
Lineær Algebra

Lars Hesselholt og Nathalie Wahl

2. udgave, oktober 2017



Forord

Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på
at fremstille dette materiale på en sådan måde, at det implicit fremstår i sin naturlige
generalitet. Vi har også lagt vægt på ikke-kommutativitet, og vi benytter således ikke,
at ab og ba er ens, medmindre det er nødvendigt.

Vores hovedkilde som inspiration har været den uovertrufne præsentation af lineær
algebra i N. Bourbaki, Algebra I og Algebra II. Vores gennemgang af determinanten er
også stærkt inspireret af H. A. Nielsen, Lineær Algebra, Aarhus Universitet fra 1988.
Endvidere er bogens layout og visse figurer overført fra Niels Vigand Pedersen, Lineær
Algebra, Københavns Universitet, 2. udgave fra 2009, revideret af Morten Risager.

Vi takker Anna Schøtt-Edholm og Katja Thorseth for nøje gennemlæsning bogen.

København, oktober 2017, Lars Hesselholt og Nathalie Wahl
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Hvordan man læser denne bog

Matematik adskiller sig fra andre naturvidenskaber ved, at matematiske begreber har
præcise definitioner, og at matematiske udsagn har præcise beviser. Alle matematiske
begreber er opbygget fra det grundlæggende begreb “mængde”, der som det eneste er
udefineret, og alle matematiske beviser fremkommer i princippet ved at kombinere de
grundlæggende udsagn om mængder, der er beskrevet i Zermelo-Fraenkel aksiomerne.1

Det formelle grundlag betyder dog ikke, at ideer, der udtrykkes i matematik, er løsrevet
fra resten af verden. Snarere er matematik i denne sammenhæng ligesom musik i den
forstand, at man skal lære at spille et instrument, før man kan udtrykke sine ideer. Det
er også afgørende, at man lærer definitioner helt rigtigt og ikke kun nogenlunde rigtigt,
ligesom det i musik er vigtigt, at man rammer de rigtige toner.

At læse en matematisk tekst som denne er derfor en aktiv proces, hvor man typisk
ikke forstår nye begreber fuldt ud, den første gang man læser dem, men må gå tilbage
og genlæse definitioner og sætninger samtidigt med, at man læser eksempler og laver
opgaver eller browser i Wikipedia.2 Det kan også tit være nyttigt at tænke på ekstreme
tilfælde, såsom “Hvad siger denne definition, hvis A er den tomme matrix?”

Skal man også læse og forstå beviser? Med tiden, ja. Beviser er matematikkens svar på
eksperimenter i den forstand, at beviser benyttes til at afgøre om et udsagn gælder. Det
er ikke så let at sige præcist, hvad et formelt bevis er,3 men uformlet består et bevis
i at angive, hvordan et udsagn, som man ønsker at bevise, logisk følger fra en række
udsagn, som antages at gælde, ved hjælp af logiske operationer. At finde et bevis for
et udsagn er dog ikke nogen formel proces og kræver typisk en dyb forståelse af det
udsagn, man ønsker at vise. Omvendt forstår man typisk også et udsagn langt bedre,
hvis man forstår dets bevis (eller beviser),4 og da beviser er en matematikers eneste
værktøjer, er det vigtigt at lære sig disse.

Bogen kan læses i flere omgange og på flere niveauer. De fleste begreber i lineær algebra
har således mening i meget stor generalitet, ligesom de fleste sætninger gælder meget
generelt. Vi tillader derfor skalarer, der er mere generelle end reelle tal og komplekse
tal, da de første fem kapitler ikke anvender de mere specielle (arkimediske) egenskaber
ved de reelle og komplekse tal. I første omgang er læseren dog mere end velkommen til
at forestille sig, at skalarer enten er reelle tal eller komplekse tal.

1 For eksempel lyder det første aksiom “∀x ∀y (∀z (z ∈ x ⇔ z ∈ y) ⇒ x = y)”, hvilket betyder, at hvis to
mængder x og y har de samme elementer, så er x = y. Det andet aksiom lyder “∃x∀y(¬y ∈ x)”, hvilket
betyder, at der findes en mængde, der ingen elementer har, og ifølge det første aksiom findes der højst
én sådan mængde. Vi kalder denne mængde for den tomme mængde og betegner den med “;”.

2 Den engelske version af Wikipedia er ofte en fremragende kilde, især hvad eksempler angår.
3 Definitionen af et formelt bevis kan findes i Kenneth Kunen, The foundations of mathematics, Studies

in Logic (London), 19, Mathematical Logic and Foundations. College Publications, London, 2009.
4 Sætning 4.4.14 er eksempel herpå.
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0 Skalarer

Hele vejen igennem bogen vil vi arbejde med en grundlæggende mængde af “tal”, som
vi betegner F. Vi siger, at elementer a ∈ F er skalarer. De to hovedeksempler, vi har i
tankerne, er de reelle tal F = R og de komplekse tal F = C. Vi specificerer nedenfor de
aritmetiske strukturer “+” og “ · ” på mængden af skalarer, som vi skal gøre brug af.
Disse aritmetiske strukturer er alle velkendte fra de reelle og de komplekse tal.

0.1 Afbildninger

En afbildning er en triple bestående af to mængder X og Y og en regel1 f , der til ethvert
element x ∈ X tilordner et element f (x) ∈Y . Vi skriver denne triple som

f : X Y// eller X Y
f
//

og kalder mængderne X og Y for afbildningens domæne og codomæne.

Eksempel 0.1.1 Afbildningerne f : R→R og g : R→ [0,∞), hvor f (x)= x2 og g(x)= x2,
er to forskellige afbildninger, da deres codomæner er to forskellige mængder.

Vi minder om, at en afbildning f : X → Y er injektiv, hvis der for alle y ∈ Y findes
højst ét x ∈ X , sådan at f (x)= y; at den er surjektiv, hvis der for alle y ∈Y findes mindst
ét x ∈ X , sådan at f (x) = y; og den er bijektiv, hvis der for alle y ∈ Y findes præcis ét
x ∈ X , sådan at f (x)= y. Vi bemærker, at en afbildning er bijektiv, hvis og kun hvis den
både er injektiv og surjektiv.

Eksempel 0.1.2 Afbildningen f : R→ R fra eksempel 0.1.1 er hverken injektiv eller
surjektiv, mens afbildningen g : R → [0,∞) er surjektiv, men ikke injektiv. For hvis
y ∈ [0,∞), da er g(x)= y for x =±py, så g : R→ [0,∞) er surjektiv, men da det for y> 0
gælder, at +py 6= −py, så er g : R→ [0,∞) ikke injektiv.

1Formelt definerer vi en regel til at være en delmængde f ⊂ X ×Y , sådan at det for alle x ∈ X gælder, at
der præcis findes ét element y ∈Y , sådan at (x, y) ∈ f . Vi skriver da y= f (x) i stedet for (x, y) ∈ f .
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0 Skalarer
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Figur 0.1: Injektive, surjektive og bijektive afbildninger

Givet afbildninger g : Y → Z og f : X →Y , sådan at domænet af den første afbildning
er lig med codomænet af den anden, da definerer vi den sammensatte afbildning

X Z
g◦ f

//

ved (g ◦ f )(x)= g( f (x)). Vi siger også, at diagrammet

Y
g

��

X

f
>>

h // Z

kommuterer, hvis h = g ◦ f . Vi definerer identitetsafbildningen af en mængde X til at
være afbildningen idX : X → X givet ved idX (x)= x.

Lemma 0.1.3 En afbildning f : X → Y er bijektiv, hvis og kun hvis der eksisterer en
afbildning g : Y → X , sådan at f ◦ g = idY og g ◦ f = idX .

Bevis Vi antager først, at der findes en afbildning g : Y → X , sådan at f ◦ g = idY og
g ◦ f = idX , og viser, at f : X →Y er bijektiv. Givet y ∈Y , da opfylder x = g(y) ∈ X , at

f (x)= f (g(y))= ( f ◦ g)(y)= idY (y)= y,

så f : X →Y er surjektiv. Hvis også x′ ∈ X opfylder, at f (x′)= y, da er

x′ = idX (x′)= (g ◦ f )(x′)= g( f (x′))= g(y)= g( f (x))= (g ◦ f )(x)= idX (x)= x,

så f : X → Y er også injektiv og dermed bijektiv. Omvendt, hvis f : X → Y er bijektiv,
så lader vi g : Y → X være afbildningen, der til y ∈ Y tilordner det entydigt bestem-
te element x ∈ X , sådan at f (x) = y. Hvis x ∈ X og y ∈ Y , da er udsagnene “ f (x) = y”
og “x = g(y)” derfor ensbetydende. Specielt er udsagnene “ f (g(y)) = y” og “g(y) = g(y)”
ensbetydende, hvilket viser, at f ◦ g = idY . Tilsvarende er udsagnene “g( f (x)) = x” og
“ f (x)= f (x)” ensbetydende, hvilket viser, at også g ◦ f = idX . 2

Hvis f : X →Y er bijektiv, så er afbildningen g : Y → X med f ◦ g = idY og g ◦ f = idX ,
entydigt bestemt. For hvis også g′ : Y → X opfylder f ◦ g′ = idX og g′ ◦ f = idY , da er

g = g ◦ idY = g ◦ ( f ◦ g′)= (g ◦ f )◦ g′ = idX ◦g′ = g′.

2



0.2 Legemer

Vi kalder afbildningen g : Y → X for den inverse afbildning af f : X → Y . Den betegnes
sommetider med f −1 : Y → X . Vi bemærker, at det ifølge lemma 0.1.3 kun er bijektive
afbildninger, der har en invers afbildning.

Eksempel 0.1.4 Vi lader a ∈ R og betragter afbildningen f : R→ R, der er defineret
ved f (x) = ax. Hvis a 6= 0, da er f : R→ R bijektiv, og dens inverse afbildning g : R→ R

er givet ved g(y)= a−1 y. Hvis a = 0, da er f (x)= 0 for alle x ∈R, så f : R→R er hverken
injektiv eller surjektiv, og har derfor ikke nogen invers afbildning.

0.2 Legemer

Vi lader F være et vilkårligt legeme, hvilket vil sige en mængde af skalarer udstyret med
sum og produkt, der opfylder de sædvanlige aritmetiske regler. Den præcise definition
er som følger.

Definition 0.2.1 Et legeme er en triple (F,+, · ), der består af en mængde F samt to
afbildninger + : F×F→ F og · : F×F→ F, sådan at det gælder:

(A1) For alle a,b, c ∈ F er (a+b)+ c = a+ (b+ c).

(A2) Der findes et element 0 ∈ F, sådan at a+0= a = 0+a for alle a ∈ F.

(A3) For alle a ∈ F, findes der et b ∈ F, sådan at a+b = 0= b+a.

(A4) For alle a,b ∈ F er a+b = b+a.

(P1) For alle a,b, c ∈ F er (a ·b) · c = a · (b · c).

(P2) Der findes et element 1 ∈ F, sådan at a ·1= a = 1 ·a for alle a ∈ F.

(P3) For alle 0 6= a ∈ F, findes b ∈ F, sådan at a ·b = 1= b ·a. Endvidere er 0 6= 1.

(P4) For alle a,b ∈ F er a ·b = b ·a.

(D1) For alle a,b, c ∈ F er a · (b+ c)= (a ·b)+ (a · c).

(D2) For alle a,b, c ∈ F er (a+b) · c = (a · c)+ (b · c).

Vi forkorter normalt og skriver ab i stedet for a·b. Vi forkorter også normalt og skriver
blot F for legemet (F,+, · ). Dette er et eksempel på misbrug af notation, idet vi benytter
symbolet F til at betegne to forskellige objekter.

3



0 Skalarer

Eksempel 0.2.2 Vi giver følgende mere eller mindre velkendte eksempler på legemer.

(R) Det bedst kendte eksempel på et legeme er nok legemet af reelle tal (R,+, · ), hvor
R er mængden af reelle tal, og hvor “+” og “ · ” er henholdsvis den sædvanlige sum
og det sædvanlige produkt af reelle tal.

(Q) Et andet velkendt eksempel er legemet af rationale tal (Q,+, · ), hvor Q ⊂ R er
delmængden af rationale tal, og hvor igen “+” og “ · ” er de sædvanlige sum og
produkt operationer.

(C) Et meget vigtigt eksempel er legemet af komplekse tal (C,+, · ), som består af
mængden af komplekse tal

C= {a+ ib | a,b ∈R}

med “+” og “ ·” defineret ved henholdsvis

(a+ ib)+ (c+ id)= (a+ c)+ i(b+d)
(a+ ib) · (c+ id)= (ac−bd)+ i(ad+bc).

Det modsatte element af a+ ib er −a+ i(−b), som vi også skriver −a− ib, og, hvis
a+ ib 6= 0, da er det multiplikativt inverse element af a+ ib givet ved

1
a+ ib

= a− ib
(a+ ib)(a− ib)

= a− ib
a2 +b2 = a

a2 +b2 − i
b

a2 +b2 .

(F2) Det mindste legeme er legemet (F2,+, · ), hvor F2 = {0,1}, og hvor 1+1 er defineret
til at være lig med 0.

Der findes mange andre legemer, endelige som uendelige, og lineær algebra fungerer
over et vilkårligt legeme. I dette kursus vil vi dog kun bruge R og C som eksempler.

De grundlæggende egenskaber (A1)–(A4), (P1)–(P4) og (D1)–(D2), der per definition
gælder for sum og produkt i et legeme, har flere konsekvenser, som er velkendte for de
reelle og de komplekse tal, men som altid gælder så snart de grundlæggende betingelser
er opfyldt. Vi nævner her nogle af de vigtigste:

(1) Elementet 0 ∈ F, der opfylder (A2), er entydigt bestemt. For hvis 0 og 0′ begge
opfylder (A2), da gælder

0= 0+0′ = 0′.

Vi kalder 0 ∈ F for nul-elementet i F.

4



0.2 Legemer

(2) Givet a ∈ F, da er elementet b ∈ F, der opfylder (A3) ligeledes entydigt bestemt. For
hvis både b og b′ opfylder (A3), da er

b = b+0= b+ (a+b′)= (b+a)+b′ = 0+b′ = b′.

Vi skriver −a for dette element b og kalder det for det modsatte element af a.

(3) Man viser tilsvarende, at elementet 1 ∈ F, der opfylder (P2), er entydigt bestemt;
vi kalder dette element for et-elementet i F. Hvis a ∈ F, og der findes b ∈ F, sådan
at ab = 1 = ba, så ser vi ligeledes, at elementet b ∈ F er entydigt bestemt af a ∈ F.
Vi siger da, at a er invertibel, og at vi skriver a−1 for det entydigt bestemte b ∈ F,
sådan at ab = 1 = ba, og kalder det for det multiplikativt inverse element af a. Så
ifølge (P3) gælder det i et legeme F, at ethvert element a 6= 0 er invertibelt.

(4) Hvis a+ c = b+ c, så er a = b, idet

a (A2)= a+0 (A3)= a+ (c+ (−c)) (A1)= (a+ c)+ (−c)

= (b+ c)+ (−c) (A1)= b+ (c+ (−c)) (A3)= b+0 (A2)= b.

Det vil sige, at vi kan trække et vilkårligt c ∈ F fra på begge sider at et lighedstegn.
Tilsvarende gælder det for alle c ∈ F med c 6= 0, at hvis a · c = b · c, så er a = b, fordi

a (P2)= a ·1 (P3)= a · (c · c−1) (P1)= (a · c) · c−1

= (b · c) · c−1 (P1)= b · (c · c−1) (P3)= b ·1 (P2)= b.

Det vil sige, at vi kan dividere med c ∈ F på begge sider af et lighedstegn, forudsat
at c er invertibel. Vi kan derimod ikke dividere med 0, fordi 0 ikke er invertibel.

Vi nævner derudover de følgende to konsekvencer af Definition 0.2.1:

Sætning 0.2.3 Lad F være et legeme. For alle a ∈ F gælder følgende:

(E1) a ·0= 0= 0 ·a.

(E2) a · (−1)=−a = (−1) ·a.

Bevis Vi beviser først (E1). Givet a ∈ F, da er

a ·0 (A2)= a · (0+0) (D1)= (a ·0)+ (a ·0),

og ved at trække a ·0 fra venstre og højre side får vi da, at 0= (a ·0) som ønsket.

5



0 Skalarer

Vi viser dernæst (E2). Ifølge bemærkning (2) ovenfor, er −a ∈ F det entydigt bestemte
element, der opfylder a+ (−a)= 0= (−a)+a. Men udregningerne

a+ (−1) ·a (P2)= 1 ·a+ (−1) ·a (D2)= (1+ (−1)) ·a (A3)= 0 ·a (E1)= 0

(−1) ·a+a (P2)= (−1) ·a+1 ·a (D1)= a · (1+ (−1)) (A3)= a ·0 (E1)= 0

viser, at elementet (−1) ·a også har denne egenskab, hvilket viser (E2). 2

Bemærkning 0.2.4 Triplen (Z,+, · ), hvor Z er mængden af hele tal, og hvor “+” og “ · ”
er de sædvanlige sum og produkt operationer, opfylder alle aksiomerne i Definition 0.2.1
med undtagelse af (P3). For +1 og −1 er de eneste elementer i Z, der er invertible, så
ikke alle 0 6= x ∈Z er invertible. Dermed er (Z,+, · ) altså ikke noget legeme. En triple af
denne art kaldes for en kommutativ ring. Disse forekommer i enorm variation.2

0.3 Højre og venstre multiplikation

Hvis (F,+, · ) er et legeme, så gælder det ifølge aksiom (P4), at a ·b = b ·a for alle a,b ∈ F.
Med andre ord, så gør det ingen forskel, om vi ganger a med b fra højre eller fra venstre.
Der forekommer dog naturligt også tripler (F,+, · ), der opfylder alle aksiomerne for at
være et legeme med undtagelse af (P4), og vi siger da, at (F,+, · ) er et skævlegeme.

Et klassisk eksempel på et skævlegeme er Hamilton’s kvaternioner, som vi beskriver
i eksempel 0.3.1 nedenfor. Enhedskvaternioner bestemmer rotationer af 3-dimensionalt
rum, og “a ·b” svarer da til først at udføre rotationen bestemt af b og dernæst rotationen
bestemt af a, mens “b · a” svarer til at udføre disse rotationer i modsat rækkefølge,
hvilket typisk ikke er det samme.

I lineær algebra spiller multiplikation fra højre og venstre forskellige roller, og vi
gør det derfor til en regel altid at være forsigtige med, hvilken side vi ganger fra. Den
kommutative lov (P4) gælder således ikke for multiplikation af matricer, som vi indfører
i kapitel 2. For eksempel kan rotationer af 3-dimensionalt rum udtrykkes ved matricer,
og sammesætning af rotationer svarer da til matrixmultiplikation. Endelig er (P4) slet
ikke nødvendig i de fleste af de efterfølgende kapitler, og mange beviser bliver faktisk
lettere, når man ikke tillader sig at bruge (P4).

Eksempel 0.3.1 Hamilton’s kvaternioner er skævlegemet (H,+, · ), hvor

H= {a+ ib+ jc+kd | a,b, c,d ∈R}

er mængden af kvaternioner, og hvor “+” er defineret ved

(a1 + ib1 + jc1 +kd1)+ (a2 + ib2 + jc2 +kd2)
= (a1 +a2)+ i(b1 +b2)+ j(c1 + c2)+k(d1 +d2),

2 Det mere end 5000 sider lange Stacks Project (stacks.math.columbia.edu) omhandler kommutative
ringe og deres egenskaber.
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0.4 Opgaver

mens “ · ” er defineret ved

(a1 + ib1 + jc1 +kd1) · (a2 + ib2 + jc2 +kd2)
= (a1a2 −b1b2 − c1c2 −d1d2)+ i(a1b2 +b1a2 + c1d2 −d1c2)

+ j(a1c2 −b1d2 + c1a2 +d1b2)+k(a1d2 +b1c2 − c1b2 +d1a2).

For eksempel er i · j = k, mens j · i =−k, så multiplikation er ikke kommutativ.

0.4 Opgaver

0.1 Vis, at afbildningen f : R2 →R2 defineret ved

f
(
u
v

)
=

(
u+v
u−v

)
er bijektiv, og angiv den inverse afbildning g : R2 →R2.

0.2 Afgør i hvert af følgende tilfælde, om den angivne afbildning f : X → Y er injektiv,
surjektiv og/eller bijektiv, og angiv billedet af f : X → Y . Hvis f : X → Y er bijektiv,
angiv da også den inverse afbildning g : Y → X .

a) f : R→R, f (x)= x2.

b) f : R→R, f (x)= x3.

c) f : R2 →R, f
(
x
y

)
= xy.

d) f : R2 →R2, f
(
x
y

)
=

(
x+ y
x− y

)
.

e) f : Rà {0}→R, f (x)= 1
x .

f) f : Rà {0}→Rà {0}, f (x)= 1
x .

g) f : [0,1]→ [0,1], f (x)= x2.

0.3 Afgør, om hver af de følgende afbildninger er injektiv, surjektiv og/eller bijektiv.
Hvis afbildningen er bijektiv, angiv da også den inverse afbildning.

a) Afbildningen f : C→R2 defineret ved

f (z)=
(
Re(z)
Im(z)

)
.

b) Afbildningen g : C2 →R2 defineret ved

g
(

z
w

)
=

(
Re(z)
Im(z)

)
.
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0 Skalarer

c) Afbildningen h : C2 →C2 defineret ved

h
(

z
w

)
=

(
z̄
w

)
.

d) Afbildningen l : C2 →C2 defineret ved

l
(

z
w

)
=

(
i · z−w

z

)
.

0.4 Vi betragter mængderne

A = {a,b, c} B = {2,3,5,7,11}
D = {α,ω} E = {I,V,X,L,C,D,M}.

Angiv for hver af følgende afbildninger, om den er injektiv og/eller surjektiv. Angiv
den inverse afbilding i de tilfælde, hvor afbildningen er bijektiv.

a) Afbildningen f : A → B defineret ved

f (a)= 2, f (b)= 11, f (c)= 2.

b) Afbildningen g : D → A defineret ved

g(α)= b, g(ω)= a.

c) Afbildningen h : E → A defineret ved

h(I)= c, h(V)= a, h(X)= a, h(L)= b,
h(C)= c, h(D)= b, h(M)= a.

d) Afbildningen i : A∪D → B defineret ved

i(a)= 7, i(b)= 3, i(c)= 11, i(α)= 2, i(ω)= 5.

0.5 Afbildningerne f , g : R3 →R3 er givet ved

f

x1
x2
x3

=
x1 + x2

x2 + x3
x1 + x3

 , g

x1
x2
x3

=
x1 + x2 +2x3

x2 + x3
x1 + x3

 .

a) Gør rede for, at f : R3 →R3 er bijektiv, mens g : R3 →R3 ikke er bijektiv.

b) Angiv den inverse afbildning til f : R3 →R3.
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0.4 Opgaver

0.6 Lad X , Y og Z være mængder, og lad f : X →Y og g : Y → Z være afbildninger.

a) Vis, at hvis f : X → Y og g : Y → Z begge er injektive, da er g ◦ f : X → Z også
injektiv.

b) Vis, at hvis f : X → Y og g : Y → Z begge er surjektive, da er g ◦ f : X → Z også
surjektiv.

c) Vis, at hvis f : X →Y og g : Y → Z begge er bijektive, da er g◦ f : X → Z bijektiv,
og at det endvidere gælder, at (g ◦ f )−1 = f −1 ◦ g−1 : Z → X .

d) Vis, at hvis g ◦ f : X → Z er injektiv, så er også f : X →Y injektiv.

e) Vis, at hvis g ◦ f : X → Z er surjektiv, så er også g : Y → Z surjektiv.

0.7 (?) Angiv en bijektiv afbildning f : [0,1]→ [0,1).

[Vink: Afbildningen f : [0,1]→ [0,1) kan ikke være kontinuert.]
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1 Lineære ligningssystemer

I dette kapitel indfører vi lineære ligningssystemer og beskriver en algoritme til at
finde deres løsninger. Denne algoritme eller metode, der allerede er beskrevet i den
kinesiske tekst “Ni kapitler om den matematiske kunst” skrevet omkring begyndelsen
af vor tidsregning, blev langt senere genfundet af først Newton og senere Gauss, og går
nu, noget uretfærdigt, under navnet Gauss-elimination. Denne algoritme er utroligt
effektiv og er grundlaget for stort alle beregninger i lineær algebra.

Algoritmen består i at omforme ligningssystemer ved hjælp af rækkeoperationer, der
ikke ændrer løsningsmængden, men gør det muligt umiddelbart at angive denne. Vi
samler al information om et lineært ligningssystem i en matrix, og vi indfører en speciel
form for matricer, som vi kalder matricer på reduceret echelonform, hvor det tilhørende
ligningssystem umiddelbart kan løses. Gauss-elimination er da en algoritme, der ved
hjælp af rækkeoperationer omdanner en given matrix til en entydigt bestemt matrix på
reduceret echelonform.

Løsning af lineære af ligningssystem ved Gauss-elimination er beskrevet i detaljer i
sætning 1.2.17 nedenfor. I grove træk afgør algoritmen, om der er løsninger eller ej, og
hvis der er løsninger, så bliver de alle fundet af algoritmen. Specielt afgør algoritmen,
om der er nul, én eller flere løsninger.

Vi minder om fra kapitel 0, at vi arbejder med skalarer i et legeme F, som for os er
enten de reelle eller de komplekse tal. De eneste egenskaber ved de reelle og komplekse
tal, som vi anvender, er, at de kan adderes og multipliceres, og at disse operationer
opfylder legemesaksiomerne beskrevet i definition 0.2.1.

1.1 Lineære ligningssystemer

Det lineære ligningssystem
4x1 + x2 = 9

x1 − x2 = 1

består af to ligninger “4x1 + x2 = 9” og “x1 − x2 = 1” med to ubekendte x1 og x2. Det er
ikke svært at se, at x1 = 2 og x2 = 1 tilfredsstiller begge ligninger, og derfor er en løsning
til ligningssystemet, samt at dette er den eneste løsning. Vi angiver denne løsning som

x=
(
2
1

)
.
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1 Lineære ligningssystemer

Generelt siger vi, at et system af ligninger på formen

a11x1 +a12x2 +·· ·+a1nxn = b1

a21x1 +a22x2 +·· ·+a2nxn = b2

...
am1x1 +am2x2 +·· ·+amnxn = bm

med ai j,bi ∈ F er et lineært ligningssystem med m ligninger i n ubekendte over F, og
vi kalder skalarerne ai j og bi for ligningssystemets koefficienter og konstanter. Ved en
løsning til ligningssystemet forstår vi en familie af n skalarer

x=


x1
x2
...

xn

 ,

der samtidigt tilfredstiller de m ligninger i systemet. Den mængde, der består af alle
løsninger til ligningssystemet, kaldes for ligningssystemets løsningsmængde.

Hvis konstanterne bi alle er lig med 0, siger vi, at ligningssystemet er homogent, og
ellers siger vi, at det er inhomogent. Ethvert homogent ligningssystem har løsningen

x= 0=


0
0
...
0

 ,

mens et inhomogent ligningssystem ikke behøver at have nogen løsning.

