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Introduction

This paper is an elaboration of my lecture at the conference. The purpose is
to explain how the Fargues–Fontaine curve and its decomposition into a punctured
curve and the formal neighborhood of the puncture naturally appear from various
forms of topological cyclic homology and maps between them. I make no claim
of originality. My purpose here is to highlight some of the spectacular material
contained in the papers of Nikolaus–Scholze [16], Bhatt–Morrow–Scholze [3], and
Antieau–Mathew–Morrow–Nikolaus [1] on topological cyclic homology and in the
book by Fargues–Fontaine [7] on their revolutionary curve.

1. The Fargues–Fontaine curve

We give a brief introduction to the Fargues–Fontaine curve and refer to their
book [7] for details. The lecture notes by Lurie [12] are also helpful.

We define a completely valued field to be a pair (C,OC) of a field C and a
proper subring OC ⊂ C that is a complete valuation ring of rank 1. The field C is
the quotient field of OC and the requirement that the inclusion OC ⊂ C be proper
is equivalent to the requirement that the value group of OC be non-trivial. An
isomorphism of completely valued fields ψ : (C,OC)→ (C ′,OC′) is an isomorphism
of fields ψ : C → C ′ that restricts to an isomorphism of rings ψ : OC → OC′ .

We will be interested in the case, where C is algebraically closed and OC is of
residue characteristic p > 0. In this case, “tilting” is a correspondence that to an
algebraically closed completely valued field (C,OC) of residue characteristic p > 0
assigns the algebraically closed completely valued field (C[,OC[) of characteristic
p > 0, where OC[ is the limit of the diagram of Fp-algebras

· · ·
ϕ
// OC/p

ϕ
// OC/p

ϕ
// OC/p

with ϕ the Frobenius. The non-trivial fact that C[ is algebraically closed is proved
in [7, Proposition 2.1.11]. The tilting correspondence is many-to-one. More precisely,
given an algebraically closed completely valued field (F,OF ) of characteristic p > 0,
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an untilt of (F,OF ) is a pair ((C,OC), ι) of an algebraically closed completely valued
field (C,OC) and an isomorphism of completely valued fields

(F,OF )
ι // (C[,OC[).

The isomorphism ι gives rise to an isomorphism of value groups

F×/O×F
// C×/O×C

and the “perfectoid” nature of the respective valuation rings implies that for every
pair of elements $F ∈ OF and $C ∈ OC of equal and sufficiently small but nonzero
valuation, the isomorphism ι gives rise to an isomorphism of rings

OF /$F
// OC/$C .

We note that the common ring is not a field, but rather is a highly non-noetherian
nilpotent thickening of its (algebraically closed) residue field.

An isomorphism of untilts ψ : ((C,OC), ι)→ ((C ′,OC′ , ι
′) is an isomorphism of

completely valued fields ψ : (C,OC)→ (C ′,OC′) with the property that the diagram

(F,OF )

(C[,OC[)

(C ′[,OC′[)

ι 11

ι′

,,

ψ[

��

commutes. Up to isomorphism, there is one untilt of (F,OF ) of characteristic p.
But there are many non-isomorphic untilts of (F,OF ) of characteristic 0. We note
that if ((C,OC), ι) is an untilt of (F,OF ), then so is ((C,OC), ι◦ϕ), and that if C is
of characteristic 0, then these two untilts are non-isomorphic. So the group ϕZ acts
freely on the set of isomorphism classes of characteristic 0 untilts of F . Fargues and
Fontaine show in [7, Théorème 6.5.2] that their curve

X = XF
// Spec(Qp)

parametrizes the orbits of this action in the sense that there is a canonical bijection
from the set |X| of closed points onto the set of ϕZ-orbits of isomorphism classes of
characteristic 0 untilts of (F,OF ). Moreover, if x ∈ |X| corresponds to the class of
((C,OC), ι) via this bijection, then the residue field k(x) is canonically isomorphic
to C. The additional structure of the valuation ring OC ⊂ C and the isomorphism
ι : (F,OF ) → (C[,OC[) arises from the “perfectoid” nature of the situation, a fact
that is hidden away in the proof of [7, Théorème 6.5.2].

