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On the K-theory of truncated polynomial algebras
over the integers

Vigleik Angeltveit, Teena Gerhardt and Lars Hesselholt

Abstract

We show that K2 i (Z[x]/(xm ), (x)) is finite of order (mi)!(i!)m −2 and that K2 i+1 (Z[x]/(xm ), (x))
is free abelian of rank m − 1. This is accomplished by showing that the equivariant homotopy
groups TRn

q−λ (Z; p) of the topological Hochschild T-spectrum T (Z) are free abelian for q even,
and finite for q odd, and by determining their ranks and orders, respectively.

Introduction

It was proved by Soulé [13] and Staffeldt [14] that, for every non-negative integer q, the abelian
group Kq (Z[x]/(xm ), (x)) is finitely generated and that its rank is either 0 or m − 1 according
as q is even or odd. In this paper, we prove the following more precise result.

Theorem A. Let m be a positive integer and let i be a non-negative integer. Then

(i) the abelian group K2i+1(Z[x]/(xm ), (x)) is free of rank m − 1;
(ii) the abelian group K2i(Z[x]/(xm ), (x)) is finite of order (mi)!(i!)m−2 .

In particular, the p-primary torsion subgroup of K2i(Z[x]/(xm ), (x)) is zero, for every prime
number p > mi. At present, we do not know the group structure of the finite abelian group
in degree 2i except for small values of i and m. We remark that the result agrees with the
calculation by Geller and Roberts [12] of the group in degree two.

To prove Theorem A, we use the cyclotomic trace map of Bökstedt–Hsiang–Madsen [4] from
the K-groups in the statement to the corresponding topological cyclic homology groups and a
theorem of McCarthy [11], which shows that this map becomes an isomorphism after pro-finite
completion. The third author and Madsen [7, Proposition 4.2.3], in turn, gave a formula for the
topological cyclic homology groups in question in terms of the equivariant homotopy groups

TRr
q−λ(Z) = [Sq ∧ (T/Cr )+ , Sλ ∧ T (Z)]T

of the topological Hochschild T-spectrum T (Z). Here T is the multiplicative group of complex
numbers of modulus 1, Cr ⊂ T is the finite subgroup of the indicated order, λ is a finite-
dimensional complex T-representation, and Sλ is the one-point compactification of λ. Since the
groups Kq (Z[x]/(xm ), (x)) and TRr

q−λ(Z) are finitely generated by [13, 14] and Lemma 1.3,
respectively, these earlier results amount to a long exact sequence

· · · −→ lim
R

TRr/m
q−1−λd

(Z) Vm−→ lim
R

TRr
q−1−λd

(Z) −→ Kq (Z[x]/(xm ), (x)) −→ · · ·,
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where d = d(m, r) is the integer part of (r − 1)/m, and where λd is the sum

λd = C(d) ⊕ C(d − 1) ⊕ . . . ⊕ C(1)

of the one-dimensional complex T-representations defined by C(i) = C with T acting from the
left by z · w = ziw. The two limits range over the positive integers divisible by m and the
positive integers, respectively, ordered under division. The structure maps R and the map Vm

are explained in Section 1 below. In particular, we show that for every integer q there exists a
positive integer r = r(m, q) divisible by m such that the canonical projections

lim
R

TRr
q−λd

(Z) −→ TRr
q−λd

(Z), lim
R

TRr/m
q−λd

(Z) −→ TRr/m
q−λd

(Z),

are isomorphisms.
After localizing at a prime number p, the abelian groups TRr

q−λ(Z) decompose as products
of the p-typical equivariant homotopy groups

TRn
q−λ(Z; p) = TRpn −1

q−λ (Z) = [Sq ∧ (T/Cpn −1 )+ , Sλ ∧ T (Z)]T.

In addition, the Verschiebung map Vm that appears in the long exact sequence above may
be expressed in terms of the p-typical Verschiebung map V = Vp . The corresponding p-typical
equivariant homotopy groups with Z/pZ-coefficients

TRn
q−λ(Z; p, Z/pZ) = [Sq ∧ (T/Cpn −1 )+ ,Mp ∧ Sλ ∧ T (Z)]T,

were evaluated by the first and second author [1] and by Tsalidis [16]. More generally, the first
and second author [1] evaluated the RO(T)-graded equivariant homotopy groups

TRn
α (Z; p, Z/pZ) = [Sβ ∧ (T/Cpn −1 )+ ,Mp ∧ Sγ ∧ T (Z)]T,

where α ∈ RO(T) is any virtual finite-dimensional orthogonal T-representation, and where β
and γ are chosen actual representations with α = [β] − [γ]. Based on these results, we prove
the following.

Theorem B. Let p be a prime number, let n be a positive integer, and let λ be a finite-
dimensional complex T-representation. Then,

(i) for q = 2i even, TRn
q−λ(Z; p) is a free abelian group whose rank is equal to the number

of integers 0 � s < n such that i = dimC(λCp s );
(ii) for q = 2i − 1 odd, TRn

q−λ(Z; p) is a finite abelian group whose order is determined,
recursively, by

∣∣TRn
q−λ(Z; p)

∣∣ =

{∣∣TRn−1
q−λ′(Z; p)

∣∣ · pn−1(i − dimC(λ)) if i > dimC(λ)∣∣TRn−1
q−λ′(Z; p)

∣∣ if i � dimC(λ),

where λ′ = ρ∗pλ
Cp is the T/Cp -representation λCp viewed as a T-representation via the

isomorphism ρp : T → T/Cp given by the pth root;
(iii) for every integer q, the Verschiebung map

V : TRn−1
q−λ (Z; p) −→ TRn

q−λ(Z; p)

is injective, and for q even the cokernel is a free abelian group.

We remark that for λ = 0, the result is that∣∣TRn
2i−1(Z; p)

∣∣ = pn(n−1)/2 in ,

while the even groups all are zero with the exception of TRn
0 (Z; p), which is a free abelian group

of rank n. In the case n = 1, which was proved by Bökstedt [3], the groups are all cyclic. For
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n > 1, this is not the case. It remains a very interesting problem to determine the structure of
these groups. We refer to [5, Theorem 18] for some partial results.

It follows from Theorem B that with Z/pZ-coefficients the Verschiebung map

V : TRn−1
q−λ (Z; p, Z/pZ) −→ TRn

q−λ(Z; p, Z/pZ)

is injective for q even. We do not know the value of this map for q odd. The calculation of
this map, and hence, the groups Kq (Z[x]/(xm ), (x); Z/pZ) claimed in [16, Proposition 7.7] is
incorrect. Indeed, in loc. cit., it is only the map induced by V between the E∞-terms of two
spectral sequences that is evaluated.

The paper is organized as follows. In Section 1, we show that the groups TRr
q−λ(Z) are

finitely generated and determine their ranks. In Section 2, we recall the results of [1] and [16]
and prove Theorem B. In the following Section 3, we evaluate the terms in the long exact
sequence above and prove Theorem A. Finally, in Section 4, we specialize to the case of the
dual numbers and determine the structure of the finite group K2i(Z[x]/(x2), (x)) of order (2i)!
in low degrees.