Eksempel 1.1.1 (Homogent og inhomogent ligningssystem) Ligningssystemet

2x1 −3x2 + x3 =−1
−x1 + x2 − x3 = 2

3x1 +2x2 +2x3 = 3

med m = 3 ligninger i n = 3 ubekendte er inhomogent; og ligningssystemet

2x1 −3x2 + x3 = 0
−x1 + x2 − x3 = 0

3x1 +2x2 +2x3 = 0

er det tilhørende homogene ligningssystem.
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1.2 Rækkeoperationer og Gauss-elimination

Det er nyttigt ikke at skulle skrive de variable x j hele tiden, og derfor samler vi
ligningssystemets koefficienter ai j i en m×n-matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn

 ,

som vi kalder ligningssystemets koefficientmatrix. Vi siger, at matricen har m rækker
og n søjler. Hvis vi tilføjer den ekstra søjle

b =


b1
b2
...

bm

 ,

der består af ligningssystemets konstanter, så får vi en m× (n+1)-matrix

( A | b )=


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2

...
... . . . ...

...
am1 am2 . . . amn bm

 ,

som vi kalder ligningssystemets totalmatrix. Vi har her, som det er sædvane, inkluderet
en lodret linje, der adskiller koefficienter og konstanter. Linjen er ikke af matematisk
betydning og har udelukkende til formål at huske os på, hvilket ligningssystem denne
matrix repræsenterer.

Eksempel 1.1.2 (Totalmatrix) Ligningssystemet i eksempel 1.1.1 har totalmatrix 2 −3 1 −1
−1 1 −1 2

3 2 2 3

 .

Den har 3 rækker og 4 søjler, og er dermed en 3×4-matrix.

1.2 Rækkeoperationer og Gauss-elimination

I dette afsnit indfører vi rækkeoperationer og viser, hvordan de anvendes til at løse
lineære ligningssystemer. Vi illustrerer først dette med det simple eksempel

4x1 + x2 = 9
x1 − x2 = 1,
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1 Lineære ligningssystemer

hvor vi nu beskriver hver skridt i udregningen. Vi begynder med at addere den anden
ligning til den første, og får da ligningssystemet

5x1 = 10
x1 − x2 = 1.

Vi ganger dernæst den første ligning med 1/5 og den anden med −1, hvilket giver

x1 = 2
−x1 + x2 =−1.

Endelig adderer vi den første ligning til den anden og får derved

x1 = 2
x2 = 1.

De fire ligningssystemer har alle samme løsningsmængde, da de operationer, vi har
udført, kan inverteres og derfor bevarer løsningsmængden. Vi konkluderer dermed, at
den fælles løsningsmængde består af den entydige løsning(

x1
x2

)
=

(
2
1

)
.

Vi skal nu vise, at denne løsningsmetode virker for et generelt lineært ligningssystem.
Så vi betragter lineære ligningssystemer

a11x1 +a12x2 +·· ·+a1nxn = b1

a21x1 +a22x2 +·· ·+a2nxn = b2

...
am1x1 +am2x2 +·· ·+amnxn = bm

bestående af m ligninger i n ubekendte og indfører de følgende tre typer af operationer,
der omformer et sådant lineært ligningssystem til et nyt lineært ligningssystem med
samme løsningsmængde.

Type M: Multiplikation fra venstre af en ligning med en skalar c 6= 0.

Type S: Addition af et venstre multiplum af en ligning til en anden ligning.

Type T: Ombytning af to ligninger.

Her indikerer “M”, “S” og “T” henholdsvis multiplikation, sum og transposition, og som
vi forklarede i afsnit 0.3, så skelner vi mellem multiplikation med skalarer fra venstre
og fra højre.
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1.2 Rækkeoperationer og Gauss-elimination

De tre typer af operationer bevarer både antallet m af ligninger og antallet n af ube-
kendte. Endvidere gælder det, at enhver løsning til et givet ligningssystem igen er en
løsning til det nye ligningssystem, der fremkommer ved at udføre en af de tre typer
operationer.

Desuden har hver af de tre typer operationer en invers operation: For hvis vi ganger
ligning i med c 6= 0 fra venstre, så kan vi gange den nye ligning i med c−1 6= 0 fra venstre
og derved få den oprindelige ligning i tilbage. Og hvis vi adderer c gange ligning j til
ligning i 6= j, så kan vi adderer −c gange ligning j til den nye ligning i og derved få den
oprindelige ligning i tilbage. Endelig, hvis vi ombytter ligning i og j, så kan vi ombytte
dem igen, og derved komme tilbage til, der hvor vi startede. Derfor er enhver løsning til
det nye ligningssystem også en løsning til det oprindelige ligningssystem. Med andre
ord har de to ligningssystemer den samme løsningsmængde.

Vi udtrykker nu de tre typer operationer ved ligningssystemernes totalmatricer

( A | b )=


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2

...
... . . . ...

...
am1 am2 . . . amn bm

 ,

hvor de svarer til de følgende tre typer rækkeoperationer på matricer:

Type M: Multiplikation fra venstre af en række med en skalar c 6= 0.

Type S: Addition af et venstre multiplum af en række til en anden række.

Type T: Ombytning af to rækker.

Vi bemærker, at disse rækkeoperationer bevarer antallet af rækker og antallet af søjler.
Rækkeoperationer forstås lettest ved gennemgang af nogle eksempler. Disse eksemp-

ler illustrerer samtidigt, hvordan vi angiver rækkeoperationer.

Eksempel 1.2.1 Vi betragter igen ligningssystemet

4x1 + x2 = 9
x1 − x2 = 1,

som vi løste i starten af afsnitet. Vi udfører nu de rækkeoperationer på ligningssyste-
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1 Lineære ligningssystemer

met totalmatrix (A | b), der svarer til de rækkeoperationer, vi anvendte tidligere.

(A | b)=
(

4 1 9
1 −1 1

) +R2

(
5 0 10
1 −1 1

) 1
5 ·R1

(
1 0 2
1 −1 1

)
(−1) ·R2(

1 0 2
−1 1 −1

)
+R1

(A′ | b′)=
(

1 0 2
0 1 1

)
Ligningssystemet hørende til (A′ | b′) er

x1 = 2
x2 = 1,

hvilket er trivielt at løse.

Bemærkning 1.2.2 Vi bemærker, at de fem matricer i eksempel 1.2.1 ikke er lig med
hinanden, og at det derfor er forkert at skrive lighedstegn mellem dem.

Vi viser nu, at rækkeoperationer er invertible i den forstand, at hvis en given rækkeo-
peration omformer matricen A til matricen A′, så omformer den inverse rækkeoperation
matricen A′ til matricen A.

Sætning 1.2.3 Rækkeoperationerne af type M, S og T er invertible, og de inverse ræk-
keoperationer er givet følger:

(1) Den inverse af rækkeoperationen af type M, der består i at gange række i med c 6= 0
fra venstre, er rækkeoperationen af type M, der består i at gange række i med c−1

fra venstre.

(2) Den inverse af rækkeoperationen af type S, der består i at addere c gange række
j til række i 6= j, er rækkeoperationen af type S, der består i at addere −c gange
række j til række i.

(3) Den inverse af rækkeoperationen af type T, der består i at ombytte række i og j, er
den samme rækkeoperation af type T.
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1.2 Rækkeoperationer og Gauss-elimination

Bevis Vi beviser (2); (1) og (3) vises tilsvarende. Så lad A = (akl) være en m×n-matrix,
og lad A′ = (a′

kl) være m×n-matricen, der fremkommer fra A ved rækkeoperationen af
type S, der adderer c gange den i’te række til den j’te række. Da gælder det, at

a′
kl =

{
a jl + c ·ail hvis k = j,
akl hvis k 6= j.

Lad A′′ = (a′′
kl) være m×n-matricen, der fremkommer fra A′ ved rækkeoperationen af

type S, der adderer −c gange den i’te række til den j’te række. Da gælder det, at

a′′
kl =

{
a′

jl + (−c) ·a′
il hvis k = j,

a′
kl hvis k 6= j,

og vi skal vise, at A′′ = A. Hvis k 6= j, da er a′′
kl = a′

kl = akl , og hvis k = j, da er

a′′
jl = a′

jl + (−c) ·a′
il = (a jl + c ·ail)+ (−c) ·ail = a jl + (c ·ail + (−c) ·ail)

= a jl + (c+ (−c)) ·ail = a jl +0 ·ail = a jl +0= a jl .

Dette viser sætningen. 2

Eksempel 1.2.4 Vi betragter igen matricerne (A | b) og (A′ | b′) fra eksempel 1.2.1.
Vi udfører nu de inverse rækkeoperationer af de rækkeoperationer, vi udførte for at
omdanne (A | b) til (A′ | b′), og vi udfører dem endvidere i den omvendte rækkefølge.

(A′ | b′)=
(

1 0 2
0 1 1

)
+(−1) ·R1(

1 0 2
−1 1 −1

)
(−1) ·R2(

1 0 2
1 −1 1

)
5 ·R1

(
5 0 10
1 −1 1

) +(−1) ·R2

(A | b)=
(

4 1 9
1 −1 1

)
De inverse rækkeoperationer, anvendt i omvendt rækkefølge, omdanner altså matricen
(A′ | b′) til den oprindelige matrix (A | b).
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1 Lineære ligningssystemer

Sætning 1.2.5 Hvis totalmatricen (A | b) for et lineært ligningssystem kan omdannes
til totalmatricen (A′ | b′) for et andet lineært ligningssystem ved at udføre et endeligt
antal rækkeoperationer, så har de to ligningssystemer den samme løsningsmængde.

Bevis Vi beviser sætningen ved induktion på antallet N ≥ 0 af rækkeoperationer, der
benyttes til at omdanne (A | b) til (A′ | b′). Hvis N = 0, har man udført ingen rækkeope-
rationer, så er (A | b) = (A′ | b′), og der er derfor ikke noget at vise. Vi antager dernæst,
at påstanden er bevist for N = r−1, og beviser den for N = r.

Så lad (A | b) være totalmatricen for et lineært ligningssystem, og lad (A′ | b′) være
en matrix, der er fremkommet fra matricen (A | b) ved at udføre r rækkeoperationer.
Vi skal vise, at ligningssystemerne hørende til (A | b) og (A′ | b′) har den samme løs-
ningsmængde. Lad (B | c) være den matrix, der fremkommer fra (A | b) ved at udføre
de r−1 første af de r rækkeoperationer. Per induktion ved vi da, at ligningssystemerne
hørende til (A | b) og (B | c) har samme løsningsmængde, og det er derfor tilstrækkeligt
at vise, at ligningssystemerne hørende til (B | c) og (A′ | b′) har samme løsningsmæng-
de. Men (A′ | b′) fremkommer fra (B | c) ved at udføre en enkelt rækkeoperation, og
som vi allerede har bemærket har de tilhørende ligningssystemer derfor den samme
løsningsmængde. Dette viser induktionsskridtet og dermed sætningen. 2

Eksempel 1.2.6 Hvis man er meget forsigtig, så kan to eller flere operationer udføres
i samme skridt forudsat, at de er ombyttelige. De fire operationer

A =
0 1 2 1

1 7 3 1
0 4 6 −6

 R1 ↔ R2

1
2 ·R31 7 3 1

0 1 2 1
0 2 3 −3

 +(−1) ·R2

+3 ·R2

A′ =
1 6 1 0

0 1 2 1
0 5 9 0


omdanner A til A′. De første to operationer er ombyttelige, da de ikke involverer de
samme rækker, og det samme gælder for de sidste to operationer.

Vi vil anvende rækkeoperationer til at omdanne totalmatricerne af ligningssystemer,
til matricer på en særlig form, som vi kalder reduceret echelonform. Definitionen, som
vi nu giver, forstås lettest ved samtidigt at betragte eksempel 1.2.8 nedenfor.
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1.2 Rækkeoperationer og Gauss-elimination

Definition 1.2.7 En m×n-matrix med indgange i et legeme F,

A = (ai j)=


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn

 ,

siges at være på reduceret echelonform, hvis der findes r ≥ 0 og 1 ≤ j1 < ·· · < jr ≤ n,
sådan at følgende gælder:

(1) For alle 1≤ s ≤ r gælder det, at

ai js =
{

1 hvis i = s,
0 hvis i 6= s.

(2) For alle 1≤ s ≤ r og 1≤ j < js gælder det, at as j = 0.

(3) For alle r < i ≤ m og 1≤ j ≤ n gælder det, at ai j = 0.

Eksempel 1.2.8 Den følgende 5×9-matrix er på reduceret echelonform.
0 1 0 7 0 1 0 0 2
0 0 1 3 0 2 1 0 1
0 0 0 0 1 6 3 0 3
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0


For denne matrix er r = 4, mens søjlerne j1 = 2, j2 = 3, j3 = 5 og j4 = 8 er dens specielle
søjler. Betingelsen (1) udtrykker, at i søjle nummer js er indgangen as js lig med 1, mens
alle øvrige indgange er lig med 0. Indgangene as js = 1, som vi har markeret med blåt,
kaldes for matricens ledende indgange. Betingelsen (2) udtrykker, at i en række, der
indeholder en ledende indgang, er alle indgange til venstre for den ledende indgang lig
med 0. Endelig udtrykker betingelsen (3), at i de sidste m− r rækker er alle indgange
lig med 0. Vi bemærker, at disse m− r rækker er netop de rækker, der ikke indeholder
en ledende indgang.
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1 Lineære ligningssystemer

Figur 1.1: Betegnelsen “echelonform” har sin oprindelse i den militære betegnelse
“echelonformation”. Figuren viser fly, der flyver i echelonformation.

Definition 1.2.9 I en matrix A, der er på reduceret echelonform, kaldes antallet r af
ikke-nul rækker for matricens rang, mens den første ikke-nul indgang fra venstre i en
række kaldes for rækkens ledende indgang.

I en matrix på reduceret echelonform er de ledende indgange altså alle lig med 1, og
antallet af ledende indgange i matricen er lig med rangen r.

Vi siger endvidere, at en m×n-matrix A = (ai j) er på echelonform, hvis den opfylder
betingelserne (2) og (3) i definition 1.2.7 samt den svagere betingelse

(1’) For alle 1≤ s ≤ r gælder det, at as, js 6= 0.

Hvis en matrix A er på echelonform, så kalder vi igen antallet r af ikke-nul rækker
for matricens rang, og vi kalder den første ikke-nul indgang fra venstre i en række for
rækkens ledende indgang. Rangen r er således igen lig med antallet af ledende indgange
i matricen.

Eksempel 1.2.10 De to følgende 4×8-matricer, hvor “∗” indikerer en vilkårlig skalar,
er henholdsvis på reduceret echelonform og på echelonform.

1 ∗ ∗ 0 ∗ 0 ∗ ∗
0 0 0 1 ∗ 0 ∗ ∗
0 0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 0 0




0 2 ∗ ∗ ∗ ∗ ∗ ∗
0 0 4 ∗ ∗ ∗ ∗ ∗
0 0 0 0 5 ∗ ∗ ∗
0 0 0 0 0 0 3 ∗


Deres rang er henholdsvis 3 og 4, og de ledende indgange er markeret med blåt. Vi
bemærker, at i matricen, der er på reduceret echelonform, er de ledende indgange alle
lig med 1, og at i de søjler, der indeholder en ledende indgang, er alle øvrige indgange
lig med 0.
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1.2 Rækkeoperationer og Gauss-elimination

Matricer på reduceret echelonform svarer til totalmatricer for ligningssystemer som
umiddelbart kan løses. Det simpleste tilfælde er det tilfælde, hvor totalmatricen har en
ledende indgang i alle søjler undtaget konstantsøjlen som i følgende eksempel.

Eksempel 1.2.11 Matricen

(A | b)=
 1 0 0 8

0 1 0 1
0 0 1 3


er på reduceret echelonform af rang r = 3. Den er totalmatricen for ligningsystemet

x1 = 8
x2 = 1

x3 = 3

som umiddelbart ses at have præcis den ene løsning

x=
8

1
3

 .

Som allerede nævnt består Gauss-elimination i at anvende rækkeoperationer til at
omdanne totalmatricen hørende til et lineært ligningssystem til en matrix på reduce-
ret echelonform. Det tilhørende lineære ligningssystemer har da ifølge sætning 1.2.5
samme løsningsmængde, men kan nu umiddelbart løses. Den følgende sætning viser, at
denne løsningsmetode altid virker.

Sætning 1.2.12 Enhver matrix A kan omdannes til en matrix A′ på reduceret eche-
lonform ved at udføre et endeligt antal rækkeoperationer.

Vi viser i sætning 2.5.11, at matricen A′ er entydigt bestemt af matricen A, hvilket
kræver lidt flere værktøjer, end vi lige nu har til rådighed. Beviset for sætning 1.2.12
består i at angive den algoritme, der omformer A til A′. Algoritmen er beskrevet ved
induktion på antallet af søjler i A, og for at forstå den generelle algoritme i beviset er
det en god idé sideløbende at læse eksempel 1.2.13-1.2.16, hvor algoritmen er anvendt
på konkrete matricer.

Bevis Vi lader A være en m× n-matrix og viser ved induktion på antallet n ≥ 1 af
søjler, at A ved brug af rækkeoperationer kan omdannes til en matrix A′ på reduceret
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1 Lineære ligningssystemer

echelonform. Vi betragter først det basale tilfælde n = 1, hvor

A =


a11
a21

...
am1


er en enkelt søjle. Hvis ai1 = 0 for alle i, så er A′ = A allerede på reduceret echelonform
af rang r = 0, og i modsat fald findes 1 ≤ i ≤ m med ai1 6= 0. Vi anvender nu først en
rækkeoperation af type M til at gange den i’te række med a−1

i1 , hvorefter vi anvender en
rækkeoperation af type T til at ombytte den i’te række med den første række. Herved
får vi en matrix B på formen

B =


1

b21
...

bm1

 .

Endelig anvender vi for alle 2 ≤ i ≤ m en rækkeoperation af type S til at addere −bi1
gange den første række til den i’te række, hvorved vi får matricen

A′ =


1
0
...
0

 ,

som er på reduceret echelonform af rang r = 1. Dette viser påstanden for n = 1.
Så vi antager induktivt, at påstanden er vist for n = p−1 og beviser den for n = p.

Hvis alle indgange i den første søjle er lig med 0, så er

A =

 0
... B
0

 ,

hvor B er en m× (p−1)–matrix. Den induktive antagelse viser, at der findes en følge af
rækkeoperationer, som omdanner B til en matrix B′ på reduceret echelonform, og den
samme følge af rækkeoperationer omdanner da matricen A til matricen

A′ =

 0
... B′

0

 ,

der som ønsket er på reduceret echelonform. Hvis ikke alle indgange i den første søjle er
lig med 0, så findes 1≤ i ≤ m med ai1 6= 0, og vi kan da som i tilfældet n = 1 først anvende
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1.2 Rækkeoperationer og Gauss-elimination

en rækkeoperation af type M til at gange den i’te række med a−1
i1 og derefter anvende en

rækkeoperation af type T til at ombytte den i’te række med den første række. Endelig
anvender vi for alle 2≤ i ≤ m en rækkeoperation af type S til at addere −bi1 gange den
første række til den i’te række, hvorved vi får matricen

B =


1 b12 · · · b1p
0
... C
0

 ,

hvor C er en (m−1)× (p−1)–matrix. Den induktive antagelse viser nu, at der findes en
følge af rækkeoperationer, der omdanner C til en matrix C′ på reduceret echelonform,
og da alle indgange i den første søjle i B med undtagelse af b11 = 1 er lig med 0, så
omdanner de tilsvarende rækkeoperationer m× p-matricen B til matricen

D =


1 b12 · · · b1p
0
... C′

0

 .

Endelig lader vi 1≤ j2 < ·· · < jr ≤ p nummerere de søjler i D, der indeholder de ledende
indgange i C′, og anvender for alle 2 ≤ s ≤ r rækkeoperationen af type S, der adderer
−b1 js gange den s’te række i D til den første række i D. Matricen A′, der fremkommer
herved, er da på reduceret echelonform af rang r. Dette viser induktionsskridtet og
dermed sætningen. 2

I de følgende eksempler anvender vi algoritmen, der er beskrevet i beviset for sæt-
ning 1.2.12, på totalmatricen (A | b) hørende til et givet lineært ligningssystem. Herved
får vi en matrix (A′ | b′) på reduceret echelonform, og vi kan da umiddelbart angive
løsningsmængden for det tilhørende ligningssystem. Denne løsningsmængde er ifølge
sætning 1.2.5 den samme som løsningsmængden for det oprindelige ligningssystem.

Eksempel 1.2.13 (Entydig løsning) Vi anvender Gauss-elimination til at bestemme
løsningsmængden til det lineære ligningssystem

2x1 −3x2 +x3 = −1
−x1 +x2 −x3 = 2
3x1 +2x2 +2x3 = 3.

Vi opskriver ligningssystemets totalmatrix (A | b) og anvender rækkeoperationer til at
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omdanne denne til en matrix (A′ | b′) på reduceret echelonform.

(A | b)=
 2 −3 1 −1
−1 1 −1 2

3 2 2 3

 R1 ↔ R2

−1 1 −1 2
2 −3 1 −1
3 2 2 3

 +2R1
+3R1−1 1 −1 2

0 −1 −1 3
0 5 −1 9

 +R2

+5R2−1 0 −2 5
0 −1 −1 3
0 0 −6 24

 (−1) ·R1
(−1) ·R2
(−1

6 ) ·R3 1 0 2 −5
0 1 1 −3
0 0 1 −4

 +(−2)R3
+(−1)R3

(A′ | b′)=
 1 0 0 3

0 1 0 1
0 0 1 −4



Her har vi markeret de indgange, vi har ønsket at ændre, med rødt; og i den endelige
matrix (A′ | b′) har vi markeret de tre ledende indgange med blåt. Ligningssystemet,
der har (A′ | b′) som totalmatrix, er nu

x1 = 3
x2 = 1

x3 = −4.

Dette ligningssystem har tydeligvis præcis den ene løsning

x=
x1

x2
x3

=
 3

1
−4

 .

Ifølge sætning 1.2.5 er denne løsning også den entydige løsning til det oprindelige
ligningssystem.
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1.2 Rækkeoperationer og Gauss-elimination

Eksempel 1.2.14 (Løsningsmængde med én parameter) Vi anvender Gauss-
elimination til at bestemme løsningsmængden til det lineære ligningssystem

−x1 −2x2 −5x3 = −3
2x1 +3x2 +8x3 = 4
2x1 +6x2 +14x3 = 10.

Vi opskriver igen totalmatricen for ligningssystemet og omdanner den til en matrix på
reduceret echelonform ved hjælp af rækkeoperationer.

(A | b)=
−1 −2 −5 −3

2 3 8 4
2 6 14 10

 +2R1
+2R1−1 −2 −5 −3

0 −1 −2 −2
0 2 4 4

 +(−2)R2

+2R2−1 0 −1 1
0 −1 −2 −2
0 0 0 0

 (−1) ·R1
(−1) ·R2

(A′ | b′)=
 1 0 1 −1

0 1 2 2
0 0 0 0

 .

Vi har igen markeret de ledende indgange med blåt og de indgange, vi ønsker at ændre,
med rødt. Ligningssystemet, der har (A′ | b′) som totalmatrix, er nu

x1 + x3 = −1
x2 +2x3 = 2

0 = 0.

Vi ser heraf, at der for hver værdi t af x3, findes præcis en værdi af x1 og af x2, der
giver en løsning til ligningssystemet, nemlig

x=
x1

x2
x3

=
−1− t

2−2t
t

 .

Med andre ord er den fælles løsningsmængde for de to ligningssystemerx=
x1

x2
x3

=
 −1− t

2−2t
t

 ∣∣∣ t ∈ F
 .

Løsningsmængden er altså parametriseret ved parameteren t ∈ F. Vi siger, at variablen
x3 er en fri variabel, da den kan tilordnes en vilkårlig værdi, og bemærker, at den
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svarer til den søjle i A′, der ikke indeholder en ledende indgang. Vi siger endvidere, at
variablene x1 og x2, der svarer til de søjler i A′, der indeholder en ledende indgang, er
ledende variable.

Generelt kan de ledende variable udtrykkes entydigt ved de frie variable.

Eksempel 1.2.15 (Tom løsningsmængde) Vi anvender igen Gauss-elimination til
at bestemme løsningsmængden til det lineære ligningssystem

−x1 −2x2 −5x3 = −3
2x1 +3x2 +8x3 = 4
2x1 +6x2 +14x3 = 5.

Dette ligningssystem har samme koefficientmatrix som ligningssystemet i eksempel
1.2.14, men konstantsøjlen er en anden. Vi opskriver totalmatricen for ligningssyste-
met og omdanner denne til en matrix på reduceret echelonform.

(A | b)=
−1 −2 −5 −3

2 3 8 4
2 6 14 5

 +2R1
+2R1−1 −2 −5 −3

0 −1 −2 −2
0 2 4 −1

 +(−2)R2

+2R2−1 0 −1 1
0 −1 −2 −2
0 0 0 −1

 (−1) ·R1
(−1) ·R2
(−1) ·R3 1 0 1 −1

0 1 2 2
0 0 0 1

 +R3
+(−2)R3

(A′ | b′)=
 1 0 1 0

0 1 2 0
0 0 0 1

 .

Vi har igen markeret de indgange, vi ønsker at ændre, med rødt, og vi har markeret de
tre ledende indgange med blåt. Ligningssystemet med (A′ | b′) som totalmatrix er nu

x1 + x3 = 0
x2 +2x3 = 0

0 = 1.

Dette ligningssystem har ingen løsninger, da den sidste ligning “0 = 1” ikke er opfyldt
uanset hvilke værdier, vi tilskriver de variable. Ifølge sætning 1.2.5 har det oprindelige
ligningssystem derfor hellere ingen løsninger.
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Generelt har et ligningssystem med totalmatrix (A | b) ingen løsninger, hvis og kun
hvis konstantsøjlen i matricen (A′ | b′) på reduceret echelonform, der fremkommer fra
(A | b) ved rækkeoperationer, indeholder en ledende indgang.

Eksempel 1.2.16 (Løsningsmængde med to parametre) Vi anvender Gauss-
elimination til at bestemme løsningsmængden til det lineære ligningssystem

2x3 −x4 +8x5 = −13
x1 −2x2 +3x3 +2x4 +x5 = 10

3x1 −6x2 +10x3 +6x4 +5x5 = 27

Så vi opskriver totalmatricen for ligningssystemet og omdanner denne til en matrix
på reduceret echelonform ved hjælp af rækkeoperationer.