One may wonder if all untilts of (F,OF ) have abstractly isomorphic underlying
completely valued fields. More precisely, given an untilt ((C,OC), ι), we let

Aut(F,OF )/(Aut(C,OC)× ϕZ) // |X|

be the map that to ψ assigns the class of ((C,OC), ι ◦ ψ) and ask if this map is
a bijection. It follows from [7, Corollaire 2.2.23] and [17, Corollary 6] that the
answer to this question is affirmative if and only if the valued field (F,OF ) is
spherically complete (a.k.a. maximally complete) in the sense that every decreasing
sequence of discs in F has non-empty intersection. This is a stronger condition than
completeness, which is the condition that every decreasing sequence of discs, whose
radii tend to 0, has non-empty intersection. For example, the completion Cp of an
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algebraic closure of Qp with respect to the unique extention of the p-adic absolute

value is not spherically complete, and neither is its tilt C[p.
The Fargues–Fontaine curve behaves as a proper, regular, connected curve of

genus 0 over Qp, except that it is not of finite type. Strikingly, the map

Qp // H0(X,OX)

induced by the structure map is an isomorphism. Hence, there is a great discrepancy
between the field Qp of global sections and the residue fields k(x) at closed points
x ∈ |X|, all of which all are algebraically closed completely valued extensions of Qp
by [7, Théorème 6.5.2]. This phenomenon is one that the Fargues–Fontaine curve
shares with the twistor projective line. The complex projective line P1

C has two real
forms, namely, the real projective line P1

R and the twistor projective line

X = P̃1
R

// Spec(R),

which is the Brauer–Severi variety of the quaternions H. Its ring of global sections
is R, whereas the residue field at every closed point x ∈ |X| is an algebraically
closed field that contains R. These residue fields are of course all isomorphic to C.
In particular, the twistor projective line has no real points.

2. Curves

In general, a connected curve over a field

X // Spec(k)

can be understood as follows. If we choose a regular closed point∞ ∈ |X|, then the
open complement X r {∞} ⊂ X is affine, and the quasi-coherent ideal

0 // OX(−1) // OX // i∞∗k(∞) // 0

is invertible. Moreover, writing OX(n) for its (−n)-fold tensor power, we have

X ' Proj(P ) // Spec(k),

where P is the graded k-algebra

P =
⊕

n∈ZH
0(X,OX(n)).

Associated with the closed point ∞ ∈ |X|, we have the maps

U
i
// X Y

j
oo

of formal schemes over k, where i and j are the canonical maps from the open
complement of {∞} ⊂ X and the formal completion along {∞} ⊂ X, respectively.
In Grothendieck’s philosophy, the map j should be viewed as the open and affine
immersion of a tubular neighborhood of {∞} ⊂ X, whereas the map i should be
viewed as the closed immersion of the closed complement of said neighborhood.
This point of view is substantiated by the stable recollement

QCoh(U) QCoh(X) QCoh(Y )
i!

aa

i∗' i! //

i∗

}}

j∗
aa

j!' j∗
//

j!

}}
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among the corresponding stable ∞-categories of quasi-coherent modules.1 We give
a proof of this is in [11, Theorem 1.7], but we also refer to [5, Lecture V] for an
explanation of the open-closed reversal in this situation. So we have a cartesian
diagram in the ∞-category QCoh(X) of quasi-coherent OX -modules

OX(n) //

��

i∗i
∗OX(n)

��

j∗j
∗OX(n) // i∗i

∗j∗j
∗OX(n).

We interpret OX(n) as the sheaf of meromorphic functions on X that are regular
away from∞ and whose pole order at∞ is at most n, and i∗i

∗OX(n) as the sheaf of
meromorphic functions on X that are regular away from∞. Similarly, we interpret
j∗j
∗OX(n) as the sheaf of formal meromorphic functions near ∞ that are regular

away from ∞ and whose pole order at ∞ is at most n, and i∗i
∗j∗j

∗OX(n) as the
sheaf of formal meromorphic functions near ∞ that are regular away from ∞. It
follows that the k-vector spaces H0(X,OX(n)) and H1(X,OX(n)) are canonically
identified with the limit and colimit, respectively, of the diagram

(2.1) H0(X, i∗i
∗OX(n))

��

H0(X, j∗j
∗OX(n)) // H0(X, i∗i

∗j∗j
∗OX(n)).

