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On the K-theory of truncated polynomial algebras
over the integers

Vigleik Angeltveit, Teena Gerhardt and Lars Hesselholt

ABSTRACT

We show that Ka;(Z[z]/(z™), (z)) is finite of order (mi)!(i!))™ % and that K1 (Z[z]/(z™), (z))
is free abelian of rank m — 1. This is accomplished by showing that the equivariant homotopy
groups TRy _, (Z;p) of the topological Hochschild T-spectrum T'(Z) are free abelian for ¢ even,
and finite for ¢ odd, and by determining their ranks and orders, respectively.

Introduction

It was proved by Soulé [13] and Staffeldt [14] that, for every non-negative integer g, the abelian
group K, (Z[z]/(«™), (x)) is finitely generated and that its rank is either 0 or m — 1 according
as ¢ is even or odd. In this paper, we prove the following more precise result.

THEOREM A. Let m be a positive integer and let i be a non-negative integer. Then
(i) the abelian group Ky;1(Z[x]/(x™), (z)) is free of rank m — 1;
(i) the abelian group Ko;(Z[z]/(z™), (z)) is finite of order (mi)!(i!)™ 2.

In particular, the p-primary torsion subgroup of Ks;(Z[x]/(xz™), (x)) is zero, for every prime
number p > mi. At present, we do not know the group structure of the finite abelian group
in degree 2i except for small values of ¢ and m. We remark that the result agrees with the
calculation by Geller and Roberts [12] of the group in degree two.

To prove Theorem A, we use the cyclotomic trace map of Bokstedt—Hsiang-Madsen [4] from
the K-groups in the statement to the corresponding topological cyclic homology groups and a
theorem of McCarthy [11], which shows that this map becomes an isomorphism after pro-finite
completion. The third author and Madsen [7, Proposition 4.2.3], in turn, gave a formula for the
topological cyclic homology groups in question in terms of the equivariant homotopy groups

TRy _\(Z) = [S* A (T/Cp)+, S* NT(Z)]r

of the topological Hochschild T-spectrum T'(Z). Here T is the multiplicative group of complex
numbers of modulus 1, C, C T is the finite subgroup of the indicated order, A is a finite-
dimensional complex T-representation, and S* is the one-point compactification of \. Since the
groups K, (Z[z]/(x™),(x)) and TR _,(Z) are finitely generated by [13, 14] and Lemma 1.3,
respectively, these earlier results amount to a long exact sequence

. r/m Vin 1. r m
TR, (2) Yl TR, (2) — K, (2l @), (@) — -
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where d = d(m,r) is the integer part of (r — 1)/m, and where \; is the sum
M=Cd)aCd-1)®...»C(1)

of the one-dimensional complex T-representations defined by C(i) = C with T acting from the
left by z-w = z'w. The two limits range over the positive integers divisible by m and the
positive integers, respectively, ordered under division. The structure maps R and the map V,,
are explained in Section 1 below. In particular, we show that for every integer ¢ there exists a
positive integer r = r(m, q) divisible by m such that the canonical projections

im TR;_,, (Z) — TR}_,,(Z), lim TR! (Z) — TR} (2),

q—Aa q—Aa q—Na

are isomorphisms.
After localizing at a prime number p, the abelian groups TR, _, (Z) decompose as products
of the p-typical equivariant homotopy groups

TR}, (Z:p) = TRY ., (Z) = [S A (T/Cpot)1, S* AT(Z)s.

In addition, the Verschiebung map V,, that appears in the long exact sequence above may
be expressed in terms of the p-typical Verschiebung map V' = V},. The corresponding p-typical
equivariant homotopy groups with Z/pZ-coefficients

TR\ (Z:p, Z/pZ) = [S* A (T/Cypo 1), My AS* AT(D)lr,

were evaluated by the first and second author [1] and by Tsalidis [16]. More generally, the first
and second author [1] evaluated the RO(T)-graded equivariant homotopy groups

TR (Z;p,Z/pZ) = [S” A (T/Cpu—1)+, M, AS" NT(Z)]r,

where o € RO(T) is any virtual finite-dimensional orthogonal T-representation, and where (3
and 7 are chosen actual representations with o = [§] — [y]. Based on these results, we prove
the following.

THEOREM B. Let p be a prime number, let n be a positive integer, and let A be a finite-
dimensional complex T-representation. Then,
(i) for ¢ = 2i even, TRy _,(Z;p) is a free abelian group whose rank is equal to the number
of integers 0 < s < n such that i = dim¢(A\“r* );
(ii) for ¢ =2i —1 odd, TR;_,(Z;p) is a finite abelian group whose order is determined,

recursively, by
TR, 2:) |TR! -} (Z; p)| - p" ' (i — dimg (X)) if i > dimg(A)
TRy _\(Z;p)| =
- | TR}, (Z; p)] if i < dime(N),

where \' = p;ACF is the T/C,-representation A9 viewed as a T-representation via the
isomorphism p,: T — T/C, given by the pth root;
(iii) for every integer q, the Verschiebung map

V: TRZ:}\ (Z;p) — TRy _,(Z;p)

is injective, and for q even the cokernel is a free abelian group.

We remark that for A = 0, the result is that
|TR§LF1(Z§P)‘ = pn(n_l)/Q i",

while the even groups all are zero with the exception of TRy (Z; p), which is a free abelian group
of rank n. In the case n = 1, which was proved by Bokstedt [3], the groups are all cyclic. For
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n > 1, this is not the case. It remains a very interesting problem to determine the structure of
these groups. We refer to [5, Theorem 18] for some partial results.
It follows from Theorem B that with Z/pZ-coeflicients the Verschiebung map

V: TR\ (Z;p, Z/pZ) — TRy_,(Z;p,Z/pZ)

is injective for ¢ even. We do not know the value of this map for ¢ odd. The calculation of
this map, and hence, the groups K, (Z[z]/(z™), (x); Z/pZ) claimed in [16, Proposition 7.7] is
incorrect. Indeed, in loc. cit., it is only the map induced by V between the E°°-terms of two
spectral sequences that is evaluated.