(A | b)=
 0 0 2 −1 8 −13

1 −2 3 2 1 10
3 −6 10 6 5 27

 R1 ↔ R2

 1 −2 3 2 1 10
0 0 2 −1 8 −13
3 −6 10 6 5 27


+(−3)R1 1 −2 3 2 1 10

0 0 2 −1 8 −13
0 0 1 0 2 −3

 +(−3)R3
+(−2)R3

 1 −2 0 2 −5 19
0 0 0 −1 4 −7
0 0 1 0 2 −3

 +2R2

 1 −2 0 0 3 5
0 0 0 −1 4 −7
0 0 1 0 2 −3

 (−1) ·R2

 1 −2 0 0 3 5
0 0 0 1 −4 7
0 0 1 0 2 −3

 R2 ↔ R3

(A′ | b′)=
 1 −2 0 0 3 5

0 0 1 0 2 −3
0 0 0 1 −4 7


Vi har markeret de indgange, vi ønsker at ændre, med rødt; og vi har markeret de tre
ledende indgange med blåt. Ligningssystemet med (A′ | b′) som totalmatrix er nu

x1 −2x2 +3x5 = 5
x3 +2x5 = −3

x4 −4x5 = 7.
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Så for hver værdi x2 = t1 og x5 = t2 af de frie variable x2 og x5 er

x=


x1
x2
x3
x4
x5

=


5 +2t1 −3t2

t1
−3 −2t2

7 +4t2
t2


en løsning. Den fælles løsningsmængde til de to ligningssystemer er parametriseret
ved de to parametre t1 ∈ F og t2 ∈ F.

Sætning 1.2.17 (Løsning af lineære ligningssystemer ved Gauss-elimination)
Løsningsmængden for det lineære ligningssystem

a11x1 +a12x2 +·· ·+a1nxn = b1

a21x1 +a22x2 +·· ·+a2nxn = b2

...
am1x1 +am2x2 +·· ·+amnxn = bm

bestående af m ligninger i n ubekendte over F bestemmes som følger:

(1) Ligningssystemets totalmatrix

(A | b)=


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2

...
... . . . ...

...
am1 am2 . . . amn bm


omdannes ved en følge af rækkeoperationer til en matrix (A′ | b′) på reduceret
echelonform af rang 0≤ r ≤min{m,n}.

(2) Hvis en af de ledende indgange i (A′ | b′) er indeholdt i b′, så har ligningssystemet
ingen løsninger.

(3) Hvis ingen af de ledende indgange i (A′ | b′) er indeholdt i b′, og hvis r = n, så har
ligningssystemet præcis én løsning.

(4) Hvis ingen af de ledende indgange i (A′ | b′) er indeholdt i b′, og hvis r < n, så
parametriseres løsningsmængden ved at (i) opdele de n variable i de r ledende
variable x j1 , . . . , x jr svarende til de søjler i A′, der indeholder en ledende indgang,
og de resterende p = n− r frie variable; (ii) tilordne de frie variable vilkårlige
værdier t1, . . . , tp ∈ F; og (iii) løse ligningssystemet med totalmatrix (A′ | b′) for at
bestemme værdierne af de ledende variable.
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Bevis Vi har allerede vist i sætning 1.2.12, at der findes en følge af rækkeoperationer,
der omdanner totalmatricen (A | b) til en matrix (A′ | b′) på reduceret echelonform.
Med andre ord kan skridtet (1) altid udføres. Desuden har vi vist i sætning 1.2.5, at
det givne ligningssystem og ligningssystemet med totalmatrix (A′ | b′) har den samme
løsningsmængde. I resten af beviset vil vi derfor udelukkende betragte det sidstnævnte
ligningssystem.

Vi viser nu (2), så vi antager, at b′ indeholder en af de ledende indgange i matricen
(A′ | b′). Da denne m× (n+ 1)-matrix er på reduceret echelonform med b′ som sidste
søjle, gælder det nødvendigvis, at jr = n+1, og derfor er a′

r j = 0 for alle 1 ≤ j ≤ n, mens
b′

r = 1. Den r’te ligning i det tilhørende ligningssystem er derfor

0 · x1 +·· ·+0 · xn = 1,

hvilket som ønsket viser, at ligningssystemet ingen løsninger har.
Vi viser dernæst (3). Da m× (n+1)-matricen (A′ | b′) er på reduceret echelonform og

har r = n ledende indgange, og da den sidste søjle b′ ikke indeholder nogen ledende
indgang, må alle søjler i A′ nødvendigvis indeholde en ledende indgang. De første r = n
ligninger i det tilhørende ligningssystem er da henholdsvis

x1 = b′
1

. . . ...
xn = b′

n,

mens de sidste m− r ligninger alle er lig den trivielle ligning “0 = 0”. Dette viser som
ønsket, at ligningssystemet har en entydig løsning.

Vi viser endelig (4). Da m× (n+1)-matricen (A′ | b′) er på reduceret echelonform og
har r < n ledende indgange, og da den sidste søjle b′ ikke indeholder nogen ledende
indgang, konkluderer vi derfor, at r af de n søjler i A′ indeholder en ledende indgang,
mens de resterende p = n− r søjler ikke indeholder en ledende indgang. Vi indicerer nu
med 1≤ j1 < ·· · < jr ≤ n og 1≤ k1 < ·· · < kp ≤ n de søjler i A′, der henholdsvis indeholder
og ikke indeholder en ledende indgang. De første r ligninger i ligningssystemet giver da

x j1 = b′
1 − (a′

1,k1
xk1 +·· ·+a′

1,kp
xkp )

...
x jr = b′

r − (a′
r,k1

xk1 +·· ·+a′
r,kp

xkp ),

idet vi flytter de led, der indeholder en af de fri variable xk1 , . . . , xkp , til højre side af
lighedstegnet. De resterende m− r ligninger er igen alle lig den trivielle ligning “0= 0”.
Dette viser som ønsket, at for hver værdi xk1 = t1, . . . , xkp = tp af de frie variable, har
ligningssystemet præcis én løsning. 2

Som allerede nævnt så viser vi i sætning 2.5.11, at matricen (A′ | b′) på reduceret
echelonform og dens rang r er entydigt bestemt af matricen (A | b) og ikke afhænger af
valget af rækkeoperationer, der omdanner (A | b) til (A′ | b′).
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Eksempel 1.2.18 (Ligningssystem med komplekse tal) Vi anvender Gauss-
elimination til at løse det lineære ligningssystem

ix1 +(−1+ i)x2 −x3 = 4− i
−x1 −2ix2 +(2− i)x3 = −2+7i

med to ligninger i tre variable over de komplekse tal C. Vi opskriver ligningssystemets
totalmatrix (A | b) og omdanner den til en matrix (A′ | b′) på reduceret echelonform
ved hjælp af rækkeoperationer.

(A | b)=
(

i −1+ i −1 4− i
−1 −2i 2− i −2+7i

) +i ·R2

(
0 1+ i 2i −3−3i

−1 −2i 2− i −2+7i

) 1
2 (1− i) ·R1

(
0 1 1+ i −3

−1 −2i 2− i −2+7i

)
+2i ·R1(

0 1 1+ i −3
−1 0 i −2+ i

)
(−1) ·R2(

0 1 1+ i −3
1 0 −i 2− i

)
R1 ↔ R2

(A′ | b′)=
(

1 0 −i 2− i
0 1 1+ i −3

)
Vi har som tidligere markeret de indgange, vi ønsker at ændre, med rødt og de ledende
indgange i matricen (A′ | b′) med blåt. Da b′ ikke indeholder ledende indgange, har
ligningssystemet løsninger; og da rangen r = 2 af (A′ | b′) er mindre end antallet n = 3
af variable, så er løsningsmængden uendelig og parametriseret af p = n− r = 1 para-
meter. Endelig aflæser vi umiddelbart fra matricen (A′ | b′), at for hver værdi t ∈ C af
den frie variabel x3 er der præcis den ene løsning

x=
x1

x2
x3

=
 (2− i)+ i · t
−3− (1+ i) · t

t


til ligningssystemet. Vi understreger, at t ∈C er en kompleks parameter.
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1.3 Rang og løsningsmængde

Vi har hovedsageligt anvendt rækkeoperationer på totalmatricen (A | b) hørende til
et lineært ligningssystem, men vi kan også anvende rækkeoperationer til at omdanne
ligningssystemets koefficientmatrix A til en matrix A′ på reduceret echelonform. Vi
afslutter dette kapitel med den følgende sætning om betydningen af rangen af matricen
A′ for løsningsmængden. Sætningen siger blandt andet, at hvis A er en kvadratisk
matrix og A′ har maksimal rang, så har ligningssystemet med totalmatrix (A | b) altid
præcis én løsning, uanset hvad konstantsøjlen b er. Sætningen får stor betydning for
vores forståelse af lineære afbildninger i kapitel 2.

Sætning 1.3.1 Lad A være en m× n-matrix, der ved hjælp af rækkeoperationer kan
omdannes til en m× n-matrix A′ på reduceret echelonform af rang 0 ≤ r ≤ min{m,n}.
Da gælder:

(1) Ligningssystemet med totalmatrix (A | b) har mindst én løsning for alle valg af
konstantsøjle b, hvis og kun hvis r = m.

(2) Ligningssystemet med totalmatrix (A | b) har højst én løsning for alle valg af
konstantsøjle b, hvis og kun hvis r = n.

(3) Ligningssystemet med totalmatrix (A | b) har netop én løsning for alle valg af
konstantsøjle b, hvis og kun hvis r = m = n.

Bevis Vi vælger en gang for alle en følge af rækkeoperationer, der omdanner A til A′.
Vi viser først (1). Hvis r = m, da indeholder hver række i A′ en ledende indgang.

Derfor gælder det for alle b, at matricen (A′ | b′), der fremkommer fra (A | b) ved at
anvende den valgte følge af rækkeoperationer, er på reduceret echelonform, og at de
ledende indgange i (A′ | b′) alle er indholdt i A′. Da b′ altså ikke indeholder en ledende
indgang, viser sætning 1.2.17 (3)–(4), at ligningssystemet har en løsning. Hvis r < m,
da er de sidste m− r rækker i A′ alle lig med nul-rækken. Lad nu b′ = (b′

i), hvor

b′
i =

{
1 hvis i = r+1,
0 hvis i 6= r+1.

Da er matricen (A′ | b′) på reduceret echelonform af rang r + 1, og da b′ indeholder
en ledende indgang, viser sætning 1.2.17 (2), at det tilhørende ligningssystem ingen
løsninger har. Ifølge sætning 1.2.5 er det samme derfor tilfældet for ligningssystemet,
hvis totalmatrix er den matrix (A | b), der fås fra (A′ | b′) ved i omvendt rækkefølge at
udføre de inverse rækkeoperationer svarende til rækkeoperationerne i den valgte følge
af rækkeoperationer. Dette viser (1).
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Vi viser dernæst (2). Hvis r = n, indeholder hver søjle i A′ en ledende indgang. Lad nu
b være et valg af konstantsøjle. Den valgte følge af rækkeoperationer omdanner matri-
cen (A | b) til en matrix (A′ | c), og vi kan da omdanne (A′ | c) til en matrix (A′ | b′) på
reduceret echelonform ved om nødvendigt at anvende yderligere rækkeoperationer. Da
hver søjle i A′ indeholder en ledende indgang, er rangen r′ af (A′ | b′) er enten r′ = r eller
r′ = r+1. Hvis r′ = r+1, da indeholder b′ en ledende indgang, hvorfor sætning 1.2.17 (2)
viser, at ligningssystemet med totalmatrix (A | b) ikke har nogen løsninger. Og hvis
r′ = r, da indeholder b′ ikke en ledende indgang, hvorfor sætning 1.2.17 (3) viser, at lig-
ningssystemet med totalmatrix (A | b) præcis har én løsning. Med andre ord gælder det
for alle valg af b, at ligningssystemet med totalmatrix (A | b) højst har én løsning. Om-
vendt, hvis r < n, da gælder det for b = 0, at ligningssystemet med totalmatrix (A | b)
har uendeligt mange løsninger. For dette følger fra sætning 1.2.17 (4), idet den valg-
te følge af rækkeoperationer omdanner (A | 0) til matricen (A′ | 0), der er på reduceret
echelonform af rang r < n og ikke har nogen ledende indgange i konstantsøjlen. Dette
viser (2), og endelig følger (3) ved at kombinere (1) og (2). 2

Lad A være en matrix, og lad A′ være den matrix på reduceret echelonform, der
fremkommer fra A ved hjælp af rækkeoperationer. Det følgende resultat viser, at hvis
vi i stedet omdanner A til en matrix B på echelonform, hvilket normalt kræver mindre
arbejde, da har A′ og B samme rang. Hvis vi kun ønsker at bestemme rangen af A′, så
er det derfor nok at udregne B. Vi bemærker, at modsat matricen A′ så er matricen B
ikke entydigt bestemt af A.

Lemma 1.3.2 Enhver matrix B på echelonform af rang r kan ved endeligt mange ræk-
keoperationer omdannes til en matrix B′ på reduceret echelonform af samme rang r.

Bevis Lad B være en m×n-matrix på echelonform, og lad 1 ≤ j1 < ·· · < jr ≤ n indicere
de søjler i B, der indeholder en ledende indgang. For alle 1 ≤ s ≤ r anvender vi først en
rækkeoperation af type M til at gange den s’te række med b−1

s js
. Herved opnår vi en ny

matrix C på echelonform af rang r med ledende indgange

cs js = b−1
s js

·bs js = 1,

hvor 1≤ s ≤ r. Dernæst anvender vi for alle 2≤ s ≤ r og 1≤ i ≤ s−1 den rækkeoperation
af type S, der adderer −ci js gange den s’te række i C til den i’te række i C. Herved
opnår vi en matrix B′ på reduceret echelonform af rang r med ledende indgange

b′
s js

= cs js = 1,

hvor 1≤ s ≤ r, hvilket viser lemmaet. 2

Sætning 1.2.12 viser, at totalmatricen (A | b) for et givet lineært ligningssystem ved
rækkeoperationer kan omdannes til en matrix (A′ | b′) på reduceret echelonform, og
sætning 1.2.17 giver en fuldstændig beskrivelse af ligningssystemets løsningmængde
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udtrykt ved matricen (A′ | b′). Hvis vi imidlertid kun ønsker at bestemme kvalitative
egenskaber ved løsningsmængden såsom at bestemme, hvorvidt den er tom eller ej,
eller bestemme antallet p = n− r af parametre for løsningsmængden, så kan vi ifølge
lemma 1.3.2 nøjes med at omdanne (A | b) til en matrix (B | c) på echelonform. Da
dette normalt kræver færre rækkeoperationer end at omdanne (A | b) til en matrix på
reduceret echelonform, så kan man herved spare sig lidt arbejde.

Eksempel 1.3.3 (Echelon / reduceret echelonform) Betragt ligningssystemet

2x1 +3x2 −4x3 −x4 = 12
−2x1 +10x3 +3x4 = 4

2x1 +6x2 +2x3 = 2.

Vi omdanner først dets totalmatrix (A | b) til en matrix (B | c) på echelonform.

(A | b)=
 2 3 −4 −1 12
−2 0 10 3 4

2 6 2 0 2

 +R1
+(−1) ·R1 2 3 −4 −1 12

0 3 6 2 16
0 3 6 1 −10


+(−1) ·R2

(B | c)=
 2 3 −4 −1 12

0 3 6 2 16
0 0 0 −1 −26


Vi har her som tidligere markeret de ledende indgange med blåt. Hvis vi yderligere
omdanner (B | c) til en matrix (A′ | b′) på reduceret echelonform, så vil positionen af de
ledende indgange ikke ændres. Derfor kan løsningsmængden parametriseres ved

p = n− r = 4−3= 1

parameter. Hvis vi ønsker at bestemme løsningsmængden mere præcist, så må vi først
bestemme matricen (A′ | b′), hvilket vi i dette tilfælde overlader til læseren.

Eksempel 1.3.4 Vi betragter 3×3-matricen

A =
−1 −2 −5

2 3 8
2 6 14


og undersøger først om, der findes en konstantsøjle b sådan, at ligningssystemet med
totalmatrix (A | b) ikke har nogen løsninger. Vi anvender derfor rækkeoperationer til

33
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at omdanne A til en matrix B på echelonform.

A =
−1 −2 −5

2 3 8
2 6 14

 +2R1
+2R1−1 −2 −5

0 −1 −2
0 2 4


+2R2

B =
−1 −2 −5

0 −1 −2
0 0 0


Da B er på echelonform af rang r = 2 < 3 = m, konkluderer vi fra sætning 1.3.1 (1), at
en sådan konstantsøjle b findes. Endvidere fortæller beviset for sætningen os, hvordan
vi bærer os ad med at finde et sådant b:

(B | c)=
−1 −2 −5 0

0 −1 −2 0
0 0 0 1


+(−2)R2−1 −2 −5 0

0 −1 −2 0
0 2 4 1

 +(−2)R1
+(−2)R1

(A | b)=
−1 −2 −5 0

2 3 8 0
2 6 14 1


Ligningssystemet med totalmatrix (B | c) har tydeligvis ingen løsninger, og det samme
er derfor tilfældet for ligningssystemet med totalmatrix (A | b). Her har vi udført de
inverse af de rækkeoperationer, vi benyttede til at omdanne A til B.

1.4 Opgaver

1.1 Omform ved hjælp af rækkeoperationer matricen

A =
 1 −2 3 2 1 10

2 −4 8 3 10 7
3 −6 10 6 5 27


til en matrix A′ på reduceret echelonform.

34



1.4 Opgaver

1.2 Omform ved hjælp af rækkeoperationer matricen

B =
 1 2 1 4

3 8 7 20
2 7 9 23


til en matrix B′ på reduceret echelonform.

1.3 Omform ved hjælp af rækkeoperationer matricen

C =
 2+ i 0 −4− i

5 1−3i −2+2i
0 3+ i 3


til en matrix C′ på reduceret echelonform.

1.4 Løs følgende tre reelle lineære ligningssystemer:

a)


2x1 − x2 + x3 = 3

−x1 +2x2 +4x3 = 6
x1 + x2 +5x3 = 9

b)


2x1 − x2 + x3 = 4

−x1 +2x2 +4x3 = 6
x1 + x2 +5x3 = 9

c)


2x1 − x2 +2x3 = 4

−x1 +2x2 +4x3 = 6
x1 + x2 +5x3 = 9

1.5 Løs det reelle lineære ligningssystem

x+ y+2z = 3
2x− y+4z = 0
x+3y−2z = 3

−3x−2y+ z = 0.

1.6 Løs det reelle lineære ligningssystem

2x1 +4x2 − x3 −2x4 +2x5 = 6
x1 +3x2 +2x3 −7x4 +3x5 = 9
5x1 +8x2 −7x3 +6x4 + x5 = 4.

1.7 Løs det komplekse ligningssystem

ix1 +2x2 = 1
(1+2i)x1 + (2+2i)x2 = 3i.
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1.8 Løs det komplekse ligningssystem

ix1 + (−2+ i)x2 −2x3 = 1
2x1 +6ix2 + (4+2i)x3 = 2i

3ix1 + (−5+2i)x2 + (−7+ i)x3 = 3.

1.9 Løs det komplekse ligningssystem

(1− i)x1 + ix2 +3x3 = 0
2ix2 +2x3 = 0

2x1 + (1− i)x2 + (1+ i)x3 = 0.

1.10 Vis først, at det reelle ligningssystem

x+ y− z = 2
2x+ y+ z = a

x+2z = 3

ikke har nogen løsning (x, y, z), hvis a 6= 5. Vis dernæst, at ligningssystemet har
uendeligt mange løsninger, hvis a = 5, og angiv disse.

1.11 Vis, at det komplekse ligningssystem

x−2y+ (3+ i)z =−2+3i
y+2z = a

ix+ (1−2i)y+ (1+3i)z =−4− i

ikke har nogen løsning (x, y, z), hvis a 6= −1+ i. Vis dernæst, at ligningssystemet har
uendeligt mange løsninger, hvis a =−1+ i, og angiv disse.

1.12 (?) Find alle reelle løsninger til ligningen

7x1 +4x2 −13x3 + x4 +6x5 − x6 = 30.

1.13 (?) Vis, at (x, y)= (0,0) er den eneste løsning til ligningssystemet

ax+by= 0
cx+dy= 0,

hvis og kun hvis ad−bc 6= 0.

1.14 Betragt et lineært ligningssystem med 5 ligninger i 6 ubekendte.

a. Er det muligt at ligningssystemet ingen løsning har?
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b. Har ligningssystemet nødvendigvis ingen løsning?

c. Er det muligt at ligningssystemet har præcist én løsning?

d. Er det muligt at ligningssystemet har uendeligt mange løsninger?

e. Hvad bliver svarene til spørgsmål a–d hvis vi i stedet betragter et lineært
ligningssystem med 6 ligninger i 5 ubekendte?

1.15 Afgør, hvilke af følgende afbildninger der er lineære, og angiv i givet fald matricen,
der repræsenterer afbildningen med hensyn til standardbaserne.

a. Afbildningen f : R2 →R3 defineret ved

f
(
x1
x2

)
=

 x2 +1
x1

x1 + x2

 .

b. Afbildningen f : R3 →R3 defineret ved

f

x1
x2
x3

=
x1 + x2

x2
x3 − x1

 .

c. Afbildningen f : R2 →R2 defineret ved

f
(
x1
x2

)
=

(
x2

1 + x1
sin(x2)

)
.

1.16 (a) Find samtlige løsninger til ligningssystemet

x1 + x2 + x3 = 0
x1 +6x3 + x4 = 0

x1 − x2 +5x3 + x4 = 0
2x1 + x2 +7x3 + x4 = 0.

(b) Bestem et reelt tal a så at ligningsystemet

x1 + x2 + x3 = 1
x1 +6x3 + x4 = a

x1 − x2 +5x3 + x4 = a
2x1 + x2 +7x3 + x4 = 2a

har løsninger, og finde disse løsninger for den fundne værdi af a.
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1.17 (?) Find et kubisk polynomium p(x)= ax3+bx2+ cx+d, som opfylder, at p(0)=−1,
p′(0)= 5, p(1)= 3, p′(1)= 1.

1.18 (?) Betragt afbildningen Rθ : R3 → R3, som roterer omkring x–aksen med vinklen
θ ∈ [0,2π).

a. Argumenter geometrisk for, at Rθ er en lineær afbildning.

b. Find en matrix Aθ, som opfylder at Rθ(x)= Aθx for alle x ∈R3.

c. Gør det samme for rotationen omkring y-aksen og z-aksen.
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2 Matricer og lineære afbildninger

I dette kapitel indfører vi matricer og deres algebra, som vi allerede har brugt i kapi-
tel 1. Vi indfører også vektorrummene Fm af søjlevektorer og endelig lineære afbildnin-
ger mellem disse. Disse begreber er alle tæt forbundne: For mens en lineær afbildning
f : F→ F er givet ved venstre multiplikation med en skalar a, så er en lineær afbildning
f : Fn → Fm givet ved venstre multiplikation med en m× n-matrix A, som vi tænker
på som “hældningskoefficienten” af den lineære afbildning f : Fn → Fm. Vi skal se, at
Gauss-elimination er det centrale værktøj, hvad beregninger angår, samt fortolke nogle
af resultaterne fra kapitel 1 som sætning om lineære afbildninger. Vi vil arbejde over et
generelt legeme F, men læseren er velkommen til at tænke på, at F er enten R eller C.

2.1 Matricer

Vi har allerede brugt matricer, så det er nu på høje tid, at vi definerer dem ordentligt.
Vi siger, at en afbildning x : I → X fra en mængde I til en mængde X er en familie af
elementer i X indiceret ved I, og vi skriver (xi)i∈I , hvor xi = x(i).

Definition 2.1.1 Lad m og n være naturlige tal. En m×n-matrix med indgange i et
legeme F er en familie A = (ai j) af elementer i F indiceret ved mængden af par (i, j) af
naturlige tal 1 ≤ i ≤ m og 1 ≤ j ≤ n. Vi siger, at elementet ai j er den (i, j)’te indgang i
A. Mængden bestående af alle m×n-matricer med indgange i F betegnes Mm,n(F).

Om nødvendigt skriver vi ai, j i stedet for ai j, og vi skriver endvidere

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn


for at anskueliggøre matricen A = (ai j) ∈ Mm,n(F). Bemærk, at der ikke er kommaer
mellem indgangene i matricen. Givet A = (ai j) ∈ Mm,n(F), kalder vi 1×n-matricen(

ai1 ai2 . . . ain
) ∈ M1,n(F)
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for den i’te række i A, mens vi kalder m×1-matricen
a1 j
a2 j

...
am j

 ∈ Mm,1(F)

for den j’te søjle i A. Hvis A er en m×n-matrix, så siger vi også, at A er en matrix af
dimensioner m× n, hvilket læses “m gange n”. Vi bemærker, at m og n er antallet af
henholdsvis rækker og søjler i A. Hvis m = n, så siger vi, at matricen A er kvadratisk af
orden n, og og vi skriver Mn(F) i stedet for Mn,n(F) for mængden kvadratiske matricer
af orden n med indgange i F.

Eksempel 2.1.2 Matricerne

A =
(
2 −1 0 3
3 2 0 0

)
∈ M2,4(R) og B =

(
1/2+ i/2 1/2− i/2
1/2− i/2 1/2+ i/2

)
∈ M2(C)

er henholdsvis en 2×4-matrix med indgange i R og en kvadratisk matrix af orden 2
med indgange i C.

Eksempel 2.1.3 (1) Nulmatricen af dimensioner m×n er matricen

Om,n =

0 . . . 0
... . . . ...
0 . . . 0

 ∈ Mm,n(F),

hvis indgange alle er lig med 0. Vi benytter forkortelsen O =Om,n, hvis m og n fremgår
fra sammenhængen.
(2) Den modsatte af matricen A = (ai j) ∈ Mm,n(F) er matricen −A = (−ai j) ∈ Mm,n(F)

af samme dimensioner, hvis indgange er de modsatte elementer af indgangene i den
oprindelige matrix.
(3) Identitetsmatricen In ∈ Mn(F) er den kvadratiske matrix af orden n, hvis (i, j)’te

indgang er Kroneckers δi j, som er enten 1 eller 0, eftersom i = j eller i 6= j.

I1 = (1), I2 =
(
1 0
0 1

)
, I3 =

1 0 0
0 1 0
0 0 1

 , . . . In =


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1

 .

Vi forkorter ofte I = In, hvis n fremgår fra sammenhængen.
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Vi indfører nu de fundamentale aritmetiske operationer på matricer.

Definition 2.1.4 (1) Summen af to matricer

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn

 og B =


b11 b12 . . . b1n
b21 b22 . . . b2n

...
... . . . ...

bm1 bm2 . . . bmn

 ,

der begge har dimensioner m×n, er matricen

A+B =


a11 +b11 a12 +b12 . . . a1n +b1n
a21 +b21 a22 +b22 . . . a2n +b2n

...
... . . . ...

am1 +bm1 am2 +bm2 . . . amn +bmn

 ,

der ligeledes har dimensioner m×n.
(2) Produktet af to matricer

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn

 og B =


b11 b12 . . . b1p
b21 b22 . . . b2p

...
... . . . ...

bn1 bn2 . . . bnp


af dimensioner henholdsvis m×n og n× p, er matricen

A ·B =


c11 c12 . . . c1p
c21 c22 . . . c2p
...

... . . . ...
cm1 cm2 . . . cmp


hvis (i,k)’te indgang er defineret ved

cik =
n∑

j=1
ai jb jk = ai1b1k +ai2b2k +·· ·+ainbnk.

Produktmatricen A ·B har dimensioner m× p.