As a simple example, let us first consider the complex projective line

X = P1
C

// Spec(C).

If we choose a coordinate t−1 at ∞ ∈ |X|, then the diagram (2.1) takes the form

(2.2) C[t]

��

tnC[[t−1]] // C((t−1))

with the two maps given by the canonical inclusions. So for n ≥ 0, we have

H0(X,OX(n)) = C · {1, t, . . . , tn}
H1(X,OX(n)) = 0,

where C · S is the C-vector space generated by S, whereas for n < 0, we have

H0(X,OX(n)) = 0

H1(X,OX(n)) = C · {t−1, . . . , tn+1}.
In particular, we find that the graded C-algebra P is given by

P '
⊕

n≥0 C · {1, t, . . . , tn} // C[x, y],

where the nth component of the right-hand isomorphism takes ti to xiyn−i.

1Let Y (n) ⊂ X be the nth infinitesimal neighborhood of {∞} ⊂ X. We define QCoh(Y )

to be the colimit colimn QCoh(Y (n)) in the ∞-category of presentable ∞-categories and right
adjoint functors, or equivalently, as the limit limn QCoh(Y (n)) in the ∞-category of presentable

∞-categories and left adjoint functors. The functor j! ' j∗ is Grothendieck’s local cohomology.
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In the case of the twistor projective line

X = P̃1
R

// Spec(R),

the diagram (2.1) takes the form

(2.3) R[u, v]/(u2 + v2 + 1)

��

tnC[[t−1]] // C((t−1))

with the horizontal map given by the canonical inclusion and with the vertical map
obtained by solving the complex linear system of equations

u+ iv = t

u− iv = −t−1.
We remark that now the identification of the terms in the bottom row uses the fact
that a complete discrete valuation ring of residue characteristic 0 admits a unique
coefficient field, which, in general, relies on the axiom of choice. Thus, the C-algebra
structure on the two rings is somewhat of a mirage, as opposed to the C-algebra
structure on the associated graded rings for the t-adic filtrations. This filtration, in
turn, induces a Z-graded ascending filtration

· · · ⊂ Film−1H
i(X,OX(n)) ⊂ FilmH

i(X,OX(n)) ⊂ · · ·
of the cohomology groups in question, and we find that for n ≥ 0,

grmH
0(X,OX(n)) '

{
R · 1 if m = 0

C · tm if 0 < m ≤ n

are the only nonzero graded pieces, whereas for n < 0,

grmH
1(X,OX(n)) '

{
C · tm if n+ 1 ≤ m ≤ −1

C/R · 1 if m = 0

are the only nonzero graded pieces. In particular, the quotient C/R of the residue
field at ∞ by the subfield of global sections appears as H1(X,OX(−1)). We find
that there is an isomorphism of graded R-algebras

P =
⊕

n≥0H
0(X,OX(n)) // R[x, y, z]/(x2 + y2 + z2)

whose nth component takes the class of uivj to xiyjzn−(i+j).
In the case of the Fargues–Fontaine curve

X = XF
// Spec(Qp),

the diagram (2.1) is expressed in terms of Fontaine’s period rings2 as

(2.4) Be

��

FilnBdR
// BdR

2The notation Be stems from [4, (3.7.2)]. The subscript e indicates the exponential case.



