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ON RELATIVE AND BI-RELATIVE ALGEBRAIC K-THEORY

OF RINGS OF FINITE CHARACTERISTIC

THOMAS GEISSER AND LARS HESSELHOLT

Introduction

Throughout, we fix a prime number p and consider unital associative rings in
which p is nilpotent. It was proved by Weibel [28, Cor. 5.3, Cor. 5.4] long ago that
for such rings, the relative K-groups associated with a nilpotent extension and the
bi-relative K-groups associated with a Milnor square are p-primary torsion groups.
However, the question of whether these groups can contain a p-divisible torsion
subgroup has remained an open and intractable problem. In this paper, we answer
this question in the negative. In effect, we prove the stronger statement that the
groups in question are always p-primary torsion groups of bounded exponent.

Let A be a unital associative ring and let I ⊂ A be a two-sided ideal. Then one
defines the relative K-theory spectrum K(A, I) to be the mapping fiber of the map
of K-theory spectra K(A) → K(A/I) induced by the canonical projection. Hence,
there is a long exact sequence of homotopy groups

· · · → Kq(A, I) → Kq(A) → Kq(A/I)
∂−→ Kq−1(A, I) → · · · .

Here and throughout, K(A) denotes the non-connective Bass completed algebraic
K-theory spectrum of the ring A [26, Def. 6.4]. We prove the following result.

Theorem A. Let A be a unital associative ring and I ⊂ A a two-sided nilpotent
ideal. Suppose that the prime number p is nilpotent in A. Then for every integer
q, the relative group Kq(A, I) is a p-primary torsion group of bounded exponent.

It follows, in particular, from Theorem A that the p-completion map

Kq(A, I) → Kq(A, I;Zp)

is an isomorphism. We remark that, in general, the exponent of Kq(A, I) depends
on the degree q. For instance, if A = Fp[x]/(x

m) and I = (x), the exponent tends
to infinity with q [19, Thm. A].

In the situation of Theorem A, a theorem of McCarthy [23, Main Thm.] com-
bined with a theorem of our own [11, Thm. 2.1.1] show that for a fixed positive
integer v, the cyclotomic trace map of Bökstedt-Hsiang-Madsen [2] induces an iso-
morphism of pro-abelian groups

Kq(A, I;Z/pvZ)
∼−→ {TCn

q (A, I; p,Z/pvZ)}
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from the relative K-groups with Z/pvZ-coefficients to the relative topological cyclic
homology groups with Z/pvZ-coefficients. By Theorem A, we now conclude that
the following stronger result holds.

Theorem B. Let A be a unital associative ring and I ⊂ A a two-sided nilpotent
ideal. Suppose that the prime number p is nilpotent in A. Then for every integer
q, the cyclotomic trace map induces an isomorphism of pro-abelian groups

Kq(A, I)
∼−→ {TCn

q (A, I; p)}.
The pro-abelian group on the right-hand side is indexed by positive integers n.

We remark that Theorem B is equivalent to the statement that, for n large, the
group Kq(A, I) embeds as a direct summand in TCn

q (A, I; p) and that the limit
system of cokernels satisfies the Mittag-Leffler condition and has limit zero.

Let f : A → B be a map of unital associative rings and let I be a two-sided ideal
of A that is mapped isomorphically onto a two-sided ideal of B. Then one defines
the bi-relative K-theory spectrum K(A,B, I) to be the mapping fiber of the map of
relative K-theory spectra K(A, I) → K(B, f(I)) induced by the map f . It follows
that there is a long exact sequence of homotopy groups

· · · → Kq(A,B, I) → Kq(A, I) → Kq(B, f(I))
∂−→ Kq−1(A,B, I) → · · · .

We prove the following result.

Theorem C. Let f : A → B be a map of unital associative rings, let I ⊂ A be a
two-sided ideal, and assume that f : I → f(I) is an isomorphism onto a two-sided
ideal of B. Suppose that the prime number p is nilpotent in A. Then for every
integer q, the bi-relative group Kq(A,B, I) is a p-primary torsion group of bounded
exponent.

We remark again that Theorem C implies that the completion map

Kq(A,B, I) → Kq(A,B, I;Zp)

is an isomorphism. The exponent of Kq(A,B, I) in general depends on the degree q.
For example, if A = Fp[x, y]/(xy), B = Fp[x]× Fp[y], and I = (x, y), the exponent
tends to infinity with q [17, Thm. A].

In earlier work [10, Thm. 1], we have proved that for a fixed positive integer v,
the cyclotomic trace map induces an isomorphism of pro-abelian groups

Kq(A,B, I;Z/pvZ) → {TCn
q (A,B, I; p,Z/pvZ)}

from the bi-relative K-groups with Z/pvZ-coefficients to the bi-relative topological
cyclic homology groups with Z/pvZ-coefficients. Hence, in view of Theorem C, we
obtain the following stronger result.

Theorem D. Let f : A → B be a map of unital associative rings, let I ⊂ A be a
two-sided ideal, and assume that f : I → f(I) is an isomorphism onto a two-sided
ideal of B. Suppose that the prime number p is nilpotent in A. Then for every
integer q, the cyclotomic trace map

Kq(A,B, I) → {TCn
q (A,B, I; p)}

is an isomorphism of pro-abelian groups. The pro-abelian group on the right-hand
side is indexed by positive integers n.
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We again remark that Theorem D is equivalent to the statement that, for n large,
the group Kq(A,B, I) embeds as a direct summand in TCn

q (A,B, I; p) and that the
system of cokernels satisfies the Mittag-Leffler condition and has limit zero.

Finally, we mention that the main motivation for the work reported in this paper
was the application of Theorems B and D to the proof in [12, Thm. B] that the
mapping fiber of the cyclotomic trace map K(X) → {TCn(X; p)} satisfies descent
for the cdh-topology on the category of schemes essentially of finite type over an
infinite perfect field k of positive characteristic p, provided that the resolution
of singularities holds over k. The main advantage of the functor {TCn

q (−; p)}
that appears in the statement of Theorems B and D in comparison to the functor
TCq(−; p) that appears in McCarthy’s theorem [23] is that the former preserves
filtered colimits while the latter, in general, does not. Therefore, replacing the
latter functor by the former, the methods of sheaf cohomology become available.

By a pro-object in a category C , we mean a functor to C from the set of positive
integers viewed as a category with one arrow from n+ 1 to n, and by a strict map
between pro-objects, we mean a natural transformation. A general map from the
pro-object X = {Xn} to the pro-object Y = {Yn} is an element of the set

Hompro−C (X,Y ) = lim
n

colim
m

HomC (Xm, Yn).

The category C embeds in pro−C as the full subcategory of constant functors. If
C is abelian, then also pro−C is abelian, and the object X = {Xn} is null if and
only if for all n, there exists m � n such that the structure map Xm → Xn is zero.

1. Non-connective K-theory and the cyclotomic trace map

In this section, we show that the cyclotomic trace map extends to a map from
the Bass completed non-connective K-theory to topological cyclic homology. We
first briefly review topological cyclic homology and the cyclotomic trace map and
refer to [21, Sect. 1] and [16] for the details.