The paper is organized as follows. In Section 1, we show that the groups TR _,(Z) are
finitely generated and determine their ranks. In Section 2, we recall the results of [1] and [16]
and prove Theorem B. In the following Section 3, we evaluate the terms in the long exact
sequence above and prove Theorem A. Finally, in Section 4, we specialize to the case of the
dual numbers and determine the structure of the finite group Ko;(Z[z]/(z?), (z)) of order (2i)!
in low degrees.

1. The groups TRy, _,(Z)

In this section, we recall the groups TRy, _, (Z) and the Frobenius, Verschiebung, and restriction
operators that relate them. We refer to [8, Section 1] and [5, Section 2| for further details.

Let A be a unital associative ring. The topological Hochschild T-spectrum T(A) is, in
particular, an orthogonal T-spectrum in the sense of [10, Definition II.2.6]. Therefore, for
every finite-dimensional orthogonal T-representation A and every finite subgroup C, C T, we
have the equivariant homotopy group given by the following abelian group of maps in the
homotopy category of orthogonal T-spectra:

TR;_\(A) = [S* A (T/C; )+, S* AT (A)r.
For every divisor s of r with quotient ¢ = r/s, there are maps,
Fo: TR, _\(A) — TRZ_A (A) (Frobenius),
Vit TRZ_/\ (A) — TR, _,(A) (Verschiebung),

induced by maps f;: (T/Cy)y — (T/Cy)+ and vs: (T/C)y — (T/Ci)+ in the homotopy
category of orthogonal T-spectra. The map f; is the map of suspension T-spectra induced
by the canonical projection pr: T/C; — T/C, and the map v, is the corresponding transfer
map defined as follows. Let ¢: T/C; < u be an embedding into a finite-dimensional orthogonal
T-representation. Then the product embedding (¢, pr): T/C; — u x (T/C,) has trivial normal
bundle, and the linear structure of p determines a canonical trivialization. Therefore, the
Pontryagin-Thom construction gives a map of pointed T-spaces

SE A (T/C, )y — S™ A (T/CY), .

The induced map of suspension T-spectra determines the homotopy class of maps of orthogonal
T-spectra v, : (T/C, )+ — (T/C});+ and this homotopy class is independent of the choice of
embedding ¢ as well as the choices made in forming the Pontryagin-Thom construction.

The orthogonal T-spectrum T'(A) has the additional structure of a cyclotomic spectrum in
the sense of [8, Definition 2.2]. This implies that, in the situation above, there is a map

R,: TR, ,(A) — TR[_,,(A) (restriction),

where ) = p*(\®s) is the T/C,-representation A\°: considered as a T-representation via
the isomorphism p,: T — T/C, defined by p,(z) = 2/*C,. Moreover, the map R, admits a
canonical factorization that we now explain. In general, let G be a compact Lie group and .% a
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family of closed subgroups of G stable under conjugation and passage to subgroups. We recall
that a universal #-space is a G-CW-complex E.Z with the property that, for every closed
subgroup H C G, the fixed point set (E.#)f is contractible if H € .# and empty if H ¢ .Z.
It was proved by tom Dieck [15, Satz 1] that a universal F#-space E.Z exists and that, if
both E.% and E'Z are universal .%-spaces, then there exists a unique G-homotopy class of G-
homotopy equivalences f: E.% — E'%. Given a universal .%-space E.%, the pointed G-space
E.Z is defined to be the mapping cone of the map m: E.Z, — S° that collapses E.Z onto the
non-base point such that we have a cofibration sequence of pointed G-spaces,

EF, 8" “EZ .YEZF,.

If N C @G is a closed normal subgroup, we denote by Z#[N] the family of closed subgroups
H C G that do not contain N as a subgroup. Now, the map R admits a factorization as the
composition of the map

TR _\(A) = [STA(T/C,)+, 5" AT(A)lr — [S A (T/C,)+, S NEZ[C,] AT (A)]r,
induced by the map ¢: S° — EF [Cs] and a canonical isomorphism
(S A (T/Cy)., 8" A EFIC AT(A)r < [87A (T/Co) 1, 8Y AT(A)ly = TR, (A),

induced from the cyclotomic structure of T'(A) and [10, Proposition V.4.17].
The group isomorphism p,: T — T/C gives rise to an equivalence of categories pf from the
category of orthogonal T/C,-spectra to the category of orthogonal T-spectra defined by

(PETYN) = s (T((p51) "))

The following result is a generalization of [8, Theorem 2.2].

PROPOSITION 1.1. Let A be a unital associative ring, let r be a positive integer, and let A
be a finite-dimensional orthogonal T-representation. Let p be a prime number that divides r,
and let uw and v be positive integers with u + v = v, (r) + 1. Then there is a natural long exact
sequence

r/p" Nyu r Ry r/p" 2 r/p"
o H,y (G, TRTY (A)) =5 TR)_, (A) =5 TRL, (A) 2 Hy 1 (Cpe , TR, (A)) — -+,

where the left-hand term is the qth Borel homology group of the group C,« with coefficients
in the orthogonal T-spectrum defined by

TR’/ (A) = p} 0 (S* AT(A)) 0.

Proof. The cofibration sequence of pointed T-spaces
EZ[Cy], =8~ EZ[C, ] - SEZ[C, ]+
gives rise to a cofibration sequence of orthogonal T-spectra
EZ[Cy ). ANT(A) 5 T(A) —5 EZ[Cye] AT(A) = SEZ([Cye ]y AT(A).

This, in turn, gives rise to a long exact sequence of equivariant homotopy groups that we now
identify with the long exact sequence of the statement. By definition, we have

TR]_,(4) = [S" A (T/C, )+, 8 AT(A)]z,
and, as recalled above, the restriction map R,. factors through the canonical isomorphism

[STA(T/Cy )y, 8 A BF([Cpe] AT(A)]r TR, (A).
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This identifies the middle and right-hand terms of the long exact sequence. To identify the
left-hand term, we recall from [10, Proposition V.2.3] the change-of-groups isomorphism,

[STA(C/C) 1, S* NEF[Cpely AT(A)e, — [ST A (T/C,)., S* N EF[Cpe]y AT(A)]r.