1. The groups TRr
q−λ(Z)

In this section, we recall the groups TRr
q−λ(Z) and the Frobenius, Verschiebung, and restriction

operators that relate them. We refer to [8, Section 1] and [5, Section 2] for further details.
Let A be a unital associative ring. The topological Hochschild T-spectrum T (A) is, in

particular, an orthogonal T-spectrum in the sense of [10, Definition II.2.6]. Therefore, for
every finite-dimensional orthogonal T-representation λ and every finite subgroup Cr ⊂ T, we
have the equivariant homotopy group given by the following abelian group of maps in the
homotopy category of orthogonal T-spectra:

TRr
q−λ(A) = [Sq ∧ (T/Cr )+ , Sλ ∧ T (A)]T.

For every divisor s of r with quotient t = r/s, there are maps,

Fs : TRr
q−λ(A) −→ TRt

q−λ(A) (Frobenius),

Vs : TRt
q−λ(A) −→ TRr

q−λ(A) (Verschiebung),

induced by maps fs : (T/Ct)+ → (T/Cr )+ and vs : (T/Cr )+ → (T/Ct)+ in the homotopy
category of orthogonal T-spectra. The map fs is the map of suspension T-spectra induced
by the canonical projection pr : T/Ct → T/Cr and the map vs is the corresponding transfer
map defined as follows. Let ι : T/Ct ↪→ μ be an embedding into a finite-dimensional orthogonal
T-representation. Then the product embedding (ι,pr) : T/Ct → μ × (T/Cr ) has trivial normal
bundle, and the linear structure of μ determines a canonical trivialization. Therefore, the
Pontryagin–Thom construction gives a map of pointed T-spaces

Sμ ∧ (T/Cr )+ −→ Sμ ∧ (T/Ct)+ .

The induced map of suspension T-spectra determines the homotopy class of maps of orthogonal
T-spectra vs : (T/Cr )+ → (T/Ct)+ and this homotopy class is independent of the choice of
embedding ι as well as the choices made in forming the Pontryagin–Thom construction.

The orthogonal T-spectrum T (A) has the additional structure of a cyclotomic spectrum in
the sense of [8, Definition 2.2]. This implies that, in the situation above, there is a map

Rs : TRr
q−λ(A) −→ TRt

q−λ′(A) (restriction),

where λ′ = ρ∗s (λ
Cs ) is the T/Cs-representation λCs considered as a T-representation via

the isomorphism ρs : T → T/Cs defined by ρs(z) = z1/sCs . Moreover, the map Rs admits a
canonical factorization that we now explain. In general, let G be a compact Lie group and F a
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family of closed subgroups of G stable under conjugation and passage to subgroups. We recall
that a universal F -space is a G-CW-complex EF with the property that, for every closed
subgroup H ⊂ G, the fixed point set (EF )H is contractible if H ∈ F and empty if H /∈ F .
It was proved by tom Dieck [15, Satz 1] that a universal F -space EF exists and that, if
both EF and E′F are universal F -spaces, then there exists a unique G-homotopy class of G-
homotopy equivalences f : EF → E′F . Given a universal F -space EF , the pointed G-space
ẼF is defined to be the mapping cone of the map π : EF+ → S0 that collapses EF onto the
non-base point such that we have a cofibration sequence of pointed G-spaces,

EF+
π−→S0 ι−→ ẼF

δ−→ΣEF+ .

If N ⊂ G is a closed normal subgroup, we denote by F [N ] the family of closed subgroups
H ⊂ G that do not contain N as a subgroup. Now, the map Rs admits a factorization as the
composition of the map

TRr
q−λ(A) = [Sq ∧ (T/Cr )+ , Sλ ∧ T (A)]T −→ [Sq ∧ (T/Cr )+ , Sλ ∧ ẼF [Cs ] ∧ T (A)]T,

induced by the map ι : S0 → ẼF [Cs ] and a canonical isomorphism

[Sq ∧ (T/Cr )+ , Sλ ∧ ẼF [Cs ] ∧ T (A)]T
∼−→ [Sq ∧ (T/Ct)+ , Sλ ′ ∧ T (A)]T = TRt

q−λ′(A),

induced from the cyclotomic structure of T (A) and [10, Proposition V.4.17].
The group isomorphism ρs : T → T/Cs gives rise to an equivalence of categories ρ∗s from the

category of orthogonal T/Cs -spectra to the category of orthogonal T-spectra defined by

(ρ∗sT )(λ) = ρ∗s
(
T

((
ρ−1

s

)∗
λ
))

.

The following result is a generalization of [8, Theorem 2.2].

Proposition 1.1. Let A be a unital associative ring, let r be a positive integer, and let λ
be a finite-dimensional orthogonal T-representation. Let p be a prime number that divides r,
and let u and v be positive integers with u + v = vp(r) + 1. Then there is a natural long exact
sequence

· · ·−→ Hq

(
Cpu ,TRr/pu

·−λ (A)
) Np u−→TRr

q−λ(A)
Rp v−→TRr/pv

q−λ′(A) ∂−→Hq−1
(
Cpu ,TRr/pu

·−λ (A)
)
−→ · · · ,

where the left-hand term is the qth Borel homology group of the group Cpu with coefficients
in the orthogonal T-spectrum defined by

TRr/pu

·−λ (A) = ρ∗r/pu (Sλ ∧ T (A))Cr / p u .

Proof. The cofibration sequence of pointed T-spaces

EF [Cpv ]+
π−→S0 ι−→ ẼF [Cpv ] δ−→ΣEF [Cpv ]+

gives rise to a cofibration sequence of orthogonal T-spectra

EF [Cpv ]+ ∧ T (A) π−→T (A) ι−→ ẼF [Cpv ] ∧ T (A) δ−→ΣEF [Cpv ]+ ∧ T (A).

This, in turn, gives rise to a long exact sequence of equivariant homotopy groups that we now
identify with the long exact sequence of the statement. By definition, we have

TRr
q−λ(A) = [Sq ∧ (T/Cr )+ , Sλ ∧ T (A)]T,

and, as recalled above, the restriction map Rpv factors through the canonical isomorphism

[Sq ∧ (T/Cr )+ , Sλ ∧ ẼF [Cpv ] ∧ T (A)]T
∼−→TRr/pv

q−λ′(A).



K -THEORY OF TRUNCATED POLYNOMIAL ALGEBRAS 281

This identifies the middle and right-hand terms of the long exact sequence. To identify the
left-hand term, we recall from [10, Proposition V.2.3] the change-of-groups isomorphism,

[Sq ∧ (Cr/Cr )+ , Sλ ∧ EF [Cpv ]+ ∧ T (A)]Cr

∼−→ [Sq ∧ (T/Cr )+ , Sλ ∧ EF [Cpv ]+ ∧ T (A)]T.

On the left-hand side, the family F [Cpv ] is equal to the family of subgroups Cs ⊂ Cr for which
vp(s) < v. Therefore, we may choose the universal space EF [Cpv ] to be a Cr -CW-complex
that is non-equivariantly contractible and that only has cells of orbit-type Cr/Cr/pu . Indeed,
in this case we have

(EF [Cpv ])Cs =

{
EF [Cpv ] if vp(s) < v

∅ if vp(s) � v,

as required. We then have canonical isomorphisms

[Sq , Sλ ∧ EF [Cpv ]+ ∧ T (A)]Cr

∼←− [Sq , (Sλ ∧ EF [Cpv ]+ ∧ T (A))Cr / p u ]Cr /Cr / p u

∼←− [Sq ,EF [Cpv ]+ ∧ (Sλ ∧ T (A))Cr / p u ]Cr /Cr / p u ,

where for the second isomorphism we use that EF [Cpv ] is chosen to be Cr/pu -fixed. The
group isomorphism ρr/pu : Cpu → Cr/Cr/pu induces an isomorphism of categories ρ∗r/pu from
the category of orthogonal Cpu -spectra to the category of orthogonal Cr/Cr/pu -spectra. In
particular, this gives an isomorphism of the lower group above to the group

[Sq , ρ∗r/pu EF [Cpv ]+ ∧ ρ∗r/pu (Sλ ∧ T (A))Cr / p u ]Cp u = Hq

(
Cpu ,TRr/pu

·−λ (A)
)
.