Let A be a unital associative ring. The topological Hochschild spectrum T (A) is
a symmetric orthogonal T-spectrum, where T is the multiplicative group of complex
numbers of modulus 1. Let p be a prime number and let Cpn−1 ⊂ T be the subgroup
of the indicated order. We define

TRn(A; p) = F ((T/Cpn−1)+, T (A))T

to be the fixed point spectrum of the function T-spectrum F ((T/Cpn−1)+, T (A)).
Its homotopy groups are the equivariant homotopy groups

TRn
q (A; p) = [Sq ∧ (T/Cpn−1)+, T (A)]T.

There are two commuting maps of symmetric orthogonal spectra

R,F : TRn(A; p) → TRn−1(A; p)

called the restriction and Frobenius maps. The symmetric orthogonal spectrum
TCn(A; p) is defined to be the homotopy equalizer of the maps R and F , and the
topological cyclic homology spectrum is defined to be the homotopy limit

TC(A; p) = holimTCn(A; p)

with the structure maps induced by the restriction maps. The homotopy groups of
TC(A; p) and the TCn(A; p) are related by the Milnor exact sequence

0 → R1 lim
n

TCn
q+1(A; p) → TCn

q (A; p) → lim
n

TCn
q (A; p) → 0.
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We also consider the homotopy limits

TR(A; p) = holim
R

TRn(A; p),

TF(A; p) = holim
F

TRn(A; p)

of the spectra TRn(A; p) with respect to the restriction and Frobenius maps, re-
spectively. The Frobenius map induces a self-map of TR(A; p), and TC(A; p) is
canonically isomorphic to the homotopy equalizer of this map and the identity
map. Similarly, the restriction map induces a self-map of TF(A; p) and TC(A; p)
is canonically isomorphic to the homotopy equalizer of this map and the identity
map. In particular, we have the following long exact sequences of homotopy groups:

· · · → TCq(A; p) → TRq(A; p)
id−F−−−−→ TRq(A; p)

∂−→ TCq−1(A; p) → · · · ,

· · · → TCq(A; p) → TFq(A; p)
R−id−−−→ TFq(A; p)

∂−→ TCq−1(A; p) → · · · .

It was proved in [20, Thm. F] that if the ring A is an algebra over the commutative
ring k, then the equivariant homotopy groups TRn

q (A; p) are modules over the ring
Wn(k) of Witt vectors of length n in k.

Lemma 1.1. Let A be a unital associative ring and suppose that the prime number
p is nilpotent in A. Then for all integers q and n � 1, the groups TRn

q (A; p) and
TCn

q (A; p) are p-primary torsion groups of bounded exponent.

Proof. Suppose that A is a Z/pNZ-algebra. Then [20, Thm. F, Prop. 2.7.1] shows
that the groups TRn

q (A; p) are Wn(Z/p
N
Z)-modules, and therefore, are annihilated

by multiplication by pNn. Finally, the long exact sequence

· · · −→ TRn−1
q+1 (A; p)

∂−−→ TCn
q (A; p) −→ TRn

q (A; p)
R−F−−−→ TRn−1

q (A; p) −→ · · ·

shows that TCn
q (A; p) is annihilated by pN(2n−1). �

In general, the groups TRq(A; p) and TCq(A; p) are not p-primary torsion groups
of bounded exponent. For example, TC0(Fp; p) = TR0(Fp; p) = Zp.

We consider the diagram of canonical inclusions

A
f+

��

f−

��

A[t]

i+

��

A[t−1]
i−

�� A[t±1].

The following result shows that TRn
∗ (−; p) is a Bass complete theory.

Proposition 1.2. Let A be a unital associative ring. Then for all prime numbers
p, all integers q, and all positive integers n, there is an exact sequence

0 → TRn
q (A; p) →

TRn
q (A[t]; p)
⊕

TRn
q (A[t−1]; p)

→ TRn
q (A[t±1]; p)

∂t−→ TRn
q−1(A; p) → 0,

where the left-hand map is (f∗
+,−f∗

−), and where the middle map is i∗+ + i∗−. In
addition, the right-hand map ∂t has a section given by multiplication by the image
d log[t]n under the cyclotomic trace map of t ∈ K1(Z[t

±1]).
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Proof. Multiplication by d log[t]n defines a map of spectra

α : ΣTRn(A; p) → TRn(A[t±1]; p),

and for later use, we remark that Rα = αR and Fα = αF . Now, the proposition
is equivalent to the statement that the following sequence is short exact:

0 → TRn
q (A; p) → TRn

q (A[t]; p)⊕ TRn
q (A[t−1]; p)⊕ TRn

q−1(A; p)

→ TRn
q (A[t±1]; p) → 0.

Here the upper map is (f∗
+,−f∗

−, 0) and the lower map is i∗+ + i∗− + α∗. We first
prove that the sequence becomes exact after localizing at p. Let r+ : A[t] → A and
r− : A[t−1] → A be the ring homomorphisms that map t and t−1 to 0. Since r+ ◦f+
and r− ◦ f− are the identity maps, we obtain direct sum decompositions

TRn
q (A[t]; p) = TRn

q (A; p)⊕N+ TRn
q (A; p),

TRn
q (A[t−1]; p) = TRn

q (A; p)⊕N− TRn
q (A; p).

The structure of the relative terms N+ TRn
q (A; p) and N− TRn

q (A; p) was deter-
mined in [22, Thm. B]. The proof given in loc. cit. also leads to a formula for
the groups TRn

q (A[t±1]; p); we refer to [18, Thm. 2] for the precise statement. By
comparing the two formulas, we find that the map

TRn
q (A; p)⊕ TRn

q−1(A; p)⊕N+ TRn
q (A; p)⊕N− TRn

q (A; p) → TRn
q (A[t±1]; p)

that, on the first summand, is the map ι induced by the A-algebra homomorphism
i+ ◦ f+ = i− ◦ f−, on the second summand by α∗, and, on the third and fourth
summands, is the compositions of the canonical inclusions of N+ TRn

q (A; p) and

N− TRn
q (A; p) in TRn

q (A[t]; p) and TRn
q (A[t−1]; p) and the maps induced by the ring

homomorphisms i+ and i−, respectively, becomes an isomorphism after localizing
at p. This shows that the sequence above becomes exact after localizing at p.

To prove that the sequence above becomes exact after localizing away from p,
we recall from [19, Prop. 4.2.5] that for every unital associative ring B, the map

(Rn−1−sF s) : TRn
q (B; p) →

∏

0�s<n

TR1
q(B; p)

becomes an isomorphism after localization away from p. Therefore, it suffices to
consider the case n = 1. In this case, the description of TRn

q (A[t]; p),TRn
q (A[t−1]; p),

and TRn
q (A[t±1]; p) that we recalled above is valid without localizing at p; com-

pare [22, Lemma 3.3.1]. This completes the proof. �

Remark 1.3. The definition of the groups N TRn
q (A; p) that appear in the proof of

Proposition 1.2 is completely analogous to that of the groups NKq(A). However,
apart from the definition, there are significant differences between these groups.
On the one hand, after localization at p, the formula in [22, Thm. B] gives a
complete and explicit description of the groups N TRn

q (A; p) in terms of the groups
TRn

q (A; p), whereas the groups NKq(A) generally do not admit a description in
terms of the groups Kq(A). On the other hand, the groups NKq(A) vanish if the
ring A is (left) regular, whereas the groups N TRn

q (A; p) vanish only if A is the zero
ring.
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In general, the sequence of Quillen K-groups

0 → Kq(A) →
Kq(A[t])

⊕
Kq(A[t−1])

→ Kq(A[t±1])
∂t−→ Kq−1(A) → 0

is exact only for positive integers q, and the Bass negative K-groups are recursively
defined so as to make the sequence exact for all integers q [1, Chap. XII, Sect. 7].
We recall from Thomason-Trobaugh [26, Def. 6.4] that the Bass completion can be
accomplished on the level of spectra. This gives a natural transformation

c : KQ(A) → KB(A)

from the Quillen K-theory spectrum KQ(A) to a new spectrum KB(A) such that
the induced map of homotopy groups is an isomorphism in non-negative degrees
and such that the homotopy groups of KB(A) in negative degrees are canonically
isomorphic to the Bass negative K-groups. We may similarly apply the Bass com-
pletion of Thomason-Trobaugh to the topological cyclic homology functor.

