isomorphism. However, it seems reasonable to expect that λ is a pro-isomorphism for $q = 2$, if A is regular.

In this paper, a pro-object in a category C is a functor from the set of positive integers, viewed as a category with one arrow from $n + 1$ to n , to C , and a strict map between pro-objects is a natural transformation.

1. The de Rham-Witt complex

1.1. We briefly recall the definition of the de Rham-Witt complex and refer to [5] for details. This definition extends to $\mathbb{Z}_{(p)}$ -algebras (with p odd) the original definition for \mathbb{F}_p -algebras of Bloch-Deligne-Illusie [8].

Let A be a $\mathbb{Z}_{(p)}$ -algebra (with p odd). By a *Witt complex* over A , we mean the following data:

- (i) a pro-differential graded ring E^* and a strict map of pro-rings

$$\lambda: W.(A) \rightarrow E^0.$$

from the pro-ring of Witt vectors in A ;

- (ii) a strict map of pro-graded rings

$$F: E^* \rightarrow E^*_{-1},$$

such that $\lambda F = F\lambda$ and such that for all $a \in A$,

$$Fd\lambda[a]_n = \lambda[a]_{n-1}^{p-1}d\lambda[a]_{n-1},$$

where $[a]_n = (a, 0, \dots, 0) \in W_n(A)$ is the multiplicative representative;

- (iii) a strict map of pro-graded E^* -modules

$$V: F_* E^*_{-1} \rightarrow E^*,$$

such that $\lambda V = V\lambda$ and such that $FV = p$ and $FdV = d$. (Here $F_* E^*_{-1}$ denotes the E^*_{-1} -module E^*_{-1} considered as an E^* -module via $F: E^* \rightarrow E^*_{-1}$.)

By a map of Witt complexes we mean a strict map of pro-differential graded rings $f: E^* \rightarrow E'^*$ such that $f\lambda = \lambda'f$, $fF = F'f$, and $fV = V'f$. We write R for the structure map in the pro-graded ring E^* and call it the restriction map.

By definition, the de Rham-Witt complex $W. \Omega_A^*$ is the universal Witt complex over A . The existence is proved in [5, theorem A], which also shows that the canonical map

$$\Omega_{W.(A)}^* \rightarrow W. \Omega_A^*$$

is surjective. Hence, every element of $W_n \Omega_A^q$ can be written, non-uniquely, as a sum of forms $\omega = a_0 da_1 \dots da_q$ with $a_i \in W_n(A)$. In particular, the restriction map is surjective. For the de Rham-Witt complex, the structure map

$$\lambda: W_n(A) \xrightarrow{\sim} W_n \Omega_A^0$$

is an isomorphism, and therefore, we frequently omit it from the notation.

1.2. The definition of the ring $W_n(I)$ of Witt vectors does not require that the ring I be unital.

LEMMA 1.2.1. *Let A be a ring and $I \subset A$ an ideal. Then $W_n(I) \subset W_n(A)$ is an ideal and the natural projection induces an isomorphism*

$$W_n(A)/W_n(I) \xrightarrow{\sim} W_n(A/I).$$

PROOF. Only the last statement needs proof. We argue by induction on n starting from the case $n = 1$ which is trivial. In the induction step we consider the 3x3-diagram with exact columns:

$$\begin{array}{ccccccc}
 & 0 & & 0 & & 0 & \\
 & \downarrow & & \downarrow & & \downarrow & \\
 0 & \longrightarrow & I & \longrightarrow & A & \longrightarrow & A/I \longrightarrow 0 \\
 & & \downarrow V^{n-1} & & \downarrow V_{n-1} & & \downarrow V^{n-1} \\
 0 & \longrightarrow & W_n(I) & \longrightarrow & W_n(A) & \longrightarrow & W_n(A/I) \longrightarrow 0 \\
 & & \downarrow R & & \downarrow R & & \downarrow R \\
 0 & \longrightarrow & W_{n-1}(I) & \longrightarrow & W_{n-1}(A) & \longrightarrow & W_{n-1}(A/I) \longrightarrow 0 \\
 & & \downarrow & & \downarrow & & \downarrow \\
 & 0 & & 0 & & 0 &
 \end{array}$$

The top and bottom row are exact by induction. Hence, so is the middle row. \square

The following result is [2, lemma 2.2.1]; for the convenience of the reader we include it here.