This is indeed the desired Borel homology group, since ρ∗r/pu EF [Cpv ] is a free Cpu -CW-complex
that is non-equivariantly contractible.

We recall that the Borel homology groups that appear in the statement of Proposition 1.1
are the abutment of the first quadrant skeleton spectral sequence

E2
s,t = Hs

(
Cpu ,TRr/pu

t−λ (A)
)
⇒ Hs+t

(
Cpu ,TRr/pu

·−λ (A)
)
, (1.2)

from the group homology of Cpu with coefficients in the trivial Cpu -module TRr/pu

t−λ (A); see for
instance [5, Section 4].

We now specialize to the case A = Z and recall from Bökstedt [3] that TR1
q (Z) is zero if

either q is negative or q is positive and even, a free abelian group of rank one if q = 0, and a
finite cyclic group of order i if q = 2i − 1 is positive and odd; see also [9].

Lemma 1.3. Let r be a positive integer, let q be an integer, and let λ be a finite-dimensional
complex T-representation. Then TRr

q−λ(Z) is a finitely generated abelian group whose rank is
equal to the number of positive divisors e of r for which q = 2dimC(λCe ). The group is zero
for q < 2 dimC(λCr ).

Proof. Let �(r, q, λ) denote the number of positive divisors e of r with q = 2dimC(λCe )
and note that �(r, q, λ) is zero, for q odd. We prove by induction on the number k of prime
divisors in r that TRr

q−λ(Z) is a finitely generated abelian group of rank �(r, q, λ). If k = 0,
or equivalently, if r = 1, the statement follows from the result of Bökstedt, which we recalled
above. Indeed, it follows from [10, Proposition V.2.3] that, up to isomorphism,

TR1
q−λ(Z) = TR1

q−2 dimC(λ)(Z).

So we let k � 1 and assume that the lemma has been proved, for all q and λ as in the statement
if r has k − 1 prime divisors. Let p be a prime divisor of r and write r = pnr′ with r′ not divisible
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by p. We consider the long exact sequence of Proposition 1.1 with u = n and v = 1,

· · · −→ Hq

(
Cpn ,TRr ′

·−λ (Z)
) Np n−→ TRr

q−λ(Z)
Rp−→ TRr/p

q−λ′(Z) ∂−→ Hq−1
(
Cpn ,TRr ′

·−λ(Z)
)
−→ · · ·.

Since r′ has only k − 1 prime divisors, the inductive hypothesis implies that in the skeleton
spectral sequence (1.2), E2

0,q is a finitely generated abelian group of rank �(q, r′, λ) and that
the groups E2

s,t with s > 0 are finite. Hence, the left-hand group in the long exact sequence is
finitely generated of rank �(q, r′, λ). By further induction on n � 0, we may assume that the
group TRr/p

q−λ′(Z) is finitely generated of rank �(q, r/p, λ′). The first part of the lemma now
follows from the formula

�(q, r′, λ) + �(q, r/p, λ′) = �(q, r, λ),

which holds since the two summands on the left-hand side count the number of positive divisors
e of r with q = 2dimC(λCe ) for which e is, respectively, prime to p and divisible by p. The second
part of the lemma is proved in a similar manner.

Addendum 1.4. (i) Let m, r � 1, 0 � ε � 1, and i be integers, and let d = d(m, r) be the
integer part of (r − 1)/m. Then the canonical projection induces an isomorphism

lim
R

TRr
2i+ε−λd

(Z) ∼−→ TRr
2i+ε−λd

(Z),

provided that m(i + 1) < pvp (r)+1 for every prime number p.
(ii) Let m � 1, 0 � ε � 1, and i be integers, let r � 1 be an integer divisible by m, and let

d = d(m, r). Then the canonical projection induces an isomorphism

lim
R

TRr/m
2i+ε−λd

(Z) ∼−→ TRr/m
2i+ε−λd

(Z)

provided that i + 1 < pvp (r/m )+1 for every prime number p.

Proof. We prove statement (i); the proof of statement (ii) is similar. It suffices to show that
for every prime number p the restriction map

Rp : TRpr
q−λd (m , p r )

(Z) −→ TRr
q−λd (m , r )

(Z)

is an isomorphism if q = 2i + ε with m(i + 1) < pvp (r)+1. We write r = pn−1r′ with r′ not
divisible by p and consider the long exact sequence of Proposition 1.1 with u = n and v = 1,

· · · −→ Hq

(
Cpn ,TRr ′

·−λd (m , p r )
(Z)

) Np n−→ TRpr
q−λd (m , p r )

(Z)
Rp−→ TRr

q−λd (m , r )
(Z) −→ · · ·

The skeleton spectral sequence (1.2) and Lemma 1.3 show that the left-hand group vanishes,
provided that q < 2 dimC(λCr ′

d(m,pr)). Therefore, the map Rp is an isomorphism for

i < dimC

(
λ

Cr ′
d(m,pr)

)
= 	d(m, pr)/r′
.

We claim that d(m, pn ) � 	d(m, pr)/r′
. Indeed, this inequality is equivalent to the inequality
d(m, pn ) � d(m, pr)/r′, which is equivalent to the inequality r′d(m, pn ) � d(m, pr), which, in
turn, is equivalent to the inequality r′d(m, pn ) � (pnr′ − 1)/m. We may rewrite this inequality
as mr′d(m, pn ) � pnr′ − 1 or mr′d(m, pn ) < pnr′ or md(m, pn ) < pn . But this inequality is
equivalent to the inequality md(m, pn ) � pn − 1, which, in turn, is equivalent to the inequality
d(m, pn ) � (pn − 1)/m, which holds. The claim follows. Finally, a similar argument shows that
the inequalities i < d(m, pn ) and m(i + 1) < pn are equivalent.
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2. The p-typical groups TRn
q−λ(Z;p)

In this section, we prove Theorem B of Section 1. We first show that after localization at the
prime number p, the groups TRr

q−λ(A) decompose as products of the p-typical groups:

TRn
q−λ(A; p) = TRpn −1

q−λ (A) = [Sq ∧ (T/Cpn −1 )+ , Sλ ∧ T (A)]T.

Proposition 2.1. Let A be a unital associative ring, let r � 1 and q be integers, and let
λ be a finite-dimensional orthogonal T-representation. Let p be a prime number and write
r = pn−1r′ with r′ not divisible by p. Then the map

γ : TRr
q−λ(A) −→

∏
j |r ′TRn

q−λ′(A; p),

whose jth component is the composite map

TRr
q−λ(A)

Fj−→ TRr/j
q−λ(A)

Rr ′/ j−→ TRpn −1

q−λ′ (A) == TRn
q−λ′(A; p),

becomes an isomorphism after localization at p.