Corollary 1.4. The Bass completion map

c : TCq(A; p) → TCB
q (A; p)

is an isomorphism for all integers q.

Proof. Proposition 1.2 and the Milnor exact sequence show that the sequence

0 → TRq(A; p) →
TRq(A[t]; p)

⊕
TRq(A[t−1]; p)

→ TRq(A[t±1]; p)
∂t−→ TRq−1(A; p) → 0

is exact for all integers q and that the right-hand map ∂t has a section given by
multiplication by the image d log[t] under the cyclotomic trace of t ∈ K1(Z[t

±1]).
This implies that the Bass completion map

c : TRq(A; p) → TRB
q (A; p)

is an isomorphism for all integers q. This, in turn, implies that the Bass completion
map of the statement is an isomorphism for all integers q. �

The cyclotomic trace map is a natural map of symmetric spectra

tr = trA : KQ(A) → TC(A; p).

It was originally defined by Bökstedt-Hsiang-Madsen [2], but a technically better
construction was later given by Dundas-McCarthy [7, Sect. 2.0]. Using the latter
construction, we showed in [9, Appendix] that for a commutative ring k, trk is a
map of graded rings, and that for an algebra A over a commutative ring k, trA is
a trk-linear map of graded modules. Since the Bass completion of [26, Def. 6.4] is
functorial, we obtain a commutative diagram of natural transformations

KQ(A)
tr ��

c

��

TC(A; p)

c

��

KB(A)
trB �� TCB(A; p),

where the lower horizontal map is the map of Bass completed theories induced
by the cyclotomic trace, and where, by Corollary 1.4, the right-hand vertical map
is a weak equivalence. This gives the desired extension of the cyclotomic trace
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map to a map from the non-connective Bass completed K-theory spectrum to the
Bass completed topological cyclic homology spectrum. In the following, we do not
distinguish the topological cyclic homology spectrum and its Bass completion, and
we write

tr : K(A) → TC(A; p)

for the lower horizontal map in the diagram above.

2. The relative theorem

The proofs of Theorems A and B are based on the description in [15, Sect. 2] of
the topological Hochschild T-spectrum of split square zero extensions of rings. We
briefly recall this description.

We let B be a unital associative ring, and let I be a B-B-bimodule. Then the
ring A = B � I defined by the product abelian group B × I with multiplication

(b, x) · (b′, x′) = (bb′, bx′ + xb′)

is a split square zero extension of the ring B by the ideal I, and up to isomorphism,
every split square zero extension of rings is of this form. In this situation, we recall
from [15, Prop. 2.1] that there is a wedge decomposition of T-spectra

∨

r�1

T (B � I; r)
∼−→ T (A, I),

where the wedge sum ranges over the set of positive integers. We remark that the
spectrum T (B�I; r) was denoted Tr(B⊕I) in op. cit. We write the induced direct
sum decomposition of equivariant homotopy groups as

⊕

r�1

TRn
q (B � I; r; p)

∼−→ TRn
q (A, I; p).

The Frobenius map F : TRn
q (A, I; p) → TRn−1

q (A, I; p) preserves the direct sum
decomposition while the restriction map R : TRn

q (A, I; p) → TRn−1
q (A, I; p) maps

the summand indexed by the positive integer r divisible by p to the summand
indexed by r/p and annihilates the remaining summands. Moreover, it follows
from [20, Thm. 2.2] that there is a long exact sequence

· · · → Hq(Cpn−1 , T (B � I; r)) → TRn
q (B � I; r; p)

R−→ TRn−1
q (B � I; r/p; p) → · · · ,

where the right-hand group is understood to be zero if p does not divide r. The
left-hand group is the qth group homology of Cpn−1 with coefficients in T (B� I; r)
and is the abutment of the strongly convergent spectral sequence

E2
s,t = Hs(Cpn−1 ,TR1

t (B � I; r; p)) ⇒ Hs+t(Cpn−1 , T (B � I; r));

see e.g. [18, Sect. 4]. By the definition of the T-spectrum T (B�I; r), the homotopy
groups TR1

t (B � I; r; p) = πtT (B � I; r) are zero for t < r− 1. Hence, the spectral
sequence and long exact sequence above imply that the restriction map

R : TRn
q (B � I; r; p) → TRn−1

q (B � I; r/p; p)

is an isomorphism for q < r − 1, and an epimorphism for q = r − 1. In particular,
for every n and q, only finitely many summands in the direct sum decomposition
of the group TRn

q (A, I; p) are non-zero.
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Lemma 2.1. Let p be a prime number, and let X be a spectrum whose homotopy
groups are p-primary torsion groups of bounded exponent. Then for all integers q,
the canonical map defines an isomorphism of pro-abelian groups

πq(X)
∼−→ {πq(X,Z/pvZ)}.

Here πq(X,Z/pvZ) denotes the qth homotopy groups with Z/pvZ-coefficients, and
the pro-abelian group on the right-hand side is indexed by positive integers v.

Proof. The coefficient sequences give a short exact sequence of pro-abelian groups

0 → {πq(X)⊗ Z/pvZ} → {πq(X,Z/pvZ)} → {TorZ1 (πq−1(X),Z/pvZ)} → 0,

and the map of the statement factors through the canonical projection

πq(X) → {πq(X)⊗ Z/pvZ}.
The latter map is an isomorphism of pro-abelian groups, since the structure maps
in the target pro-abelian group are isomorphisms if pv is larger than the exponent
of πq(X). Similarly, the pro-abelian group on the right-hand side in the short exact
sequence above is isomorphic to zero, since the structure map

TorZ1(πq−1(X),Z/p2vZ) → TorZ1 (πq−1(X),Z/pvZ)

is zero if pv is larger than the exponent of πq−1(X). �

Theorem 2.2. Let A be a unital associative ring and I ⊂ A a two-sided nilpotent
ideal. Suppose that the prime number p is nilpotent in A. Then for every integer
q, the canonical map defines an isomorphism of pro-abelian groups

TCq(A, I; p)
∼−→ {TCn

q (A, I; p)}.

Proof. We consider the following diagram of pro-abelian groups in which the maps
are the canonical maps:

TCq(A, I; p) ��

��

{TCn
q (A, I; p)}

��

{TCq(A, I; p,Z/pvZ)} �� {TCn
q (A, I; p,Z/pvZ)}.