6 LARS HESSELHOLT

The ring BdR is a complete discrete valuation field with residue field C = k(∞),3

and the horizontal map is the canonical inclusion of the (−n)th power of the max-
imal ideal of its valuation ring B+

dR = Fil0BdR. The ring Be is a principal ideal
domain, the nonzero ideals of which are in canonical one-to-one correspondence
with the closed points x ∈ |X r {∞}|. This non-trivial fact, instigated by Berger’s
discovery that every finitely generated ideal in Be is principal [2, Proposition 1.1.9],
was the discovery which led Fargues and Fontaine to realize that they had a curve
in their hands. The proof is given in [7, Théorème 6.5.2], and Colmez’ recounting
of this discovery process in [7, Préface] is quite illuminating. The discrete valuation
on BdR again gives rise to an ascending Z-graded filtration

· · · ⊂ Film−1H
i(X,OX(n)) ⊂ FilmH

i(X,OX(n)) ⊂ · · ·
of the cohomology groups, and for n ≥ 0,

grmH
0(X,OX(n)) =

{
Qp · 1 if m = 0

C · tm if 0 < m ≤ n

are the only nonzero graded pieces, whereas for n < 0,

grmH
1(X,OX(n)) =

{
C · tm if n+ 1 ≤ m ≤ −1

C/Qp · 1 if m = 0

are the only nonzero graded pieces. Here t−1 ∈ Fil−1BdR is a local parameter at
∞, that is, a generator of this B+

dR-module, which is free of rank 1. Again, the
quotient C/Qp of the residue field at ∞ and the subfield of global sections appears
as H1(X,OX(−1)), but this now an infinite dimensional Qp-vector space, reflecting
the fact that the Fargues–Fontaine curve is not of finite type over Qp. Nevertheless,
Fargues and Fontaine show in [7, Théorème 6.2.1] that the graded Qp-algebra

P =
⊕

n≥0H
0(X,OX(n))

is a graded unique factorization domain, all of whose irreducible elements are of
degree 1. Thus, closed points x ∈ |X| are in canonical one-to-one correspondence
with Qp-lines in H0(X,OX(1)), or equivalently, extensions of the form

0 // Qp // H0(X,OX(1)) // k(x) // 0;

see [7, Théorème 6.5.2].

3. The formal neighborhood of ∞ ∈ |X|

We proceed to explain how to obtain the diagram (2.4) for the Fargues–Fontaine
curve from a diagram of spectra. We begin with the lower line in the diagram, and
recall some general theory following Nikolaus–Scholze [16, Theorem I.4.1].

We will use the language of ∞-categories following Joyal and Lurie [14], but
we will use the term “anima” or “animated set” for what Lurie calls a space to
emphasize that these should be viewed as sets with internal symmetries rather
than anything resembling a topological space.

If f : T → S is any map of anima, then we have the restriction along f , f ! ' f∗,
and the left and right Kan extensions along f , f! and f∗, between the corresponding
∞-categories of spectrum-valued presheaves:

3While there does exist an isomorphism BdR ' C((t−1)) of complete discrete valuation

fields, such an isomorphism is highly non-canonical and not useful in practice.
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SpT SpS

f!

""f !' f∗
oo

f∗
<<

In fact, these functors are part of a six-functor formalism on the ∞-category of
anima in the sense of Mann [15, Definition A.5.7]. Indeed, this claim is a trivial
instance of [15, Proposition A.5.10], where every map of anima f : T → S is declared
to be a local isomorphism, and where a map of anima f : T → S is declared to be
proper if its fibers are compact projective anima, or equivalently, anima that are
equivalent to finite sets, including the empty set. In this six-functor formalism,
we have f ! ' f∗ for every map f : T → S, which reflects the fact that every
map of anima is a local isomorphism. Now, the ∞-categories SpS and SpT are
compactly generated presentable stable ∞-categories, and the “homology” functor
f! preserves compact objects, because its right adjoint f ! preserves all colimits.
However, the “cohomology” functor f∗ does not preserve compact objects, and
by [16, Theorem I.4.1], there is a unique a map f∗ → fT∗ to a “Tate cohomology”
functor that takes all compact objects to zero and that is initial with this property.
The fiber of this map preserves colimits, which implies that it necessarily is of the
form X 7→ f!(X ⊗Df ) for a unique Df ∈ SpT .

We recall from [13, Theorem 5.6.2.10] that every group in anima G is the loop
group ΩBG of a pointed connected anima

1
s // BG,

and we first apply the general theory above to the unique map

BG
f
// 1.