LEMMA 1.2.2. *Let $I \subset A$ be an ideal, and let $W_n \Omega_{(A,I)}^*$ be the differential graded ideal of $W_n \Omega_A^*$ generated by $W_n(I) \subset W_n(A)$. Then the canonical projection*

$$W_n \Omega_A^q / W_n \Omega_{(A,I)}^q \xrightarrow{\sim} W_n \Omega_{A/I}^q$$

is an isomorphism.

PROOF. We first show that $W_n \Omega_A^q / W_n \Omega_{(A,I)}^q$ is a Witt complex over A/I . The definition and lemma 1.2.1 show that it is a pro-differential graded ring with underlying pro-ring $W_n(A/I)$. Hence, we need only show that the operators F , R and V on $W_n \Omega_A^q$ descend to operators on $W_n \Omega_A^q / W_n \Omega_{(A,I)}^q$, or equivalently, that

$$\begin{aligned}
 RW_n \Omega_{(A,I)}^q &\subset W_{n-1} \Omega_{(A,I)}^q, \\
 FW_n \Omega_{(A,I)}^q &\subset W_{n-1} \Omega_{(A,I)}^q, \\
 VW_n \Omega_{(A,I)}^q &\subset W_{n+1} \Omega_{(A,I)}^q.
 \end{aligned}$$

The elements of $W_n \Omega_{(A,I)}^q$ are sums of forms $\omega = a_0 da_1 \dots da_q$, where $a_i \in W_n(A)$, for all i , and where $a_i \in W_n(I)$, for some i . The statement for the Verschiebung map then follows from the formula

$$V(\omega) = V(a_0 F dV(a_1) \dots F dV(a_q)) = V(a_0) dV(a_1) \dots dV(a_q).$$

In the case of the Frobenius map, we first note that

$$F(\omega) = Fa_0 \cdot Fda_1 \dots Fda_q.$$

If $a_0 \in W_n(I)$ then $F(a_0) \in W_{n-1}(I)$. If $a_i \in W_n(I)$, for some $1 \leq i \leq q$, we write out a_i in Witt coordinates,

$$a_i = [a_{i,0}]_n + V[a_{i,1}]_{n-1} + \dots + V^{n-1}[a_{i,n-1}]_1.$$

We then have

$$Fda_i = [a_{i,0}]_{n-1}^{p-1} d[a_{i,0}]_{n-1} + d[a_{i,1}]_{n-1} + dV[a_{i,2}]_{n-2} + \cdots + dV^{n-2}[a_{i,n-1}]_1,$$

which shows that $Fda_i \in W_{n-1} \Omega_{(A,I)}^1$. Hence, in either case $F(\omega) \in W_{n-1} \Omega_{(A,I)}^q$. The statement for R is clear. This shows that $W_* \Omega_A^*/W_* \Omega_{(A,I)}^*$ is a Witt complex over A/I . One immediately verifies that it is the universal one. \square

COROLLARY 1.2.3. *The abelian group $W_n \Omega_{(A,I)}^1$ is generated by elements of the form $dV^s[x]_{n-s}$, $V^s([x]_{n-s} d[a]_{n-s})$ and $V^s([a]_{n-s} d[x]_{n-s})$ with $0 \leq s < n$, $a \in A$, and $x \in I$.*