We have previously proved in [11, Thm. 2.1.1] that the the lower horizontal map is
an isomorphism. Moreover, by Lemma 1.1, the groups TCn

q (A, I; p) are p-primary
torsion groups of bounded exponent, and hence Lemma 2.1 shows that the right-
hand vertical map is an isomorphism. Therefore, the statement of the theorem
is equivalent to the statement that the left-hand vertical map is an isomorphism.
Hence, by Lemma 2.1, it will suffice to show that the groups TCq(A, I; p) are p-
primary torsion groups of bounded exponent.

We first assume that I ⊂ A is a square zero ideal and that the canonical pro-
jection of A onto the quotient ring B = A/I admits a ring section. We use the
wedge decomposition of T (A, I) which we recalled above to give a formula for the
spectrum TC(A, I; p). First, for the homotopy limit with respect to F , we find

TF(A, I; p) = holim
F

TRn(A, I; p)
∼←− holim

F

∨

r�1

TRn(B � I; r; p)

∼−→
∏

r�1

holim
F

TRn(B � I; r; p) =
∏

r�1

TF(B � I; r; p),
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where the second map is a weak equivalence since, for every n and q, the homotopy
groups TRn

q (B � I; r; p) are non-zero for only finitely many r. Writing r = pv−1j,
we may rewrite the product on the right-hand side as

∏

r�1

TF(B � I; r; p) =
∏

j∈Ip

∏

v�0

TF(B � I; pv−1j; p),

where Ip denotes the set of positive integers not divisible by p. Then the restriction
map takes the factor indexed by (j, v) to the factor indexed by (j, v − 1). Hence,
taking the homotopy equalizer of the restriction map and the identity map, we
obtain a weak equivalence

TC(A, I; p) �
∏

j∈Ip

holim
R

TF(B � I; pv−1j; p).

We argued in the discussion preceding Lemma 2.1 that the restriction map

R : TRn
q (B � I; pv−1j; p) → TRn−1

q (B � I; pv−2j; p)

is an isomorphism if q + 1 < pv−1j. Hence, the Milnor exact sequence shows that
for 1 � j � q + 1, the canonical projection induces an isomorphism

πq(holim
R

TF(B � I; pv−1j; p))
∼−→ TFq(B � I; ps−1j; p),

where s = sp(q, j) is the unique integer such that ps−1j � q+1 < psj, and that for
q + 1 < j, the homotopy group on the left-hand side vanishes. Therefore, to show
that TCq(A, I; p) is a p-primary torsion group of bounded exponent, it suffices to
show that for all integers q and s � 1 and all j ∈ Ip, TFq(B � I; ps−1j; p) is a
p-primary torsion group of bounded exponent. Now, from [20, Thm. 2.2], we have
the following cofibration sequence of spectra:

H·(Cpn−1 , T (B � I; ps−1j)) → TRn(B � I; ps−1j; p)

R−→ TRn−1(B � I; ps−2j; p)
∂−→ ΣH·(Cpn−1 , T (B � I; ps−1j)).

The Frobenius maps induce maps between these cofibration sequences, and taking
the homotopy limit, we obtain the following cofibration sequence of spectra:

holim
F

H·(Cpn−1 , T (B � I; ps−1j)) → TF(B � I; ps−1j; p)

R−→ TF(B � I; ps−2j; p)
∂−→ Σholim

F
H·(Cpn−1 , T (B � I; ps−1j)).

Hence, by induction on s � 1, it will suffice to prove that for all s � 1 and j ∈ Ip,
the homotopy groups of the left-hand term are p-primary torsion groups of bounded
exponent. We write r = ps−1j and recall the spectral sequence

E2
s,t = Hs(Cpn−1 ,TR1

t (B � I; r; p)) ⇒ Hs+t(Cpn−1 , T (B � I; r; p));

see [18, Sect. 4] for a detailed discussion. Since the spectral sequence induces a finite
filtration of the abutment, we obtain a spectral sequence of pro-abelian groups

{E2
s,t} = {Hs(Cpn−1 ,TR1

t (B � I; r; p))} ⇒ {Hs+t(Cpn−1 , T (B � I; r; p))},
where the pro-abelian groups are indexed by integers n � 1, and where the structure
maps in the pro-abelian groups are the Frobenius maps. Since the Cpn−1-action on

the spectrum TR1(B � I; r; p) is obtained from a T-action, the induced action on
the homotopy groups TR1

t (B � I; r; p) is trivial. Moreover, the homotopy groups
TR1

t (B�I; r; p) are annihilated by the same power of p that annihilates B. It follows
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that for n large, Hs(Cpn−1 ,TR1
t (B � I; r; p)) is isomorphic to TR1

t (B � I; r; p). On
E2-terms, the Frobenius map induces the transfer map in group homology

F : Hs(Cpn−1 ,TR1
t (B � I; r; p)) → Hs(Cpn−2 ,TR1

t (B � I; r; p))

which is readily evaluated [18, Lemma 6]. We conclude that there are isomorphisms
of pro-abelian groups

{E2
s,t} ∼=

{
TR1

t (B � I; r; p) (s odd),

0 (s even).

Therefore, the spectral sequence above shows that for all integers q, the pro-abelian
group {Hq(Cpn−1 , T (B � I; r))} is isomorphic to a constant pro-abelian group and
that this constant pro-abelian group is a p-primary torsion group of bounded ex-
ponent. But then the canonical map

πq(holim
F

H·(Cpn−1 , T (B � I; r))) → {Hq(Cpn−1 , T (B � I; r))}

is an isomorphism of pro-abelian groups, and hence also the left-hand group is a
p-primary torsion group of bounded exponent as desired. This completes the proof
of the theorem in the case where A is a split square zero extension.

We next let I ⊂ A be any square zero ideal and show that for all integers q,
the pro-abelian group {TCn

q (A, I; p)} is isomorphic to a p-primary torsion group of
bounded exponent. It then follows from the Milnor exact sequence that the map
of the statement is an isomorphism of pro-abelian groups. We first choose a weak
equivalence of simplicial rings

εA/I : A/I[−] → A/I

such that the ring A/I[k] is a free unital associative ring for all k � 0. Then the
map εA : A[−] → A defined by the pull-back diagram of simplicial rings

A[−] ��

εA

��

A/I[−]

εA/I

��

A �� A/I

again is a weak equivalence. In this case, there is a spectral sequence

E1
s,t = TCn

t (A[s], I; p) ⇒ TCn
s+t(A, I; p),

for every integer n � 1; compare the proof of Lemma 3.8 below. Since the spectral
sequence is concentrated in the first quadrant, we obtain, as n varies, a spectral
sequence of pro-abelian groups

{E1
s,t} = {TCn

t (A[s], I; p)} ⇒ {TCn
s+t(A, I; p)}.

Moreover, since A/I[k] is a free unital associative ring, the canonical projection
from A[k] onto A/I[k] admits a ring section. Therefore, by the case considered
earlier, we conclude that for all integers s and t, the pro-abelian group {E1

s,t} is
isomorphic to a constant pro-abelian group. This implies that for all integers q, the
pro-abelian group {TCn

q (A, I; p)} is isomorphic to a constant pro-abelian group.
Indeed, the category of constant pro-abelian groups is a full abelian subcategory of
the abelian category of all pro-abelian groups. This completes the proof in the case
where I ⊂ A is a square zero ideal.
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Finally, let I ⊂ A be a two-sided ideal such that Im = 0. We show by induction
on m � 2 that the map of the statement is an isomorphism of pro-abelian groups.
The case m = 2 was proved above, so we let m > 2 and assume that the statement
has been proved for smaller m. We consider the long exact sequence

· · · → TCq(A, Im−1; p) → TCq(A, I; p) → TCq(A/Im−1, I/Im−1; p) → · · · .