Proof. The proof is by induction on the number k of positive divisors of r′. If k = 1, or
equivalently, if r′ = 1 then γ is the identity map and the statement holds trivially. So we let
k � 2 and assume that the statement holds whenever r′ has at most k − 1 divisors. Let � be a
prime divisor of r′, and let v = v�(r′) = v�(r). We show that the map

(R�, F�v ) : TRr
q−λ(A) −→ TRr/�

q−λ′(A) × TRr/�v

q−λ (A)

becomes an isomorphism after localization at p. This will prove the induction step, since r/�
and r/�v have at most k − 1 divisors and γ = (γ × γ) ◦ (R�, F�v ). Now, by Proposition 1.1, we
have the long exact sequence

· · · −→ Hq

(
C�v ,TRr/�v

·−λ (A)
) N� v−→ TRr

q−λ(A) R�−→ TRr/�
q−λ′(A) ∂−→Hq−1

(
C�v ,TRr/�v

·−λ (A)
)
−→ · · · .

Moreover, one readily shows that the composite map

TRr/�v

q−λ (A) ε−→Hq

(
C�v ,TRr/�v

·−λ (A)
) N� v−→ TRr

q−λ(A) F� v−→ TRr/�v

q−λ (A),

where ε is the edge homomorphism of the skeleton spectral sequence (1.2), is equal to the
composition F�v V�v of the Frobenius and Verschiebung maps, which, in turn, is equal to the
map given by multiplication by �v . Hence, after localization at p, F�v is the projection onto a
direct summand of the group TRr

q−λ(Z). The long exact sequence shows that the map (R�, F�v )
becomes an isomorphism after localization at p as desired.

The maps Fs , Vs , and Rs may also be expressed as products of their p-typical analogs:

F = Fp : TRn
q−λ(A; p) −→ TRn−1

q−λ (A; p) (Frobenius)

V = Vp : TRn−1
q−λ (A; p) −→ TRn

q−λ(A; p) (Verschiebung)

R = Rp : TRn
q−λ(A; p) −→ TRn−1

q−λ′(A; p) (restriction)
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Suppose that r = st and write s = pv s′ and t = pn−v−1t′ with s′ and t′ not divisible by p. Then
there are three commutative square diagrams,

TRr
q−λ(A)

γ ��

Fs

��

∏
j |r ′ TRn

q−λ′(A; p)

F γ
s

��

TRr
q−λ(A)

γ ��

Rs

��

∏
j |r ′ TRn

q−λ′(A; p)

Rγ
s

��
TRt

q−λ(A)
γ ��

Vs

��

∏
j |t′ TRn−v

q−λ′(A; p)

V γ
s

��

TRt
q−λ′(A)

γ ��
∏

j |t′ TRn−v
q−λ′′(A; p),

(2.2)

where the maps Fγ
s , V γ

s , and Rγ
s are defined as follows. The map Fγ

s takes the factor indexed
by a divisor j of r′ that is divisible by s′ to the factor indexed by the divisor j/s′ of t′ by
the map Fv and annihilates the remaining factors. The map V γ

s takes the factor indexed
by the divisor j of t′ to the factor indexed by the divisor s′j of r′ by the map s′V v . Finally,
the map Rγ

s takes the factor indexed by a divisor j of t′ to the factor indexed by the same
divisor j of t′ by the map Rv and annihilates the factors indexed by divisors j of r′ that do not
divide t′.

Let Mp be the equivariant Moore spectrum defined by the mapping cone of the multiplication
by p map on the sphere T-spectrum. The equivariant homotopy groups with Z/pZ-coefficients

TRn
q−λ(Z; p, Z/pZ) = [Sq ∧ (T/Cpn −1 )+ ,Mp ∧ Sλ ∧ T (Z)]T

were evaluated for p odd by Tsalidis [16], and for all p by the first and second authors [1]. We
recall the result.

Theorem 2.3 (Angeltveit-Gerhardt [1], Tsalidis [16]). Let p be a prime number, let n be
a positive integer, let λ be a finite-dimensional complex T-representation, and define

δp(λ) = (1 − p)
∑
s�0

dimC(λCp s )ps.

Then the finite Z(p)-modules TRn
q−λ(Z; p, Z/pZ) have the following structure.

(i) For q � 2 dimC(λ), TRn
q−λ(Z; p, Z/pZ) has length n, if q is congruent to 2δp(λ) or

2δp(λ) − 1 modulo 2pn , and n − 1, otherwise.
(ii) For 2 dimC(λCp s ) � q < 2 dimC(λCp s−1 ) with 1 � s < n, TRn

q−λ(Z; p, Z/pZ) has length
n − s, if q is congruent to 2δp(λCp s ) or 2δp(λCp s ) − 1 modulo 2pn−s , and n − s − 1, otherwise.

(iii) For q < 2 dimC(λCp n −1 ), TRn
q−λ(Z; p, Z/pZ) is zero.

We show in Corollary 2.7 below that the groups TRn
q−λ(Z; p, Z/pZ) have exponent p for all

prime numbers p.

Proof of Theorem B (i). By Lemma 1.3, TRn
2i−λ(Z; p) is a finitely generated abelian group,

and hence, it suffices to show that it is torsion free. We first show that the p-torsion subgroup
is trivial. Comparing Theorem 2.3 and Lemma 1.3, we find that for all integers i,

lengthZ( p )
TRn

2i−λ(Z; p, Z/pZ) − lengthZ( p )
TRn

2i−1−λ(Z; p, Z/pZ) = rkZ TRn
2i−λ(Z; p).

Moreover, Lemma 1.3 shows that for every integer i, TRn
2i−1−λ(Z; p)(p) is a finite p-primary

torsion group. By a Bockstein spectral sequence argument, we conclude that TRn
2i−λ(Z; p)(p)

is torsion free; compare [5, Proposition 13]. This shows that the group TRn
2i−λ(Z; p) has no

p-torsion. To see that it has no prime to p torsion, we use that, by Proposition 2.1, the map

(Rn−1−sF s) : TRn
2i−λ(Z; p) −→

∏
0�s<n

TR1
2i−λ (n −1−s ) (Z; p)
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becomes an isomorphism after inverting p. Therefore, Bökstedt’s result recalled earlier shows
that also TRn

2i−λ(Z; p)[1/p] is torsion free. This completes the proof.

Lemma 2.4. Let p be a prime number, let n be a positive integer, and let λ be a finite-
dimensional complex T-representation. Then the restriction map

R : TRn
q−λ(Z; p) −→ TRn−1

q−λ′(Z; p)

is surjective for every even integer q.

Proof. We see as in the proof of Addendum 1.4 that the map of the statement is an epi-
morphism, for q � 2 dimC(λ). Moreover, Lemma 1.3 and Theorem B(i) show that TRn−1

q−λ′(Z; p)
is zero, for q > 2 dimC(λ′) and even. The lemma follows, since dimC(λ′) � dimC(λ).

Proposition 2.5. Let p be a prime number, let n be a positive integer, and let λ be a
finite-dimensional complex T-representation. Then in the skeleton spectral sequence

E2
s,t = Hs

(
Cpn −1 ,TR1

t−λ(Z; p)
)
⇒ Hs+t

(
Cpn −1 ,TR1

·−λ(Z; p)
)
,

every non-zero differential dr : Er
s,t → Er

s−r,t+r−1 is supported in odd total degree.