Vi understreger, at summen af to matricer A og B kun er defineret, hvis A og B har
de samme dimensioner, og at produktet af to matricer A og B kun er defineret, hvis
antallet af søjler i A er lig antallet af rækker i B. Det har således ikke mening at tale

41



2 Matricer og lineære afbildninger

om A+B eller A ·B, medmindre dimensionerne af A og B er som foreskrevet. Som for
multiplikation af skalarer, forkorter vi normalt og skriver AB i stedet for A ·B.

Eksempel 2.1.5 Summen af matricerne

A =
(
2 0 4
1 −3 6

)
og B =

(
1 −7 4
1 2 0

)
findes, da de to matricer har samme dimensioner 2×3, og er givet ved

A+B =
(
2 0 4
1 −3 6

)
+

(
1 −7 4
1 2 0

)
=

(
2+1 0+ (−7) 4+4
1+1 −3+2 6+0

)
=

(
3 −7 8
2 −1 6

)
.

Her har vi markeret indgangene i A og B med henholdsvis blåt og sort.

Matrixprodukt kræver nok lidt mere tilvænning end matrixsum, så vi forklarer her,
hvordan det kan anskueliggøres. Givet en 1×n-matrix og en n×1-matrix

A = (
a1 a2 . . . an

)
og B =


b1
b2
...

bn

 ,

da er matrixproduktet AB defineret, og det er lig med 1×1-matricen

AB = (
a1b1 +a2b2 +·· ·+anbn

)
.

Generelt, for en m×n-matrix A og en n×p-matrix B, kan vi betragte deres produkt som
værende den m× p-matricen AB = C, hvis indgange er alle de mulige produkter af en
række i A med en søjle i B:

a11 · · · a1 j · · · a1n
...

...
ai1 · · · ai j · · · ain

...
...

am1 · · · am j · · · amn




b11 · · · b1k · · · b1p

...
...

...
b j1 b jk b jp

...
...

...
bn1 · · · bnk · · · bnp

 =


c11 · · · c1k · · · c1p

...
...

...
ci1 · · · cik · · · cip
...

...
...

cm1 · · · cmk · · · cmp


Da der er m rækker i A og p søjler i B, er der altså m× p indgange i AB = C.

42
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Når man udregner et matrixprodukt AB, kan det hjælpe at tegne kasser omkring
rækkerne i A og søjlerne i B, som vi har gjort ovenfor. Vi fortsætter denne praksis i de
følgende eksempler.

Eksempel 2.1.6 Produktet af matricerne

A =
(

2 7
−1 3

)
og B =

(
2 −1 0
4 1 2

)
er defineret, da antallet søjler i A er lig med antallet af rækker i B, og er givet ved

A ·B =
(

2 7
−1 3

)(
2 −1 0
4 1 2

)
=

(
2 ·2+7 ·4 2 · (−1)+7 ·1 2 ·0+7 ·2

(−1) ·2+3 ·4 (−1) · (−1)+3 ·1 (−1) ·0+3 ·2
)

=
(
32 5 14
10 4 6

)
Her har vi markeret indgangene i den første række i A med rødt og indgangene i den
anden række med blåt. Vi bemærker, at produktet B · A ikke er defineret, da antallet
af søjler i B er forskelligt fra antallet af rækker i A.

Eksempel 2.1.7 Produktet af matricerne

A =
(
1 i+1 2i−1
4 3i 8

)
og B =

 2i
−3

0


er defineret, da antallet af søjler i A er lig med antallet af rækker i B, og er givet ved

A ·B =
(

1 i+1 2i−1
4 3i 8

) 2i
−3

0

=
(
1 ·2i+ (i+1) · (−3)+ (2i−1) ·0

4 ·2i+3i · (−3)+8 ·0
)

=
(
2i+−3i−3+0

8i−9i+0

)
=

(−3− i
−i

)
hvor vi igen brugt rødt og blåt for rækkerne i A.

Eksempel 2.1.8 Produktmatricen

AB = (
1 0 3

)  2
4
1

 = (
1 ·2+0 ·4+3 ·1 )= (

5
)
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2 Matricer og lineære afbildninger

er en 1×1-matrix, da der er 1 række i A og 1 søjle i B, mens produktmatricen

BA =

 2
4
1

 (
1 0 3

)=
2 ·1 2 ·0 2 ·3

4 ·1 4 ·0 4 ·3
1 ·1 1 ·0 1 ·3

=
2 0 6

4 0 12
1 0 3


er en 3×3-matrix, da der er 3 rækker i B og 3 søjler i A. Vi bemærker, at det ikke er
muligt at sammenligne matricerne AB og BA, da deres dimensioner er forskellige. Så
spørgsmålet om, hvorvidt AB = BA, er meningsløst.

Eksempel 2.1.9 I kapitel 1 har vi betragtet lineære ligningssystemer

a11x1 +a12x2 +·· ·+a1nxn = b1

a21x1 +a22x2 +·· ·+a2nxn = b2

...
am1x1 +am2x2 +·· ·+amnxn = bm

med ai j,bi ∈ F. Vi betragter nu matricerne

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn

 , x=


x1
x2
...

xn

 og b =


b1
b2
...

bm

 ,

som har dimensioner henholdvis m×n, n×1 og m×1. Produktmatricen

Ax=


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn




x1
x2
...

xn

=


a11x1 +a12x2 +·· ·+a1nxn
a21x1 +a22x2 +·· ·+a2nxn

...
am1x1 +am2x2 +·· ·+amnxn


er derfor en m×1-matrix ligesom b. Det oprindelige lineære ligningssystem kan altså
ækvivalent skrives som ligning af m×1-matricer

Ax= b,

og vi vil i det følgende hovedsageligt benytte denne korte skrivemåde.
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Sætning 2.1.10 For matricer af passende dimensioner med indgange i legeme F gælder
følgende identiteter:

(A1) (A+B)+C = A+ (B+C)

(A2) A+O = A =O+ A

(A3) A+ (−A)=O = (−A)+ A

(A4) A+B = B+ A

(P1) (AB)C = A(BC)

(P2) A In = A = Im A

(D1) A(B+C)= AB+ AC

(D2) (A+B)C = AC+BC

(E1) AOn,n =Om,n =Om,m A

(E2) A(−In)=−A = (−Im)A

Bevis Ifølge definition 0.2.1 og sætning 0.2.3 gælder disse identiteter for addition og
multiplikation af elementer i F, og vi benytter nu dette til at vise, at identiteterne også
gælder for addition og multiplikation af matricer med indgange i F.

Identiteterne (A1)–(A4) omhandler matricer af samme dimensioner og følger umid-
delbart af de tilsvarende identiteter (A1)–(A4) for skalarer, idet addition for matricer
per definition er givet ved addition i F af de respektive indgange.

Identiteten (P1) omhandler matricer A, B og C af dimensioner m×n, n× p og p× q.
Produkt matricerne (AB)C og A(BC) er begge af dimensioner m×q, og vi ønsker at vise,
at deres (i, l)’te indgange er identiske. På den ene side er den (i, l)’te indgang i (AB)C
lig med

∑p
k=1 e ikckl , hvor e ik =

∑n
j=1 ai jb jk er den (i,k)’te indgang i AB; og på den anden

side er den (i, l)’te indgang i A(BC) lig med
∑n

j=1 ai jd jl , hvor d jl =
∑p

k=1 b jkckl er den
( j, l)te indgang i BC. Vi skal derfor vise, at der gælder følgende identitet af skalarer:

p∑
k=1

( n∑
j=1

ai jb jk
)
ckl =

n∑
j=1

ai j
( p∑

k=1
b jkckl

)
.

For at være helt præcis, så definerer vi her de itererede summer til at være

n∑
j=1

ai jb jk = (. . . ((ai1b1k +ai2b2k)+ai3b3k)+·· ·+ainbnk),
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2 Matricer og lineære afbildninger

etc. Det følger dog fra (A1) for skalarer, at ethvert valg af summationsorden vil tilordne
den samme værdi til den itererede sum. Identiteten mellem de (i, l)’te indgange i (AB)C
og A(BC) fås nu som følger:

p∑
k=1

( n∑
j=1

ai jb jk
)
ckl =

p∑
k=1

n∑
j=1

(ai jb jk)ckl =
p∑

k=1

n∑
j=1

ai j(b jkckl)

=
n∑

j=1

p∑
k=1

ai j(b jkckl)=
n∑

j=1
ai j

( p∑
k=1

b jkckl
)

Her følger den første identitet fra (D2) for skalarer; den anden identitet fra (P1) for
skalarer; og den tredie identitet fra (A1) og (A4) for skalarer; og den sidste identitet
fra (D1) for skalarer. Dette beviser, at (P1) gælder for matricer.

Vi beviser dernæst identiteten A In = A i (P2); beviset for identiteten Im A = A er
helt tilsvarende. Identiteten A In = A omhandler en matrix A af dimensioner m×n og
identitetsmatricen In af dimensioner n×n. Vi husker på fra eksempel 2.1.3(3), at den
( j,k)’te indgang δ jk i In er lig 1, hvis j = k, og lig med 0, hvis j 6= k. På (i,k)’te indgange
svarer identiteten A In = A nu til følgende identitet af skalarer:

n∑
j=1

ai jδ jk = aik.

så identiteten følger fra (A2), (P2) og (E1) for skalarer. Vi har hermed bevist, at (P2)
gælder for matricer.

Vi beviser dernæst identiteten (D1); identiteten (D2) bevises helt tilsvarende. Denne
identitet omhandler en m× n-matrix A og n× p-matricer B og C og svarer på (i,k)’te
indgange til følgende identitet af skalarer:

n∑
j=1

ai j(b jk + c jk)=
n∑

j=1
ai jb jk +

n∑
j=1

ai j c jk.

Denne identitet følger umiddelbart fra (A1), (A4) og (D1) for skalarer, hvilket beviser,
at (D1) også gælder for matricer.

Endelig fås identiteterne (E1) og (E2) fra de øvrige identiteter ved at repetere beviset
for sætning 0.2.3. Vi har hermed bevist sætningen. 2

Eksempel 2.1.11 Vi betragter 2×2-matricerne

A =
(

1 1
0 1

)
, B =

(
1 0
1 1

)
og udregner de to produkter AB og BA, der begge findes og er af dimensioner 2×2.

AB =
(

1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
, BA =

(
1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
.

Da matricerne AB og BA er af samme dimensioner, har det mening at spørge, om de
er ens. Men udregningen ovenfor viser, at AB 6= BA.

46



2.2 Vektorrummet Fm

2.2 Vektorrummet Fm

Vi lader igen F være et legeme, for eksempel F=R eller F=C, og definerer

Fm =
{ x1

...
xm

 ∣∣∣∣ x1, . . . , xm ∈ F
}

til at være mængden Mm,1(F) af m×1-matricer med indgange i F, som vi også kalder for
mængden af søjlevektorer i F af dimension m. Vi vil tilsvarende kalde mængden M1,n(F)
af 1× n-matricer med indgange i F for mængden af rækkevektorer i F af dimension n,
men vi vil ikke indføre nogen speciel notation for denne mængde.

Eksempel 2.2.1 Vi kan visuallisere

R2 =
{(

x1
x2

) ∣∣∣ x1, x2 ∈R
}

og R3 =
{x1

x2
x3

 ∣∣∣∣ x1, x2, x3 ∈R
}

som mængden af punkter i henholdsvis planen og rummet; se figur 2.1.

x=
(
x1
x2

) x=
x1

x2
x3



x1

x2

x2x1

x3

Figur 2.1: De reelle vektorrum R2 og R3.

Vi har allerede defineret sum og produkt af matricer, og disse regneoperationer kan
specielt anvendes på søjlevektorer som følger. Givet to søjlevektorer

x=

 x1
...

xm

 og y=

 y1
...

ym


i F af samme dimension m, da er deres sum givet ved

x+ y=

 x1 + y1
...

xm + ym

 ,
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2 Matricer og lineære afbildninger

hvilken igen er en søjlevektor i F af dimension m.
Vi husker dernæst på, at hvis vi ganger en m×1-matrix med en 1×1-matrix, så får

vi igen en m×1-matrix. Vi kalder denne operation for skalarmultiplikation. Som det er
sædvane, vil vi også misbruge notation og identificere en 1×1-matrix (a) ∈ M1,1(F) med
dens indgang a ∈ F. Så det skalare multiplum af en søjlevektor

x=

 x1
...

xm

 ∈ Fm

med en skalar a ∈ F er søjlevektoreren

x ·a =

 x1a
...

xma

 ∈ Fm.

Vi forkorter normalt og skriver xa i stedet for x · a. Vi understreger, at det omvendte
produkt a · x ikke har mening som et matrixprodukt, medmindre m = 1, da antallet af
søjler i a ikke er lig med antallet af rækker i x. Endvidere er den modsatte vektor af x
og nulvektoren 0 givet ved henholdsvis

−x=

−x1
...

−xm

 og 0=

0
...
0

 .

Vi henviser til figur 2.2 for en illustration af disse aritmetiske operationer.

Eksempel 2.2.2 Vi betragter vektorerne x, y ∈C3 givet ved

x=
 5

i
2i

 og y=
i+1

3
−i

 .

For disse vektorer er

x+ y=
i+6

i+3
i

 , y ·3=
3i+3

9
−3i

 og − y=
−i−1

−3
i

 .

Sætning 2.1.10 ovenfor specialiserer nu til den følgende sætning, der udtrykker, at
mængden Fm sammen med operationerne vektorsum og skalarmultiplikation udgør,
hvad vi senere vil kalde et F-vektorrum; se definition 4.1.1.
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x1

x2

y1

y2 (
x1
x2

)
= x

(
y1
y2

)
= y

(
x1 + y1
x2 + y2

)
= x+ y (

x1 ·2
x2 ·2

)
= x ·2

(−x1
−x2

)
=−x

Figur 2.2: Addition, skalarmultiplikation og modsat vektor i R2.

Sætning 2.2.3 For søjlevektorer x, y, z ∈ Fm og skalarer a,b ∈ F gælder følgende:

(A1) (x+ y)+ z = x+ (y+ z)

(A2) x+0= x= 0+ x

(A3) x+ (−x)= 0= (−x)+ x

(A4) x+ y= y+ x

(P1) (x ·a) ·b = x · (a ·b)

(P2) x ·1= x

(D1) x · (a+b)= x ·a+ x ·b

(D2) (x+ y) ·a = x ·a+ y ·a

(E1) x ·0= 0

(E2) x · (−1)=−x

Vi siger, at en familie af elementer i en mængde X indiceret ved I = {1,2, . . . ,m} er en
m-tuple af elementer i X og skriver (x1, x2, . . . , xm) i stedet for (xi)i∈I .
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Definition 2.2.4 Hvis F er et legeme, og hvis m et naturligt tal, da kaldes m-tuplen
(e1, . . . , em) af vektorer i Fm, hvor

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , em =


0
0
...
1

 ,

for standardbasen for Fm.

Vektorerne e1, . . . , em kaldes for standardenhedsvektorerne i Fm. Den følgende figur
illustrerer disse vektorer for F=R.

e1

e2

e1
e2

e3

Figur 2.3: Standardenhedsvektorerne i R2 og R3.

Lad (u1, . . . ,ur) være en r-tuple af vektorer i Fm. Vi siger, at en vektor u ∈ Fm er en
linearkombination af (u1, . . . ,ur), hvis der findes skalarer a1, . . . ,ar ∈ F, sådan at

u = u1a1 +u2a2 +·· ·+urar.

Specielt er nulvektoren 0 en linearkombination af 0-tuplen ( ), idet vi vedtager, at en
tom sum er lig med 0.

Eksempel 2.2.5 Vi betragter de følgende fire vektorer i R3:

u =
2

5
3

 , v=
1

1
1

 , u1 =
1

1
0

 og u2 =
0

1
1

 .

Vi ser da, at u er en linearkombination af familien (u1,u2), idet

u =
2

5
3

=
2

2
0

+
0

3
3

=
1

1
0

 ·2+
0

1
1

 ·3= u1 ·2+u2 ·3.
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På den anden side kan v ikke skrives som linearkombination af u1 og u2. For antag,
at der findes a1,a2, sådan at u1a1 +u2a2 = v. Da er1

1
0

 ·a1 +
0

1
1

 ·a2 =
 a1

a1 +a2
a2

=
1

1
1

 ,

hvilket ikke er muligt, idet ligningssystemet

a1 = 1
a1 +a2 = 1

a2 = 1.

ikke har nogen løsning.

Lemma 2.2.6 Lad F være et legeme og m et naturligt tal. Enhver vektor x ∈ Fm kan på
entydig vis udtrykkes som en linearkombination

x= e1a1 + e2a2 +·· ·+ emam

af standardbasen (e1, . . . , em) for Fm.

Bevis Givet en vilkårlig vektor

x=


x1
x2
...

xm

 ∈ Fm,

ønsker vi at undersøge, om der findes a1,a2, . . . ,am ∈ F, sådan at

x= e1a1 + e2a2 +·· ·+ emam.

Vi udregner derfor højresiden, som er lig med


1
0
...
0

a1 +


0
1
...
0

a2 +·· ·+


0
0
...
1

am =


a1
0
...
0

 +


0
a2
...
0

 +·· ·+


0
0
...

am

 =


a1
a2
...

am

 ,

hvoraf vi ser, at a1 = x1, a2 = x2, . . . , am = xm er den entydige løsning til dette problem. 2
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2.3 Lineære afbildninger

Vi lader igen F være et legeme, for eksempel F=R eller F=C, og betragter vektorrummet

Fn = Mn,1(F).

Hvis A ∈ Mm,n(F) er en m×n-matrix med indgange i F, så kan vi for alle x ∈ Fn danne
produktet Ax ∈ Mm,1(F)= Fm. På denne måde giver m×n-matricen A ∈ Mm,n(F) dermed
anledning til en afbildning

f : Fn → Fm

defineret ved f (x)= Ax.

Eksempel 2.3.1 Matricen

A =
(
2 1 3
6 −1 9

)
∈ M2,3(R).

giver anledning til afbildningen f : R3 →R2 givet ved

f

x1
x2
x3

 =
(

2 1 3
6 −1 9

) x1
x2
x3

 =
(
2x1 + x2 +3x3
6x1 − x2 +9x3

)
.

En matrix A ∈ Mm,n(F) bestemmer afbildningen f : Fn → Fm givet ved f (x) = Ax ∈ Fm.
Vi skal i dette afsnit vise, at de afbildninger, der fremkommer på denne måde, præcis
er de lineære afbildninger, som vi nu definerer.

Definition 2.3.2 Lad F være et legeme. En afbildning f : Fn → Fm er lineær, hvis den
opfylder følgende betingelser (L1)–(L2) for alle x, y ∈ Fn og a ∈ F.

(L1) f (x+ y)= f (x)+ f (y).

(L2) f (x ·a)= f (x) ·a.

Enhver lineær afbildning f : Fn → Fm afbilder nødvendigvis 0 ∈ Fn til 0 ∈ Fm. For

f (0)= f (0 ·0)= f (0) ·0= 0,

hvor den første og sidste identitet fås fra (E1) i sætning 2.2.3, mens den midterste iden-
titet er (L2). Ved at anvende (E2) i sætning 2.2.3 samt (L2), ser vi tilsvarende, at

f (−x)= f (x · (−1))= f (x) · (−1)=− f (x).
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Eksempel 2.3.3 Afbildningen f : R→R givet ved f (x)= 2 · x er lineær, idet

f (x+ y)= 2 · (x+ y) (D1)= 2 · x+2 · y= f (x)+ f (y),

f (x ·a)= 2 · (x ·a) (P1)= (2 · x) ·a = f (x) ·a.

Derimod er afbildningen g : R→ R givet ved g(x) = x2 er ikke lineær, da den hverken
opfylder (L1) eller (L2). For eksempel er

g(1+1)= (1+1)2 = 22 = 4, mens g(1)+ g(1)= 12 +12 = 2, og

g(1 ·2) = (1 ·2)2 = 22 = 4, mens g(1) ·2= 12 ·2= 2.

Afbildningen h : R→ R givet ved h(x) = 2 · x+3 er heller ikke lineær, da for eksempel
h(0) 6= 0. Vi siger, at en afbildning som denne, der er en sum af en lineær afbildning
og en konstant afbildning, er en affin afbildning. Vi bemærker, at i dele af literaturen
anvendes “lineær” i betydningen “affin”.

Sætning 2.3.4 Hvis A ∈ Mm,n(F) er en m×n-matrix med indgange i et legeme F, da er
afbildningen f : Fn → Fm defineret ved f (x)= Ax en lineær afbildning.

Bevis Det følger fra sætning 2.1.10, at f : Fn → Fm er lineær. For (D1) viser, at

f (x+ y)= A(x+ y)= Ax+ Ay= f (x)+ f (y),

mens (P1) tilsvarende viser, at

f (xa)= A(xa)= (Ax)a = f (x)a,

så afbildningen f : Fn → Fm opfylder både (L1) og (L2). 2

Eksempel 2.3.5 Multiplikation med Pauli matricen

A =
(
0 −i
i 0

)
∈ M2(C)

giver anledning til afbildningen f : C2 →C2 defineret ved

f
(
z1
z2

)
=

(
0 −i
i 0

)(
z1
z2

)
=

(−iz2
iz1

)
,

som ifølge sætning 2.3.4 er lineær.
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2 Matricer og lineære afbildninger

Eksempel 2.3.6 Vi viser direkte, at afbildningen f : R3 →R2 fra eksempel 2.3.1,

f

x1
x2
x3

=
(
2x1 + x2 +3x3
6x1 − x2 +9x3

)
,

er lineær. Udregningen

f (x+ y)= f

x1 + y1
x2 + y2
x3 + y3

 =
(
2(x1 + y1)+ (x2 + y2)+3(x3 + y3)
6(x1 + y1)− (x2 + y2)+9(x3 + y3)

)

=
(
2x1 + x2 +3x3
6x1 − x2 +9x3

)
+

(
2y1 + y2 +3y3
6y1 − y2 +9y3

)
= f (x)+ f (y)

viser, at (L1) er opfyldt, og udregningen

f (x ·a)= f

x1a
x2a
x3a

 =
(
2(x1a)+ (x2a)+3(x3a)
6(x1a)− (x2a)+9(x3a)

)

=
(
(2x1 + x2 +3x3)a
(6x1 − x2 +9x3)a

)
= f (x) ·a

viser tilsvarende, at (L2) er opfyldt.

Eksempel 2.3.7 (Spejling) Vi definerer s : R2 → R2 til at være afbildningen, der er
givet ved spejling i x-aksen i R2; se figur 2.4. I koordinater er denne givet ved

s
(
x1
x2

)
=

(
x1

−x2

)
,

og den følgende udregning viser, at den opfylder (L1) og (L2).

s(x+ y)= s
(
x1 + y1
x2 + y2

)
=

(
x1 + y1

−(x2 + y2)

)
=

(
x1 + y1

−x2 − y2

)
=

(
x1

−x2

)
+

(
y1

−y2

)
= s(x)+ s(y)

s(x ·a)= s
(
x1 ·a
x2 ·a

)
=

(
x1 ·a

−(x2 ·a)

)
=

(
x1 ·a

(−1) · (x2 ·a)

)
=

(
x1 ·a

((−1) · x2) ·a
)
=

(
x1

−x2

)
·a = s(x) ·a
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x

s(x)

y

s(y)

y ·2

s(y ·2)= s(y) ·2

x+ y

s(x+ y)= s(x)+ s(y)

s

Figur 2.4: Spejling s i x-aksen i R2 er en lineær afbildning

Som forberedelse til at vise, at enhver lineær afbildning fremkommer ved multiplika-
tion med en matrix, viser vi nu, at lineære afbildninger bevarer linearkombinationer.

Lemma 2.3.8 Lad F være et legeme, og lad f : Fn → Fm være en lineær afbildning. Givet
vektorer x1, . . . , xk ∈ Fn og skalarer a1, . . . ,ak ∈ F, da gælder det, at

f (x1a1 + x2a2 +·· ·+ xkak)= f (x1)a1 + f (x2)a2 +·· ·+ f (xk)ak.

Bevis Vi beviser påstanden ved induktion på k ≥ 0. I tilfældet k = 0, da er påstanden,
at f (0)= 0, hvilket vi allerede har vist ovenfor. For den tomme sum er per definition lig
med nulvektoren. Så vi antager, at påstanden allerede er bevist for k = r−1 og beviser
den for k = r. Hertil udregner vi

f (x1a1 +·· ·+ xr−1ar−1 + xrar)= f (x1a1 +·· ·+ xr−1ar−1)+ f (xrar)
= f (x1a1 +·· ·+ xr−1ar−1)+ f (xr)ar = f (x1)a1 +·· ·+ f (xr−1)ar−1 + f (xr)ar,

hvor de tre identiteter fås fra henholdsvis (L1) med x= x1a1+·· ·+xr−1ar−1 og y= xrar,
fra (L2) med x = xr og a = ar, og fra den induktive hypotese. Dette viser induktions-
skridtet og dermed lemmaet. 2

Vi har vist i sætning 2.3.4, at multiplikation med en m× n-matrix med indgange i
et legeme F definerer en linær afbildning fra Fn til Fm. Vi viser nu omvendt, at enhver
lineær afbildning fra Fn til Fm fremkommer ved multiplikation med en m×n-matrix med
indgange i F. Vi betragter denne matrix som den generaliserede hældningskoefficient af
den lineære afbildning.
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2 Matricer og lineære afbildninger

Sætning 2.3.9 Lad F være et legeme, lad f : Fn → Fm være en lineær afbildning, og lad
A ∈ Mm,n(F) være matricen, hvis j’te søjle er f (e j) ∈ Fm. Da gælder det for alle x ∈ Fn, at

f (x)= Ax,

og matricen A ∈ Mm,n(F) er entydigt bestemt med denne egenskab.

Bevis Entydighedsudsagnet i sætning følger umiddelbart af, at der for enhver matrix
A ∈ Mm,n(F) gælder, at dens j’te søjle er lig med Ae j. Så vi lader nu

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn

 ∈ Mm,n(F)

være matricen, hvis j’te søjle er lig med f (e j), og viser, at f (x)= Ax for alle x ∈ Fn. Ifølge
lemma 2.2.6 kan vi skrive x ∈ Fn entydigt som

x= e1x1 + e2x2 +·· ·+ enxn =
n∑

j=1
e jx j,

og da f : Fn → Fm er lineær, så viser lemma 2.3.8, at

f (x)= f (
n∑

j=1
e jx j)=

n∑
j=1

f (e j)x j.

Per definition af matricen A gælder det endvidere, at

f (e j)=


a1 j
a2 j

...
am j

= e1a1 j + e2a2 j +·· ·+ emam j =
m∑

i=1
eiai j,

hvilket vi substituerer i formlen for f (x) overfor. Herved får vi

f (x)=
n∑

j=1
(

m∑
i=1

eiai j)x j =
n∑

j=1

m∑
i=1

(eiai jx j)=
m∑

j=1

n∑
i=1

(eiai jx j)=
m∑

i=1
ei (

n∑
j=1

ai jx j),

hvilket viser, at

f (x)=


a11x1 +a12x2 +·· ·+a1nxn
a21x1 +a22x2 +·· ·+a2nxn

...
am1x1 +am2x2 +·· ·+amnxn

=


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn




x1
x2
...

xn

= Ax

som ønsket. 2
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2.3 Lineære afbildninger

Definition 2.3.10 Lad F være et legeme og lad f : Fn → Fm være en lineær afbildning.
Den entydigt bestemte matrix A ∈ Mm,n(F), sådan at der for alle x ∈ Fn gælder det, at

f (x)= Ax,

kaldes for matricen, der repræsenterer f : Fn → Fm med hensyn til standardbaserne for
domænet Fn og codomænet Fm.