By induction, the right-hand and left-hand groups both are p-torsion groups of
bounded exponents, and therefore, so is the middle group. This completes the
proof. �

Proof of Theorem A. The arithmetic square [3, Prop. 2.9] gives rise to the following
long exact sequence where the two products range over all prime numbers:

· · · Kq(A, I)

∏
� Kq(A, I;Z�)

Kq(A, I)⊗Q

⊕ (
∏

� Kq(A, I;Z�))⊗Q · · · .�� �� �� ��

The theorem of Goodwillie [14, Main Thm.] identifiesKq(A, I)⊗Q with the relative

negative cyclic homology group HC−
q (A⊗Q, I ⊗Q) which, in turn, is zero, since p

is nilpotent in A. Similarly, McCarthy’s theorem [23, Main Thm.] shows that for
every prime number �, the cyclotomic trace map induces an isomorphism

Kq(A, I;Z�)
∼−→ TCq(A, I; �,Z�).

Since p is nilpotent in A, this group vanishes for � 
= p by Lemma 1.1. Moreover,
Theorem 2.2 implies that the completion map TCq(A, I; p) → TCq(A, I; p,Zp) is an
isomorphism and that the common group is a p-primary torsion group of bounded
exponent. We conclude that the cyclotomic trace is an isomorphism

Kq(A, I)
∼−→ TCq(A, I; p)

and that Kq(A, I) is a p-primary torsion group of bounded exponent as stated. �

Proof of Theorem B. The map of the statement is equal to the composition

Kq(A, I) → TCq(A, I; p) → {TCn
q (A, I; p)}

of the cyclotomic trace map and the canonical map. We saw in the proof of Theorem
A above that the former map is an isomorphism, and we proved in Theorem 2.2
that the latter map is an isomorphism. The theorem follows. �

3. The bi-relative theorem

In this section, we prove Theorems C and D of the introduction. We view the
ideal I as an associative ring without unit and form the associated associative ring
with unit Z � I defined to be the product abelian group Z× I with multiplication

(a, x) · (a′, x′) = (aa′, ax′ + xa′ + xx′).

We recall that Suslin has proved in [25, Thm. A] that if TorZ�I
q (Z,Z) vanishes for

all q > 0, then the bi-relative group Kq(A,B, I) vanishes for all q. We prove the
following result in a similar manner.
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Theorem 3.1. Let f : A → B be a map of unital associative rings, let I ⊂ A be a
two-sided ideal and assume that f : I → f(I) is an isomorphism onto a two-sided

ideal of B. Suppose that the pro-abelian group {TorZ�(Im)
q (Z,Z)} is zero for all

positive integers q. Then the canonical map

Kq(A,B, I) → {Kq(A/Im, B/Im, I/Im)}
is an isomorphism of pro-abelian groups for all integers q.

Proof. We have a long exact sequence of pro-abelian groups

· · · → {Kq(A,B, Im)} → Kq(A,B, I) → {Kq(A/Im, B/Im, I/Im)} → · · ·
and must show that the left-hand term is zero for all integers q. Let GL(A/Im) be
the image of the map GL(A) → GL(A/Im) induced by the canonical projection.
The mapping fiber F (A, Im) of the induced map BGL(A)+ → BGL(A/Im)+ is
a connected space with πq(F (A, Im)) = Kq(A, Im) for q � 1. Since Kq(A,B, Im)
vanishes for q � 0 by [1, Thm. XII.8.3], it will suffice to show that the map

{πq(F (A, Im))} → {πq(F (B, Im))}
induced by f is an isomorphism of pro-abelian groups for all q � 1. Now, the
spaces F (A, Im) and F (B, Im) are H-spaces and hence simple. Therefore, by the
generalized Whitehead theorem [24, Cor. 4.3], it will suffice to show that the map

{Hq(F (A, Im);Z)} → {Hq(F (B, Im);Z)}
induced by f is an isomorphism of pro-abelian groups for all q � 1. The proof of
this, in turn, is completely analogous to the (rather long) proof of [10, Prop. 1.3]. �

Remark 3.2. We do not know whether or not the canonical map

Kq(A,B, I) → {Kq(A/Im, B/Im, I/Im)}
is an isomorphism of pro-abelian groups if the assumption that the pro-abelian

groups {TorZ�(Im)
q (Z,Z)} be zero is omitted.

We proceed to show in Proposition 3.7 below that the hypotheses of Theorem
3.1 are satisfied if the ideal I can be embedded as an ideal of a free unital Fp-
algebra. The proof relies on the non-standard homological algebra developed in
Suslin’s paper [25], or rather a slight generalization thereof, which we first discuss.

Let k be a commutative ring and let {Im} be a pro-non-unital associative k-
algebra. We define a left {Im}-module to be a pro-k-module {Mm} together with
a structure of a left Im-module on Mm for every m � 1 such that the diagrams

Im ⊗k Mm
��

��

Mm

��

In ⊗k Mn
�� Mn

commute. Here the horizontal maps are the module structure maps and the vertical
maps are induced from the structure maps in the pro-k-modules {Im} and {Mm}.
A homomorphism from the left {Im}-module {Mm} to the left {Im}-module {M ′

m}
is defined to be a strict map of pro-k-modules f : {Mm} → {M ′

m} such that the
map fm : Mm → M ′

m is Im-linear for all m � 1. An extended left {Im}-module
is a left {Im}-module of the form {Im ⊗k Lm}, where {Lm} is a pro-k-module.
The left {Im}-module {Pm} is pseudo-free if there exists an isomorphism of left
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{Im}-modules ϕ : {Im ⊗k Lm} → {Pm} from an extended left {Im}-module such
that each Lm is a free k-module. The homomorphism f : {Pm} → {Mm} from
the pseudo-free left {Im}-module {Pm} to the left {Im}-module {Mm} is special
if there exists an isomorphism ϕ : {Im ⊗k Lm} → {Pm} with each Lm free and a
strict map of pro-k-modules g : {Lm} → {Mm} such that the diagrams

Im ⊗k Lm
ϕm ��

id⊗gm

��

Pm

fm

��

Im ⊗k Mm
μm �� Mm

commute. Here the lower horizontal map is the module structure map.

Lemma 3.3. Let k be a commutative ring and {Im} a pro-non-unital associative
k-algebra. Then for all q � 0, the special homomorphism f : {Pm} → {Mm} from
the pseudo-free left {Im}-module {Pm} to the left {Im}-module {Mm} induces the
zero map of pro-k-modules

{Tork�Im
q (k, Pm)} → {Tork�Im

q (k,Mm)}.

Proof. There exists a commutative diagram

Im ⊗k Lm ∼
ϕm ��

ιm⊗id

��

Pm

fm

��

(k � Im)⊗k Lm
g̃m �� Mm,

where g̃m((a, x)⊗ y) = agm(y) + xgm(y). For q = 0, the map ιm induces the zero
map k ⊗k�Im Im → k ⊗k�Im (k � Im), and for q > 0,

Tork�Im
q (k, (k � Im)⊗ Lm) = Tork�Im

q (k, k � Im)⊗ Lm = 0.