Proof. We must show that if s + t is even then dr : Er
s,t → Er

s−r,t+r−1 is zero. Suppose first
that s and t are both even. Then E2

s,t is zero unless s = 0 and t = 2dimC(λ). Therefore, in this
case, dr : Er

s,t → Er
s−r,t+r−1 is zero. Suppose next that s and t are both odd and that r is even.

Then E2
s,t is zero unless t > 2 dimC(λ), and E2

s−r,t+r−1 is zero unless t + r − 1 = 2dimC(λ). It
follows that, also in this case, dr : Er

s,t → Er
s−r,t+r−1 is zero. It remains to prove that if r, s,

and t are all odd then dr : Er
s,t → Er

s−r,t+r−1 is zero.
To this end, we use that, for all integers n′ � n � 1, the iterated Frobenius map

Fn ′−n : Hq

(
Cpn ′−1 ,TR1

·−λ (Z; p)
)
−→ Hq

(
Cpn −1 ,TR1

·−λ (Z; p)
)

induces a map of skeleton spectral sequences that we write

Fn ′−n : Er
s,t(n

′, λ) −→ Er
s,t(n, λ).

The map of E2-terms is given by the transfer map in group homology and is readily evaluated;
see for instance [5, Lemma 6]. It is surjective if s is odd, and zero if s is even, t is odd, and
n′ − n is sufficiently large. We prove by induction on r � 2 that, for all odd integers s and t and
for all n and λ as in the statement, the differential dr : Er

s,t(n, λ) → Er
s−r,t+r−1(n, λ) is zero

and the Frobenius map F : Er
s,t(n + 1, λ) → Er

s,t(n, λ) is surjective. The case r = 2 has been
proved above. So we let r � 3 and assume, inductively, that the statement has been proved for
r − 1. Since the differential dr−1 : Er−1

s,t (n, λ) → Er−1
s−(r−1),t+r−2(n, λ) is zero by the inductive

hypothesis, the canonical isomorphism

H
(
Er−1

s+r−1,t−(r−2)(n, λ) dr −1

−→ Er−1
s,t (n, λ) dr −1

−→ Er−1
s−(r−1),t+r−2(n, λ)

) ∼−→Er
s,t(n, λ)

gives rise to a canonical surjection π : Er−1
s,t (n, λ) � Er

s,t(n, λ). Moreover, by naturality of the
skeleton spectral sequence, the diagram

Er−1
s,t (n + 1, λ) π �� ��

F

��

Er
s,t(n + 1, λ)

F

��
Er−1

s,t (n, λ) π �� �� Er
s,t(n, λ)
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commutes. Since the left-hand vertical map F is surjective by the inductive hypothesis, we
conclude that the right-hand vertical map F is surjective as desired. It remains to be proved
that the differential dr : Er

s,t(n, λ) → Er
s−r,t+r−1(n, λ) is zero. The case where r is even has

been proved above, and in the case where r is odd, we consider the following commutative
diagram:

Er
s,t(n

′, λ) dr
��

F n ′−n

��

Er
s−r,t+r−1(n

′, λ)

F n ′−n

��
Er

s,t(n, λ) dr
�� Er

s−r,t+r−1(n, λ).

We have just proved that the left-hand vertical map is surjective. Moreover, as recalled above,
the right-hand vertical map is zero if n′ − n is sufficiently large. Indeed, s − r is even and
t − r + 1 is odd. Hence, the lower horizontal map dr is zero as desired. This proves the induction
step and the proposition.

Remark 2.6. The proof of Proposition 2.5 also shows that in the Tate spectral sequence

Ê2
s,t = Ĥ−s

(
Cpn −1 ,TR1

t−λ(Z; p)
)
⇒ Ĥ

−s−t
(
Cpn −1 ,TR1

·−λ(Z; p)
)
,

every non-zero differential is supported in even total degree. It remains an important problem
to determine the differential structure of the two spectral sequences.

Proof of Theorem B (ii). First, for i � dimC(λ), we see as in the proof of Lemma 2.4 that
the restriction map

R : TRn
q−λ(Z; p) −→ TRn−1

q−λ′(Z; p)

is an isomorphism, so the statement holds in this case. Next, for i = dimC(λ) + 1, Proposi-
tion 1.1 and Lemmas 1.3 and 2.4 give a short exact sequence

0 −→ Hq (Cpn −1 ,TR1
·−λ (Z; p)) −→ TRn

q−λ(Z; p) −→ TRn−1
q−λ′(Z; p) −→ 0,

and the skeleton spectral sequence (1.2) shows that the left-hand group has order pn−1 . So the
statement also holds in this case. Finally, for i > dimC(λ) + 1, Proposition 1.1 and Lemma 1.3
give a four-term exact sequence

0 −→ Hq

(
Cpn −1 ,TR1

·−λ(Z; p)
)
−→ TRn

q−λ(Z; p) −→ TRn−1
q−λ′(Z; p)

−→ Hq−1
(
Cpn −1 ,TR1

·−λ(Z; p)
)
−→ 0,

which shows that the orders of the four groups satisfy the equality∣∣TRn
q−λ(Z; p)

∣∣/∣∣TRn−1
q−1−λ′(Z; p)

∣∣ =
∣∣Hq

(
Cpn −1 ,TR1

·−λ(Z; p)
)∣∣/∣∣Hq−1

(
Cpn −1 ,TR1

·−λ(Z; p)
)∣∣.

To evaluate the ratio on the right-hand side, we consider the skeleton spectral sequence (1.2).
We may write the ratio in question as

∣∣Hq

(
Cpn −1 ,TR1

·−λ (Z; p)
)∣∣/∣∣Hq−1

(
Cpn −1 ,TR1

·−λ(Z; p)
)∣∣ =

( ∏
s+t=q

∣∣E∞
s,t

∣∣)/ ( ∏
s+t=q−1

∣∣E∞
s,t

∣∣).

By Proposition 2.5, for all r � 2 and all s and t with s + t being odd, we have an exact sequence,

0 −→ Er+1
s,t −→ Er

s,t
dr

−→Er
s−r,t+r−1 −→ Er+1

s−r,t+r−1 −→ 0.
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Hence, by induction on r, we find that( ∏
s+t=q

∣∣E∞
s,t

∣∣)/ ( ∏
s+t=q−1

∣∣E∞
s,t

∣∣) =

( ∏
s+t=q

∣∣E2
s,t

∣∣)/ ( ∏
s+t=q−1

∣∣E2
s,t

∣∣) ,

and the ratio on the right-hand side is readily seen to be equal to∣∣E2
0,q

∣∣ · ∣∣E2
q−2 dimC(λ),2 dimC(λ)

∣∣ = (i − dimC(λ)) · pn−1 .

This completes the proof.