Vi skal senere definere og betragte andre baser for Fn og Fm end standardbaserne, og
vi er derfor forsigtige med at sige, at det her er standardbaserne, vi benytter.

Eksempel 2.3.11 Vi så i eksempel 2.3.7, at afbildningen s : R2 → R2, der er givet ved
spejling i x-aksen, er lineær. Matricen, der repræsenter denne afbildning med hensyn
til standardbaserne for domænet og codomænet, er

A = (
s(e1) s(e2)

)= (
s
(
1
0

)
s
(
0
1

))
=

(
1 0
0 −1

)
,

hvilket udregningen

Ax=
(
1 0
0 −1

)(
x1
x2

)
=

(
x1

−x2

)
= s(x)

bekræfter.

Eksempel 2.3.12 Vi efterviste i eksempel 2.3.6, at afbildningen f : R3 →R2 givet ved

f

x1
x2
x3

=
(
2x1 + x2 +3x3
6x1 − x2 +9x3

)

er lineær. Matricen, der repæsenterer f : R3 → R2 med hensyn til standardbaserne for
domænet og codomænet, er

A = (
f (e1) f (e2) f (e3)

)= (
2 1 3
6 −1 9

)
,

hvilket vi selvfølgelig allerede vidste fra eksempel 2.3.1.
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2 Matricer og lineære afbildninger

xrθ(x)

y

rθ(y)

x ·2

rθ(x)+ rθ(y)= rθ(x+ y)

x+ y

rθ(x ·2)= rθ(x) ·2

Figur 2.5: Rotation rθ med vinkel θ omkring 0 i R2 er en lineær afbildning

Eksempel 2.3.13 Vi betragter den afbildning rθ : R2 →R2, der er givet ved en rotation
på θ radianer imod urets retning omkring 0 ∈R2. Figur 2.5 illustrerer, at denne afbild-
ning opfylder (L1)–(L2) og derfor er lineær. Matricen, der repræsenterer rθ : R2 → R2

med hensyn til standardbaserne for domænet og codomænet, er

B = (
rθ(e1) rθ(e2)

)= (
cosθ cos(θ+ π

2 )
sinθ sin(θ+ π

2 )

)
=

(
cosθ −sinθ
sinθ cosθ

)
,

hvor vi har brugt, at

rθ
(
1
0

)
= rθ

(
cos0
sin0

)
=

(
cosθ
sinθ

)
og rθ

(
0
1

)
= rθ

(
cos(π2 )
sin(π2 )

)
=

(
cos(θ+ π

2 )
sin(θ+ π

2 )

)
.

Eksempel 2.3.14 Identitetsafbildningen id: Fn → Fn er defineret ved

id(x)= x

er tydeligvis lineær. Matricen, der repræsenterer denne afbildning med hensyn til
standardbaserne for både domænet og codomænet, er identitetsmatricen

A = (
id(e1) id(e2) · · · id(en)

)= (
e1 e2 · · · en

)=


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

= In.

I forbindelse med koordinatskift skal vi senere betragte matricen, der repræsenterer
identitetsafbildningen med hensyn til forskellige baser for domænet og codomænet, og
denne matrix er da ikke identitetsafbildningen.
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2.3 Lineære afbildninger

Vi viser nu, at sammesætning af lineære afbildninger svarer til multiplikation af de
matricer, der repræsenterer dem, i samme rækkefølge.

Sætning 2.3.15 Lad F være et legeme, lad f : Fn → Fm og g : Fp → Fn være to lineære
afbildninger og lad A ∈ Mm,n(F) og B ∈ Mn,p(F) være de matricer, der repræsenterer
henholdsvis f : Fn → Fm og g : Fp → Fn med hensyn til de respektive standardbaser.
Den sammensatte afbildning f ◦ g : Fp → Fm er da lineær, og matricen C ∈ Mm,p(F), der
represæsenterer f ◦ g : Fp → Fm med hensyn til de respektive standardbaser, er

C = AB.

Bevis For alle x ∈ Fp gælder det, at

( f ◦ g)(x)= f (g(x))= A(Bx)= (AB)x.

Her er den første lighed definitionen af den sammensatte afbildning, den anden lighed
er definitionen af matricerne, der repræsenterer de lineære afbildninger med hensyn til
de respektive standardbaser, mens den sidste lighed er sætning 2.1.10 (P1). Det følger
derfor fra sætning 2.3.4, at afbildningen f ◦ g : Fp → Fm er lineær, og da matricen C,
der repræsenterer denne afbildning med hensyn til standardbaserne for Fp og Fm, er
entydigt bestemt, konkluderer vi endvidere, at C = AB som påstået. 2

Eksempel 2.3.16 Lad s : R2 →R2 være den lineære afbildning fra eksempel 2.3.7, der
er givet ved spejling i x-aksen, og lad r = rπ/2 : R2 → R2 være den lineære afbildning
fra eksempel 2.3.13, der er givet ved rotation gennem π/2 radianer imod urets retning
omkring 0 ∈ R2. Vi ved fra eksempel 2.3.11 og 2.3.13, at r : R2 → R2 og s : R2 → R2 er
repræsenteret med hensyn til de respektive standardbaser ved henholdsvis

A =
(
0 −1
1 0

)
og B =

(
1 0
0 −1

)
.

Ifølge sætning 2.3.15 repræsenterer produktmatricerne BA og AB derfor henholdsvis
de sammensatte afbildninger s◦ r : R2 →R2 og r◦ s : R2 →R2, hvoraf den første er “først
drej, så spejl”, mens den anden er “først spejl, så drej”. Vi udregner

BA =
(

1 0
0 −1

)(
0 −1
1 0

)
=

(
0 −1

−1 0

)
,

AB =
(

0 −1
1 0

)(
1 0
0 −1

)
=

(
0 1
1 0

)
.

Vi bemærker, at de to matricer er forskellige, og konkluderer derfor, at de sammensatte
afbildninger s ◦ r og r ◦ s ligeledes er forskellige. De to sammensatte afbildninger er
illustreret i figur 2.6.
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2 Matricer og lineære afbildninger

Figur 2.6: På venstre side afbildes den sorte figur ved r i den røde figur, som derefter
ved s afbildes i den blå figur. På højre side afbildes samme sorte figur ved s i
den røde figur, som derefter ved r afbildes i den blå figur.

Lineære afbildninger optræder i mange sammenhænge. Vi afslutter dette afsnit med
et eksempel fra operationsanalyse, der illustrerer en lineær sammenhæng mellem varer
og råvarer i en produktion. Hvis produktionsbegrænsninger endvidere er udtrykt ved
lineære uligheder, da kan den optimale produktion bestemmes effektivt ved hjælp af
Dantzig’s simpleksalgoritme1. Dette område kaldes for lineær programmering.

Eksempel 2.3.17 En fabrik fremstiller to varer X1 og X2 og anvender dertil tre råva-
rer Y1, Y2 og Y3. Hvis der dagligt fremstilles x1 enheder af X1 og x2 enheder af X2, så
siger vi, at fabrikkens produktion er

x=
(
x1
x2

)
.

Hvis fabrikken dagligt forbruger y1 enheder af Y1, y2 enheder af Y2 og y3 enheder af
Y3, så siger vi tilsvarende, at fabrikkens forbrug er

y=
y1

y2
y3

 .

Til produktion af én enhed af X1 kræves tre enheder af Y1, to enheder af Y2 og én
enhed af Y3; og til produktion én enhed af X2 kræves fem enheder af Y1, fem enheder

1Se en.wikipedia.org/wiki/Simplex_algorithm
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af Y2 og tre enheder af Y3. Sammenhængen mellem forbrug og produktion er altså
givet ved

y1 = 3x1 +5x2

y2 = 2x1 +5x2

y3 = x1 +3x2.

Så hvis vi lader f :R2 →R3 være den afbildning, der til en ønsket produktion x af varer
tilordner det tilsvarende forbrug y af råvarer, da gælder det, at

f
(
x1
x2

)
=

y1
y2
y3

=
3x1 +5x2

2x1 +5x2
x1 +3x2

=
3 5

2 5
1 3

(
x1
x2

)
.

Dermed er f : R2 →R3 altså en lineær afbildning.

2.4 Invertible matricer

I dette afsnit undersøger vi de matricer A, for hvilke ligningssystemet Ax = b præcis
har én løsning for alle b. Disse matricer, som vi kalder invertible, repræsenterer således
bijektive lineære afbildninger, og vi viser, at de nødvendigvis er kvadratiske.

Lemma 2.4.1 Lad F være et legeme, lad f : Fn → Fm være en lineær afbildning, og lad
A ∈ Mm,n(F) være matricen, der repræsenterer f : Fn → Fm med hensyn til de respektive
standardbaser. Da er følgende udsagn ækvivalente:

(1) Afbildningen f : Fn → Fm er bijektiv.

(2) For alle b ∈ Fm har det lineære ligningssystem Ax= b præcis én løsning x ∈ Fn.

Bevis At f : Fn → Fm er bijektiv, betyder per definition, at der for alle b ∈ Fm præcis
findes ét x ∈ Fn, sådan at f (x)= b. Da f (x)= Ax for alle x ∈ Fn, følger lemmaet. 2

Eksempel 2.4.2 Vi undersøger, om den lineære afbildning f : F2 → F2 givet ved

f (x)= Ax=
(
1 2
2 1

)(
x1
x2

)
=

(
x1 +2x2
2x1 + x2

)
er bijektiv, hvilket ifølge lemma 2.4.1 er ækvivalent til at undersøge, hvorvidt det for
alle b ∈ F2 gælder, at ligningssystemet Ax = b præcis har én løsning. Vi anvender
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2 Matricer og lineære afbildninger

derfor rækkeoperationer til at omdanne ligningssystemets totalmatrix (A | b) til en
matrix på (A′ | b′) på reduceret echelonform.

(A | b)=
(

1 2 b1
2 1 b2

)
+(−2)R1(

1 2 b1
0 −3 −2b1 +b2

)
(−1

3 ) ·R2(
1 2 b1

0 1 2b1−b2
3

) +(−2)R2

(A′ | b′)=
(

1 0 2b2−b1
3

0 1 2b1−b2
3

)
+(−2)R2

Vi ser, at for ethvert b ∈ F2 har ligningssystemet Ax= b netop den ene løsning

x=
(
2b2 −b1
2b1 −b2

)
· 1

3 ,

og derfor er f : F2 → F2 altså bijektiv.

Vi viser nu, at en lineær afbildning f : Fn → Fm ikke kan være bijektiv, medmindre
matricen A ∈ Mm,n(F), der repræsenterer f : Fn → Fm med hensyn til standardbaserne,
er en kvadratisk matrix.

Sætning 2.4.3 Hvis F er et legeme, og hvis f : Fn → Fm er en bijektiv lineær afbildning,
så gælder det nødvendigvis, at m = n.

Bevis Lad A ∈ Mm,n(F) være den matrix, der repræsenterer f : Fn → Fm med hensyn til
de respektive standardbaser, og lad A′ være matricen på reduceret echelonform af rang
0 ≤ r ≤ min{m,n}, der fremkommer fra A ved at udføre en følge af rækkeoperationer.
Ifølge lemma 2.4.1 er f : Fn → Fm bijektiv, hvis og kun hvis det lineære ligningssystem
Ax = b præcis én løsning for alle b ∈ Fm, og ifølge sætning 1.3.1 er dette tilfældet, hvis
og kun hvis r = m = n. Så hvis f : Fn → Fm er bijektiv, da er m = n som påstået. 2

Bemærkning 2.4.4 Givet vilkårlige positive heltal m og n, så kan man vise, at der
altid findes en bijektiv afbildning f : Rn → Rm. Sætning 2.4.3 viser imidlertid, at en
sådan bijektiv afbildning kun kan være lineær, hvis m = n.

Som beviset for sætning 2.4.3 afslører, er en lineær afbildning f : Fn → Fn bijektiv,
hvis og kun hvis matricen A ∈ Mn(F), der repræsenterer f : Fn → Fn med hensyn til
standardbaserne, kan omdannes ved rækkeoperationer til identitetsmatricen.
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2.4 Invertible matricer

Eksempel 2.4.5 Vi undersøger om den lineære afbildning g : C2 →C2 givet ved

g(z)= Bz =
(
1 i
i −1

)(
z1
z2

)
=

(
z1 + iz2
iz1 − z2

)
er bijektiv. Så vi omdanner totalmatricen (B | b) for ligningssystem Bz = b til en matrix
(B′ | b′) på reduceret echelonform.

(B | b)=
(

1 i b1
i −1 b2

)
+(−i)R1

(B′ | b′)=
(

1 i b1
0 0 −ib1 +b2

)
Vi ser, at g : C2 →C2 ikke er bijektiv.

Vi husker fra lemma 0.1.3, at en afbildning f : X →Y er bijektiv, hvis og kun hvis der
findes en afbildning g : Y → X , sådan at f ◦g = idY og g◦ f = idX . Afbildningen g : Y → X
er i givet fald entydigt bestemt og kaldes den inverse afbildning af f : X →Y .

Sætning 2.4.6 Hvis F er et legeme, og hvis f : Fn → Fn er en bijektiv lineær afbildning,
så er den inverse afbildning g : Fn → Fn også lineær.

Bevis Vi skal vise, at den inverse afbildning g : Fn → Fn opfylder (L1) og (L2). Vi så i
beviset for lemma 0.1.3, at “u = g(v)” og “ f (u) = v” er ækvivalente udsagn. Specielt er
udsagnene “g(x)+ g(y) = g(x+ y)” og “ f (g(x)+ g(y)) = x+ y” derfor ækvivalente, og det
sidste udsagn gælder, fordi f : Fn → Fn opfylder (L1):

f (g(x)+ g(y))= f (g(x))+ f (g(y))= x+ y.

Dette viser, at g : Fn → Fn opfylder (L1). Tilsvarende er “g(x)a = g(xa)"og “ f
(
g(x)a

)= xa”
ækvivalente, og det sidste gælder, idet f : Fn → Fn opfylder (L2):

f (g(x)a)= f (g(x))a = xa.

Dette viser, at g : Fn → Fn også opfylder (L2). Altså er g : Fn → Fn lineær. 2

Eksempel 2.4.7 Den lineære afbildning f : R→ R givet ved f (x) = cx, hvor c ∈ R, er
bijektiv, hvis os kun hvis c 6= 0. I givet fald er den inverse afbildning g : R→R givet ved
g(x)= c−1x, og den er derfor også lineær.
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Lad f : Fn → Fn være en bijektiv lineær afbildning, og lad g : Fn → Fn være den inverse
afbildning, der ifølge sætning 2.4.6 også er lineær. Lad A ∈ Mn(F) og B ∈ Mn(F) være
de kvadratiske matricer, der repræsenterer henholdsvis f : Fn → Fn og g : Fn → Fn med
hensyn til standardbaserne. Ifølge sætning 2.3.15 og eksempel 2.3.14 er identiteterne
f ◦ g = id= g ◦ f og matrixidentiteterne

AB = I = BA

da ækvivalente. Dette motiverer den følgende definition.

Definition 2.4.8 En kvadratisk matrix A er invertibel, hvis der findes en kvadratisk
matrix B, sådan at AB = I = BA, hvor I er identitetsmatricen.

Hvis A er en kvadratisk matrix, og hvis de to kvadratiske matricer B og B′ opfylder,
at AB = I = BA og AB′ = I = B′A, da er B = B′. For ifølge sætning 2.1.10 er

B = BI = B(AB′)= (BA)B′ = IB′ = B′.

Vi kalder matricen B for den inverse matrix af matricen A og betegner den A−1. Den
følgende sætning opsummerer ovenstående.

Sætning 2.4.9 Lad F være et legeme, lad f : Fn → Fn være en lineær afbildning, og lad
A ∈ Mn(F) være den kvadratiske matrix, der repræsenterer f : Fn → Fn med hensyn til
standardbaserne. Da er følgende udsagn (1)–(4) ækvivalente.

(1) Afbildningen f : Fn → Fn er bijektiv.

(2) Der findes en lineær afbildning g : Fn → Fn, sådan at f ◦ g = idFn = g ◦ f .

(3) Den kvadratiske matrix A er invertibel.

(4) Det lineære ligningssystem Ax= b har præcis én løsning for alle b ∈ Fn.

Bevis Vi viste i lemma 2.4.1, at (1) og (4) er ækvivalente, og i sætning 2.4.6, at (1)
og (2) er ækvivalente, og vi viser nu, at også (2) og (3) er ækvivalente. Hvis (2) holder, da
opfylder matricen B ∈ Mn(F), der repræsenterer g : Fn → Fn med hensyn til standardba-
sen, ifølge sætning 2.3.15 og eksempel 2.3.14, at AB = I = BA, så (3) holder. Omvendt,
hvis (3) holder, da lader vi B være den inverse matrix af A og definerer g : Fn → Fn til
at være den lineære afbildning givet ved g(y) = By. Sætning 2.3.15 og eksempel 2.3.14
viser da, at f ◦ g = idFn = g ◦ f , så (2) holder. 2
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Hvis en kvadratisk matrix A er invertibel, og hvis dens inverse matrix B er kendt, da
er den entydige løsning til ligningssystemet Ax= b givet ved x= Bb. For

A(Bb)= (AB)b = Ib = b.

Specielt er den j’te søjle b j = Be j i den inverse matrix lig med den entydige løsning
til ligningssystemet Ab j = e j. Vi kan derfor finde den inverse matrix B ved hjælp af
rækkeoperationer. Vi vender tilbage til dette i næste afsnit.

Eksempel 2.4.10 Vi betragter matricerne

A =
(

1 2
−1 3

)
og B =

(
3/5 −2/5
1/5 1/5

)
og udregner

AB =
(

1 2
−1 3

)(
3/5 −2/5
1/5 1/5

)
=

(
3/5+ 2/5 −2/5+ 2/5

−3/5+ 3/5 2/5+ 3/5

)
=

(
1 0
0 1

)
= I

BA =
(

3/5 −2/5
1/5 1/5

)(
1 2

−1 3

)
=

(
3/5+ 2/5 6/5− 6/5
1/5− 1/5 2/5+ 3/5

)
=

(
1 0
0 1

)
= I

hvilket viser, at B = A−1 er den inverse matrix af A.

Hvis en kvadratisk matrix med heltalsindgange er invertibel, da vil dens inverse
matrix som i ovenstående eksempel typisk have indgange, der er brøker med samme
nævner. Forklaringen herpå finder vi i kapitel 3.

Vi afslutter dette afsnit med at undersøge invertibilitet af diagonalmatricer, som vi
nu definerer.

Definition 2.4.11 En kvadratisk matrix på formen

diag(a1, . . . ,an)=


a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · an


kaldes for en diagonalmatrix.

Produktet af to diagonal matricer er igen en diagonalmatrix, idet

diag(a1, . . . ,an) ·diag(b1, . . . ,bn)= diag(a1b1, . . . ,anbn).
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2 Matricer og lineære afbildninger

For eksempel er (
2 0
0 −3

)(
5 0
0 1

)
=

(
2 ·5 0
0 −3 ·1

)
=

(
10 0
0 −3

)
.

Vi bemærker også, at identitetsmatricen en diagonalmatrix.

Sætning 2.4.12 Lad F være et legeme. Diagonalmatricen diag(a1, . . . ,an) er invertibel,
hvis og kun hvis diagonalindgangene a1, . . . ,an ∈ F alle er invertible, og i givet fald er

diag(a1, . . . ,an)−1 = diag(a−1
1 , . . . ,a−1

n ).

Bevis Hvis a1, . . . ,an alle er invertible i F, så er

diag(a1, . . . ,an)diag(a−1
1 , . . . ,a−1

n )= diag(1, . . . ,1)= I,

diag(a−1
1 , . . . ,a−1

n )diag(a1, . . . ,an)= diag(1, . . . ,1)= I,

hvilket viser, at diag(a1, . . . ,an) er invertibel, og at dens inverse matrix er som angivet.
Omvendt, hvis A = diag(a1, . . . ,an) er invertibel med invers matrix B, så viser

AB =

a1 . . . 0
... . . . ...
0 . . . an


b11 . . . b1n

... . . . ...
bn1 . . . bnn

=

a1b11 . . . a1b1n
... . . . ...

anbn1 . . . anbnn

= I,

BA =

b11 . . . b1n
... . . . ...

bn1 . . . bnn


a1 . . . 0

... . . . ...
0 . . . an

=

b11a1 . . . b1nan
... . . . ...

bn1a1 . . . bnnan

= I,

at ai er invertibel med invers a−1
i = bii for alle 1≤ i ≤ n, som ønsket. 2

Eksempel 2.4.13 Vi beskriver tre lineære afbildninger, der alle er repræsenteret med
hensyn til standardbaserne af diagonalmatricer. Matricen

A = diag(2,2)=
(
2 0
0 2

)
repræsenterer den lineære afbildning f : R2 → R2, der skalerer alle vektorer med en
faktor 2. Den er invertibel, og den inverse matrix A−1 = diag(1/2,1/2) repræsenterer
den lineære afbildning f −1 : R2 → R2, der skalerer alle vektorer med en faktor 1/2. Og
vi har allerede set i eksempel 2.3.7, at matricen

B = diag(1,−1)=
(
1 0
0 −1

)
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repræsenterer den lineære afbildning s : R2 → R2, der er givet ved spejling i x-aksen.
Den er invertibel og er sin egen inverse matrix. Endelig repræsenterer matricen

C = diag(1,0)=
(
1 0
0 0

)
den lineære afbildning p : R2 → R2, der projicerer på x-aksen langs y-aksen. Den er
ikke invertibel, men opfylder i stedet at p◦p = p. Vi siger generelt, at en lineær afbild-
ning p : Fn → Fn er en projektion, hvis denne formel gælder.

Sætning 2.4.14 Hvis A og B er invertible matricer af samme dimensioner, da er AB
også en invertibel matrix, og dens inverse matrix er givet ved

(AB)−1 = B−1A−1.

Bevis Vi sætter C = B−1A−1 og udregner

(AB)C = (AB)(B−1A−1)= ((AB)B−1)A−1 = (A(BB−1))A−1 = (AI)A−1 = AA−1 = I,

C(AB)= (B−1A−1)(AB)= B−1(A−1(AB))= B−1((A−1A)B)= B−1(IB)= B−1B = I.

Per entydighed af den inverse matrix konkluderer vi derfor, at C = (AB)−1. 2

Bemærkning 2.4.15 Hvis F er et legeme, så skriver vi

GLn(F)⊂ Mn(F)

for delmængden bestående af de invertible n×n-matricer. Det følger fra sætning 2.4.14,
at matrixproduktet definerer en produktafbildning

GLn(F)×GLn(F) “ · ” // GLn(F),

der opfylder gruppeaksiomerne (G1)–(G3) nedenfor. Generelt defineres en gruppe til at
være et par (G, · ) af en mængde G og en afbildning · : G×G →G, der opfylder:

(G1) For alle g,h,k ∈G er (g ·h) ·k = g · (h ·k).

(G2) Der findes et element e ∈G, sådan at g · e = g = e · g for alle g ∈G.

(G3) For alle g ∈G findes h ∈G, sådan at g ·h = e = h · g.

Elementet e ∈ G, der opfylder (G2), er entydigt bestemt og kaldes for et-elementet i G.
Man skriver ofte “1” i stedet for “e” for dette element. Givet g ∈ G er elementet h ∈ G,
der opfylder (G3), ligeledes entydigt bestemt. Det kaldes for det inverse element af g ∈G
og betegnes g−1 ∈ G. Grupper optræder mange steder i både matematik og fysik, fordi
de beskriver symmetrier. Den generelle lineære gruppe GLn(F) er således den største
gruppe af symmetrier af vektorrummet Fn.
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c c1

1

1

1

0

0Mi(c)= Si j(c)= Ti j =

i i ij j

i

j

1 1 1

1 1 1

ii

Figur 2.7: Operationsmatricerne Mi(c), Si j(c) og Ti j adskiller sig fra Im som anført.

2.5 Operationsmatricer

I dette afsnit introducerer vi operationsmatricer, som er matricer med den egenskab, at
de ved venstre multiplikation effektuerer de rækkeoperationer, vi definerede i kapitel 1.
Vi beviser også flere sætninger fra kapitel 1 i en mere præcis form. Specielt viser vi,
at hvis en matrix A ved rækkeoperationer omdannes til en matrix A′ på reduceret
echelonform, da afhænger A′ kun af A og ikke af den valgte følge af rækkeoperationer.
Vi anvender endvidere Gauss-elimination til at afgøre, om en matrix er invertibel, og i
givet fald finde den inverse matrix.

Vi definerer nu operationsmatricerne, der er kvadratiske matricer og opdelt i tre typer
svarende til de respektive rækkeoperationer i kapitel 1.

Definition 2.5.1 Lad F være et legeme. Operationsmatricerne i Mm(F) er de følgende
tre typer af matricer.
Type M: For alle 1 ≤ i ≤ m og 0 6= c ∈ F er Mi(c) den matrix, der fås fra Im ved at
multiplicere den i’te række med c fra venstre.
Type S: For alle 1≤ i 6= j ≤ m og c ∈ F er Si j(c) den matrix, der fås fra Im ved at addere
c gange den j’te række til den i’te række.
Type T: For alle 1 ≤ i < j ≤ m er Ti j den matrix, der fås fra Im ved ombytning af den
i’te række og den j’te række.

Figur 2.7 illustrerer disse matricer.

Eksempel 2.5.2 For m = 3 har vi de følgende eksempler på operationsmatricer

M2(c)=
1 0 0

0 c 0
0 0 1

 , S23(c)=
1 0 0

0 1 c
0 0 1

 , T13 =
0 0 1

0 1 0
1 0 0

 ,

hvor vi har markeret de indgange, der adskiller sig fra de tilsvarende indgange i iden-
titetsmatricen I3, med blåt.
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Vi viser nu som lovet, at operationsmatricerne effektuerer rækkeoperationerne fra
kapitel 1. Beviset forstås lettest ved sideløbende at betragte eksempel 2.5.4 nedenfor.

Sætning 2.5.3 Lad A ∈ Mm,n(F) være en m×n-matrix med indgange i et legeme F.

(1) For alle 1 ≤ i ≤ m og 0 6= c ∈ F er Mi(c) A den matrix, der fremkommer fra A ved at
multiplicere den i’te række med c fra venstre.

(2) For alle 1 ≤ i 6= j ≤ m og c ∈ F er Si j(c) A den matrix, der fremkommer fra A ved at
addere c gange den j’te række til den i’te række.

(3) For alle 1 ≤ i < j ≤ m er Ti j A den matrix, der fremkommer fra A ved at ombytte
den i’te række og den j’te række.