On the left-hand side, the family .%#[C,»] is equal to the family of subgroups Cs; C C, for which
vp(s) < v. Therefore, we may choose the universal space EZ[C,»] to be a C,-CW-complex
that is non-equivariantly contractible and that only has cells of orbit-type C /C, .. Indeed,
in this case we have

EZ|Cp] ifuvy(s)<wv

(EZ[Cy ) = {@ if v, (s) > v,

as required. We then have canonical isomorphisms
[S7,8" A EF[Cp ] AT(A)]e, <= [8%, (S A EF[Cp]a AT(AN T o, e, .
=[S EF[Cye ] A (S* AT(A) " N0, s, e

where for the second isomorphism we use that E.Z[Cp.] is chosen to be C,,,.-fixed. The
group isomorphism p,/,« : Cpu — C../C, e induces an isomorphism of categories p; Jpn from
the category of orthogonal C,.-spectra to the category of orthogonal C./C, ,.-spectra. In
particular, this gives an isomorphism of the lower group above to the group

(S, 2y BF[Cpe s Al (8 AT(A) 1], = H, (Ce TRT?, (A)).

This is indeed the desired Borel homology group, since p Jpn EZ[C,]is afree Cpu -CW-complex
that is non-equivariantly contractible. 0

We recall that the Borel homology groups that appear in the statement of Proposition 1.1
are the abutment of the first quadrant skeleton spectral sequence

E?, = Hy(Cp, TR}/% (A)) = Hyy i (Cpe, TR, (A)), (1.2)

from the group homology of C),. with coefficients in the trivial Cy.-module TRZ p; (A); see for
instance [5, Section 4].

We now specialize to the case A =7 and recall from Bokstedt [3] that T R; (Z) is zero if
either ¢ is negative or ¢ is positive and even, a free abelian group of rank one if ¢ = 0, and a
finite cyclic group of order ¢ if ¢ = 2¢ — 1 is positive and odd; see also [9].

LeEMMA 1.3.  Let r be a positive integer, let ¢ be an integer, and let \ be a finite-dimensional
complex T-representation. Then TRL 1(Z) is a finitely generated abelian group whose rank is

equal to the number of positive divisors e of r for which q = 2dimc(\°*). The group is zero
for ¢ < 2dimc(\°7).

Proof. Let £(r,q,\) denote the number of positive divisors e of 7 with ¢ = 2dim¢(A\")
and note that £(r,q, A) is zero, for ¢ odd. We prove by induction on the number k of prime
divisors in 7 that TR;_,(Z) is a finitely generated abelian group of rank £(r, ¢, ). If k£ =0,
or equivalently, if » = 1, the statement follows from the result of Békstedt, which we recalled
above. Indeed, it follows from [10, Proposition V.2.3] that, up to isomorphism,

TR}]—)\ (Z) = TRé—z dimc(\) (Z)

So we let £ > 1 and assume that the lemma has been proved, for all g and A as in the statement
if r has k — 1 prime divisors. Let p be a prime divisor of r and write r = p"r’ with r’ not divisible
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by p. We consider the long exact sequence of Proposition 1.1 with u =n and v = 1,

> Hy (G TR, (2)) ™5 TR, (2) 5 TR}, (2) = Hyo1 (G, TRI, (2) — -+
Since r’ has only k — 1 prime divisors, the inductive hypothesis implies that in the skeleton
spectral sequence (1.2), Eg_’q is a finitely generated abelian group of rank £(g,7’, ) and that
the groups Eit with s > 0 are finite. Hence, the left-hand group in the long exact sequence is
finitely generated of rank ¢(q,r’,\). By further induction on n > 0, we may assume that the
group TRZ/_’;,(Z) is finitely generated of rank ¢(q,r/p,\'). The first part of the lemma now
follows from the formula

g, ", N) + g, /p,N') = L(g,7, ),

which holds since the two summands on the left-hand side count the number of positive divisors
e of r with ¢ = 2 dimg¢ (A9 ) for which e is, respectively, prime to p and divisible by p. The second
part of the lemma is proved in a similar manner. |

ADDENDUM 1.4. (i) Let m,r > 1, 0 < e < 1, and i be integers, and let d = d(m,r) be the
integer part of (r — 1)/m. Then the canonical projection induces an isomorphism

lizn TRy; s, (Z) = TRy, .y, (2),

provided that m(i 4+ 1) < p*» ")+ for every prime number p.
(ii) Let m > 1, 0 < € < 1, and ¢ be integers, let r > 1 be an integer divisible by m, and let
d = d(m,r). Then the canonical projection induces an isomorphism

im TR/, (2) = TRy, (Z)

provided that i + 1 < p’» "/™)*1 for every prime number p.

Proof. 'We prove statement (i); the proof of statement (ii) is similar. It suffices to show that
for every prime number p the restriction map
. pr r
Rp : TRq—/\d(m pr) (Z) - TRq_)\zi(m ) (Z)
is an isomorphism if ¢ = 2i + € with m(i + 1) < p» ("*1. We write r = p" '/ with ' not
divisible by p and consider the long exact sequence of Proposition 1.1 with u =n and v =1,

r’ Nyn T
- — Hq (Cpn ’TR'*)\d(m_m) (Z)) E— TRp

q—Xd(m pr

RP T
) (Z) - TR(I*M(m ) <Z) —
The skeleton spectral sequence (1.2) and Lemma 1.3 show that the left-hand group vanishes,
provided that ¢ < 2dim@()\dc(rn'1 pr)). Therefore, the map R, is an isomorphism for

i < dime (Ag7), ) = ld(m,pr) /7).

We claim that d(m,p™) < |d(m,pr)/r’]. Indeed, this inequality is equivalent to the inequality
d(m,p") < d(m,pr)/r’, which is equivalent to the inequality ’'d(m,p") < d(m,pr), which, in
turn, is equivalent to the inequality r'd(m, p") < (p"r’ — 1)/m. We may rewrite this inequality
as mr'd(m,p") < p"r’ —1 or mr'd(m,p") < p"r’ or md(m,p") < p". But this inequality is
equivalent to the inequality md(m,p™) < p" — 1, which, in turn, is equivalent to the inequality
d(m,p") < (p"* — 1)/m, which holds. The claim follows. Finally, a similar argument shows that
the inequalities ¢ < d(m,p") and m(i + 1) < p" are equivalent. O
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2. The p-typical groups TRy _, (Z.p)

In this section, we prove Theorem B of Section 1. We first show that after localization at the
prime number p, the groups TR;_ 5 (A) decompose as products of the p-typical groups:

TRy (A;p) = TRI_, (A) =[S A (T/Cpo1 )1, S* AT(A)]r.