Proof of Theorem B (iii). First, for q odd, we use that the Verschiebung map in question
is equal to the composition of the edge homomorphism

ε : TRn−1
q−λ (Z; p) −→ Hq

(
Cp,TRn−1

·−λ (Z; p)
)

of the skeleton spectral sequence (1.2) and the norm map Nn−1 in the long exact sequence

· · · −→ Hq (Cp,TRn−1
·−λ (Z; p))

Nn −1−→ TRn
q−λ(Z; p) Rn −1

−→ TR1
q−λ (n −1 ) (Z; p) −→ · · ·

from Proposition 1.1. Since q is odd, Lemma 2.4 shows that the latter map is injective. Hence,
it will suffice to show that also the edge homomorphism is injective, or equivalently, that in
the skeleton spectral sequence, all differentials of the form

dr : Er
r,q−r+1 −→ Er

0,q

are zero. If r is even, then q − r + 1 is even and Theorem B (i) shows that the group Er
r,q−r+1

is zero. Hence, dr is zero in this case. If r is odd, we consider the iterated Frobenius map

Fv ′−v : Hq

(
Cpv ′ ,TRn−1

·−λ (Z; p)
)
−→ Hq

(
Cpv ,TRn−1

·−λ (Z; p)
)
.

It induces a map of spectral sequences that we write

Fv ′−v : Er
s,t(v

′, λ) −→ Er
s,t(v, λ).

As in the proof of Theorem B (ii), an induction on r � 2 shows that, for all v′ � v � 1, the
left-hand vertical map and the horizontal maps in the diagram

Er
r,q−r+1(v

′, λ) dr
��

F v ′−v

��

Er
0,q (v

′, λ)

F v ′−v

��
Er

r,q−r+1(v, λ) dr
�� Er

0,q (v, λ)

are surjective and zero, respectively. The proof of the induction step uses that, for v′ − v
sufficiently large, the right-hand vertical map is zero. This proves the statement for q odd.

Finally, suppose that q is even. We let μ be the direct sum of λ and the one-dimensional
complex representation C(pn−2). Then [6, Proposition 4.2] gives a long exact sequence

· · · −→ TRn
q+1−μ(Z; p)

(F,−F d)−→
TRn−1

q−1−λ(Z; p)
⊕

TRn−1
q−λ (Z; p)

dV +V−→ TRn
q−λ(Z; p) ι∗−→TRn

q−μ(Z; p) −→ · · · .

Now, we proved in Theorem B (i) that TRn
q+1−μ(Z; p) and TRn−1

q−1−λ(Z; p) are finite abelian
groups while TRn−1

q−λ (Z; p), TRn
q−λ(Z; p), and TRn

q−μ(Z; p) are free abelian groups. Hence, we
obtain the exact sequence of free abelian groups

0 −→ TRn−1
q−λ (Z; p) V−→ TRn

q−λ(Z; p) ι∗−→ TRn
q−μ(Z; p),

which shows that for q even, the Verschiebung map is the inclusion of a direct summand as
stated. This concludes the proof of Theorem B.
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Corollary 2.7. Let n be a positive integer, let p be a prime number, and let λ be a
finite-dimensional complex T-representation. Then TRn

q−λ(Z; p, Z/pZ) has exponent p for every
integer q.

Proof. We first let p = 2 and consider the coefficient long exact sequence

· · · −→ TRn
q−λ(Z; 2) 2−→ TRn

q−λ(Z; 2) ι−→ TRn
q−λ(Z; 2, Z/2Z)

β−→ TRn
q−1−λ(Z; 2) −→ · · · .

It is proved in [2, Theorem 1.1] that the composition

TRn
q−λ(Z; 2, Z/2Z)

β−→ TRn
q−1−λ(Z; 2)

η−→ TRn
q−λ(Z; 2) ι−→ TRn

q−λ(Z; 2, Z/2Z)

is equal to multiplication by 2. Now, Theorem B shows that for q odd the map β is zero,
and that for q even the map η is zero. Hence, the group TRn

q−λ(Z; 2, Z/2Z) is annihilated by
multiplication by 2 as stated. Finally, for p odd, [2, Theorem 1.1] shows that the multiplication
by p map on TRn

q−λ(Z; p, Z/pZ) is equal to zero.

3. The groups Kq (Z[x]/(xm ), (x))

In this section, we prove Theorem A of Section 1.

Proposition 3.1. Let m and r be positive integers, let i be a non-negative integer, and
let d = d(m, r) be the integer part of (r − 1)/m. Then

(i) the abelian group limR TRr
2i−λd

(Z) is free of rank m;
(ii) the abelian group limR TRr

2i−1−λd
(Z) is finite of order (mi)!(i!)m .

Proof. It follows from Lemma 1.3 and Addendum 1.4 that the groups limR TRr
q−λd

(Z) are
finitely generated. Hence, it suffices to show that for every prime number p, the Z(p)-module
limR TRr

2i−λd
(Z)(p) has finite rank m and the Z(p) -module limR TRr

2i−1−λd
(Z)(p) has finite

length vp((mi)!(i!)m ). We fix a prime number p and let Ip be the set of positive integers not
divisible by p. It follows from Proposition 2.1 that there is a canonical isomorphism

lim
R

TRr
q−λd

(Z)(p)
∼−→

∏
j∈Ip

lim
R

TRn
q−λd

(Z; p)(p) ,

where, on the left-hand side, the limit ranges over the set of positive integers ordered under
division and d = d(m, r), and where, on the right-hand side, the limits range over the set of
non-negative integers ordered additively and d = d(m, pn−1j). Moreover, on the jth factor of
the product, the canonical projection

lim
R

TRn
q−λd

(Z; p)(p) −→ TRs
q−λd

(Z; p)(p)

is an isomorphism for q < 2d(m, psj); see [6, Lemma 2.6]. The requirement that 2i − 2 and
2i − 1 be strictly smaller than 2d(m, psj) is equivalent to the requirement that mi < psj.
Hence, for q = 2i − 2 or q = 2i − 1, we have a canonical isomorphism

lim
R

TRr
q−λd

(Z)(p)
∼−→

∏
1�j�mi

j∈Ip

TRs
q−λd

(Z; p)(p) ,

where s = sp(m, i, j) is the unique integer such that

ps−1j � mi < psj.
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Now, from Theorem B (i) we find that

rkZ( p ) lim
R

TRr
2i−λd

(Z)(p) = |{j ∈ Ip | i = d(m, pn−1j), for some n � 1}|
= |{r ∈ N | i = d(m, r)}| = |{mi + 1,mi + 2, . . . ,mi + m}| = m,

which proves statement (i). Similarly, we have

lengthZ( p )
lim
R

TRr
2i−1−λd

(Z)(p) =
∑

1�j�mi
j∈Ip

lengthZ( p )
TRs

2i−1−λd
(Z; p)(p) ,

where s = sp(m, i, j), and Theorem B (ii) shows that the right-hand side is equal to∑
1�j�mi

j∈Ip

∑
1�t�s

(vp(i − d(m, pt−1j)) + t − 1) =
∑

1�k�mi

(vp(i − d(m, k)) + vp(k))

= m
∑

0�l<i

vp(i − l) +
∑

1�k�mi

vp(k) = m
∑

1�k�i

vp(k) +
∑

1�k�mi

vp(k) = vp((i!)m (mi)!),

which proves statement (ii).

Proposition 3.2. Let m and r be positive integers, let i be a non-negative integer, and
let d = d(m, r) be the integer part of (r − 1)/m. Then

(i) the abelian group limR TRr/m
2i−λd

(Z) is free of rank 1;

(ii) the abelian group limR TRr/m
2i−1−λd

(Z) is finite of order (i!)2 .