Bevis Lad δr ∈ M1,m(F) være 1×m-matricen med (δr)1 j = δr j. Matricen δr er altså den
r’te række i identitetsmatricen Im ∈ Mm,m(F), og hvis B ∈ Mm,n(F) er en m×n-matrix, da
er 1×n-matricen δr ·B ∈ M1,n(F) den r’te række i B. Dette bruger vi i resten af beviset.

Vi viser nu (1). Per definition af Mi(c) er

δr ·Mi(c)=
{

c ·δr hvis r = i,
δr hvis r 6= i.

Den r’te række i Mi(c) · A er derfor lig med henholdsvis

δr · (Mi(c) · A)= (δr ·Mi(c)) · A = (c ·δr) · A = c · (δr · A),

hvis r = i, og
δr · (Mi(c) · A)= (δr ·Mi(c)) · A =δr · A,

hvis r 6= i, hvilket netop er påstanden (1).
Vi viser dernæst (2). Operationsmatricen Si j(c) er per definition givet ved

δr ·Si j(c)=
{
δr + c ·δ j hvis r = i,
δr hvis r 6= i,

og den r’te række i Si j · A er derfor lig med henholdsvis

δr · (Si j(c) · A)= (δr ·Si j(c)) · A = (δr + c ·δ j) · A
=δr · A+ (c ·δ j) · A =δr · A+ c · (δ j · A),

hvis r = i, og
δr · (Si j(c) · A)= (δr ·Si j(c)) · A =δr · A,

hvis r 6= i. Dette viser påstanden (2).
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Endelig viser vi (3). Operationsmatricen Ti j er defineret ved

δr ·Ti j =


δ j hvis r = i,
δi hvis r = j,
δr hvis r 6= i og r 6= j,

og derfor er den r’te række i Ti j · A lig med

δr · (Ti j · A)= (δr ·Ti j) · A =


δ j · A hvis r = i,
δi · A hvis r = j,
δr · A hvis r 6= i og r 6= j,

hvilket viser (3). 2

Eksempel 2.5.4 Vi multiplicerer 3×4-matricen

A =
1 3 2 0

2 5 2 4
0 1 2 1


med operationsmatricerne fra eksempel 2.5.2:

M2(c)A =

 1 0 0
0 c 0
0 0 1


 1 3 2 0

2 5 2 4
0 1 2 1

=
 1 3 2 0

c ·2 c ·5 c ·2 c ·4
0 1 2 1



S23(c)A =

 1 0 0
0 1 c
0 0 1


 1 3 2 0

2 5 2 4
0 1 2 1

=
 1 3 2 0

2+ c ·0 5+ c ·1 2+ c ·2 4+ c ·1
0 1 2 1



T13A =

 0 0 1
0 1 0
1 0 0


 1 3 2 0

2 5 2 4
0 1 2 1

=
0 1 2 1

2 5 2 4
1 3 2 0


Vi ser, at M2(c)A er matricen, der fremkommer fra A ved multiplikation af den anden
række med c fra venstre; at matricen S23(c)A er matricen, der fremkommer fra A ved
at addere c gange den tredje række til den anden række; og at T13A er den matrix, der
fremkommer fra A ved ombytning af den første og tredje række.

I kapitel 1 indførte vi en invers rækkeoperation hørende til hver rækkeoperation.
Oversat til operationsmatricer, giver det følgende resultat.

70



2.5 Operationsmatricer

Sætning 2.5.5 Operationsmatricerne Mi(c), Si j(c) og Ti j er alle invertible, og deres
inverse matricer er givet ved henholdsvis

Mi(c)−1 = Mi(c−1), Si j(c)−1 = Si j(−c) og T−1
i j = Ti j.

Bevis Hvis A er lig med Mi(c), Si j(c) eller Ti j, så sætter vi B til at være lig med
henholdsvis Mi(c−1), Si j(−c) eller Ti j, og skal da vise, at AB = I = BA. Nu er

AB = (AB)I = A(BI),

og ifølge sætning 2.5.3 er A(BI) den matrix, der fremkommer fra identitetsmatricen ved
først at anvende den rækkeoperation, der svarer til B, og derefter den rækkeoperation,
der svarer til A. I alle tre tilfælde, er disse rækkeoperationer præcis hinandens inverse
rækkeoperationer. Dette viser, at AB = I, og BA = I vises tilsvarende. Alternativt kan
sætningen også let bevises ved direkte udregning af de relevante matrixprodukter. 2

Eksempel 2.5.6 Vi udregner, at

S23(c)S23(−c)=

 1 0 0
0 1 c
0 0 1


 1 0 0

0 1 −c
0 0 1

=
1 0 0

0 1 −c+ c
0 0 1

= I,

og ved at erstatte c med −c ser vi, at også S23(−c)S23(c) = I, hvilket viser, at de to
matricer er hinandens inverse.

Definition 2.5.7 En ækvivalensrelation på en mængde X er en delmængde R ⊂ X×X ,
der opfylder de følgende aksiomer (R1)–(R3).

(R1) For alle x ∈ X er (x, x) ∈ R.

(R2) For alle x, y ∈ X gælder det, at (x, y) ∈ R, hvis og kun hvis (y, x) ∈ R.

(R3) For alle x, y, z ∈ X gælder det, at hvis (x, y) ∈ R og (y, z) ∈ R, da er (x, z) ∈ R.

Vi tænker på “(x, y) ∈ R” som “x er R-ækvivalent med y”. En ækvivalensrelation R på
en mængde X giver anledning til en opdeling af X i disjunkte ækvivalensklasser, hvor
to elementer x, y ∈ X per definition tilhører den samme R-ækvivalensklasse, hvis og kun
hvis (x, y) ∈ R. Vi anvender rækkeoperationer til at definere en ækvivalensrelation på
mængden Mm,n(F) af m×n-matricer med indgange i et legeme F.
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Definition 2.5.8 Hvis A,B ∈ Mm,n(F) er m× n-matricer med indgange i et legeme F,
da siges matricen A at være rækkeækvivalent til matricen B, hvis der findes en endelig
følge af operationsmatricer P1, . . . ,Pk ∈ Mm(F), sådan at B = Pk · · ·P2P1A.

Ifølge sætning 2.5.3 er A altså rækkeækvivalent til B, hvis B fremkommer fra A ved
at anvende endeligt mange rækkeoperationer. Vi viser nu, at rækkeækvivalens er en
ækvivalensrelation på mængden Mm,n(F) af m×n-matricer med indgange i F.

Sætning 2.5.9 Lad F være et legeme, og lad m og n være naturlige tal.

(1) For alle A ∈ Mm,n(F) gælder det, at A er rækkeækvivalent til A.

(2) For alle A,B ∈ Mm,n(F) gælder det, at A er rækkeækvivalent til B, hvis og kun hvis
B er rækkeækvivalent til A.

(3) For alle A,B,C ∈ Mm,n(F) gælder det, at hvis A er rækkeækvivalent til B, og hvis B
er rækkeækvivalent til C, så er A rækkeækvivalent til C.

Bevis En matrix A fremkommer fra sig selv ved at anvende k = 0 rækkeoperationer,
hvilket viser (1). Hvis B = Pk · · ·P1A, da er A = P−1

1 · · ·P−1
k B, hvilket viser (2). Her har vi

anvendt, at operationsmatricer ifølge sætning 2.5.3 er invertible. Hvis B = Pk · · ·P1A og
C =Ql · · ·Q1B, da er C =Ql · · ·Q1Pk · · ·P1A, hvilket viser (3) og dermed sætningen. 2

Vi viste i sætning 1.2.5, at hvis totalmatricen for et ligningssystem kan omdannes til
totalmatricen for et andet ligningssystem ved hjælp af rækkeoperationer, da har de to
ligningssystemer den samme løsningsmængde. Vi omformulerer nu denne sætning og
gentager beviset ved hjælp af operationsmatricer.

Sætning 2.5.10 Hvis totalmatricerne (A | b) og (B | c) for ligningssystemerne Ax = b
og Bx = c er rækkeækvivalente, så har de to ligningssystemerne samme løsningsmæng-
de.

Bevis Hvis (B | c) = Pk · · ·P1(A | b), da er specielt B = Pk · · ·P1A og c = Pk · · ·P1b. Hvis
derfor Ax = b, da er også Bx = Pk · · ·P1Ax = Pk · · ·P1b = c. Omvendt, hvis Bx = c, da er
også Ax= P−1

1 · · ·P−1
k Bx= P−1

1 · · ·P−1
k c = b. 2

Vi vender nu tilbage til Gauss-elimination og beviser som lovet den følgende mere
præcise version af sætning 1.2.12. Denne sætning er vores første hovedsætning.
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Sætning 2.5.11 Lad A være en m×n-matrix med indgange i et legeme F.

(1) Der findes en endelig følge af operationsmatricer P1, . . . ,Pk ∈ Mm(F), sådan at

A′ = Pk . . .P2P1A

er på reduceret echelonform af rang 0≤ r ≤min{m,n}.

(2) Matricen A′ og dens rang r er entydigt bestemte af matricen A og afhænger ikke af
den anvendte følge af operationsmatricer.

Bevis Udsagnet (1) er ifølge sætning 2.5.3 ækvivalent til sætning 1.2.12, så vi viser (2).
Sætning 2.5.9 viser, at rækkeækvivalens er en ækvivalensrelation på Mm,n(F), og det
udsagn, vi skal vise, er, at hver rækkeækvivalensklasse præcis indeholder én matrix på
reduceret echelonform. Med andre ord skal vi vise, at hvis A og B er rækkeækvivalente
m×n-matricer, der begge er på reduceret echelonform, da er A = B, hvilket vi gør ved
induktion på n ≥ 1. For n = 1 er de eneste m×1-matricer på reduceret echelonform

0=


0
0
...
0

 og e1 =


1
0
...
0

 ,

og for enhver operationsmatrix P ∈ Mm(F) er P0 = 0, hvilket viser, at 0 og e1 ikke er
rækkeækvivalente. Derfor er to rækkeækvivalente m×1-matricer A og B nødvendigvis
ens, hvilket viser påstanden for n = 1.

Vi antager induktivt, at påstanden er vist for n = p−1 og beviser den for n = p. Hertil
lader vi C og D være de m× (p−1)-matricer, der fremkommer fra henholdsvis A og B
ved at fjerne den sidste søjle, sådan at

A =

 a1p

C
...

amp

 og B =

 b1p

D
...

bmp

 .

Da A og B er på reduceret echelonform, så er også C og D på reduceret echelonform,
og de er endvidere rækkeækvivalente. For hvis P1, . . . ,Pk er operationsmatricer, sådan
at B = Pk · · ·P1A, da er også C = Pk · · ·P1D. Den induktive antagelse viser derfor, at
m× (p−1)-matricerne C og D er ens, hvoraf vi konkluderer, at

A−B =

 a1p −b1p

C−D
...

amp −bmp

=

 a1p −b1p

O
...

amp −bmp

 .
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Vi ønsker at vise, at også den sidste søjle er lig med 0, sådan at A = B, og antager
derfor modsætningsvist, at der findes et 1 ≤ j ≤ p, sådan at a jp 6= b jp. Da A og B er
rækkeækvivalente, så har ligningssystemerne Ax = 0 og Bx = 0 ifølge sætning 2.5.10
samme løsningsmængde. Hvis x er en løsning til disse ligningssystemer, da er

(A−B) x= Ax−Bx= 0−0= 0,

og x er derfor også en løsning til ligningssystemet (A−B) x = 0. Den j’te ligning i dette
ligningssystem er “(a jp − b jp)xp = 0”, og da vi har antaget, at a jp − b jp 6= 0, følger det,
at xp = 0. Så enhver løsning x til Ax = 0 og Bx = 0 har nødvendigvis xp = 0, og derfor
er xp ikke en fri variabel i disse ligningssystemer. Da A og B er på reduceret echolon
form medfører dette, at deres p’te søjler begge indeholder en ledende indgang. Vi har
allerede set, at m× (p−1)-matricerne C og D, der er på reduceret echelonform, er iden-
titiske, og derfor har de specielt samme rang r−1. Da m× p-matricerne A og B er på
reduceret echelonform, og da deres sidste søjler indeholder en ledende indgang, er dis-
se søjler derfor begge nødvendigvis lig med er. Dermed er A = B, hvilket strider mod
vores antagelse, at A 6= B, så denne antagelse var altså forkert. Så A = B, hvilket viser
induktionsskridtet og dermed sætningen. 2

Bemærkning 2.5.12 Som nævnt i beviset, så siger sætning 2.5.11 ækvivalent, at hver
rækkeækvivalensklasse af m×n-matricer præcis indeholder én m×n-matrix, der er på
reduceret echelonform.

Vi har i definition 1.2.9 defineret rangen af en matrix på reduceret echelonform til at
være antallet af ikke-nul rækker eller ækvivalent antallet af ledende indgange. Ifølge
sætning 2.5.11 kan vi nu udvide denne definition til alle matricer, som følger.

Definition 2.5.13 Lad A være en m×n-matrix med indgange i et legeme F og lad A′

være den entydigt bestemte matrix på reduceret echelonform, der er rækkeækvivalent
med A. Da er rangen af A defineret til at være rangen af A′ og betegnes rank(A).

Vi bemærker, at lemma 1.3.2 viser, at rangen af en matrix på echelonform også er lig
med antallet af ikke-nul rækker eller ækvivalent antallet af ledende indgange.

Eksempel 2.5.14 (1) Nul-matricen Om,n har rang 0.

(2) Matricen

A =
8 1 3 3

0 2 4 0
0 0 0 5


er på echelonform og har tre ledende indgange, som vi har markeret med blåt. Så
ifølge lemma 1.3.2 har den rang 3.
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(3) Vi bestemmer rangen af matricen

B =
2 0 3 3

0 1 4 0
2 1 7 3


ved at omdanne denne til en rækkeækvivalent matrix C på echelonform.

B =
2 0 3 3

0 1 4 0
2 1 7 3


+(−1)R12 0 3 3

0 1 4 0
0 1 4 0


(−1)R2

C =
2 0 3 3

0 1 4 0
0 0 0 0


Da B og C er rækkeækvivalente, har de samme rang, og da C er på echelonform,
er dens rang lig med antallet af ledende indgange. Så B har rang 2.

Vi skal senere vise, at rangen af A ∈ Mm,n(F) er lig med dimensionen af billedet af den
lineære afbildning f : Fn → Fm givet ved f (x)= Ax, men det må vente til, vi har defineret
vektorrum og deres dimension i kapitel 4. Vi relaterer herunder rangen af matricen A
til injektivitet og surjektivitet af afbildningen f : Fn → Fm.

Sætning 2.5.15 Lad F være et legeme, lad A være en m×n-matrix med indgange i F,
lad 0 ≤ r ≤ min{m,n} være rangen af A og lad f : Fn → Fm være den lineære afbildning
defineret ved f (x)= Ax. Følgende gælder:

(1) Afbildningen f : Fn → Fm er surjektiv, hvis og kun hvis r = m.

(2) Afbildningen f : Fn → Fm er injektiv, hvis og kun hvis r = n.

(3) Afbildningen f : Fn → Fm er bijektiv, hvis og kun hvis r = m = n.

Bevis Per definition er f : Fn → Fm injektiv (resp. surjektiv, resp. bijektiv), hvis og kun
hvis ligningssystemet Ax= b har højst én løsning (resp. mindst én løsning, resp. præcis
én løsning) for alle b ∈ Fm. Sætning følger derfor fra sætning 1.3.1 og definition 2.5.13. 2

Da rangen r af en matrix ikke kan være større end antallet af rækker eller antallet
af søjler, medfører sætning 2.5.15 umiddelbart følgende resultat.
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Korollar 2.5.16 Lad F være et legeme, og lad f : Fn → Fm være en lineær afbildning.

(1) Hvis f : Fn → Fm er surjektiv, da er n ≥ m.

(2) Hvis f : Fn → Fm er injektiv, da er n ≤ m.

(3) Hvis f : Fn → Fm er bijektiv, da er n = m.

Eksempel 2.5.17 Vi betragter 3×4-matricerne A og B fra eksempel 2.5.14. Matricen
A har rang 3, så afbildningen f : F4 → F3 givet ved f (x)= Ax er surjektiv. Derimod har
matricen B kun rang 2, så afbildningen g : F4 → F3 givet ved g(x)= Bx er ikke surjektiv.
Det er da også let at se, at ligningssystemet Bx= e3 ikke har nogen løsninger.

Blandt kvadratiske matricer af orden n er identitetsmatricen den eneste matrix, der
både er på reduceret echelonform og af rang r = n. Denne bemærkning har følgende
nyttige konsekvens.

Sætning 2.5.18 Lad F være et legeme. En kvadratisk matrix A ∈ Mn(F) af orden n er
invertibel, hvis og kun hvis den har rang r = n. I givet fald findes en endelig følge af
operationsmatricer P1, . . . ,Pk ∈ Mn(F), sådan at I = A′ = Pk · · ·P1A, og

A−1 = Pk · · ·P1.

Bevis Ifølge sætning 2.4.9 er A er invertibel hvis og kun hvis den lineære afbildning
f : Fn → Fn givet ved f (x) = Ax er invertibel, og ifølge sætning 2.5.15 (3) gælder dette,
hvis og kun hvis matricen A har rang r = n. I givet fald findes der operationsmatricer
P1, . . . ,Pk ∈ Mn(F), sådan at I = A′ = Pk · · ·P1A, og vi konkluderer derfor, at

A−1 = I A−1 = (Pk · · ·P1A)A−1 = Pk · · ·P1(AA−1)= Pk · · ·P1I = Pk · · ·P1

som ønsket. 2

Sætning 2.5.11 giver følgende effektive metode til at bestemme den inverse matrix af
en invertibel matrix.

Korollar 2.5.19 En n×n-matrix A ∈ Mn(F) med indgange i et legeme F er invertibel,
hvis og kun hvis n×2n-matricen ( A | I ) ∈ Mn,2n(F) ved rækkeoperationer kan omdannes
til en n×2n-matrix på formen ( I | B ) ∈ Mn,2n(F), og i givet fald er A−1 = B.
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Bevis Ifølge sætning 2.5.18 er A invertibel, hvis og kun hvis den ved rækkeoperationer
kan omdannes til identitetsmatricen, og dette er tilfældet, hvis og kun hvis ( A | I ) ved
rækkeoperationer kan omdannes til en n× 2n-matrix på formen ( I | B). I givet fald
lader vi P1, . . . ,Pk ∈ Mn(F) være en følge af operationsmatricer, sådan at Pk · · ·P1A = I.
Sætning 2.5.18 viser da, at

Pk · · ·P1( A | I )= (Pk · · ·P1A | Pk · · ·P1I )= ( I | A−1),

og derfor er B = A−1 som ønsket. 2

Eksempel 2.5.20 Vi anvender korollar 2.5.19 til at undersøge om 3×3-matricen

A =
8 5 3

2 2 1
3 1 1


er invertibel og i givet fald finde dens inverse matrix. Vi omdanner derfor 3×6-matricen
(A | I) til en matrix på reduceret echelonform ved hjælp af rækkeoperationer:

( A | I )=
 8 5 3 1 0 0

2 2 1 0 1 0
3 1 1 0 0 1

 +(−3)R3
+(−1)R3

−1 2 0 1 0 −3
−1 1 0 0 1 −1

3 1 1 0 0 1

 +(−1)R1
+3R1−1 2 0 1 0 −3

0 −1 0 −1 1 2
0 7 1 3 0 −8

 +2R2

+7R2−1 0 0 −1 2 1
0 −1 0 −1 1 2
0 0 1 −4 7 6

 (−1) ·R1
(−1) ·R2

( I | B )=
 1 0 0 1 −2 −1

0 1 0 1 −1 −2
0 0 1 −4 7 6


Her har vi som tidligere indikeret de indgange, vi ønsker at ændre med rødt, og de
ledende indgange med blåt. Vi konkluderer heraf, at A er invertibel, og at

A−1 = B =
 1 −2 −1

1 −1 −2
−4 7 6


er den inverse matrix.
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Eksempel 2.5.21 Vi anvender korollar 2.5.19 til at undersøge om 3×3-matricen

A =
 2 3 1
−1 0 −2

1 2 0


er invertibel og i givet fald finde dens inverse matrix. Vi omdanner derfor 3×6-matricen
(A | I) til en matrix på reduceret echelonform ved hjælp af rækkeoperationer:

( A | I )=
 2 3 1 1 0 0
−1 0 −2 0 1 0

1 2 0 0 0 1

 +(−2)R3
+R3

 0 −1 1 1 0 −2
0 2 −2 0 1 1
1 2 0 0 0 1

 R1 ↔ R3

 1 0 1 0 0 1
0 2 −2 0 1 1
0 −1 1 1 0 −2

 +2R3

 1 0 1 0 0 1
0 0 0 −1 1 2
0 −1 1 1 0 −2

 R2 ↔ R3

 1 0 1 0 0 1
0 −1 1 1 0 −2
0 0 0 −1 1 2


Her har vi som tidligere indikeret de indgange, vi ønsker at ændre med rødt, og de
ledende indgange med blåt. Matricen er på echelonform, og vi kan derfor aflæse, at A
har rang r = 2< 3= n, og derfor er A ikke invertibel.

For en kvadratisk matrix A er de tre udsagn (1)–(3) i sætning 1.3.1 identiske, da
antallet af rækker og søjler er ens. Dette har følgende bemærkelsesværdige konsekvens.

Sætning 2.5.22 Hvis A og B er n× n-matricer med indgange i et legeme F, da er de
følgende udsagn ækvivalente:

(1) AB = I.

(2) BA = I.

(3) AB = I og BA = I.
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Bevis Det er klart, at (3) medfører både (1) og (2), så vi skal vise, at (1) medfører (3),
og at (2) medfører (3). Vi viser nu, at (1) medfører (3), og ved at ombytte A og B viser
det samme argument, at også (2) medfører (3). Ifølge sætning 2.5.18 er (3) ækvivalent
til udsagnet, at r = n, så det er nok at vise, at (1) medfører, at r = n. Men AB = I
medfører, at ligningssystemet Ax = b har mindst en løsning, nemlig x = Bb, og derfor
viser sætning 1.3.1, at r = n som ønsket. Dette beviser sætningen. 2

Bemærkning 2.5.23 Sætning 2.5.22 gælder kun for kvadratiske matricer, også selvom
matrixprodukterne AB og BA begge findes. Eksemplet

AB = (
1 0

)(1
0

)
= (

1
)= I1 og BA =

(
1
0

)(
1 0

)= (
1 0
0 0

)
6= I2

viser, at udsagnene “AB = I” og “BA = I” generelt ikke er ækvivalente.

På samme måde specialiserer sætning 1.3.1 for m = n til følgende resultat, der kun
gælder for lineære afbildninger. For eksempel er exp: R→R injektiv men ikke surjektiv.

Korollar 2.5.24 Hvis F er et legeme og f : Fn → Fn en lineær afbildning, da er de føl-
gende udsagn ækvivalente:

(1) Afbildningen f : Fn → Fn er surjektiv.

(2) Afbildningen f : Fn → Fn er injektiv.

(3) Afbildningen f : Fn → Fn er bijektiv.

Bemærkning 2.5.25 Vi skal senere i kapitel 3 også anvende søjleoperationer til at
definere og udregne determinanten. Ligesom rækkeoperationer svarer til at gange med
operationsmatricer fra venstre, så svarer søjleoperationer til at gange med disse fra
højre. Hvis A ∈ Mm,n(F) er en m×n-matrix med indgange i et legeme F, da gælder:

(1) For alle n ≥ j ≥ 1 og 0 6= c ∈ F er AM j(c) den matrix, der fremkommer fra A ved at
gange den j’te søjle med c fra højre.

(2) For alle n ≥ k 6= j ≥ 1 og c ∈ F er ASk j(c) den matrix, der fremkommer fra A ved at
adderer den k’te søjle gange c til den j’te søjle.

(3) For alle n ≥ k > j ≥ 1 er ATk j den matrix, der fremkommer fra A ved at ombytte den
j’te søjle og den k’te søjle.

Her er alle operationsmatricerne kvadratiske matricer af orden n. Vi understreger dog,
at søjleoperationer ikke kan bruges til at løse lineære ligningssystemer, da de modsat
rækkeoperationer ændrer løsningsmængden.

79



2 Matricer og lineære afbildninger

2.6 Hermitiske former

På legemet af komplekse tal C findes der en meget interessant ekstra struktur, nemlig
kompleks konjugering, som er afbildningen (−)∗ : C→C der til z = a+ ib ∈C tilordner

z∗ = z = a− ib.

Kompleks konjugering opfylder aksiomerne, at for alle z,w ∈C er

(z+w)∗ = z∗+w∗, (z ·w)∗ = w∗ · z∗ og (z∗)∗ = z,

og den er vores hovedeksempel på en skævinvolution, som defineret nedenfor.
Givet et (skæv)legeme F med en skævinvolution (−)∗ : F→ F såsom C med kompleks

konjugering (−)∗ : C→ C, definerer vi dette afsnit den adjungerede matrix A∗ hørende
til en matrix A med indgange i F og viser, at denne operation på matricer opfylder
de samme aksiomer som kompleks konjugering.2 Det er i denne forbindelse vigtigt at
huske, at (−)∗ ombytter multiplikationsrækkefølgen.

Kvadratiske matricer A, som opfylder at A∗ = A, kaldes for hermitiske matricer. Hvis
F = C og (−)∗ : C → C er kompleks konjugering, da spiller de hermitiske matricer en
speciel rolle, blandt andet fordi de, som vi skal se i kapitel 6, har reelle egenværdier.
Hvis F = R og (−)∗ : R→ R er identitetsafbildningen, da kaldes de hermitiske matricer
for symmetriske matricer og spiller ligeledes en særlig rolle.

Generelt giver en hermitisk n×n-matrix A anledning til en hermitisk form på Fn, som
er afbildningen 〈−,−〉 : Fn ×Fn → F defineret ved 〈x, y〉 = x∗Ay, og vores hovedformål i
dette afsnit er at studere hermitiske former. Disse anvendes til at beskrive geometriske
strukturer på Fn i bred forstand. For eksempel er Einstein-geometrien i speciel relativi-
tetsteori beskrevet af Minkowskiformen

〈x, y〉 =−x∗1 y1 + x∗2 y2 +·· ·+ x∗n yn =−x1 y1 + x2 y2 +·· ·+ xn yn,

der svarer til den symmetriske reelle matrix A = diag(−1,1, . . . ,1).
Vi vil nedenfor arbejde over et generelt skævlegeme F, hvor det ikke nødvendigvis

gælder, at ab = ba, selvom vi stadigvæk har F=R og F=C som hovedeksempler.

Definition 2.6.1 En skævinvolution på et skævlegeme F er en afbildning (−)∗ : F→ F,
sådan at følgende gælder for alle a,b ∈ F:

(I1) (a+b)∗ = a∗+b∗

(I2) (ab)∗ = b∗a∗

(I3) 1∗ = 1

(I4) (a∗)∗ = a

2Fysiklitteraturen anvender betegnelsen A† i stedet for A∗ for den adjungerede matrix
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Vi siger “skæv” og “involution” for at antyde henholdsvis (I2) og (I4).

Eksempel 2.6.2 (1) På F = R er identitetsafbildningen en skævinvolution, og man
kan vise, at der ikke findes andre.