PROPOSITION 2.1. Let A be a unital associative ring, let » > 1 and q be integers, and let
A be a finite-dimensional orthogonal T-representation. Let p be a prime number and write
r = p" !9 with v’ not divisible by p. Then the map

v: TRy _\(A) — [, TR\ (45 p),
whose jth component is the composite map
TRY_, (A) % TR, (4) ™4 TRP" ) (A) = TR"_ . (4;
q—)\( )—> q—/\( ) - q—)\’( ) — q—/\’( 7p)7

becomes an isomorphism after localization at p.

Proof. The proof is by induction on the number k of positive divisors of r’. If k =1, or
equivalently, if 7/ = 1 then « is the identity map and the statement holds trivially. So we let
k > 2 and assume that the statement holds whenever ' has at most k — 1 divisors. Let ¢ be a
prime divisor of v/, and let v = vy (r") = vy(r). We show that the map

(Rey Foo): TRI_, (A) — TR, (4) x TR, (A)

becomes an isomorphism after localization at p. This will prove the induction step, since r/¢
and r/¢" have at most k — 1 divisors and v = (v x 7) o (Ry, Fy» ). Now, by Proposition 1.1, we
have the long exact sequence

s H, (C, TR (A)) 25 TR, (4) 25 TR\, (A) L H, 1 (Co, TR (A)) — -+

Moreover, one readily shows that the composite map

r/0Y € r/e" Nyv r Eyo r/e
TRq/_[,\ (A) - Hq (Cf“ vTR-/—/A (A)) — TRq*A (A) — TR(I/—kA (A)’

where € is the edge homomorphism of the skeleton spectral sequence (1.2), is equal to the
composition Fy» Vp» of the Frobenius and Verschiebung maps, which, in turn, is equal to the
map given by multiplication by ¢. Hence, after localization at p, Fy» is the projection onto a
direct summand of the group TRfF 1 (Z). The long exact sequence shows that the map (R, Fyv)
becomes an isomorphism after localization at p as desired. 0

The maps Fy, Vi, and Ry may also be expressed as products of their p-typical analogs:

F=F,: TR;_,(4;p) — TRZ:)\l (A;p) (Frobenius)
V=V,: TRZ:; (A;p) — TRy _\(A;p) (Verschiebung)
R=R,: TR ,(A;p) — TR)_\,(A;p) (restriction)
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Suppose that r = st and write s = ps’ and t = p" ~*~#/ with s’ and ' not divisible by p. Then
there are three commutative square diagrams,

TR)_,(4) — > L, TRl (4ip)  TR]_,(4) — > [L;, TRl (4ip)  (2.2)

F,;l TVS | v lR |

TR,y (A) —— L TRy (A5p) - TRy (A) —— I TRE T (43 p),
where the maps F, V7, and R] are defined as follows. The map F; takes the factor indexed
by a divisor j of ’ that is divisible by s’ to the factor indexed by the divisor j/s’ of t' by
the map F' and annihilates the remaining factors. The map V' takes the factor indexed
by the divisor j of ¢ to the factor indexed by the divisor s’j of ' by the map s'V'. Finally,
the map R] takes the factor indexed by a divisor j of ¢’ to the factor indexed by the same
divisor j of t' by the map R” and annihilates the factors indexed by divisors j of 7’ that do not
divide #'.

Let M, be the equivariant Moore spectrum defined by the mapping cone of the multiplication
by p map on the sphere T-spectrum. The equivariant homotopy groups with Z/pZ-coefficients

TRy _,(Z;p, Z/pZ) = [S* A (T/Cpu—1 )1, My A S* NT(Z)]x

were evaluated for p odd by Tsalidis [16], and for all p by the first and second authors [1]. We
recall the result.

THEOREM 2.3 (Angeltveit-Gerhardt [1], Tsalidis [16]). Let p be a prime number, let n be
a positive integer, let A be a finite-dimensional complex T-representation, and define

5(N) = (1=p) Y dimc(A%" )p*.
520
Then the finite Z,)-modules TRy, _, (Z; p, Z/pZ) have the following structure.
(i) For ¢ > 2dimc(\), TR;_,(Z;p,Z/pZ) has length n, if q is congruent to 25,(\) or

26,(X\) — 1 modulo 2p™, and n — 1, otherwise.

(i) For 2dimc(A\%*) < ¢ < 2dime(A“»* ') with 1 < s < n, TRy _\(Z;p,Z/pZ) has length
n — s, if ¢ is congruent to 26,(A\“»*) or 26,(A\“»*) — 1 modulo 2p"~*, and n — s — 1, otherwise.

(iii) For ¢ < 2dime(A% 1), TRy _\(Z;p, Z/pZ) is zero.

We show in Corollary 2.7 below that the groups TRy _, (Z; p, Z/pZ) have exponent p for all
prime numbers p.

Proof of Theorem B (i). By Lemma 1.3, TRS;_, (Z;p) is a finitely generated abelian group,
and hence, it suffices to show that it is torsion free. We first show that the p-torsion subgroup
is trivial. Comparing Theorem 2.3 and Lemma 1.3, we find that for all integers 7,

lengch(MTRgz—/\(Zm, Z/pZ) — lengthz(,,>TRgi—1—A(Z§P7 Z[pL) = rky TRy, (Z;p).

Moreover, Lemma 1.3 shows that for every integer i, TRy; ;_,(Z;p)(,) is a finite p-primary
torsion group. By a Bockstein spectral sequence argument, we conclude that TRy;  (Z;p) )
is torsion free; compare [5, Proposition 13]. This shows that the group TRY,;_,(Z;p) has no
p-torsion. To see that it has no prime to p torsion, we use that, by Proposition 2.1, the map

(R*™'°F*): TRy, (Zip) — [ TRy_yo-1- (Zip)

0<s<n
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becomes an isomorphism after inverting p. Therefore, Bokstedt’s result recalled earlier shows
that also TRj,_,(Z;p)[1/p] is torsion free. This completes the proof. O

LEMMA 2.4. Let p be a prime number, let n be a positive integer, and let A be a finite-
dimensional complex T-representation. Then the restriction map

R: TR}, (Z;p) — TR} Z\,(Z;p)

is surjective for every even integer q.