If G is the group in anima underlying a compact Lie group G, then Df ' Sg is the
suspension spectrum of the one-point compactification of its Lie algebra with the
adjoint G-action. So in this situation, the defining fiber sequences takes the form

f!(S
g ⊗X) // f∗(X) // fT∗ (X),

where X ∈ SpBG. This sequence is commonly written as

(Sg ⊗X)hG // XhG // XtG.

The Postnikov filtration of X gives rise to the spectral sequences

E2
i,j = H−i(BG, πj(s

∗(X)))⇒ πi+j(X
hG)

E2
i,j = Ĥ−i(BG, πj(s

∗(X)))⇒ πi+j(X
tG),

and the edge homomorphism of the former,

πj(X
hG)

θ // πj(s
∗(X)),

is induced by the unit map

f∗(X)
θ // f∗s∗s

∗(X) ' s∗(X).

The groups in the two E2-terms can be interpreted as the cohomology and Tate
cohomology of BG with coefficients in the local system πj(s

∗(X)). If G is finite,
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then these can be identified with the group cohomology and Tate cohomology of
the group G with coefficients in the G-module πj(s

∗(X)).

It follows from [16, Theorem I.4.1] that if E ∈ CAlg(SpBG) is a commutative
algebra in spectra with G-action, then the map f∗(E) → fT∗ (E) promotes to a
map of commutative algebras in spectra. This implies that the spectral sequences
become spectral sequences of bigraded anticommutative rings and that the edge
homomorphism θ becomes an map of graded anticommutative rings; see [9]. If the
G-action on E is trivial in the sense that E ' f∗s∗(E), then a choice of trivialization
and the unit map combine to give a section

s∗(E)
σ // f∗f

∗s∗(E) ' f∗(E)

of the edge homomorphism θ. So in this situation, the map f∗(E)→ fT∗ (E) becomes
a map of commutative algebras in s∗(E)-modules in spectra. So the induced map on
homotopy groups becomes a map of anticommutative graded π∗(s

∗(E))-algebras,
and the spectral sequences above become spectral sequences of anticommutative
bigraded π∗(s

∗(E))-algebras.
We are interested in the group G ' U(1), and since it is abelian, the G-action

on its Lie algebra is trivial. So in this case, the fiber sequence above becomes

ΣEhG // EhG // EtG.

For instance, in the case of E ' HH(A/R), this gives Connes’ sequence

Σ HC(A/R) // HC−(A/R) // HP(A/R)

relating cyclic homology, negative cyclic homology, and periodic cyclic homology.
Choosing a generator v̄ ∈ H2(BU(1),Z), the spectral sequences take the form4

E2 = π∗(s
∗(E))[v̄]⇒ π∗(E

hU(1))

E2 = π∗(s
∗(E))[v̄±1]⇒ π∗(E

tU(1)).

We refer to the filtrations of the respective abutments induced by the two spectral
sequences as the “Nygaard” filtrations.

We will consider E ∈ CAlg(SpBU(1)) equipped with a “Bott” element

β ∈ π2(EhU(1)) // π2(EtU(1))

and obtain the desired filtered ring from the filtered graded ring π∗(E
tU(1)) by the

following procedure:

(1) Invert the Bott element.
(2) Complete with respect to the Nygaard filtration.
(3) Extract the filtered subring consisting of homogeneous elements of degree 0.

The image of the induced ring homomorphism

(π∗(E
hU(1))[β−1]∧)0 // (π∗(E

tU(1))[β−1]∧)0

agrees with the 0th stage of the Nygaard filtration. If π∗(s
∗(E)) is concentrated

in even degrees, then so are π∗(E
hU(1)) and π∗(E

tU(1)) and all differentials in the
respective spectral sequences are zero. In this case, the map above is injective.