(2) På F=C er både identitetsafbildningen og kompleks konjugering skævinvolutioner,
men vi vil udelukkende betragte kompleks konjugering.

(3) På kvaternionerne F =H fra eksempel 0.3.1 er kvaternionisk konjugering, som er
afbildningen (−)∗ : H→H, der til q = a+ ib+ jc+kd tilordner

q∗ = q = a− ib− jc−kd,

en skævinvolution. Derimod er identitetsafbildningen ikke en skævinvolution,
da (I2) ikke er opfyldt.

Vi bemærker, at det for z ∈ C gælder, at z = z, hvis og kun hvis z ∈ R. Dette er en af
grundene til, at vi altid anvender kompleks konjugering som skævinvolution på C.

Definition 2.6.3 Lad F være et skævlegeme med skævinvolution (−)∗ : F→ F. Da er
den adjungerede matrix af en m×n-matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn


med indgange i F den n×m-matrix med indgange i F, der er givet ved

A∗ =


a∗

11 a∗
21 . . . a∗

m1
a∗

12 a∗
22 . . . a∗

m2
...

... . . . ...
a∗

1n a∗
2n . . . a∗

mn

 .

En kvadratisk matrix A med indgange i F er hermitisk, hvis A∗ = A.

Vi bemærker, at antallet af rækker i A∗ er lig med antallet af søjler i A og vice versa.
Det giver altså kun mening at spørge om A∗ = A, hvis A er en kvadratisk matrix.
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2 Matricer og lineære afbildninger

Eksempel 2.6.4 Vi betragter de følgende komplekse matricer og deres adjungerede
matricer, hvor vi anvender kompleks konjugering som skævinvolution.

A =
1 0

2 −1
0 3

 , A∗ =
(
1 2 0
0 −1 3

)
.

B =
2 −1 −3+2i

0 1+ i 2
0 0 −1

 , B∗ =
 2 0 0

−1 1− i 0
−3−2i 2 −1

 .

C =
(−2 i
−i −1

)
, C∗ =

(−2 i
−i −1

)
.

Matricerne B og C er kvadratiske, og det er de adjungerede matricer B∗ og C∗ dermed
også. Matricen C er endvidere hermitisk.

Bemærkning 2.6.5 Hvis F er et legeme, da er identitetsafbildningen (−)∗ : F→ F en
skævinvolution. Den adjungerede matrix A∗ med hensyn til denne skævinvolution kal-
des for den transponerede matrix og betegnes At, mens en kvadratisk matrix A, der
opfylder At = A, kaldes for en symmetrisk matrix.

Eksempel 2.6.6 Vi betragter de følgende reelle matricer og deres transponerede ma-
tricer.

A =
1 2 4

0 7 4
3 0 4

 , A∗ = At =
1 0 3

2 7 0
4 4 4


B =

1 2 4
2 7 4
4 4 4

 , B∗ = Bt =
1 2 4

2 7 4
4 4 4


C =

 6
2

−1

 , C∗ = Ct = (
6 2 −1

)
hvor B = Bt er symmetrisk. Bemærk også at den adjungerede matrix af en søjlevektor
er en rækkevektor og vice versa.

Vi viser nu, at adjungering af matricer har præcis de samme egenskaber som en
skævinvolution, hvilket er grunden til, at vi anvender den samme notation for begge.
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Sætning 2.6.7 Lad F være et skævlegeme og lad (−)∗ : F→ F være en skævinvolution.
For matricer af passende dimensioner med indgange i F gælder følgende:

(I1) (A+B)∗ = A∗+B∗

(I2) (AB)∗ = B∗A∗

(I3) I∗ = I

(I4) (A∗)∗ = A

Bevis For A = (ai j) ∈ Mm,n(F) skriver vi A∗ = (a′
i j) ∈ Mn,m(F), sådan at a′

i j = (a ji)∗ per
definition af den adjungerede matrix. For at vise (I1) lader vi A,B ∈ Mm,n(F) og sætter
C = A+B ∈ Mm,n(F). Udregningen

c′i j = c∗ji = (a ji +b ji)∗ = a∗
ji +b∗

ji = a′
i j +b′

i j

viser da, at C∗ = (A+B)∗ som ønsket. For at vise (I2) lader vi tilsvarende A ∈ Mm,n(F)
og B ∈ Mn,p(F) og sætter C = AB ∈ Mm,p(F), hvorefter udregningen

c′ik = c∗ki = (
n∑

j=1
ak jb ji)∗ =

n∑
j=1

(ak jb ji)∗ =
n∑

j=1
b∗

jia
∗
k j =

n∑
j=1

b′
i ja

′
jk

viser, at C∗ = B∗A∗. Videre følger (I3) fra δ∗ji = δ ji = δi j, idet I = (δi j) og I∗ = (δ∗ji), og for
at vise (I4) lader vi A ∈ Mm,n(F) og betragter C = A∗ ∈ Mn,m(F). Udregningen

c′i j = c∗ji = (a′
ji)

∗ = (a∗
i j)

∗ = ai j

viser da, at C∗ = A, hvilket beviser (I4) og dermed sætningen. 2

Definition 2.6.8 Lad F være et skævlegeme, lad (−)∗ : F→ F være en skævinvolution,
og lad n være et naturligt tal. En hermitisk form afbildning

〈−,−〉 : Fn ×Fn → F,

for hvilken det gælder følgende: For alle x, y, z ∈ Fn og a ∈ F er

(H1) 〈x, y+ z〉 = 〈x, y〉+〈x, z〉.

(H2) 〈x, y ·a〉 = 〈x, y〉 ·a.

(H3) 〈x+ y, z〉 = 〈x, z〉+〈y, z〉.

(H4) 〈x ·a, y〉 = a∗ · 〈x, y〉.

(H5) 〈y, x〉 = 〈x, y〉∗.
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2 Matricer og lineære afbildninger

Hermitiske former er opkaldt efter Charles Hermite, der også er kendt for at have
bevist, at grundtallet e for den naturlige logaritme er transcendentalt.

Eksempel 2.6.9 Standard-indreproduktet på Cn, som er givet ved

〈x, y〉 = x∗y= (
x1 . . . xn

)y1
...

yn

= x1 y1 +·· ·+ xn yn,

er en hermitiske form på Cn, hvor vi igen anvender kompleks konjugering som skævin-
volution på C. Ligeledes er standard-indreproduktet på Rn, som er givet ved

〈x, y〉 = x∗y= xt y= (
x1 . . . xn

)y1
...

yn

= x1 y1 +·· ·+ xn yn,

en hermitiske form på Rn.

Vi skal nu vise, at der er en kanonisk 1-1 korrespondance mellem hermitiske former
på Fn og hermitiske matricer A ∈ Mn(F). Vi bemærker hertil, at hvis x ∈ Fn = Mn,1(F) er
en søjlevektor af dimension n, så er x∗ ∈ M1,n(F) en rækkevektor af dimension n.

Sætning 2.6.10 Lad F være et skævlegeme, lad (−)∗ : F→ F være en skævinvolution, og
lad n være et naturligt tal.

(1) Hvis A ∈ Mn(F) er en hermitisk matrix, så er afbildningen 〈−,−〉 : Fn×Fn → F givet
ved 〈x, y〉 = x∗Ay en hermitisk form.

(2) Hvis 〈−,−〉 : Fn×Fn → F er en hermitisk form, så er matricen A = (ai j) ∈ Mn(F) med
indgange ai j = 〈ei, e j〉 en hermitisk matrix, og 〈x, y〉 = x∗Ay.

Bevis For at bevise påstanden (1), lader vi x, y, z ∈ Fn og a ∈ F og udregner

〈x, y+ z〉 = x∗A(y+ z)= x∗Ay+ x∗Az = 〈x, y〉+〈x, z〉
〈x, y ·a〉 = x∗Aya = 〈x, y〉 ·a
〈x+ y, z〉 = (x+ y)∗Az = x∗Az+ y∗Az = 〈x, z〉+〈y, z〉
〈x ·a, y〉 = (x ·a)∗Ay= a∗ · x∗Ay= a∗ · 〈x, y〉

〈y, x〉 = y∗Ax= y∗A∗(x∗)∗ = (x∗Ay)∗ = 〈x, y〉∗,

hvilket viser påstanden. Her har vi anvendt sætning 2.6.7.
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Den første del af (2) følger fra (H5), idet ai j = 〈ei, e j〉 = 〈e j, ei〉∗ = a∗
ji, og udregningen

〈x, y〉 = 〈
n∑

i=1
eixi,

n∑
j=1

e j yj〉 =
n∑

i=1

n∑
j=1

x∗i 〈ei, e j〉yj

=
n∑

i=1

n∑
j=1

x∗i ai j yj =
n∑

i=1
x∗i Ay = x∗Ay

viser den anden del af (2). 2

Vi kalder matricen A = (〈ei, e j〉) i sætning 2.6.10 (1) for matricen, der repræsenterer
den hermitiske form 〈−,−〉 med hensyn til standardbasen (e1, . . . , en) for Fn, og omvendt
kalder vi den hermitiske form 〈−,−〉 i sætning 2.6.10 (2) for den hermitiske form, der
hører til matricen A med hensyn til standardbasen (e1, . . . , en) for Fn.

Definition 2.6.11 Hvis F er et skævlegeme, og (−)∗ : F→ F er en skævinvolution, så
siges en hermitisk form 〈−,−〉 på Fn at være ikke-singulær, hvis den matrix A ∈ Mn(F),
der repræsenter 〈−,−〉 med hensyn til standardbasen (e1, . . . , en) er invertibel.

Eksempel 2.6.12 (1) Standard-indreprodukt på Fn er den hermitiske form

〈x, y〉 = x∗I y= x∗y= x∗1 y1 +·· ·+ x∗n yn,

der hører til identitetsmatricen med hensyn til standardbasen; sammenlign med
eksempel 2.6.9. Den er ikke-singulær.

(2) Minkowskis hermitiske form på Fn er den hermitiske form

〈x, y〉 = x∗diag(−1,1, . . . ,1)y=−x∗1 y1 + x∗2 y2 +·· ·+ x∗n yn,

der hører til diagonalmatricen diag(−1,1, . . . ,1) med hensyn til standardbasen. Den
er ikke-singulær, selvom der findes ikke-nul vektorer x, sådan at 〈x, x〉 = 0.

(3) Den hyperbolske form på F2 er den hermitiske form

〈x, y〉 = x∗
(
0 1
1 0

)
y= x∗1 y2 + x∗2 y1,

der hører til den indikerede hermitiske matrix H ∈ M2(F). Den er ikke-singulær,
selvom der igen findes ikke-nul vektorer x, sådan at 〈x, x〉 = 0.

Givet hermitiske former på Fm og Fn, da ønsker vi at betragte lineære afbildninger
f : Fn → Fm, der er kompatible med de givne hermitiske former. Sådanne afbildninger
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2 Matricer og lineære afbildninger

kaldes lineære isometrier, idet de bevarer de geometriske strukturer, som de hermitiske
former beskriver. Den formelle definition er som følger.

Definition 2.6.13 Lad F være et skævlegeme, lad (−)∗ : F→ F være en skævinvolution,
og lad 〈−,−〉 og 〈−,−〉′ være hermitiske former på henholdsvis Fn og Fm. En lineær
afbildning f : Fn → Fm er en lineær isometri med hensyn til 〈−,−〉 og 〈−,−〉′, hvis

〈 f (x), f (y)〉′ = 〈x, y〉

for alle x, y ∈ Fn.

Eksempel 2.6.14 (1) En bijektiv lineær isometri f : Rn →Rn med hensyn til det stan-
dard indre produkt 〈−,−〉 kaldes for en euklidisk transformation. For eksempel er ro-
tationer og spejlinger i R2 isometriske isomorfier.
(2) En bijektiv lineær isometri f : Rn →Rn med hensyn til Minkowskiformen 〈−,−〉 kal-
des for en Lorentz-transformation. De skyldes Hendrik Lorentz, som viste, at Maxwells
ligninger er invariante under disse transformationer. Hvis −1< v < 1, da er afbildnin-
gen f : R2 →R2 repræsenteret ved matricen

P =
(

1/
p

1−v2 −v/
p

1−v2

−v/
p

1−v2 1/
p

1−v2

)
en Lorentz-transformation. Hvis x er rumtidskoordinaterne med hensyn til et givet
inertialsystem, da er f (x) rumtidskoordinaterne med hensyn til det inertialsystem, der
bevæger i forhold til det første med konstant hastighed v langs x2-aksen. Vi anvender
her de naturlige enheder, hvor lysets hastighed er c = 1.

Sætning 2.6.15 Lad F være et skævlegeme og lad (−)∗ : F→ F være en skævinvolution.
Lad 〈−,−〉 og 〈−,−〉′ være hermitiske former på Fn og Fm, og lad A ∈ Mn(F) og A′ ∈ Mm(F)
være de matricer, der repræsenterer 〈−,−〉 og 〈−,−〉′ med hensyn til standardbaserne. En
lineær afbildning f : Fn → Fm er en lineær isometri med hensyn til 〈−,−〉 og 〈−,−〉′, hvis
og kun hvis den matrix P ∈ Mm,n(F), der repræsenterer denne afbildning med hensyn til
de respektive standardbaser, tilfredstiller, at

P∗A′P = A.

Bevis Hvis P∗A′P = A, da viser udregningen

〈 f (x), f (y)〉′ = (Px)∗A′P y= x∗P∗A′P y= x∗Ay= 〈x, y〉,
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2.7 Opgaver

hvor x, y ∈ Fn, at f : Fn → Fm er en lineær isometri. Omvendt, hvis f : Fn → Fm er en
lineær isometri, da viser udregningen

e∗
i P∗A′Pe j = (Pei)∗A′Pe j = 〈 f (ei), f (e j)〉′ = 〈ei, e j〉 = e∗

i Ae j,

at de (i, j)’te indgange i matricerne P∗A′P og A er identiske for alle 1≤ i, j ≤ n, og derfor
gælder det, at P∗A′P = A som ønsket. 2

Eksempel 2.6.16 Ifølge sætning 2.6.15 viser udregningen

P∗AP =
(

1/
p

1−v2 −v/
p

1−v2

−v/
p

1−v2 1/
p

1−v2

)(−1 0
0 1

)(
1/

p
1−v2 −v/

p
1−v2

−v/
p

1−v2 1/
p

1−v2

)
=

(
1/

p
1−v2 −v/

p
1−v2

−v/
p

1−v2 1/
p

1−v2

)(−1/
p

1−v2 v/
p

1−v2

−v/
p

1−v2 1/
p

1−v2

)
=

(−1 0
0 1

)
= A,

at afbildningen f : R2 →R2 i eksempel 2.6.14 (2) er en Lorentz-transformation. Ligele-
des viser udregningen

Q∗A′Q =
(−1/p2 1/p2

1/p2 1/p2

)(
0 1
1 0

)(−1/p2 1/p2
1/p2 1/p2

)
=

(−1 0
0 1

)
= A,

at afbildningen g : R2 →R2 givet ved

g(x)=Qx=
(−1/p2 1/p2

1/p2 1/p2

)
x

er en bijektiv lineær isometri fra R2 med Minkowskiformen til R2 med den hyperbolske
form.

2.7 Opgaver

2.1 Udregn følgende matrixprodukter

(1 2 3)

1
2
3

 og

1
2
3

 (1 2 3).
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2.2 Afgør, ved at overveje dimensioner, hvilke af matricerne

A1 =
2 5

0 1
4 −2

 A2 =
(

i 0 0
0 −i 2+ i

)
A3 =

(
4 4 5

)

A4 =


2
8
0

−4

 A5 =
1 0 0

1 2 1
0 0 1

 A6 =
(

i 0
0 1

)
,

det giver mening at multiplicere med hinanden, og bestem alle matrixprodukter,
der er meningsfulde. (Der skal være 11 i alt.)

2.3 Denne øvelse viser, at multiplikation af skalarer har nogle egenskaber, som ikke
deles af matrixmultiplikation. Kommenter i hvert tilfælde, hvilken egenskab ved
multiplikation af skalarer, der er tale om. (Sammenlign med definition 0.2.1.)

a) Udregn AB og BA, hvor

A =
(

2 1
−1 0

)
og B =

(
1 0
3 1

)
.

b) Udregn AB, hvor

A =
(
1 1
1 1

)
og B =

(
1 1

−1 −1

)
.

c) Udregn A2, hvor

A =
(
1 −1
1 −1

)
.

d) Udregn A2, hvor

A =
(

1/2 1/2
1/2 1/2

)
.

e) Udregn A2, hvor

A =
(
0 1
1 0

)
.

2.4 Afgør om følgende er rigtigt eller forkert:

a) Hvis matrixprodukterne AB og BA begge eksisterer, da er begge matricerne A
og B nødvendigvis kvadratiske.

b) A(BC)= (AB)C.

c) Hvis A og B er kvadratiske matricer af orden n, da er AB = BA.
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2.7 Opgaver

d) Hvis AB =O, da er A =O eller B =O.

2.5 Udregn følgende to matrixprodukter, idet der redegøres for den anvendte strategi.
[Vink: Matrixproduktet er associativt.]

a)

 17 231 100
91 640 77

−11 1003 1

  23 546 0
−19 −34 1

22 1001 0

 0 0 0
0 0 0
0 0 1

 .

b)

0 0 0
0 1 0
0 0 0

 670 546 45
1 0 0

22 1001 99

  17 231 100
91 640 77

−11 1003 1

 .

2.6 Betragt matricerne

A =
(
1 −1
2 1

)
, B =

(
1 1
0 1

)
og C =

1 1 1
0 2 1
0 0 3

 .

Udregn følgende matrixprodukter:

a) A2, A3, A2A3, A5.

b) B10.

c) C3.

2.7 Udregn matrixprodukterne AB, BA, AC, CA, hvor

A =
(
a 0
0 b

)
, B =

(
c 0
0 d

)
og C =

(
p q
r s

)
.

2.8 Udregn matrixprodukterne AB, BA, CD, DC, AC og CA, hvor

A =
1 a c

0 1 b
0 0 1

 , B =
1 d f

0 1 e
0 0 1

 , C =
1 0 0

r 1 0
t s 1

 og D =
1 0 0

u 1 0
w v 1

 .

2.9 (?) Hvis F er et legeme, da kaldes afbildningen tr : Mn(F)→ F defineret ved

tr(A)=
n∑

i=1
aii

for sporet. Sporet af en matrix er således summen af matricens diagonalindgange.

a) Vis, at det for alle A,B ∈ Mn(F) gælder, at

tr(A+B)= tr(A)+ tr(B).
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2 Matricer og lineære afbildninger

b) Vis, at det for A,B ∈ Mn(F) generelt ikke gælder, at

tr(AB)= tr(A)tr(B).

[Vink: Find et modeksempel med 2×2-matricer.]

c) Vis imidlertid, at det for alle A ∈ Mm,n(F) og B ∈ Mn,m(F) gælder, at

tr(AB)= tr(BA).

d) Vis endvidere, at hvis A ∈ Mm,n(F), B ∈ Mn,p(A) og C ∈ Mp,m(A), da er

tr(ABC)= tr(BCA).

Vi kalder denne egenskab ved sporet for invarians under cyklisk permutation.

e) Vis, at hvis A ∈ Mn(F), og hvis P ∈ Mn(F) er invertibel, da er

tr(P−1AP)= tr(A).

[Vink: Anvend invarians af sporet under cyklisk permutation.]

f) Vis, at hvis (−)∗ : F→ F er skævinvolution, da er

tr(A∗)= tr(A)∗

for alle A ∈ Mn(F). Her er A∗ den adjungerede matrix.

2.10 Om en lineær afbildning f : R2 →R4 vides, at

f
(
1
3

)
=


−2

3
14

1

 og f
(−1

3

)
=


−4
−3
10

5

 .

Bestem matricen A ∈ M4,2(R), der repræsenterer f : R2 → R4 med hensyn til stan-
dardbaserne.

2.11 Lad f , g : R3 →R3 være afbildningerne defineret ved

f

x1
x2
x3

=
x1 + x2

x2 + x3
x1 + x3

 og g

x1
x2
x3

=
x1 + x2 +2x3

x2 + x3
x1 + x3

 .

Vi har tidligere i opgave 0.5 vist, at f : R3 → R3 er bijektiv, samt at g : R3 → R3 ikke
er bijektiv.

a) Vis, at afbildningerne f , g : R3 →R3 begge er lineære.
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2.7 Opgaver

b) Bestem matricerne, der repræsenterer henholdsvis f : R3 → R3, f −1 : R3 → R3 og
g : R3 →R3 med hensyn til standardbaserne.

2.12 Afgør, hvilke af følgende afbildninger f , g,h : C2 →C2, der er lineære.

f
(

z
w

)
=

(
w
z

)
, g

(
z
w

)
=

(
iz

z−w

)
, h

(
z
w

)
=

(
z

Im(w)

)
.

For de af afbildningerne, der er lineære, bestem den matrix, der repræsenterer af-
bildningen med hensyn til standardbaserne.

2.13 En fabrik producerer to varer X1 og X2 ud fra de tre råvarer Y1, Y2 og Y3. Vi beteg-
ner tilhørende produktionssæt og forbrugssæt med henholdsvis (x1, x2) og (y1, y2, y3).
Om den pågældende produktion gælder det, at

produktion af en enhed af X1 kræver


2 enheder af Y1

1 enhed af Y2

5 enheder af Y3,

og

produktion af en enhed af X2 kræver


1 enhed af Y1

6 enheder af Y2

1 enhed af Y3.

a) Opskriv den afbildning f : R2 →R3, der fortæller, hvad sammenhængen er mel-
lem forbrugssæt og produktionssæt.

b) Vis, at afbildningen f : R2 →R3 er lineær, og angiv matricen, der repræsenterer
denne med hensyn til standardbaserne.

I den virkelige verden, er der begrænsninger på råvarerne, som typisk er repræ-
senteret af lineære uligheder. For eksempel kan antallet af enheder af råvarer ikke
være negativt. Lineær programmering er det fagområde inden for matematikken,
der anvendes til at optimere produktionen i sådan en situation. I praksis finder
Danzigs simpleksalgoritme hurtigt den optimale løsning, selvom det er muligt at
konstruere problemer, hvor algoritmen ikke standser.

2.14 a) Vis, at matricen

J =
(
0 −1
1 0

)
∈ M2(R),

er en løsning til ligningen “x2 +1= 0”, det vil sige, at J2 + I =O.

b) Findes der andre matricer A ∈ M2(R), der er løsninger til denne ligning?

c) (?) Find samtlige løsninger A ∈ M2(R) og B ∈ M2(C) til ligningen “x2 +1= 0”.
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2.15 a) Vis, at hvis f : Fn → Fm og g : Fn → Fm er lineære afbildninger, da er også afbild-
ningen f + g : Fn → Fm defineret ved ( f + g)(x)= f (x)+ g(x) lineær.

b) Vis endvidere, at hvis afbildningerne f : Fn → Fm og g : Fn → Fm er repræsenteret
af henholdsvis A ∈ Mm,n(F) og B ∈ Mm,n(F) med hensyn til standardbaserne, da er
f +g : Fn → Fm repræsenteret af A+B ∈ Mm,n(F) med hensyn til standardbaserne.

c) Giv et eksempel, der viser at hvis f , g : Fn → Fm er to afbildninger, sådan at
f + g : Fn → Fm er lineær, da er afbildningerne f : Fn → Fm og g : Fn → Fm ikke
nødvendigvis lineære.

2.16 Vi betragter de følgende matricer:

A1 =
(

2 1
−1 −1

)
A2 =

(
2 1

−3 −2

)
A3 =

(
1 1

−1 −2

)
A4 =

0 1/4 1/8
0 −1/4 3/8
1 −1/4 −1/8

 A5 =
1 0 1

3 −1 0
2 2 0

 A6 =
1 0 0

3 −1 0
2 2 0


A7 =

(
2 1 −1
1 1 −1

)
A8 =

 1 −1
−1 1

0 −1


For hvilke værdier af i og j gælder det, at A i = A−1

j ?

[Vink: Overvej dimensionen af matricerne, og undersøg om A i A j = I = A j A i.]

2.17 Lad f : R3 →R3 være afbildningen givet ved f (x)= Ax, hvor

A =
0 0 1/4

0 −2 0
3 0 0


Gør rede for, at f : R3 → R3 er bijektiv, og find den inverse afbildning g : R3 → R3.
Bestem herved den inverse matrix A−1.

2.18 (?) Lad f : F3 → F3 være afbildningen givet ved f (x)= Ax, hvor

A =
0 0 a

0 b 0
c 0 0

 .

Undersøg, for hvilke værdier af a,b, c ∈ F afbildningen f : F3 → F3 er bijektiv, og
bestem i givet fald den inverse afbildning g : F3 → F3. Bestem i disse tilfælde den
inverse matrix A−1.
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2.19 Vis, gerne ved brug af Maple, at det for matricen

C =
−1 −19 10

1 6 −2
1 11 −5


gælder, at C3 = I. Vis, at dette medfører, at C er invertibel med C−1 = C2.

2.20 Giv et eksempel på en lineær afbildning f : R3 →R4, som er injektiv, og hvis billede
im( f )⊂R4 indeholder vektorerne

b1 =


1
1
1
1

 og b2 =


1
1

−1
−1

 .

Er en sådan afbildning entydigt bestemt?

2.21 Vi betragter afbildningerne g : R2 →R3 og h : R3 →R2 givet ved

g
(
u
v

)
=

 u+v
u−v
u+2v

 og h

x
y
z

=
(
x+ y
y+ z

)
.

a) Gør rede for, at afbildningerne g : R2 → R3 og h : R3 → R2 er lineære, og bestem
matricerne B ∈ M3,2(R) og C ∈ M2,3(R), der repræsenterer disse med hensyn til
standardbaserne.

b) Gør rede for, at g : R2 →R3 er injektiv, men ikke surjektiv.

[Vink: Overvej rangen af matricen B.]

c) Gør rede for, at h : R3 →R2 er surjektiv, men ikke injektiv.

[Vink: Overvej rangen af matricen C.]

d) Bestem matricerne, der repræsenterer g◦h : R3 →R3 og h◦ g : R2 →R2 med hen-
syn til standardbaserne.

2.22 a) Bestem rangen af matricerne

A =
(
1 1
1 1

)
og B =

(
1 2
3 4

)
.

b) Afgør, om afbildningerne f , g : R2 →R2 givet ved f (x)= Ax og g(x)= Bx er injek-
tive, surjektive og/eller bijektive.
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2.23 Vis, at for alle a,b, c ∈ F er matricen

A =
1 a c

0 1 b
0 0 1


invertibel, og bestem den inverse matrix A−1.

2.24 Bestem rangen af følgende matricer og forklar, hvad rangen siger om antallet af
løsninger til ligningssystemet med totalmatrix (A i | b), hvor b er en arbitrær kon-
stantsøjle.

A1 =
(
2 3
4 5

)
A2 =

−1 1
0 2

−3 1

 A3 =
(

2 −2 4
−1 1 −2

)

A4 =
(−1 2 i

2i −4i 1

)
A5 =

(
i 1
0 i

)
A6 =

1 2 −2
3 −1 0
2 −3 2


2.25 Bestem rangen af den komplekse matrix

A =
1 0 0

1 1 −i
i 1− i 1

 ,

og afgør derved, om den er invertibel eller ej.