Proof. We see as in the proof of Addendum 1.4 that the map of the statement is an epi-
morphism, for ¢ < 2dimg (). Moreover, Lemma 1.3 and Theorem B(i) show that TRZ:;, (Z; p)
is zero, for ¢ > 2dim¢()\’) and even. The lemma follows, since dimg(A') < dimg(A). O

ProproSITION 2.5. Let p be a prime number, let n be a positive integer, and let A be a
finite-dimensional complex T-representation. Then in the skeleton spectral sequence

E?, = Hy(Cpu—1, TR{_,(Z;p)) = Hys (Cpu—1, TR, (Z;p)),

every non-zero differential d": B¢, — E{_, ;.. is supported in odd total degree.

Proof.  We must show that if s +¢ is even then d": Ef, — E{_,, . is zero. Suppose first
that s and ¢ are both even. Then EQ, is zero unless s = 0 and ¢t = 2dimc()\). Therefore, in this
case,d": B¢, — E{_ . _ iszero. Suppose next that s and ¢ are both odd and that r is even.
Then E?, is zero unless t > 2dimc(X), and E?_, | is zero unless t + 7 — 1 = 2dimc(A). It
follows that, also in this case, d": Ef, — E{_, ., is zero. It remains to prove that if r, s,
and ¢ are all odd then d": Ef , — Eg_',,:tw_l is zero.

To this end, we use that, for all integers n’ > n > 1, the iterated Frobenius map

F"' =" H, (Crm , TRY . (Z5p)) — Hy (Cpo—1, TR, (Z3 p))
induces a map of skeleton spectral sequences that we write
Frmns B (0, A) — EL,(n, \).

The map of E?-terms is given by the transfer map in group homology and is readily evaluated;
see for instance [5, Lemma 6]. It is surjective if s is odd, and zero if s is even, t is odd, and
n' — n is sufficiently large. We prove by induction on r > 2 that, for all odd integers s and ¢ and
for all n and A as in the statement, the differential d": Ef ,(n,\) — E{_, ;. 1(n,A) is zero
and the Frobenius map F': E{,(n+1,\) — E{,(n,\) is surjective. The case r = 2 has been
proved above. So we let r > 3 and assume, inductively, that the statement has been proved for
r — 1. Since the differential d"~!: E;;l(n, A) — E;:(l,,,_l)?Hr_2(n7 A) is zero by the inductive
hypothesis, the canonical isomorphism

H(ET 1

s+r—1,t—(r—

5 (1 2) T B () B

—(r—1), t+r72(n’ )\)) ;) Eg,t (Tl, >‘)

gives rise to a canonical surjection 7: E;;l(n, A) = E{,(n, ). Moreover, by naturality of the
skeleton spectral sequence, the diagram

E; (n+1,0) —E{,(n+1,))

| i

B (0, A) — = E,(n,})
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commutes. Since the left-hand vertical map F' is surjective by the inductive hypothesis, we
conclude that the right-hand vertical map F' is surjective as desired. It remains to be proved
that the differential d": EY,(n,A\) — E{_,,,,._1(n,A) is zero. The case where 7 is even has
been proved above, and in the case where 7 is odd, we consider the following commutative
diagram:

T d" r
E37t (n/’ A) - Es—f',t+7‘—1 (n/a )‘)

’ ’

Bl (nA) —Ls Bl ().

We have just proved that the left-hand vertical map is surjective. Moreover, as recalled above,
the right-hand vertical map is zero if n’ —n is sufficiently large. Indeed, s — r is even and
t — r + 1is odd. Hence, the lower horizontal map d” is zero as desired. This proves the induction
step and the proposition. |

REMARK 2.6. The proof of Proposition 2.5 also shows that in the Tate spectral sequence
B}, = H*(Cpr, TR{_, (Z;p)) = H 7' (Cpn 1, TR, (Z; p)),

every non-zero differential is supported in even total degree. It remains an important problem
to determine the differential structure of the two spectral sequences.

Proof of Theorem B (ii). First, for ¢ < dimc(A), we see as in the proof of Lemma 2.4 that
the restriction map

R: TRy _,(Z;p) — TRZ:;,(Z;p)

is an isomorphism, so the statement holds in this case. Next, for ¢ = dimc(A) + 1, Proposi-
tion 1.1 and Lemmas 1.3 and 2.4 give a short exact sequence

0 — Hy(Cpo—r, TR, (Z;p)) — TR}, (Z;p) — TR\, (Z;p) — O,

and the skeleton spectral sequence (1.2) shows that the left-hand group has order p”~!. So the
statement also holds in this case. Finally, for ¢ > dim¢(A) + 1, Proposition 1.1 and Lemma 1.3
give a four-term exact sequence
0 — H, (Cpe -1, TR, (Z;p)) — TRy_,(Z;p) — TRy, (Z;p)
— Hy—1(Cpor, TR, (Z;p)) — 0,

which shows that the orders of the four groups satisfy the equality
TRy _\(Z;p)| /|TRY =)\ (Zsp)| = [Hy (Cpo -1, TRL_\(Z3p)) |/ [Hy—1 (Cpr 1, TR\ (Z5 ) |-

To evaluate the ratio on the right-hand side, we consider the skeleton spectral sequence (1.2).
We may write the ratio in question as

€ TR o) 5,1 T o) = (T 1)/ TT 1)

By Proposition 2.5, for all » > 2 and all s and ¢ with s 4 ¢ being odd, we have an exact sequence,

r+1 o dl T
0— Es,t - Es,t —)ES—T’,t+T—
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Hence, by induction on r, we find that

L) /(I )= (L) /(I )

and the ratio on the right-hand side is readily seen to be equal to

n—1

’qu’ ) !Efq dimg(A),2 dim@()\)| = (i —dimc(X)) - p
This completes the proof. 0

Proof of Theorem B (iii). First, for ¢ odd, we use that the Verschiebung map in question
is equal to the composition of the edge homomorphism

€: TRZ:; (Z;p) — H, (va TRT.L:; (Z; P))
of the skeleton spectral sequence (1.2) and the norm map N, _; in the long exact sequence

n— Nu — n R" !
— }HIq(CVpaTl%._/\1 (Zap)) *; TRq—)\ (Z;p) - TR;—)\("*I) (Z;p) —

from Proposition 1.1. Since g is odd, Lemma 2.4 shows that the latter map is injective. Hence,
it will suffice to show that also the edge homomorphism is injective, or equivalently, that in
the skeleton spectral sequence, all differentials of the form

d: E’

r
rq—r+1 EO,!]

are zero. If r is even, then ¢ —r + 1 is even and Theorem B (i) shows that the group Ey ,_, .,
is zero. Hence, d" is zero in this case. If r is odd, we consider the iterated Frobenius map

F? 0 Hy (Cp"" ) TR?:Al (Z;p)) — H, (Cp” vTRTL:,\l (Z;p)).
It induces a map of spectral sequences that we write
FU=" BL(0),0) — BT (v, \).