The lemma follows. �

Proposition 3.4. Let k be a commutative ring, let {Im} be a pro-non-unital asso-
ciative k-algebra, and assume that for all q > 0, the pro-k-module

{Tork�Im
q (k, k)}

is zero. Let Fq, q � 0, be functors from the category of left {Im}-modules to the
category of pro-abelian groups and assume that the following (i)–(ii) hold.

(i) If {Mm[−]} → {Mm} is an augmented simplicial left {Im}-module such that
the associated chain complex of pro-abelian groups is exact, then there is a spectral
sequence of pro-abelian groups

E1
s,t = Ft({Mm[s]}) ⇒ Fs+t({Mm})

whose edge-homomorphism Ft({Mm[0]}) → Ft({Mm}) is equal to the map induced
by the augmentation ε : {Mm[0]} → {Mm}.

(ii) If f : {Pm} → {Mm} is a special homomorphism, then for all q � 0, the
induced map of pro-abelian groups f∗ : Fq({Pm}) → Fq({Mm}) is zero.
Then for every pseudo-free left {Im}-module {Pm} and every q � 0, the pro-abelian
group Fq({Pm}) is zero.
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Proof. This is proved as in [10, Prop. 1.7] by induction on q � 0. The additional
assumption in loc. cit. that for every left {Im}-module {Mm}, the pro-abelian group
F0({Mm}) be zero is unnecessary. Indeed, the proof of the induction step given in
loc. cit. also proves the case q = 0. �

We remark that, in Proposition 3.4, the functors Fq are not assumed to be
additive.

Let α : k′ → k be a ring homomorphism and let {Im} be a pro-non-unital as-
sociative k-algebra. We define {Iαm} to be {Im} considered as a pro-non-unital
associative k′-algebra via α and call it the associated pro-non-unital associative
k′-algebra. Moreover, if {Mm} is a left {Im}-module, we define {Mα

m} to be {Mm}
considered as a left {Iαm}-module via α and call it the associated left {Iαm}-module.

Lemma 3.5. Let {Im} be a pro-non-unital associative k-algebra, let {Pm} be a
pseudo-free left {Im}-module, let f : {Pm} → {Mm} be a special homomorphism,
and suppose that α : k′ → k is a surjective ring homomorphism. Then {Pα

m} is a
pseudo-free left {Iαm}-module and f : {Pα

m} → {Mα
m} is a special homomorphism.

Proof. Let ϕ : {Im ⊗k Lm} → {Pm} be an isomorphism such that each Lm is a
free k-module. For every m, we choose a free k′-module L′

m and an isomorphism
of k-modules ψm : k ⊗k′ L′

m → Lm. We define ϕ′
m : Im ⊗k′ L′

m → Pm to be the
isomorphism of left Im-modules defined by the composition

Im ⊗k′ L′
m → Im ⊗k k ⊗k′ L′

m → Im ⊗k Lm → Pm

of the canonical isomorphism and the isomorphisms id⊗ψm and ϕm. Now, let
hm : Lm+1 → Lm be the structure map in the pro-k-module {Lm}. Then there
exist a k′-linear map h′

m : L′
m+1 → L′

m that makes the diagram

k ⊗k′ L′
m+1

ψm+1
��

id⊗h′
m

��

Lm+1

hm

��

k ⊗k′ L′
m

ψm �� Lm

commute. Indeed, this follows from the surjectivity of the following composite map:

Homk′(L′
m+1, L

′
m) → Homk′(L′

m+1, k ⊗k′ L′
m)

→ Homk′(L′
m+1, Lm) → Homk(k ⊗k′ L′

m+1, Lm).

Here the first map is induced by the canonical map and is surjective, since α : k′ → k
is surjective and since L′

m+1 is free, and hence projective; the second map is the
isomorphism induced by ψm; the third map is the canonical isomorphism. We
now define {L′

m} to be the pro-k′-module with the maps h′
m : L′

m+1 → L′
m as the

structure maps. Then the map ϕ′ : {Iαm ⊗k′ L′
m} → {Pα

m} is an isomorphism of left
{Iαm}-modules, and hence, {Pα

m} is a pseudo-free left {Iαm}-module as stated.
Finally, let g : {Lm} → {Mm} be a map of pro-k-modules such that the diagram

Im ⊗k Lm
ϕm ��

id⊗gm

��

Pm

fm

��

Im ⊗k Mm
μm �� Mm
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commutes. We define g′m : L′
m → Mα

m to be the k′-linear map given by the compo-
sition of the canonical map L′

m → k⊗k′ L′
m, the isomorphism ψm, and the map gm.

Then the map g′ : {L′
m} → {Mα

m} is a map of pro-k′-modules and the diagrams

Iαm ⊗k′ L′
m

ϕ′
m ��

id⊗g′
m

��

Pα
m

fm

��

Iαm ⊗k′ Mα
m

μα
m �� Mα

m

commute. This shows that f : {Pα
m} → {Mα

m} is special as stated. �

Proposition 3.6. Let α : k′ → k be a surjective map of commutative rings, let {Im}
a pro-non-unital associative k-algebra, and let {Iαm} be the associated pro-non-unital
associative k′-algebra. Assume that the pro-k-module

{Tork�Im
q (k, k)}

is zero for all integers q > 0. Then, the pro-k′-module

{Tork
′
�Iα

m
q (k′, k′)}

is zero for all integers q > 0.

Proof. The short exact sequence of left k′ � Iαm-modules

0 → Iαm → k′ � Iαm → k′ → 0

induces a long exact sequence of pro-abelian groups

· · · → {Tork
′
�Iα

m
q (k′, Iαm)} → {Tork

′
�Iα

m
q (k′, k′ � Iαm)} → {Tork

′
�Iα

m
q (k′, k′)} → · · · .

For q > 0, the middle term is zero, and for q = 0, the left-hand map is zero. Hence,
for all q > 0, the boundary map is an isomorphism of pro-abelian groups

{Tork
′
�Iα

m
q (k′, k′)} ∼−→ {Tork

′
�Iα

m
q−1 (k′, Iαm)}.

Therefore, the statement will follow from Proposition 3.4 once we verify that the
following functors Fq, q � 0, from the category of left {Im}-modules to the category
of pro-abelian groups satisfy the hypotheses (i)–(ii) of loc. cit.:

Fq({Mm}) = {Tork
′
�Iα

m
q (k′,Mα

m)}.
Indeed, considered as a left {Im}-module, {Im} is pseudo-free.