Proof. It follows from Lemma 1.3 and Addendum 1.4 that the groups limR TRr/m
q−λd

(Z) are
finitely generated. We fix a prime number p and write m = pvm′ with m′ not divisible by p.
Then for q = 2i − 2 and q = 2i − 1, there is a canonical isomorphism

lim
R

TRr/m
q−λd

(Z)(p)
∼−→

∏
1�j�mi
j∈m ′Ip

TRs−v
q−λd

(Z; p)(p) ,

where s = sp(m, i, j). From Theorem B (i) we find

rkZ( p ) lim
R

TRr/m
2i−λd

(Z)(p) = |{j ∈ m′Ip | i = d(m, pn+v−1j), for some n � 1}|

= |{r ∈ mN | i = d(m, r)}| = |{mi + m}| = 1,

which proves statement (i). Similarly, from Theorem B (ii), we have

lengthZ( p )
lim
R

TRr
2i−1−λd

(Z)(p) =
∑

1�j�mi
j∈m ′Ip

lengthZ( p )
TRs−v

2i−1−λd
(Z; p)(p)

=
∑

1�j�mi
j∈m ′Ip

∑
1�t�s−v

(vp(i − d(m, pt+v−1j)) + t − 1) =
∑

1�k�i

(vp(i − d(m, km)) + vp(k))

=
∑

0�l<i

vp(i − l) +
∑

1�k�i

vp(k) = 2
∑

1�k�i

vp(k) = vp((i!)2),

which proves statement (ii).
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Proposition 3.3. Let m and r be positive integers, and let d = d(m, r) be the integer part
of (r − 1)/m. Then the Verschiebung map

Vm : lim
R

TRr/m
q−λd

(Z) −→ lim
R

TRr
q−λd

(Z)

is injective for all integers q, and has free abelian cokernel for all even integers q.

Proof. We fix a prime number p and show that the Verschiebung map

Vm : lim
R

TRr/m
q−λd

(Z)(p) −→ lim
R

TRr
q−λd

(Z)(p)

is injective for all integers q, and has cokernel a free Z(p)-module for all even integers q. We
write m = pvm′ with m′ not divisible by p. Then for q = 2i − 2 and q = 2i − 1 the map Vm is
canonically isomorphic to the map

m′V v :
∏

1�j�mi
j∈m ′Ip

TRs−v
q−λd

(Z; p)(p) −→
∏

1�j�mi
j∈Ip

TRs
q−λd

(Z; p)(p) ,

where s = sp(m, i, j). The statement now follows from Theorem B (iii).

Proof of Theorem A. The statement follows immediately from the long exact sequence
recalled in Section 1 together with Propositions 3.1, 3.2, and 3.3.

4. The dual numbers

It follows from Theorem B that K2i(Z[x]/(x2), (x)) is a finite abelian group of order (2i)!. In
this section, we investigate the structure of these groups in low degrees.

Theorem 4.1. There are isomorphisms

K2(Z[x]/(x2), (x)) ≈ Z/2Z,

K4(Z[x]/(x2), (x)) ≈ Z/8Z ⊕ Z/3Z,

K6(Z[x]/(x2), (x)) ≈ Z/2Z ⊕ Z/2Z ⊕ Z/4Z ⊕ Z/9Z ⊕ Z/5Z.

Proof. We know from Theorem B that the orders of these three groups are as stated. Hence,
it suffices to show that the two-primary torsion subgroup of the groups in degree four and six
and the three-primary torsion subgroup of the group in degree six are as stated.

We first consider the group in degree four, which is given by the short exact sequence

0 −→ lim
R

TRr/2
3−λd

(Z) V2−→ lim
R

TRr
3−λd

(Z) −→ K4(Z[x]/(x2), (x)) −→ 0.

The middle term in the short exact sequence decomposes two-locally as the direct sum

lim
R

TRr
3−λd

(Z)(2)
∼−→TR3

3−λ1
(Z; 2)(2) ⊕ TR1

3−λ1
(Z; 2)(2) ,

where the first and second summands on the right-hand side correspond to j = 1 and j = 3,
respectively. Similarly, the left-hand term in the short exact sequence decomposes two-locally
as

lim
R

TRr/2
3−λd

(Z)(2)
∼−→TR2

3−λ1
(Z; 2)(2) ⊕ TR0

3−λ1
(Z; 2)(2) .
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The summands corresponding to j = 3 are both zero. Hence, the two-primary torsion subgroup
of K4(Z[x]/(x2), (x)) is canonically isomorphic to the cokernel of the Verschiebung map

V : TR2
3−λ1

(Z; 2)(2) −→ TR3
3−λ1

(Z; 2)(2) .

To evaluate this cokernel, we consider the diagram

0 �� TR1
3(Z; 2)(2)

V �� TR2
3(Z; 2)(2)

ι∗ ��

V

��

TR2
3−λ1

(Z; 2)(2)
��

V

��

0

0 �� TR1
3(Z; 2)(2)

V 2
�� TR3

3(Z; 2)(2)
ι∗ �� TR3

3−λ1
(Z; 2)(2)

�� 0,

where the rows are exact by [6, Proposition 4.2]. It follows from [5, Theorem 18] that this
diagram is isomorphic to the diagram

0 �� Z/2Z
4 �� Z/8Z

1 ��

(a,b)
��

Z/4Z ��

(a,b)
��

0

0 �� Z/2Z
(0,4) �� Z/8Z ⊕ Z/8Z

1⊕1 �� Z/8Z ⊕ Z/4Z �� 0,

where a ∈ 2Z/8Z and b ∈ (Z/8Z)∗. Now, the cokernels of the middle and right-hand vertical
maps are isomorphic to Z/8Z. This shows that K4(Z[x]/(x2), (x))(2) is as stated.

We next consider the group in degree six, which is given by the short exact sequence

0 −→ lim
R

TRr/2
5−λd

(Z) V2−→ lim
R

TRr
5−λd

(Z) −→ K6(Z[x]/(x2), (x)) −→ 0,

and begin by evaluating the two-primary torsion subgroup. The middle term in the short exact
sequence decomposes two-locally as the direct sum

lim
R

TRr
5−λd

(Z)(2)
∼−→TR3

5−λ1
(Z; 2)(2) ⊕ TR2

5−λ2
(Z; 2)(2) ⊕ TR1

5−λ2
(Z; 2)(2) ,

where the three summands on the right-hand side correspond to j = 1, j = 3, and j = 5,
respectively. Similarly, the left-hand term in the short exact sequence decomposes two-locally
as

lim
R

TRr/2
5−λd

(Z)(2)
∼−→TR2

5−λ1
(Z; 2)(2) ⊕ TR1

5−λ2
(Z; 2)(2) ⊕ TR0

5−λ2
(Z; 2)(2) .

The summands corresponding to j = 5 are both zero. Hence, the two-primary torsion subgroup
of K6(Z[x]/(x2), (x)) is canonically isomorphic to the direct sum of the cokernels of

V : TR2
5−λ1

(Z; 2)(2) −→ TR3
5−λ1

(Z; 2)(2),

V : TR1
5−λ2

(Z; 2)(2) −→ TR2
5−λ2

(Z; 2)(2) .