As in the proof of Theorem B (ii), an induction on r > 2 shows that, for all v/ > v > 1, the
left-hand vertical map and the horizontal maps in the diagram

r d’ T
E",q—r+1 (UI? /\) - EO.q(Ulv A)

T
A ol =
iFl v lpt, v

d’ :
Bl i (v, A) —— E{]_’q(v, A)
are surjective and zero, respectively. The proof of the induction step uses that, for v/ —v
sufficiently large, the right-hand vertical map is zero. This proves the statement for ¢ odd.
Finally, suppose that ¢ is even. We let p be the direct sum of A and the one-dimensional

complex representation C(p"~2). Then [6, Proposition 4.2] gives a long exact sequence
TR~ \(Z;p)
" (F,—Fd) q=1=A\T B gy Ly n La n
T TRq+l—;1 (Z;p) - n—EIB = TRq—)\ (Z;p) *)TRq—M(Z;p) -
TR, Z, (Z;p)
Now, we proved in Theorem B (i) that TRy, _,(Z;p) and TRZ:LA(Z;p) are finite abelian
groups while TRZ:A1 (Z;p), TRy _\(Z;p), and TR;_,(Z;p) are free abelian groups. Hence, we
obtain the exact sequence of free abelian groups
n— 14 n L n
0 — TR} "\ (Z;p) — TRy _,(Z;p) = TR;_,(Z;p),

which shows that for ¢ even, the Verschiebung map is the inclusion of a direct summand as
stated. This concludes the proof of Theorem B. O
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COROLLARY 2.7. Let n be a positive integer, let p be a prime number, and let \ be a
finite-dimensional complex T-representation. Then TR, _, (Z; p, Z/pZ) has exponent p for every
integer q.

Proof. We first let p = 2 and consider the coefficient long exact sequence
. — TRI_,(Z:2) = TR}, (Z;2) == TR!'_, (Z;2,2/2Z) > TR!_,_,(Z;2) —
It is proved in [2, Theorem 1.1] that the composition
T (ZQZ/QZ) — TRy _1_,(%; 2) -1 TR! VA 2)—>T (Z;2,72/27)

is equal to multlphcatlon by 2. Now, Theorem B shows that for ¢ odd the map [ is zero,
and that for ¢ even the map 7 is zero. Hence, the group TRy _,(Z;2,Z/2Z) is annihilated by
multiplication by 2 as stated. Finally, for p odd, [2, Theorem 1.1] shows that the multiplication
by p map on TRy _,(Z;p,Z/pZ) is equal to zero. O

3. The groups K,(Z[z]/(z™), (x))

In this section, we prove Theorem A of Section 1.

ProrosiTiON 3.1. Let m and r be positive integers, let i be a non-negative integer, and
let d = d(m,r) be the integer part of (r — 1)/m. Then
(i) the abelian group limgr TRS, ) (Z) is free of rank m;
(ii) the abelian group limp TRy; ;_,,(Z) is finite of order (mi)!(i!)™ .

Proof. Tt follows from Lemma 1.3 and Addendum 1.4 that the groups limp TRq A, (Z) are
finitely generated. Hence, it suffices to show that for every prime number p, the Z,)-module
limp TRy, _,,(Z)(,) has finite rank m and the Z,)-module limp TRy; ;_,,(Z),) has finite
length v, ((m4)!(:!)™). We fix a prime number p and let I, be the set of positive integers not
divisible by p. It follows from Proposition 2.1 that there is a canonical isomorphism

hrnTRq a (L) —»HhmT a—xi (Z5 D) (p)
JjEl,
where, on the left-hand side, the limit ranges over the set of positive integers ordered under
division and d = d(m,r), and where, on the right-hand side, the limits range over the set of
non-negative integers ordered additively and d = d(m, p"~'j). Moreover, on the jth factor of
the product, the canonical projection

lim TRy, (Z:p)p) — TRG, (Zi D))

is an isomorphism for ¢ < 2d(m,p®j); see [6, Lemma 2.6]. The requirement that 2 — 2 and
2i — 1 be strictly smaller than 2d(m,p®j) is equivalent to the requirement that mi < p®j.
Hence, for ¢ = 2¢ — 2 or ¢ = 2i — 1, we have a canonical isomorphism

lim TR, (Z) ) — I TR . (Zip).

1< <mi
Jj€l,

where s = s,(m, 1, j) is the unique integer such that

S

Pl < mi < pf.
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Now, from Theorem B (i) we find that

rkz, lilgn TRS,; _», (Z)py ={j € I, | i = d(m,p" " j), for some n > 1}|
={reN|i=dm,r)}|={mi+1,mi+2,...,mi+m}| =m,

which proves statement (i). Similarly, we have

lengthz(p) I%HTRSFPM (Z) ) = Z lengthz(p) TRS; 15, (Zip)p),
1<
]]EINLI

where s = s,(m, 1, j), and Theorem B (ii) shows that the right-hand side is equal to

YooY wli—dmp )+t =1 = Y (v,(i —d(m, k) + v, (k)

1< j<mi 1<t<s 1<k<mi
Jj€l,
=m > u-D+ Y. glk)=m D vk)+ Y vlk) = v, ()" (mi)),
0<i<i 1<k<mi 1<k<i 1<k<mi
which proves statement (ii). O

PROPOSITION 3.2. Let m and r be positive integers, let i be a non-negative integer, and
let d = d(m,r) be the integer part of (r — 1)/m. Then

(i) the abelian group limpg TR;Z/"L/\ (Z) is free of rank 1;
(ii) the abelian group limp TRQI 1, (Z) is finite of order (i)2.