PROOF. The group $W_n \Omega_{(A,I)}^1$ is generated by elements of the form adx and xda with $a \in W_n(A)$ and $x \in W_n(I)$. Writing a and x out in Witt coordinates,

$$\begin{aligned} a &= [a_0]_n + V[a_1]_{n-1} + \cdots + V^{n-1}[a_{n-1}]_1, \\ x &= [x_0]_n + V[x_1]_{n-1} + \cdots + V^{n-1}[x_{n-1}]_1, \end{aligned}$$

we see that only the generators $V^s[a]_{n-s} \cdot dV^t[x]_{n-t}$ and $V^s[x]_{n-s} \cdot dV^t[a]_{n-t}$ with $a \in A$, $x \in I$, and $0 \leq s, t < n$, are needed. The generators $V^s[a]_{n-s} \cdot dV^t[x]_{n-t}$ with $s \geq t$ may be rewritten

$$V^s[a]_{n-s} \cdot dV^t[x]_{n-t} = V^s([a]_{n-s} F^s dV^t[x]_{n-t}) = V^s([a]_{n-s} [x]_{n-s}^{p^{s-t}-1} d[x]_{n-s}),$$

which is of the desired form. And if $s \leq t$, we have

$$\begin{aligned} V^s[a]_{n-s} \cdot dV^t([x]_{n-t}) &= d(V^s([a]_{n-s} V^t([x]_{n-t}))) - dV^s([a]_{n-s}) V^t([x]_{n-t}) \\ &= dV^t([a]_{n-t}^{p^{t-s}} [x]_{n-t}) - V^t([a]_{n-t}^{p^{t-s}-1} [x]_{n-t} d[a]_{n-t}). \end{aligned}$$

Similarly, for the generators $V^s[x]_{n-s} \cdot dV^t[a]_{n-t}$. \square

2. The relative theory $\text{TR}_*(A, I; p)$

2.1. Let $I \subset A$ be an ideal and let

$$\text{TH}(A, I) = \text{TH}(A \rightarrow A/I)$$

be the (cyclotomic) spectrum defined in [1, appendix]. Then for all $n \geq 1$, there is a natural cofibration sequence of $\text{TR}^n(A; p)$ -module spectra

$$\text{TR}^n(A, I; p) \rightarrow \text{TR}^n(A; p) \rightarrow \text{TR}^n(A/I; p) \rightarrow \Sigma \text{TR}^n(A, I; p).$$

This is proved in *loc.cit.* under a certain connectivity requirement. But, as a consequence of [10, theorem 4.2.8], this requirement may be dropped. For the module structure we refer to [6, section 2.7]; see also [3, appendix].

LEMMA 2.1.1. *There is a canonical isomorphism $I \xrightarrow{\sim} \text{TH}_0(A, I)$, and as an abelian group, $\text{TH}_1(A, I)$ is generated by elements of the form xda and adx with $a \in A$ and $x \in I$.*

PROOF. The spectrum $\text{TH}(A, I)$ is defined as the geometric realization of a simplicial symmetric spectrum $[s] \mapsto \text{TH}(A, I)_s$. The spectrum $\text{TH}(A, I)_s$ in simplicial degree s has the homotopy type of the homotopy colimit of the punctured s -cube which to $T \subsetneq \{1, 2, \dots, s\}$ associates the smash product

$$A_1 \wedge A_2 \wedge \cdots \wedge A_s,$$

where $A_i = A$ (resp. $A_i = I$) if $i \in T$ (resp. if $i \notin T$). (Here we denote a ring and its Eilenberg–MacLane spectrum by the same symbol.) It follows that in the skeleton spectral sequence

$$E_{s,t}^1 = \pi_t(\mathrm{TH}(A, I)_s) \Rightarrow \mathrm{TH}_{s+t}(A, I),$$

we have

$$E_{0,t}^1 = \begin{cases} I, & \text{if } t = 0, \\ 0, & \text{if } t > 0, \end{cases}$$

$$E_{1,0}^1 = I \otimes A \oplus_{I \otimes I} A \otimes I.$$

Since A is commutative, the differential

$$d^1: E_{0,1}^1 \rightarrow E_{0,0}^1$$

is zero, and hence, the edge-homomorphism $I \xrightarrow{\sim} \mathrm{TH}_0(A, I)$ is an isomorphism. Finally, the elements xda (resp. adx) with $a \in A$ and $x \in I$ are represented in the spectral sequence by $x \otimes a$ (resp. $a \otimes x$) in $E_{1,0}^1$. \square