4Here π∗(−) indicates homotopy groups and not pushforward along some map π.
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Suppose first that the U(1)-action on E is trivial. If the homotopy groups
π∗(s

∗(E)) are concentrated in even degrees, then there are isomorphisms

π∗(E
hU(1)) ' π∗(s∗(E))[[v]] ' limn π∗(s

∗(E))[v]/(vn+1)

π∗(E
tU(1)) ' π∗(s∗(E))((v)) ' π∗(s∗(E))[[v]][v−1]

of anticommutative graded π∗(s
∗(E))-algebras. Here the limit is calculated in the

category of graded π∗(s
∗(E))-algebras and v ∈ π−2(EhU(1)) is a choice of lift of v̄,

that is, a “complex orientation” of E. So with t−1 = βv, we have

(π∗(E
hU(1))[β−1])0 ' (π∗(s

∗(E))[β−1])0[[t−1]]

(π∗(E
tU(1))[β−1])0 ' (π∗(s

∗(E))[β−1])0((t−1))

Hence, writing R = (π∗(s
∗(E))[β−1])0, we see that the graded π∗(s

∗(E))-algebra
π∗(E

tU(1)) with the Nygaard filtration gives rise to the R-algebra

R((t−1))

with the t-adic filtration. This is the filtered R-algebra that we would obtain from
the formal neighborhood of an R-valued point ∞ ∈ |X| of a curve X → Spec(R).

Let us now consider the Fargues–Fontaine curve

X = XF
// Spec(Qp)

associated to an algebraically closed completely valued field (F,OF ) of characteristic
p > 0, and let ∞ ∈ |X| be a closed point corresponding to an untilt ((C,OC), ι) of
(F,OF ). We consider the commutative algebra in spectra with U(1)-action

E = THH(OC ,Zp) ∈ CAlg(SpBU(1))

given by the p-adic completion of the topological Hochschild homology of OC . In
this case, Bhatt–Morrow–Scholze show in [3, Proposition 6.2] that

π∗(E
hU(1)) ' TC−∗ (OC ,Zp) ' Ainf(OF )[u, v]/(uv − ξ)

π∗(E
tU(1)) ' TP∗(OC ,Zp) ' Ainf(OF )[v±1],

where u ∈ TC−2 (OC ,Zp) and v ∈ TC−−2(OC ,Zp), and where ξ is a generator of the
kernel of the edge homomorphism

TC−0 (OC ,Zp) ' Ainf(OF )
θ // OC .

The element u is called a Bökstedt element. It is not a Bott element, but rather a
divided Bott element. More precisely, the element

β = ϕ−1(µ)u

is a Bott element, but ϕ−1(µ) ∈ Ainf(OF ) is not a unit; see also [10, Section 3.2].
So by inverting β, we also invert ϕ−1(µ), which, in particular, inverts p, since

θ(ϕ−1(µ)) = ζp − 1 ∈ OC

is a pseudo-uniformizer. It follows that

(π∗(E
tU(1))[β−1]∧)0 ' (TP∗(OC ,Zp)[β−1]∧)0 ' BdR

as a filtered Qp-algebra. It is a discrete valuation field with residue field C. We stress
that, after inverting β, we do not subsequently p-complete, which would leave us
with zero. So this procedure is distinct from Morava K(1)-localization.
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4. The affine complement of ∞ ∈ |X|

We will next explain how to obtain the right-hand vertical map in (2.4) from
the “crystalline Chern character” of Antieau–Mathew–Morrow–Nikolaus [1]. The
definition of this map relies on the modern approach to topological cyclic homology
and cyclotomic spectra due to Nikolaus–Scholze [16].

To briefly recall the definition, let p : BU(1) → BU(1) be the map of pointed
anima induced by the p-power map of the abelian group U(1), and let

SpBU(1)
p

pT∗ // SpBU(1)
p

be the associated Tate cohomology functor. A p-complete cyclotomic spectrum is
a pair (X,ϕ) of a p-complete spectrum5 with U(1)-action and a “Frobenius” map

X
ϕ
// pT∗ (X)

of spectra with U(1)-action. Nikolaus and Scholze show that p-complete cyclotomic
spectra can be organized into a stable symmetric monoidal ∞-category equipped
with a conservative symmetric monoidal forgetful functor

CycSpp // SpBU(1)
p

to the symmetric monoidal stable ∞-category of p-complete spectra with U(1)-
action. The tensor unit is given by the pair 1 ' (f∗(Sp), ϕ) of the p-complete
sphere spectrum with trivial U(1)-action and the composition

f∗(Sp) // p∗f
∗(Sp) // pT∗ f

∗(Sp)

of the adjunct of the equivalence p∗f∗ ' (fp)∗ ' f∗ and the canonical map. Now,
p-complete topological cyclic homology is the symmetric monoidal functor