We show that these are isomorphic to Z/2Z ⊕ Z/2Z and Z/4Z, respectively. The statement for
the latter cokernel follows directly from Theorems B and 2.3. The two theorems also show that
the group TR2

5−λ1
(Z; 2)(2) is isomorphic to Z/2Z ⊕ Z/2Z and that the group TR3

5−λ1
(Z; 2)(2)

is isomorphic to either Z/4Z ⊕ Z/4Z or Z/8Z ⊕ Z/2Z. We will prove that the latter group is
isomorphic to Z/4Z ⊕ Z/4Z by showing that it contains Z/4Z as a direct summand. To this
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end, we consider the diagram

0 �� H5
(
C2 ,TR1

·−λ1
(Z; 2)

)
(2)

��

V

��

TR2
5−λ1

(Z; 2)(2)
��

V

��

TR1
5(Z; 2)(2)

��

V

��

0

0 �� H5(C4 ,TR1
·−λ1

(Z; 2))(2)
��

F 2

��

TR3
5−λ1

(Z; 2)(2)
��

F 2

��

�� TR2
5(Z; 2)(2)

�� 0

TR1
3(Z; 2)(2) TR1

3(Z; 2)(2),

where the rows, but not the columns, are exact. It follows from Theorem B that the top middle
and right-hand vertical maps V are injective. Hence, also the top left-hand vertical map V is
injective. Moreover, [6, Proposition 4.2] and [5, Proposition 15] show that the bottom left-hand
vertical map F 2 is surjective. Hence, also the bottom right-hand vertical map F 2 is surjective.
The skeleton spectral sequence

E2
s,t = Hs

(
C4 ,TR1

t−λ1
(Z; 2)

)
(2) ⇒ Hs+t

(
C4 ,TR1

·−λ1
(Z; 2)

)
(2)

shows that the middle left-hand group is an extension of E∞
2,3 = Z/4Z by E∞

0,5 = Z/2Z and the
diagram above shows that the extension is split. It follows from [5, Lemma 6] that

F : H5
(
C4 ,TR1

·−λ1
(Z; 2)

)
(2) −→ H5(C2 ,TR1

·−λ1
(Z; 2))(2)

maps the generator of the summand E∞
0,5 = Z/2Z to zero. Hence, the lower left-hand vertical

map F 2 in the diagram above maps the generator of the summand E∞
0,5 = Z/2Z to zero.

But the map F 2 is surjective, and therefore, maps a generator of the summand E∞
3,2 = Z/4Z

non-trivially. It follows that TR3
5−λ1

(Z; 2)(2) contains direct summand isomorphic to Z/4Z, and
hence, is isomorphic to Z/4Z ⊕ Z/4Z. This shows that the cokernel of the upper middle vertical
map V is isomorphic to Z/2Z ⊕ Z/2Z, and hence, that K6(Z[x]/(x2), (x))(2) is as stated.

It remains to evaluate K6(Z[x]/(x2), (x))(3) . This group is canonically isomorphic to the
direct sum of TR2

5−λ1
(Z; 3)(3) and TR1

5−λ2
(Z; 3)(3) . It follows from Theorem B that the former

group has order nine and that the latter group is zero and from Theorem 2.3 that the former
group is cyclic. This completes the proof.

Theorem 4.2. Let p be an odd prime number. Then for 2i < p2 the p-primary torsion
subgroup of K2i(Z[x]/(x2), (x)) is isomorphic to (Z/pZ)r1 ⊕ (Z/p2

Z)r2 , where

(r1 , r2) =

⎧⎪⎨
⎪⎩

(0, 	i/p
) if 2i + 1 ≡ 0 modulo p,

(	2i/p
 − 2, 1) if 2i + 1 ≡ j modulo p with 1 � j � 2i/p odd,

(	2i/p
, 0) otherwise.

Here 	x
 denotes the largest integer less than or equal to x.

Proof. After localizing at the odd prime number p, the short exact sequence

0 −→ lim
R

TRr/2
2i−1−λd

(Z) V2−→ lim
R

TRr
2i−1−λd

(Z) −→ K2i(Z[x]/(x2), (x)) −→ 0

induces a canonical isomorphism⊕
j

TRs
2i−1−λd

(Z; p)(p)
∼−→K2i(Z[x]/(x2), (x))(p) ,
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where the sum runs over integers 1 � j � 2i coprime to both 2 and p and s = sp(2, i, j) is the
unique integer that satisfies ps−1j � 2i < psj. Since 2i < p2 we find

sp(2, i, j) =

{
2 if 1 � j � 2i/p,

1 if 2i/p < j � 2i.

If 2i/p < j � 2i we have d = (j − 1)/2, and hence

lengthZ( p )
TR1

2i−1−λd
(Z; p)(p) = vp(i − d) = vp(2i + 1 − j).

The length is at most 1 since 2i < p2 . If 1 � j � 2i/p we have d = (pj − 1)/2, and in this case
Theorem B shows that

lengthZ( p )
TR2

2i−1−λd
(Z; p)(p) = lengthZ( p )

TR1
2i−1−λ′

d
(Z; p)(p) + vp(i − d) + 1

= vp(2i + 1 − j) + vp(2i + 1) + 1,

where we have used that λ′
d = λd′ with d′ = (j − 1)/2. The length is at most 2 since 2i < p2

and since j is coprime to p. We claim that the group TR2
2i−1−λd

(Z; p)(p) is always cyclic. By
Theorem 2.3, the claim is equivalent to the congruence

2i − 1 �≡ 2δp(λd) − 1 mod 2p2 .

We compute that modulo p2

δp(λd) ≡ (1 − p)((pj − 1)/2 + (j − 1)/2 · p).

Hence, we have 2i − 1 ≡ 2δp(λd) − 1 modulo 2p2 if and only if 2i + 1 ≡ 2pj + p2 modulo 2p2 .
This is possible only if 2i + 1 is congruent to 0 modulo p. If we write 2i + 1 = ap then 1 � a � p
and 1 � j < a. Hence, p � ap � p2 and 2p + p2 � 2pj + p2 < 2ap + p2 � 3p2 , which implies
that the congruence ap ≡ 2pj + p2 modulo 2p2 is equivalent to the equality ap + p2 = 2pj. But
then a + p = 2j, which contradicts that j < a. The claim follows.

We now show that the integers (r1 , r2) are as stated. It follows from Theorem A that

r1 + 2r2 = vp((2i)!) = 	2i/p
.

In the case where 2i + 1 is congruent to 0 modulo p, we proved above that r1 = 0. If we write
2i + 1 = ap then a is odd and

r2 = 	2i/p
/2 = (a − 1)/2 = 	(a − 1)/2 + (p − 1)/2p
 = 	i/p
,

as stated. In the case where 2i + 1 ≡ j modulo p with 1 � j � 2i/p odd, we proved above that
r2 = 1. Hence, r1 = 	2i/p
 − 2. Finally, in the remaining case, r2 = 0, and hence, r1 = 	2i/p
.
This completes the proof.

Example 4.3. Let p be an odd prime number. We spell out the statement of Theorem 4.2,
for i � p + 1. The p-primary torsion subgroup of K2i(Z[x]/(x2), (x)) is zero for i � (p − 1)/2,
is cyclic of order p for (p + 1)/2 � i < p, and is cyclic of order p2 for i = p. The structure of the
p-primary torsion subgroup of K2p+2(Z[x]/(x2), (x)) depends on the odd prime p. It is cyclic
of order 9 if p = 3, and the direct sum of two cyclic groups of order p if p � 5.
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