To prove hypothesis (i), we let ε : {Mm[−]} → {Mm} be an augmented simplicial
left {Im}-module and consider the bi-simplicial symmetric spectrum

X[s, t] = B(Hk′, H(k′ � Iαm), HMα
m[s])[t] = Hk′ ∧H(k′ � Iαm)∧t ∧HMα

m[s]

given by the two-sided bar-construction of the Eilenberg-Mac Lane spectra associ-
ated with the ring k′ � Iαm and the left and right modules k′ and Mα

m[s]. We recall
that the three possible ways of forming the geometric realization of X[−,−] lead
to the same result in the sense that there are canonical isomorphisms

|[s] �→ |[t] �→ X[s, t]|| ∼−→ |[n] �→ X[n, n]| ∼←− |[t] �→ |[s] �→ X[s, t]||.
For the left-hand side, the skeleton filtration gives rise to a spectral sequence that
converges to the homotopy groups of the geometric realization. By [8, Thm. 2.1],
we obtain the identification

E1
s,t = πt(|[i] �→ X[s, i]|) = Tor

k′
�Iα

m
t (k′,Mα

m[s]).
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For the right-hand side, the augmentation ε induces a weak equivalence

|[s] �→ X[s, t]| ∼−→ B(Hk′, H(k′ � Iαm), HMα
m)[t]

for each t. By [13, Prop. VII.3.6], the induced map of realizations

|[t] �→ |[s] �→ X[s, t]|| ∼−→ |[t] �→ B(Hk′, H(k′ � Iαm), HMα
m)[t]|.

is a weak equivalence. We conclude from [8, Thm. 2.1] that

πq(|[t] �→ |[s] �→ X[s, t]||) = Tork
′
�Iα

m
q (k′,Mα

m).

Hence, we have a spectral sequence

E1
s,t = Tor

k′
�Iα

m
t (k′,Mα

m[s]) ⇒ Tor
k′

�Iα
m

s+t (k′,Mα
m),

which proves hypothesis (i).
To prove hypothesis (ii), let f : {Pm} → {Mm} be a special homomorphism

of left {Im}-modules. Then Lemma 3.5 shows that f : {Pα
m} → {Mα

m} is a special
homomorphism of left {Iαm}-modules, and hence, Lemma 3.3 shows that the induced
map f∗ : Fq({Pm}) → Fq({Mm}) is zero for q � 0, as required. �

Proposition 3.7. Let I be a two-sided ideal in a free unital associative Fp-algebra.
Then for all positive integers q, the following pro-abelian group is zero:

{TorZ�(Im)
q (Z,Z)}.

Proof. By Proposition 3.6, it suffices to show that for all q > 0, the pro-abelian
group

{TorFp�(Im)
q (Fp,Fp)}

is zero. Since Fp is a field, the Tor-groups in question are canonically isomorphic
to the homology groups of the normalized bar-complex

B(Fp,Fp � Im,Fp) = Fp ⊗Fp�Im B(Fp � Im,Fp),

which takes the form

· · · dm−−→ (Im)⊗n dm−−→ · · · dm−−→ (Im)⊗2 dm−−→ Im
dm−−→ Fp

with differential

dm(x1 ⊗ · · · ⊗ xn) =
n−1∑

i=1

(−1)ix1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn.

We define a chain homotopy from the chain map

ι : B(Fp,Fp � I2m,Fp) → B(Fp,Fp � Im,Fp)

induced by the canonical inclusion to the chain map that is zero in positive degrees
and the identity map in degree 0. Replacing I by Im, we may assume that m = 1.
Suppose that I is a two-sided ideal in the free unital associative Fp-algebra F .
Then, as a left F -module, I is free and hence projective [4, Cor. 2.4.3]. It follows
that the multiplication μ : F ⊗ I → I has an F -linear section α : I → F ⊗ I. We
remark that α restricts to an I-linear map α : I2 → I ⊗ I. Then

s(x1 ⊗ · · · ⊗ xn) = (−1)nx1 ⊗ · · · ⊗ xn−1 ⊗ α(xn)
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is the desired chain-homotopy. We conclude that for q > 0, the canonical inclusion
of I2m into Im induces the zero map

TorFp�I2m

q (Fp,Fp) → TorFp�Im

q (Fp,Fp).

This completes the proof. �
It was proved by Goodwillie [14, Lemma I.2.2] that the relative K-theory of a

nilpotent extension of simplicial rings may be evaluated degreewise. We need the
following analogous result for bi-relative K-theory.

Lemma 3.8. Let f : A → B be a map of unital associative rings and I ⊂ A a two-
sided ideal such that f : I → f(I) is an isomorphism onto a two-sided ideal of B.
Let f [−] : A[−] → B[−] be a map of simplicial unital associative rings and I[−] a
simplicial two-sided ideal of A[−] such that f [−] : I[−] → f(I[−]) is an isomorphism
onto a simplicial two-sided ideal of B[−]. In addition, let εA : A[−] → A and
εB : B[−] → B be weak equivalences of simplicial unital associative rings such that
f ◦ εA = εB ◦ f [−] and such that εA restricts to a weak equivalence of simplicial
associative rings εI : I[−] → I. Then there is a natural spectral sequence

E1
s,t = Kt(A[s], B[s], I[s]) ⇒ Ks+t(A,B, I).

Proof. We have a spectral sequence

E1
s,t = Kt(A[s], B[s], I[s]) ⇒ πs+t(|[n] �→ K(A[n], B[n], I[n])|)

obtained from the skeleton filtration of the geometric realization. Hence, it suffices
to construct a weak equivalence between the symmetric spectrum K(A,B, I) and
the symmetric spectrum |[n] �→ K(A[n], B[n], I[n])|. The definition ofK-theory was
extended to simplicial rings by Waldhausen [27]. Moreover, by op. cit., Prop. 1.1,
the extended functor preserves weak equivalence such that, in the case at hand, the
augmentations induce a weak equivalence

ε∗ : K(A[−], B[−], I[−])
∼−→ K(A,B, I).

We proceed to relate the left-hand side to the symmetric spectrum given by the
geometric realization above. Let Δ[n][−] be the simplicial standard n-simplex whose
set of m-simplices Δ[n][m] is the set non-decreasing maps from [m] to [n]. Then if
S[−] is a simplicial ring, we define S[−,−] to be the bi-simplicial ring

S[m,n] = Hom(Δ[m][−]×Δ[n][−], S[−]),

where the right-hand side is the set of maps of simplicial sets. For every n, the
canonical projection gives rise to a map of simplicial rings pr∗1 : S[−] → S[−, n],
which is a weak equivalence. It induces a map of symmetric spectra

pr∗1 : K(A[−], B[−], I[−]) → |[n] �→ K(A[−, n], B[−, n], I[−, n])|,
which is a weak equivalence by [27, Prop. 1.1] and [13, Prop. VII.3.6]. Similarly,
we have the map of simplicial rings pr∗2 : S[n] → S[−, n], where the ring S[n] is
considered as a constant simplicial ring, which induces a map of symmetric spectra

pr∗2 : |[n] �→ K(A[n], B[n], I[n])| → |[n] �→ K(A[−, n], B[−, n], I[−, n])|.
The composition of the map of homotopy groups induced by pr∗2, the inverse of
the map of homotopy groups induced by the weak equivalence pr∗1, and the map of
homotopy groups induced by the weak equivalence ε∗ defines a natural map

fK : πq(|[n] �→ K(A[n], B[n], I[n])|) → Kq(A,B, I),
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and the lemma will follow if we prove that this map is an isomorphism.
By the arithmetic square [3, Prop. 2.9], it will suffice to show that the map f

induces an isomorphism of rational homotopy groups and, for every prime number
�, an isomorphism of homotopy groups with Z/�Z-coefficients. For the rational
homotopy groups, we compare the bi-relative K-groups to the corresponding bi-
relative negative cyclic and cyclic homology groups. By [14, Sect. I.3], the latter
are also defined for simplicial rings. Hence, we may follow the proceedure above
and define maps fHC− and fHC that make the following diagram commute:

πq(|[k] �→ K(A[k], B[k], I[k])|)⊗Q
fK ��

��

Kq(A,B, I)⊗Q

��

πq(|[k] �→ HC−(A[k]⊗Q, B[k]⊗Q, I[k]⊗Q)|)
fHC−

�� HC−
q (A⊗Q, B ⊗Q, I ⊗Q)

πq−1(|[k] �→ HC(A[k], B[k], I[k])|)⊗Q
fHC ��

��

HCq−1(A,B, I)⊗Q.