Proof. Tt follows from Lemma 1.3 and Addendum 1.4 that the groups hmR TR’/ "\, (2) are
finitely generated. We fix a prime number p and write m = p’m’ with m’ not d1V1Slble by p.
Then for ¢ = 2¢ — 2 and ¢ = 27 — 1, there is a canonical isomorphism

im TR (2),) = ] TRZ, (Zip)o),
1<j<mi
jem'l,

where s = s,(m, 1, j). From Theorem B (i) we find
rkz, lilr?;lTRgngd (Z)p) ={j € ML, | i=d(m,p" ")), for some n > 1}|
=|{remN|i=d(m,r)} =|{mi+m}| =1,
which proves statement (i). Similarly, from Theorem B (ii), we have

length%) li}lgl TRy 1, (Z)) = Z lengthz(p) TR3; " -, (Z;p)(p)

1<j<mi
jem'l,
— t+v—1 _ .
= > > (wli—dmp )+t =1) = Y (i — d(m,km)) + v, (k)
1<j<mi 1<t<s—v 1<k<i
jem'l,
= D> wl—D+Y vk =2 Y k) =0,
0<i<i 1<k<i 1<k<i

which proves statement (ii). O
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PROPOSITION 3.3. Let m and r be positive integers, and let d = d(m, ) be the integer part
of (r — 1)/m. Then the Verschiebung map

Vi li}rzn TRS/_TK[{ (Z) — lilgn TRy, (Z)

is injective for all integers q, and has free abelian cokernel for all even integers q.

Proof. We fix a prime number p and show that the Verschiebung map
Vi im TR} (Z)) — Um TR; ,, (Z) )

q—Ad

is injective for all integers ¢, and has cokernel a free Z,)-module for all even integers q. We
write m = p'm’ with m’ not divisible by p. Then for ¢ = 27 — 2 and ¢ = 2i — 1 the map V, is
canonically isomorphic to the map

m'V": H TR;-%, (Zip) ) — H TR, 5, (Z;p) ),

1<j<mi 1<j<mi
jem'I, JEly
where s = s,(m, 1, j). The statement now follows from Theorem B (iii). O

Proof of Theorem A. The statement follows immediately from the long exact sequence
recalled in Section 1 together with Propositions 3.1, 3.2, and 3.3. |

4. The dual numbers

It follows from Theorem B that Ky;(Z[xz]/(2?), (x)) is a finite abelian group of order (2i)!. In
this section, we investigate the structure of these groups in low degrees.

THEOREM 4.1. There are isomorphisms
K (Z[z]/(2?), (x)) =~ Z/2Z,
K, (Z]x]/(2*), (x)) =~ Z/87 & 7./ 37,
Ks(Z[z]/(2?), () ~ Z/2Z ® Z/27 & Z/AZ & 7./9Z & Z /5.

Proof. We know from Theorem B that the orders of these three groups are as stated. Hence,
it suffices to show that the two-primary torsion subgroup of the groups in degree four and six
and the three-primary torsion subgroup of the group in degree six are as stated.

We first consider the group in degree four, which is given by the short exact sequence

. r/2 Vy . r
0 — ln TR}, () Y5l TRY_,, (2) — K, (Z[a]/ (%), (2)) — 0.
The middle term in the short exact sequence decomposes two-locally as the direct sum
111511 TR;_y, (Z)(2) = TR3_), (Z; 2)(2) ® TRy_,, (Z; 2)2),

where the first and second summands on the right-hand side correspond to j =1 and j = 3,
respectively. Similarly, the left-hand term in the short exact sequence decomposes two-locally
as

lim TRy, (Z)(2) —> TR, (Z;2)(2) & TR, (Z;2) -
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The summands corresponding to j = 3 are both zero. Hence, the two-primary torsion subgroup
of K4(Z[z]/(z?*), (z)) is canonically isomorphic to the cokernel of the Verschiebung map
Vi TR3_y, (Z;2)2) — TR;_y, (Z;2)2)-

To evaluate this cokernel, we consider the diagram

0 — TR} (Z L> TR3(Z;2)(2) ——= TR3_,, (Z; 2)(2) >0

| |

2

14 Ly
0 — TR}(Z;2) 5y — TR}(Z;2)(2) — TR}_,, (Z;2)(3) — 0,

where the rows are exact by [6, Proposition 4.2]. It follows from [5, Theorem 18] that this
diagram is isomorphic to the diagram

4 1

0 7,27 7,/8Z ZJAZ —— >
o
0 2/22 %Y 7487 @ 787 2> 7/87. @ 7./47 — 0,

where a € 2Z/8Z and b € (Z/8Z)*. Now, the cokernels of the middle and right-hand vertical
maps are isomorphic to Z/8Z. This shows that Ky(Z[xz]/(x?), (z))(2) is as stated.
We next consider the group in degree six, which is given by the short exact sequence

0 — lim TR;, () ﬂnén TRS_,, (Z) — K¢(Z[z]/(2?), (z)) — 0,

and begin by evaluating the two-primary torsion subgroup. The middle term in the short exact
sequence decomposes two-locally as the direct sum

li}gnTRngd (Z)(2) == TR3_y, (Z;2)2) ® TR3_, (Z;2)2) ® TRy, (Z; 2) 9

where the three summands on the right-hand side correspond to j =1, j =3, and j =5,
respectively. Similarly, the left-hand term in the short exact sequence decomposes two-locally
as

lim TRE/E)\,[ (Z)(2) == TR3_y, (Z;2)(2) ® TRy, (Z;2)2) ® TRy, (Z; 2) 9

The summands corresponding to 5 = 5 are both zero. Hence, the two-primary torsion subgroup
of K¢(Z[z]/(2?), (x)) is canonically isomorphic to the direct sum of the cokernels of

V:TR? , (Z;2)2) — TRE_,, (Z;2) ),
VTR, (Z;2)2) — TRZ ), (Z;2) ).