CycSpp
TC

// Spp

corepresented by 1 ∈ CycSpp. If (X,ϕ) is a p-complete cyclotomic spectrum with
X bounded below, then TC(X,ϕ) is given by the equalizer

TC(X,ϕ) // TC−(X) ' f∗(X)
ϕ
//

can
// TP(X) ' fT∗ (X)

of the canonical map “can” and the cyclotomic Frobenius “ϕ” defined as follows.
Since fp ' f , we have a diagram of p-complete spectra

Σf!p!(X) ' Σf!(X) f∗(X) fT∗ (X)

f∗p!(X) f∗p∗(X) f∗p
T
∗ (X)

// //

�� ��
// //

5 The inclusion j∗ : Spp → Sp of the full subcategory of p-complete spectra admits a left

adjoint j∗ : Sp→ Spp, and the unit map η : X → j∗j∗(X) is p-completion. The functor j∗ admits

an essentially unique promotion to a symmetric monoidal functor, which, in turn, promotes j∗
to a lax symmetric monoidal functor. Hence, we obtain an induced adjunction of the associated

∞-categories of commutative algebras.
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in which the two rows are fiber sequences. Since X is bounded below, the Tate orbit
lemma [16, Lemma I.2.1] shows that the left-hand vertical map is an equivalence,
and hence, so is the right-hand vertical map. So in this case, we have the map

XhU(1) ' f∗(X)
f∗(ϕ)

// f∗p
T
∗ (X) ' fT∗ (X) ' XtU(1),

which, by abuse of notation, we also denote by ϕ : TC−(X)→ TP(X).
We recall the most economical way of associating to a commutative algebra in

p-complete spectra R a commutative algebra in p-complete cyclotomic spectra

(THH(R,Zp), ϕ)

following [16, Section IV.2].
In general, let G be a group in anima, and let s : 1→ BG be the corresponding

connected pointed anima. If C is any presentable ∞-category, then we have

C
s! //

CBG,
s∗
oo

where the right adjoint s∗ takes an object of C with G-action to the underlying
object of C, and where the left adjoint s! takes an object of C to the free object of
C with G-action. We have a cartesian square of pointed anima

G
s′ //

s′

��

1

s

��

1
s // BG

and the base-change formula applied to this square shows that

s∗s! ' s′!s′∗

as endofunctors of C. Informally, if X is an object of C, then s∗s!(X) is the object of
C underlying the free object of C with G-action associated with X, whereas s′!s

′∗(X)
is the colimit in C of the constant diagram with value X indexed by G.

We apply this with G ' U(1) and C ' CAlg(Spp). Given R ∈ CAlg(Spp),
we define its p-complete topological Hochschild homology to be the commutative
algebra in p-complete spectra with U(1)-action given by

THH(R,Zp) ' s!(R) ∈ CAlg(Spp)
BU(1)

and the base-change formula shows that its underlying commutative algebra in
p-complete spectra is given by

s∗THH(R,Zp) ' s∗s!(R) ' s′!s′∗(R) ' R⊗U(1),

where the right-hand term is suggestive notation for the colimit in CAlg(Spp) of
the constant diagram with value R indexed by the anima underlying U(1).

We next recall the definition of the Frobenius map

THH(R,Zp)
ϕ
// pT∗ (THH(R,Zp)),

where we abuse notation and also write pT∗ for the endofunctor of

CAlg(Spp)
BU(1) ' CAlg(SpBU(1)

p )
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induced by the lax symmetric monoidal endofunctor pT∗ of SpBU(1)
p . We consider

the following diagram of pointed anima

1
t

""

id

!!

s

%%

BCp
i //

g

��

BU(1)

p

��

1
s // BU(1)

with the square cartesian. As part of the structure of any symmetric monoidal
∞-category C, there is a symmetric monoidal functor

C
t⊗! // CBCp

which, informally, takesX toX⊗p together with an equivalence between the induced
functor of commutative algebras and

CAlg(C)
t! // CAlg(C)BCp ' CAlg(CBCp).