REMARK 2.1.2. The generators xda and adx of $\mathrm{TH}_1(A, I)$ are subject to the additivity relations

$$(a_1 + a_2)d(x_1 + x_2) = a_1dx_1 + a_1dx_2 + a_2dx_1 + a_2dx_2,$$

$$(x_1 + x_2)d(a_1 + a_2) = x_1da_1 + x_1da_2 + x_2da_1 + x_2da_2,$$

where $a_1, a_2 \in A$ and $x_1, x_2 \in I$, and to the Leibniz rule

$$a_0d(a_1a_2) = a_0a_1da_2 + a_2a_0da_1,$$

where $a_i \in A$, for all $i = 0, 1, 2$, and $a_i \in I$, for some $i = 0, 1, 2$. Indeed, the additivity relations follows from the definition of the tensor product, which gives $E_{1,0}^1$, and the Leibniz rule follows from the differential $d^1: E_{0,2}^1 \rightarrow E_{0,1}^1$.

Since $\mathrm{TH}(A, I)$ is *cyclotomic* in the sense of [6, definition 2.2], we have a natural cofibration sequence

$${}_h\mathrm{TR}^n(A, I; p) \xrightarrow{N} \mathrm{TR}^n(A, I; p) \xrightarrow{R} \mathrm{TR}^{n-1}(A, I; p) \xrightarrow{\partial} \Sigma_h\mathrm{TR}^n(A, I; p);$$

see [6, theorem 2.2]. The left hand term

$${}_h\mathrm{TR}^n(A, I; p) = \mathbb{H} \cdot (C_{p^{n-1}}, \mathrm{TH}(A, I))$$

is the group homology spectrum (or Borel construction) whose homotopy groups are the abutment of a first quadrant spectral sequence

$$E_{s,t}^2 = H_s(C_{p^{n-1}}, \mathrm{TH}_t(A, I)) \Rightarrow {}_h\mathrm{TR}_{s+t}^n(A, I; p).$$

We refer the reader to [7, paragraph 4] for a thorough treatment of the construction of this spectral sequence. The $C_{p^{n-1}}$ -module $\mathrm{TH}_t(A, I)$ is trivial, since the $C_{p^{n-1}}$ -action on $\mathrm{TH}(A, I)$ comes from a circle action.

LEMMA 2.1.3. *The map $I \oplus \mathrm{TH}_1(A, I) \rightarrow {}_h\mathrm{TR}_1^n(A, I; p)$, which to (x, ω) associates $dV^{n-1}x + V^{n-1}\omega$, is a surjection.*

PROOF. The spectral sequence above amounts to an exact sequence

$${}_{p^{n-1}}I \xrightarrow{d^2} \mathrm{TH}_1(A, I) \xrightarrow{V^{n-1}} {}_h\mathrm{TR}_1^n(A, I; p) \xrightarrow{\pi} I/p^{n-1}I \rightarrow 0,$$

where π is the edge-homomorphism to the baseline. Moreover, the composite

$$I \xrightarrow{V^{n-1}} {}_h\mathrm{TR}_0^n(A, I; p) \xrightarrow{d} {}_h\mathrm{TR}_1^n(A, I; p) \xrightarrow{\pi} I/p^{n-1}I$$

may be identified with the map $H_0(C_{p^{n-1}}, I) \rightarrow H_1(C_{p^{n-1}}, I)$ given by multiplication by the fundamental class $[\mathbb{T}/C_{p^{n-1}}]$. It is well-known that this map is an epimorphism. \square