We show that these are isomorphic to Z/2Z ® Z /27 and Z/4Z, respectively. The statement for
the latter cokernel follows directly from Theorems B and 2.3. The two theorems also show that
the group TR§7A1 (Z;2)(2) is isomorphic to Z/27Z & 7Z/27 and that the group TRngl (Z;2)2)
is isomorphic to either Z/4Z & Z /A7 or Z/8Z & 7./27. We will prove that the latter group is
isomorphic to Z/47 @© Z/4Z by showing that it contains Z/47Z as a direct summand. To this
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end, we consider the diagram

0 —H5(C2, TRY_ ), (%;2)) 5) —= TRZ_, (Z:2)() —> TR (Z; 2)(2) —> 0

| i |

0 —— H;(Cy, TRI.—,\1 (Z;2))(2) — TR: \ (Z;2)(9) — TR:(Z; 2)2) —=0

; 3

TRj(Z; 2) (o) =———= TR}(Z; 2),

where the rows, but not the columns, are exact. It follows from Theorem B that the top middle
and right-hand vertical maps V are injective. Hence, also the top left-hand vertical map V is
injective. Moreover, [6, Proposition 4.2] and [5, Proposition 15] show that the bottom left-hand
vertical map F? is surjective. Hence, also the bottom right-hand vertical map F? is surjective.
The skeleton spectral sequence

EZ, = H,(Cy, TR}, (Z;2)) ., = Hot (Co, TR, (Z;2))

(2) (2)

shows that the middle left-hand group is an extension of ESG = Z/4Z by Ef% = Z/2Z and the
diagram above shows that the extension is split. It follows from [5, Lemma 6] that

F:H;(Cy, TR, (Z; 2))(2) — H5(C2, TR, (Z;2))2)

maps the generator of the summand EfG = Z/2Z to zero. Hence, the lower left-hand vertical
map F? in the diagram above maps the generator of the summand E§S = 7/27 to zero.
But the map F? is surjective, and therefore, maps a generator of the summand ESG =Z/AZ
non-trivially. It follows that TR _, (Z;2)») contains direct summand isomorphic to Z/4Z, and
hence, is isomorphic to Z/4Z & Z/47. This shows that the cokernel of the upper middle vertical
map V is isomorphic to Z/2Z & Z/2Z, and hence, that Kg(Z[z]/(2?), (x))(2) is as stated.

It remains to evaluate Kg(Z[z]/(2?),())). This group is canonically isomorphic to the
direct sum of TR?_,, (Z;3)(3) and TRi_,, (Z;3) (3. It follows from Theorem B that the former
group has order nine and that the latter group is zero and from Theorem 2.3 that the former
group is cyclic. This completes the proof. O

THEOREM 4.2. Let p be an odd prime number. Then for 2i < p? the p-primary torsion
subgroup of Ky;(Z[z]/(2?), (x)) is isomorphic to (Z/pZ)" & (Z/p*Z)"*, where

(0, li/p]) if 2i + 1 = 0 modulo p,
(ri,r2) = < (|2¢/p] — 2,1) if2i+1=j modulo p with 1 < j < 2i/p odd,
(12¢/p],0) otherwise.

Here | x| denotes the largest integer less than or equal to x.

Proof. After localizing at the odd prime number p, the short exact sequence
0 — limTRy?, , (Z) "5 Im TRy, (2) — Kui(Zla]/(a”), () — 0
induces a canonical isomorphism

@ TR 1y, (Zip) () — Kai(Zlz]/(2%), (%)) ()
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where the sum runs over integers 1 < j < 2¢ coprime to both 2 and p and s = s,(2,1, j) is the
unique integer that satisfies p*~'j < 2i < p*j. Since 2i < p® we find

2 if 1< <2i/p,

S 27i7 j = . . . .
»(2:6.) {1 if 2i/p < j < 2.

If 2i/p < j < 2i we have d = (j — 1)/2, and hence
lengthy, | TRy, _1_x, (Z;p)(p) = vp(i — d) = v,(2i + 1 — j).

The length is at most 1 since 2i < p. If 1 < j < 2i/p we have d = (pj — 1)/2, and in this case
Theorem B shows that

lengthy, | TR} _1-x, (Z;P)p) = lengthy | TR;L‘—I—)\; (Zip)(p) +vp(i —d) +1
=v,(20+1—7)+v,(2i +1)+1,

where we have used that \; = Ay with d’ = (j — 1)/2. The length is at most 2 since 2i < p?
and since j is coprime to p. We claim that the group TRgi_l_M (Z;p)(p) is always cyclic. By
Theorem 2.3, the claim is equivalent to the congruence

2 —1#25,(\g) —1 mod 2p*.
We compute that modulo p?

op(Aa) = (1 =p)((pj —1)/24+ (G —1)/2-p).

Hence, we have 2i — 1 = 2§,(A\s) — 1 modulo 2p? if and only if 2i + 1 = 2pj + p* modulo 2p*.
This is possible only if 2¢ + 1 is congruent to 0 modulo p. If we write 2 + 1 =apthen 1 < a < p
and 1 < j < a. Hence, p < ap < p® and 2p + p* < 2pj + p* < 2ap + p* < 3p?, which implies
that the congruence ap = 2pj + p? modulo 2p? is equivalent to the equality ap + p*> = 2pj. But
then a + p = 2j, which contradicts that j < a. The claim follows.

We now show that the integers (r1,79) are as stated. It follows from Theorem A that

1+ 2ry = up((20)!) = [2i/p].

In the case where 27 + 1 is congruent to 0 modulo p, we proved above that r; = 0. If we write
2i + 1 = ap then a is odd and

ry = [2i/p|/2=(a=1)/2 = [(a = 1)/2+ (p - 1)/2p] = [i/p],

as stated. In the case where 2i + 1 = j modulo p with 1 < j < 2i/p odd, we proved above that
ro = 1. Hence, 1y = |2i/p| — 2. Finally, in the remaining case, ro = 0, and hence, r; = |2i/p].
This completes the proof. 0

EXAMPLE 4.3. Let p be an odd prime number. We spell out the statement of Theorem 4.2,
for i < p+ 1. The p-primary torsion subgroup of Ko;(Z[x]/(z?), (z)) is zero for i < (p — 1)/2,
is cyclic of order p for (p + 1)/2 < i < p, and is cyclic of order p? for i = p. The structure of the
p-primary torsion subgroup of Kj, 2 (Z[z]/(2?), (z)) depends on the odd prime p. It is cyclic
of order 9 if p = 3, and the direct sum of two cyclic groups of order p if p > 5.
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