We now recall from [16, Proposition III.3.1] that there is a unique lax symmetric
monoidal transformation called the Tate diagonal6

X
δ // gT∗ t

⊗
! (X).

So for R ∈ CAlg(Spp), we get the composite map

R
δ // gT∗ t!(R)

η
// gT∗ i

∗i!t!(R) ' gT∗ i∗s!(R) ' s∗pT∗ s!(R)

of commutative algebras in p-complete spectra, whose adjunct

s!(R)
ϕ
// pT∗ s!(R)

is the desired map of commutative algebras in p-complete spectra with U(1)-action.
The crystalline Chern character of [1] is obtained as follows. Given a p-complete

cyclotomic spectrum X = (X,ϕ), we may form the tensor product

X ⊗ THH(Fp,Zp)

in the symmetric monoidal ∞-category CycSpp of p-complete cyclotomic spectra
and consider the canonical map

TC(X ⊗ THH(Fp,Zp)) // TC−(X ⊗ THH(Fp,Zp))

from its topological cyclic homology to its negative topological cyclic homology. We
consider this map for X ' THH(OC ,Zp), take homotopy groups, invert the Bott
element, Nygaard complete the target, and extract the subrings of homogeneous
elements of degree 0. By [1, Theorem 2.12], the resulting map takes the form

(TC∗(OC/p,Zp)[β−1])0 // (TP∗(OC ,Zp)[β−1]∧)0,

6The generalized Segal conjecture for Cp proved in [16, Theorem III.1.7] states that if X is

bounded below, then the Tate diagonal is an equivalence.
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and this map is the desired crystalline Chern character. Finally, the identification
of this map with the map Be → BdR in (2.4) is a consequence of [3, Corollary 8.23]
and [3, Proposition 6.2]. We conclude that the diagram

(4.1) (TC∗(OC/p,Zp)[β−1])0

��

Filn(TP∗(OC ,Zp)[β−1]∧)0 // (TP∗(OC ,Zp)[β−1]∧)0

obtained from the various flavors of topological cyclic homology and maps between
them is canonically identified with the diagram of period rings (2.4).

5. Dreams

We would like to similarly obtain the diagram (2.3) for the twistor projective
line from a diagram analogous to (4.1). Given a closed point ∞ ∈ |X| with residue
field k(∞) ' C, one might hope to obtain the bottom line in (2.3) from the periodic
cyclic homology HP∗(C/R). This will not work, however, due to the lack of a Bott
element β ∈ HC−2 (C/R). The liquid theory of Clausen–Scholze [6] points to an
alternative. Let 0 < r < 1 be a real number. The Harbater ring is the subring

Z((T ))>r ⊂ Z((T ))

consisting of the Laurent series that for some r′ > r converge absolutely on a disc
of radius r′ centered at the origin. Harbater shows in [8] that this ring is a principal
ideal domain; see also [6, Theorem 7.1]. In particular, if x ∈ C and |x| ≤ r, then
the kernel of the continuous ring homomorphism

Z((T ))>r // C

that to T assigns x is a principal ideal, and hence, the Hochschild homology

HH∗(C/Z((T ))>r) = C〈ū〉 = C[ū]

is a (divided) polynomial algebra on a generator ū of degree 2. So with

E = HH(C/Z((T ))>r) ∈ CAlg(SpBU(1)),

we find that

π∗(E
hU(1)) ' HC−∗ (C/Z((T ))>r) ' C[[ξ]][u, v]/(uv − ξ)

π∗(E
tU(1)) ' HC−∗ (C/Z((T ))>r) ' C[[ξ]][v±1]

with u ∈ HC−2 (C/Z((T ))>r) and v ∈ HC−−2(C/Z((T ))>r) and with ξ is a generator
of the kernel of the edge homomorphism

HC−0 (C/Z((T ))>r) ' C[[ξ]]
θ // C,

analogously to E ' THH(OC ,Zp). Hence, for a “Bott element” of the form β = fu
with f ∈ C[[ξ]]× a unit, we obtain the bottom row in (2.3) with t−1 = βv.
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