PROPOSITION 2.1.4. *As a non-unital ring, $\text{TR}_0^n(A, I; p)$ is canonically isomorphic to $W_n(I)$, and as an abelian group, $\text{TR}_1^n(A, I; p)$ is generated by elements of the form $dV^s([x]_{n-s})$, $V^s([x]_{n-s}d[a]_{n-s})$ and $V^s([a]_{n-s}d[x]_{n-s})$, where $0 \leq s < n$, $a \in A$, and $x \in I$.*

PROOF. The first statement follows from the proof of [6, theorem F]. Indeed, it is not necessary for this proof that the ring I be unital. The second statement follows from lemmas 2.1.1 and 2.1.3 by an induction argument based on the exact sequence

$${}_h \text{TR}_1^n(A, I; p) \rightarrow \text{TR}_1^n(A, I; p) \rightarrow \text{TR}_1^{n-1}(A, I; p) \rightarrow 0.$$

The maps in the sequence commute with d and V (and F). \square

PROOF OF THE THEOREM. The statement for $q = 0$ is [6, theorem F], so consider $q = 1$. If A is a polynomial algebra over $\mathbb{Z}_{(p)}$, the statement was proved in [5]. In the general case, we write $A = R/I$ with R a polynomial algebra over $\mathbb{Z}_{(p)}$ and consider the following diagram with exact rows

$$\begin{array}{ccccccc} 0 & \longrightarrow & W_n \Omega_{(R,I)}^1 & \longrightarrow & W_n \Omega_R^1 & \longrightarrow & W_n \Omega_{R/I}^1 \longrightarrow 0 \\ & & \downarrow \sim & & \downarrow & & \\ & & \text{TR}_1^n(R, I; p) & \longrightarrow & \text{TR}_1^n(R; p) & \longrightarrow & \text{TR}_1^n(R/I; p) \longrightarrow 0 \end{array}$$

Then the middle vertical map is an isomorphism, and hence, it suffices to show that the image of the composite

$$W_n \Omega_{(R,I)}^1 \rightarrow W_n \Omega_R^1 \xrightarrow{\sim} \text{TR}_1^n(R; p)$$

coincides with the image of the canonical map

$$\text{TR}_1^n(R, I; p) \rightarrow \text{TR}_1^n(R; p).$$

But corollaries 1.2.3 and 2.1.4 identifies both images with the subgroup generated by elements of the form $dV^s[x]_{n-s}$, $V^s([x]_{n-s}d[a]_{n-s})$ and $V^s([a]_{n-s}d[x]_{n-s})$, where $0 \leq s < n$, $a \in R$, and $x \in I$. This concludes the proof. \square

References

- [1] M. Bökstedt and I. Madsen, *Topological cyclic homology of the integers*, K-theory (Strasbourg, 1992), Astérisque, vol. 226, 1994, pp. 57–143.
- [2] T. Geisser and L. Hesselholt, *On the K-theory of complete regular local \mathbb{F}_p -algebras*, preprint 2000.
- [3] ———, *Topological cyclic homology of schemes*, K-theory (Seattle, 1997), Proc. Symp. Pure Math., vol. 67, 1999, pp. 41–87.
- [4] L. Hesselholt, *On the p -typical curves in Quillen's K-theory*, Acta Math. **177** (1997), 1–53.
- [5] L. Hesselholt and I. Madsen, *On the de Rham-Witt complex in mixed characteristic*, Ann. Sci. École Norm. Sup., to appear.
- [6] ———, *On the K-theory of finite algebras over Witt vectors of perfect fields*, Topology **36** (1997), 29–102.
- [7] ———, *On the K-theory of local fields*, Ann. of Math. **158** (2003), 1–113.
- [8] L. Illusie, *Complexe de de Rham-Witt et cohomologie cristalline*, Ann. Sci. École Norm. Sup. **12** (1979), 501–661.

- [9] K. Nielsen, *On the trace homology and algebraic K-theory of truncated polynomial algebras*, Thesis, Aarhus University, 2001.
- [10] B. Shipley, *Symmetric spectra and topological Hochschild homology*, *K-Theory* **19** (2000), 155–183.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS
E-mail address: larsh@math.mit.edu