��

By theorems of Cortiñas [5, Thm. 0.1] and Cuntz-Quillen [6], the vertical maps are
isomorphisms. Moreover, it follows immediately from the definition of cyclic ho-
mology that the lower horizontal map is an isomorphism. Finally, for the homotopy
groups with Z/�Z-coefficients, we compare the bi-relative K-groups to the corre-
sponding bi-relative topological cyclic homology groups. The latter are defined for
simplicial rings, and hence, we obtain the following commutative diagram:

πq(|[k] �→ K(A[k], B[k], I[k])|;Z/�Z) fK ��

��

Kq(A,B, I;Z/�Z)

��

{πq(|[k] �→ TCn(A[k], B[k], I[k]; �)|;Z/�Z)} fTC �� {TCn
q (A,B, I; �,Z/�Z)}.

It follows from our previous result [10, Thm. 1] that the vertical maps are isomor-
phisms of pro-abelian groups. We must show that the lower horizontal map is an
isomorphism of pro-abelian groups. We prove the stronger statement that the map
of integral homotopy groups

fTC : πq(|[k] �→ TCn(A[k], B[k], I[k]; �)| → TCn
q (A,B, I; �)

is an isomorphism for all integers q and n � 1. The cofibration sequence

TCn(−; �) → TRn(−; �) → TRn−1(−; �) → ΣTCn(−; �)

shows that it will suffice to show that the map

fTR : πq(|[k] �→ TRn(A[k], B[k], I[k]; �)|) → TRn
q (A,B, I; �)

is an isomorphism for all integers q and n � 1. We recall the following cofibration
sequence from [20, Thm. 2.2]:

H·(C�n−1 , T (−)) → TRn(−; �) → TRn−1(−; �) → ΣH·(C�n−1 , T (−)).

The functor H·(C�n−1 ,−) commutes with geometric realization, up to canonical
isomorphism, and preserves weak equivalences. Therefore, it will suffice to show
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that fTR is an isomorphism for n = 1 and for all q. Finally, the functor TR1(−; �)
is the topological Hochschild homology functor THH(−), and we wish to show that

fTHH : πq(|[k] �→ THH(A[k], B[k], I[k])|) → THHq(A,B, I)

is an isomorphism for all integers q. This follows immediately from the definition
of topological Hochschild homology. �

Proof of Theorem C. We first assume that (A,B, I) is a triple of Fp-algebras and
that I admits an embedding as a two-sided ideal in a free unital associative Fp-
algebra. In this case, Proposition 3.7 shows that the pro-abelian group

{TorZ�(Im)
q (Z,Z)}

is zero for every q > 0, and hence, Theorem 3.1 shows that the canonical map

Kq(A,B, I) → {Kq(A/Im, B/Im, I/Im)}

is an isomorphism of pro-abelian groups. In particular, the group Kq(A,B, I) is a
direct summand in Kq(A/Im, B/Im, I/Im) for m large. Now, by the definition of
the bi-relative groups, we have a long exact sequence

· · · → Kq(A/Im, B/Im, I/Im) → Kq(A/Im, I/Im) → Kq(B/Im, I/Im) → · · · .

By Theorem A, the middle and right-hand groups are p-primary torsion groups of
bounded exponent, and hence, the same holds for the left-hand group. This shows
that Kq(A,B, I) is a p-primary torsion group of bounded exponent as stated.

In the general case, we let N be a positive integer such that pN annihilates A
and choose a diagram of simplicial unital associative Z/pNZ-algebras

B[−] ��

εB

��

B/I[−]

εB/I

��

A/I[−]
f̄ [−]

��

εA/I

��

B �� B/I A/I,
f̄

��

such that the vertical maps are weak equivalences and such that the simplicial
algebras in the top row are degree-wise free unital associative Z/pNZ-algebras. We
then consider the diagram of simplicial Z/pNZ-algebras

I[−] �� A[−] ��

f [−]

��

A/I[−]

f̄ [−]

��

I[−] �� B[−] �� B/I[−]

with A[−] defined to be the pull-back of B[−] along f̄ [−] and with the left-hand
horizontal maps defined to be the kernels of the respective right-hand horizontal
maps. The maps εB , εB/I , and εA/I above induce maps of simplicial associative
Z/pNZ-algebras εA : A[−] → A and εI : I[−] → I which are weak equivalences. It
follows from Lemma 3.8 that there is a spectral sequence

E1
s,t = Kt(A[s], B[s], I[s]) ⇒ Ks+t(A,B, I).

Hence, it suffices to show that Kq(A[s], B[s], I[s]) is a p-primary torsion group
of bounded exponent for all integers q and s � 0. Since B/I[s] is a free unital
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associative Z/pNZ-algebra, the canonical projections of A[s] onto A/I[s] and B[s]
onto B/I[s] have ring sections. Therefore, the diagram

I[s]/pI[s] �� A[s]/pA[s] ��

��

A/I[s]/pA/I[s]

��

I[s]/pI[s] �� B[s]/pB[s] �� B/I[s]/pB/I[s]

is a diagram of associative Fp-algebras in which the right-hand square is a pull-back
and the left-hand horizontal maps are the kernels of the right-hand horizontal maps.
Now, asB[s]/pB[s] is a free unital associative Fp-algebra, the special case considered
first shows that Kq(A[s]/pA[s], B[s]/pB[s], I[s]/pI[s]) is a p-primary torsion group
of bounded exponent for all integers q and s � 0. Moreover, the mapping fiber of
the map induced by the canonical projections

K(A[s], B[s], I[s]) → K(A[s]/pA[s], B[s]/pB[s], I[s]/pI[s])

is canonically isomorphic to the iterated mapping fiber of the following square of
relative K-theory spectra:

K(A[s], pA[s]) ��

��

K(A/I[s], pA/I[s])

��

K(B[s], pB[s]) �� K(B/I[s], pB/I[s]).

Theorem A shows that the homotopy groups of each of the four terms in this square
are p-primary torsion groups of bounded exponent. Hence, the same is true for the
homotopy groups of the iterated mapping fiber. This shows that Kq(A[s], B[s], I[s])
is a p-primary torsion group of bounded exponent for all integers q and s � 0, as
desired. The theorem follows. �
Proof of Theorem D. We consider the following diagram of pro-abelian groups:

Kq(A,B, I) ��

��

{Kq(A,B, I;Z/pvZ)}

��

{TCn
q (A,B, I; p)} �� {TCn

q (A,B, I; p,Z/pvZ)}.

It follows from Theorem C and Lemma 2.1 that the upper horizontal map is an
isomorphism. Similarly, Lemma 2.1 shows that the lower horizontal map is an
isomorphism. Finally, we proved in [10, Thm. 1] that the right-hand vertical map is
an isomorphism. Hence, the left-hand vertical map is an isomorphism as stated. �
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