2.26 Afgør, om matricerne

A =
1 3 4

2 5 7
0 1 0

 og B =


1 0 0 0
0 1 0 0
2 0 1 0
0 3 0 1


er invertible eller ej, og bestem i givet fald deres inverse matricer.

2.27 Vis, at den lineære afbildning f : R4 →R4 givet ved

f


x1
x2
x3
x4

=


x1
x1 + x2
x1 + x2 + x3
x1 + x2 + x3 + x4


er bijektiv, og find matricen, der repræsenterer den inverse afbildning g : R4 → R4

med hensyn til standardbaserne.
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2.28 Vis, at den lineære afbildning f : F4 → F4 givet ved

f


x1
x2
x3
x4

=


4x1 + x3 + x4

3x1 + x2 +3x3 + x4
x2 +2x3

3x1 +2x2 +4x3 + x4


er bijektiv, og find matricen, der repræsenterer den inverse afbildning g : F4 → F4

med hensyn til standardbaserne.

2.29 a) Vis, at identitetsafbildning id :R→R er en skævinvolution på R.

b) Vis, at kompleks konjugering (−)∗ : C→C, som er defineret ved

(a+ ib)∗ = a− ib,

er en skævinvolution på C.

c) (?) Vis, at kvaternionisk konjugering (−)∗ : H→H, som er defineret ved

(a+ ib+ jc+kd)∗ = a− ib− jc−kd,

er en skævinvolution på H. Addition og multiplikation af kvaternioner er define-
ret i eksempel 0.3.1.

2.30 Afgør, hvilke af de følgende komplekse matricer, der er hermitiske:

A =
 1 2i 7

2i 4 1+ i
7 1+ i i

 , B =
 1 2i 7
−2i 4 1− i

7 1+ i 1

 og C =
(
1 2
2 3

)
.

Her betragter vi som altid de komplekse tal C med kompleks konjugering som
skævinvolution.

2.31 Udregn matrixprodukterne AAt og At A, hvor A er den reelle matrix

A =
(

2 −1 0
−2 3 1

)
.

2.32 (?) Lad F være et legeme med skævinvolution (−)∗ : F→ F. Vis, at afbildningen

〈−,−〉 : F2 ×F2 → F

defineret ved 〈x, y〉 = (x1 + x2)∗(y1 + y2) er en hermitisk form. Angiv endvidere ma-
tricen A ∈ M2(F), der repræsenterer 〈−,−〉 med hensyn til standardbasen.

2.33 Lad A1, . . . , Ak ∈ Mn(F) være invertible matricer. Bevis, at

(A1A2 · · ·Ak)−1 = (Ak)−1 · · · (A1)−1.
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3 Determinant
Givet n vektorer i Rn, ønsker vi at definere og udregne det n-dimensionale volume af
det parallelepipedum, de n vektorer udspænder. Dette problem fører naturligt til de-
finitionen af determinanten af en n× n-matrix med indgange i R, og denne definition
viser sig da at være meningsfuld for en n×n-matrix med indgange i et vilkårligt legeme
F. Definitionen nødvendiggør, at multiplikation af skalarer opfylder den kommutative
lov, så vi skal derfor i dette kapitel for første gang bruge, at det for skalarer a,b ∈ F
gælder, at ab = ba. En vigtig teoretisk anvendelse af determinanten er, at den afgør,
hvorvidt en kvadratisk matrix er invertibel eller ej, og deraf navnet determinant, som
skyldes Gauss. Determinanten udregnes lettest ved at benytte dens definerende egen-
skaber. Denne udregningsmetode kan minde om Gauss-elimination med den forskel,
at nogle operationer ændrer determinanten, omend på en kontrolleret måde. Man skal
dog passe på med ikke at glemme denne forskel. Endelig findes der en lukket formel for
determinanten af en n× n-matrix, som skyldes Leibniz, men denne formel indeholder
n! summander og er derfor mest af teoretisk interesse.

3.1 Determinant af 2×2-matrix

Lad os først betragte det 1-dimensionale tilfælde. Det 1-dimensionale parallelepipedum
udspændt af en vektor a= (a) ∈R1 defineres som intervallet

P = {ac ∈R1 | 0≤ c ≤ 1} ⊂ R1.

Vi definerer det 1-dimensionale volume eller længden af P til at være absolutværdien

vol(P)= |a|.
Tilsvarende er det 2-dimensionale parallelepipedum udspændt af de to vektorer

a1 =
(
a11
a21

)
, a2 =

(
a12
a22

)
defineret til at være parallelogrammet

P = {a1c1 +a2c2 | 0É c1, c2 É 1}⊂R2;

se Figur 3.1 for en illustration af denne delmængde. Som vores notation antyder, vil vi
tænke på de to vektorer a1,a2 ∈R2 som søjlevektorerne i matricen

A = (
a1 a2

)= (
a11 a12
a21 a22

)
∈ M2(R).
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3 Determinant

a11 a11 +a12a12

a21

a21 +a22

a22

Figur 3.1: Parallelogrammet udspændt af to vektorer

Vi forestiller os, at det 2-dimensionale volumen eller areal af parallelogrammet P
tilsvarende skal være givet som absolutværdien

vol(P)= |det(A) |

af en skalar det(A), der afhænger af 2×2-matricen A. Vi diskuterer nu, hvordan vi vil
forvente, at afbildningen det: M2(R2)→R skal opføre sig, hvilket figuren illusterer.

a2

a1

a2

a1

a1 = a2

e1

e2

Figur 3.2: Determinanten opfylder (1) det
(
b1 + c1 a2

) = det
(
b1 a2

)+ det
(
c1 a2

)
, (2)

det
(
a1 a2c

)= det
(
a1 a2

)
c, (3) det

(
a a

)= 0 (4) det
(
e1 e2

)= 1

Hvis vektoren a1 = b1 + c1 er en sum af to vektorer, da forventer vi rimeligvis, at
arealet af parallelogrammet udspændt af a1 og a2 er lig med summen af arealerne af
parallelogrammerne udspændt af henholdsvis b1 og a2 og af c1 og a2. Tilsvarende, hvis
a2 = b2 + c2 er en sum af to vektorer, da vil vi forvente, at arealet af parallologrammet
udspændt af a1 og a2 er lig med summen af arealerne af parallelogrammerne udspændt
at henholdsvis a1 og b2 og af a1 og c2. Hvis vi erstatter a1 med a1 · c, men bibeholder
a2, da vil vi forvente, at arealet af de tilsvarende parallelogrammer ganges med |c|;
tilsvarende, hvis vi erstatter a2 med a2 · c, men bibeholder a1, da vil vi igen forvente,
at arealet af de tilsvarende parallelogrammer ganges med |c|. Hvis a1 = a2, da forven-
ter vi, at arealet af det parallelogram, de udspænder, er lig med 0. Endelig, vælger vi
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at normere vores arealmål, sådan at enhedskvadratet har areal 1. Vi ønsker altså, at
afbildningen det: M2(R)→R har de følgende egenskaber:

(D1) Hvis a1 = b1 + c1 eller a2 = b2 + c2, da gælder det, at

det
(
b1 a2

)+det
(
c1 a2

)= det
(
a1 a2

)= det
(
a1 b2

)+det
(
a1 c2

)
.

(D2) Hvis a1 erstattes af a1 · c eller a2 erstattes af a2 · c, da gælder det, at

det
(
a1 · c a2

)= det
(
a1 a2

) · c = det
(
a1 a2 · c

)
.

(D3) Hvis a1 = a2, da er det
(
a1 a1

)= 0.

(D4) Hvis a= e1 og a2 = e2 er standardenhedsvektorerne, da er det
(
e1 e2

)= 1.

Det viser sig, at der netop findes én sådan afbildning:

Sætning 3.1.1 Lad F være et legeme. Afbildningen det: M2(F)→ F defineret ved

det
(
a11 a12
a21 a22

)
= a11a22 −a12a21

opfylder (D1)–(D4) og er entydigt bestemt herved.

Bemærkning 3.1.2 (1) I mere læsevenlig form siger formlen i sætning 3.1.1, at

det
(
a b
c d

)
= ad−bc.

(2) Hvis man begynder med arealet (a11+a12)(a21+a22) af det store rektangel i figur 3.1
og derfra trækker arealet af de rektangler, der tilsammen udgør området udenfor pa-
rallelogrammet, så får man samme formel a11a22 −a12a21.

Før vi beviser sætning 3.1.1, viser vi, at egenskaberne (D1)–(D3) medfører de følgende
yderligere egenskaber:

(D5) Hvis vektorerne a1 og a2 ombyttes, da gælder det, at

det
(
a1 a2

)=−det
(
a2 a1

)
.

(D6) Hvis et multiplum af en af vektorerne a1 og a2 adderes til den anden, da gælder
det, at

det
(
a1 +a2 · c a2

)= det
(
a1 a2

)= (
a1 a1 · c+a2

)
.
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Her følger (D5) fra udregningen

det
(
a1 a2

)+det
(
a2 a1

) = det
(
a1 a2

)+det
(
a1 a1

)+det
(
a2 a1

)+det
(
a2 a2

)
= det

(
a1 a1 +a2

)+det
(
a2 a1 +a2

)
= det

(
a1 +a2 a1 +a2

) = 0,

hvor de fire identiteter følger fra henholdsvis (D3), (D1), (D1) og (D3). På lignende vis
følger den første identitet i (D6) fra udregningen

det
(
a1 +a2 · c a2

) = det
(
a1 a2

)+det
(
a2 · c a2

)
= det

(
a1 a2

)+det
(
a2 a2

) · c
= det

(
a1 a2

)
,

hvor de tre identiteter følger fra (D1), (D2), og (D3). Den anden identitet i (D6) vises
helt tilsvarende.

Bevis (for Sætning 3.1.1) Man viser let, at den givne afbildning opfylder (D1)–(D4),
så vi nøjes med at vise, at disse egenskaber bestemmer afbildningen entydigt. Vi skriver
derfor først a1 = e1a11 + e2a21 og får da fra (D1) og (D2), at

det
(
a1 a2

)= det
(
e1a11 a2

)+det
(
e2a21 a2

)= det
(
e1 a2

)
a11 +det

(
e2 a2

)
a21.

Dernæst skriver vi a2 = e1a12 + e2a22 og får fra henholdsvis (D6), (D2) og (D4), at

det
(
e1 a2

)= det
(
e1 e2a22

)= det
(
e1 e2

)
a22 = a22,

mens henholdsvis (D6), (D2), (D5) og (D4) viser, at

det
(
e2 a2

)= det
(
e2 e1a12

)= det
(
e2 e1

)
a12 =−det

(
e1 e2

)
a12 =−a12.

Tilsammen viser disse udregninger altså, at (D1)–(D4) medfører, at

det
(
a1 a2

)= a22a11 −a12a21,

som ønsket. 2

Eksempel 3.1.3 Vi illustrerer, hvordan (D1)–(D4) og de afledte egenskaber (D5)–(D6)
kan anvendes til at udregne determinanten.

det
(
5 3
7 4

)
(D6)= det

(−1 3
−1 4

)
(D6)= det

(−1 0
−1 1

)
(D6)= det

(−1 0
0 1

)
(D2)= det

(
1 0
0 1

)
· (−1) (D4)= −1.

I de første tre ligheder bruger vi (D6) på følgende måde: i den første erstatter vi den
første søjle med den første søjle plus den anden søjle gange −2; i den anden erstatter
vi den anden søjle med den anden søjle plus den første søjle gange 3; og i den tredje
erstatter vi den første søjle med den første søjle plus den anden søjle. Den fjerde lighed
benytter (D2) på den første søjle, og den sidste lighed følger fra (D4). Naturligvis giver
formlen “a11a22 −a12a21” fra sætning 3.1.1 samme resultat.
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3.2 Determinant for n×n-matricer

Vi definerer nu determinanten af en n× n-matrix med indgange i et legeme F ved at
generalisere den definition for 2×2-matricer, som vi gav i afsnit 3.1. For F=R definerer
vi endvidere det n-dimensionale volumen af det n-dimensionale parallelepipedum

P = {a1c1 +·· ·+ancn | 0≤ c1, . . . , cn ≤ 1}⊂Rn

udspændt af a1, . . . ,an ∈Rn til at være absolutværdien

vol(P)= |det
(
a1 a2 . . . an

)|
af determinanten af den reelle n×n-matrix, der har a1, . . . ,an som søjler. Den følgende
sætning er vores anden hovedsætning.

Sætning 3.2.1 Lad F være et legeme og lad n være et naturligt tal. Der findes da en
entydigt bestemt afbildning det: Mn(F)→ F med følgende egenskaber:

(D1) For alle 1≤ k ≤ n og a1, . . . ,ak−1,bk, ck,ak+1, . . . ,an ∈ Fn gælder det, at

det
(
a1 . . . bk + ck . . . an

)= det
(
a1 . . . bk . . . an

)+det
(
a1 . . . ck . . . an

)
.

(D2) For alle 1≤ k ≤ n, a1, . . . ,an ∈ Fn og c ∈ F gælder det, at

det
(
a1 . . . ak · c . . . an

)= det
(
a1 . . . ak . . . an

) · c.

(D3) For alle 1≤ k < l ≤ n og a1, . . . ,an ∈ Fn med ak = al , gælder det, at

det
(
a1 . . . ak . . . al . . . an

)= 0.

(D4) For standardenhedsvektorerne e1, e2 . . . , en ∈ Fn gælder det, at

det
(
e1 e2 . . . en

)= 1.

Bemærkning 3.2.2 Vi kan betragte determinanten som en afbildning

det: Fn ×·· ·×Fn → F,

der til en n-tuple (a1, . . . ,an) af søjlevektorer tilordner skalaren det
(
a1 . . . an

)
, og da

udtrykker (D1)–(D2), at determinanten opfylder betingelserne (L1)–(L2) for en lineær
afbildning i hver faktor Fn. Vi siger, at en sådan afbildning er multilineær. Endvidere
siges en multilineær afbildning, der også opfylder (D3), at være alternerende. Således
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er determinanten den entydige alternerende multilineære afbildning, der på standard-
basen (e1, . . . , en) tager værdien 1. Denne sidste egenskab (D4) er naturligvis temmelig
arbitrær, og beviset for sætning 3.2.1 viser da også mere generelt, at der for ethvert a ∈ F
findes en entydig multilineær alternerende afbildning, der på standardbasen (e1, . . . , en)
antager værdien a ∈ F.

I beviset for sætning 3.2.1 anvender vi undervejs, at de definerede egenskaber ved
determinanten har følgende konsekvenser.

Sætning 3.2.3 Lad F være et legeme, og lad n være et naturligt tal. Hvis en afbildning
det: Mn(F)→ F tilfredsstiller (D1)–(D3), da gælder endvidere følgende udsagn:

(D5) Hvis B er matricen, der fremkommer fra A ved ombytning af to søjler, da er

det(B)=−det(A).

(D6) Hvis B er matricen, der fremkommer fra A ved at addere et multiplum af en søjle
i A til en anden søjle i A, da er

det(B)= det(A).

Bevis Vi viser først (D5). Så lad A være en n×n-matrix og lad B være matricen, der
fremkommer fra A ved ombytning af den k’te og l’te søjle, hvor 1≤ k < l ≤ n.

det(A)+det(B) = det
(
. . . ak . . . al . . .

)+det
(
. . . al . . . ak . . .

)
(D3)= det

(
. . . ak . . . al . . .

)+det
(
. . . al . . . ak . . .

)
+det

(
. . . ak . . . ak . . .

)+det
(
. . . al . . . al . . .

)
(D1)= det

(
. . . ak . . . ak +al . . .

)+det
(
. . . al . . . ak +al . . .

)
(D1)= det

(
. . . ak +al . . . ak +al . . .

) (D3)= 0,

hvilket beviser (D5). Tilsvarende, lad B være matricen der fremkommer fra A ved at
addere multiplummet al · c af den l’te søjle al til den k’te søjle ak. Hvis k < l, da er

det(B) = det
(
. . . ak +al · c . . . al . . .

)
(D1)= det

(
. . . ak . . . al . . .

)+det
(
. . . al · c . . . al . . .

)
(D2)= det

(
. . . ak . . . al . . .

)+det
(
. . . al . . . al . . .

) · c
(D3)= det

(
. . . ak . . . al . . .

)= det(A),

hvilket beviser (D6) for k < l, og beviset for k > l er ganske tilsvarende. 2
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For at vise at determinantafbildningen findes, giver vi i beviset for sætning 3.2.1 en
rekursiv definition af determinanten, som bruger følgende definition.

Definition 3.2.4 Lad A være en m× n-matrix. Givet 1 ≤ i ≤ m og 1 ≤ j ≤ n, er den
(i, j)’te undermatrix af A den (m−1)×(n−1)-matrix A i j, der fremkommer fra A ved at
fjerne den i’te række og den j’te søjle:

A i j =


a11 · · · a1 j · · · a1n

... . . . ...
...

ai1 · · · ai j · · · ain
...

... . . . ...
am1 · · · am j · · · amn



Hvis A er en kvadratisk matrix af orden n, da er den (i, j)’te undermatrix A i j specielt
en kvadratisk matrix af orden n−1.

Eksempel 3.2.5 Vi betragter som eksempel 3×3-matricen

A =
5 −1 1

0 2 −3
2 6 4

 .

Den (1,1)’te undermatrix A11 og den (2,3)’te undermatrix A23 er da henholdsvis

A11 =
5 −1 1

0 2 −3
2 6 4

=
(
2 −3
6 4

)
og A23 =

5 −1 1
0 2 −3
2 6 4

=
(
5 −1
2 6

)
,

som begge er 2×2-matricer.

Bevis (for sætning 3.2.1) Vi ønsker at vise eksistens og entydighed af en afbildning
det: Mn(F) → F, der opfylder (D1)–(D4), og vi begynder med eksistensen, som vi viser
ved induktion på n ≥ 0. For n = 0 har mængden Mn(F) præcis ét element, nemlig den
tomme matrix

( )
, og vi definerer da det: M0(F)→ F til at være afbildningen givet ved

det
( )= 1.

Afbildningen opfylder trivielt (D1)–(D3), da der ikke findes 1 ≤ j ≤ n eller 1 ≤ j < k ≤ n,
mens (D4) er opfyldt per definition.
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3 Determinant

Vi antager derfor induktivt, at determinant afbildningen med de ønskede egenskaber
er defineret for n = p−1, og definerer afbildningen det: Mp(F)→R ved formlen

det(A)=
p∑

j=1
(−1)1+ ja1 j det(A1 j) (3.2.6)

hvor A1 j er den (1, j)’te undermatrix af A, som er kvadratisk af orden p−1. Vi skal vise
at denne afbildningen opfylder (D1)–(D4). For at vise (D1), betragter vi kvadratiske
matricer A,B,C ∈ Mp(F), sådan at

ai j = bi j = ci j

for alle 1≤ i, j ≤ p med j 6= k, mens

aik = bik + cik,

for alle 1≤ i ≤ p. Så for alle 1≤ j ≤ p med j 6= k er den j’te søjle i A lig med den j’te søjle
i både B og C, mens den k’te søjle i A er lig med summen af den k’te søjle i B og den k’te
søjle i C, og vi ønsker at vise, at det(A) = det(B)+det(C). Da (D1) per induktion gælder
for kvadratiske matricer af orden p−1, gælder det, at

det(A1 j)= det(B1 j)+det(C1 j)

for alle 1≤ j ≤ p med j 6= k, mens

det(A1k)= det(B1k)= det(C1k),

fordi A1k = B1k = C1k. Derfor får vi nu ved at indsætte i (3.2.6), at

det(A)=
p∑

j=1
(−1)1+ ja1 j det(A1 j)

=
k−1∑
j=1

(−1)1+ ja1 j
(
det(B1 j)+det(C1 j)

)+ (−1)1+k(b1k + c1k)det(A1k)

+
p∑

j=k+1
(−1)1+ ja1 j

(
det(B1 j)+det(C1 j)

)
=

p∑
j=1

(−1)1+ jb1 j det(B1 j)+
p∑

j=1
(−1)1+ j c1 j det(C1 j)= det(B)+det(C)

som ønsket. Dette viser, at (D1) gælder for n = p, og beviset for (D2) er tilsvarende.
For at vise (D3), betragter vi først tilfældet, hvor 1≤ k < p og den k’te og (k+1)’te søjle

i A er ens. Hvis j 6= k og j 6= k+1, da har undermatricen A1 j igen to ens søjler, sådan at
det(A1 j)= 0 per induktion. Desuden er A1k = A1,k+1, sådan at

det(A)=
p∑

j=1
(−1)1+ ja1 j det(A1 j)

= (−1)1+ka1k det(A1k)+ (−1)1+k+1a1,k+1 det(A1,k+1)= 0,
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3.2 Determinant for n×n-matricer

hvilket viser, at (D3) gælder i tilfældet, hvor to nabosøjler er ens. Dette medfører ved et
argument svarende til beviset for (D5) i sætning 3.2.3, at determinanten af en kvadra-
tisk matrix af orden p skifter fortegn, hvis to nabosøjler ombyttes, hvilket vi nu bruger
vi for at vise, at (D3) gælder i det generelle tilfælde. Så antag, at den j’te og k’te søjle i A
er ens, hvor 1≤ j < k ≤ p. Ved at lave k− j−1 ombytninger af nabosøjler kan vi omdanne
A til en matrix B vis j’te og j+1’st søjler er ens, og ved at bruge (D5) gentagende gange
for nabosøjler, ser vi, at det(A) = (−1)k− j−1 det(B), og vi har lige vist at det(B) = 0 fordi
den har to ens nabosøjler. Så det(A)= 0 og (D3) følger.

Endelig følger det fra (3.2.6), at

det
(
e1 e2 . . . em

)= 1 ·det
(
e1 . . . em−1

)+0+·· ·+0= det
(
e1 . . . em−1

)
,

og per induktion er den fælles værdi lig med 1, hvilket viser at også (D4) gælder. Vi har
nu vist induktionsskridtet, og vi har således for alle n ≥ 0 defineret en afbildning

det: Mn(F)→ F,

der opfylder (D1)–(D4).
Vi mangler at vise, at afbildningen det: Mn(F) → F defineret ovenfor er den eneste

afbildning, der opfylder (D1)–(D4), hvilket vi igen gør ved induktion på n ≥ 0. Hvis
n = 0, og D : M0(F) → F opfylder (D1)–(D4), da er D

( ) = 1 ifølge (D4), hvilket viser, at
D = det som ønsket. Så vi antager, at det: Mp−1(F) → F er den eneste afbildning, der
opfylder (D1)–(D4), og lader D : Mp(F) → F være en afbildning, der opfylder (D1)–(D4),
og viser, at D = det. Hvis A = (

a1 a2 . . . ap
) ∈ Mp(F), så kan vi anvende lemma 2.2.6 til

at skrive den første søjle a1 som en linearkombination

a1 = e1a11 + e2a21 +·· ·+ epap1

af standardbasen (e1, e2, . . . , ep) for Fp og konkluderer da, at

D(A)= D
(
e1a11 a2 . . . ap

)+D
(
e2a21 a2 . . . ap

)+·· ·+D
(
epap1 a2 . . . ap

)
= D

(
e1 a2 . . . ap

)
a11 +D

(
e2 a2 . . . ap

)
a21 +·· ·+D

(
ep a2 . . . ap

)
ap1,

hvor vi anvender henholdsvis (D1) og (D2) for afbildningen D. Vi påstår, at

D
(
ei a2 . . . ap

)= (−1)i−1 det(A i1)

for alle 1≤ i ≤ p. Vi konkluderer heraf, at

D(A)=
p∑

i=1
(−1)i−1 det(A i1)ai1,

hvilket viser, at D = det, idet den samme formel nødvendigvis gælder for det(A), da
også det: Mp(F)→ F opfylder (D1)–(D4). For at bevise påstanden, lader vi 1≤ i ≤ p være
fastholdt og anvender (D6), som er en konsekvens af (D1)–(D3), til at skrive

D
(
ei a2 · · · ap

)= D
(
ei a2 − eiai2 · · · ap − eiaip

)
.
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3 Determinant

Vi bemærker, at matricen til højre kun afhænger af den kvadratiske matrix A i1 af orden
p−1. Mere præcist, hvis B ∈ Mp−1(F) er en vilkårlig kvadratisk matrix af orden p−1,
da definerer vi B̃ ∈ Mp(F) til at være matricen

B̃ =



0 b1,1 . . . b1,p−1
...

...
...

0 bi−1,1 . . . bi−1,p−1
1 0 . . . 0
0 bi,1 . . . bi,p−1
...

...
...

0 bp−1,1 . . . bp−1,p−1


,

der er kvadratisk af orden p, og vi har da, at

(
ei a2 − eiai2 · · · ap − eiaip

)=



0 a1,2 . . . a1,p
...

...
...

0 ai−1,2 . . . ai−1,p
1 0 . . . 0
0 ai+1,2 . . . ai+1,p
...

...
...

0 ap,2 . . . ap,p


= Ã i1.

Vi bemærker dernæst, at afbildningen d : Mp−1(F)→ F defineret ved

d(B)= (−1)i−1D(B̃)

opfylder (D1)–(D4). For egenskaberne (D1)–(D3) følger fra de tilsvarende egenskaber
for D, mens (D4) følger fra udregningen

d
(
e1 . . . ep−1

)= (−1)i−1D
(
ei e1 . . . ei−1 ei+1 . . . ep

)= D
(
e1 . . . ep

)= 1,

hvor den første identitet er definitionen af d, den anden følger fra (D5) for D, idet vi
for at ændre

(
ei e1 · · · ei−1 ei+1 · · · ep

)
til

(
e1 · · · ei−1 ei ei+1 · · · ep

)
skal bytte om

på to rækker i−1 gange, mens den tredje følger fra (D4) for D. Det følger derfor fra den
induktive hypotese, at d(B)= det(B) for alle B ∈ Mp−1(F). Især er

(−1)i−1D(Ã i1)= d(Ã i1)= det(A i1),

hvilket viser den ønskede påstand, at

D
(
ei a2 · · · ap

)= D(Ã i1)= (−1)i−1 det(A i1).

Dette beviser induktionsskridtet og dermed entydigheden af determinanten. 2
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3.2 Determinant for n×n-matricer

Eksempel 3.2.7 Vi anvender determinantens egenskaber til at udregne:

det

2 0 0
2 3 0
2 3 4

 (D2)= det

1 0 0
1 3 0
1 3 4

 ·2 (D2)= det

1 0 0
1 1 0
1 1 4

 ·3 ·2 (D2)= det

1 0 0
1 1 0
1 1 1

 ·4 ·3 ·2

(D6)= det

1 0 0
0 1 0
0 1 1

 ·4 ·3 ·2 (D6)= det

1 0 0
0 1 0
0 0 1

 ·4 ·3 ·2 (D4)= 1 ·4 ·3 ·2= 24,

hvor de første tre ligheder bruger (D2) på den første, anden, og tredje søjler i matricen,
den fjerde erstatter den første søjle med den første søjle minus den anden søjle, og den
femte lighed erstatter den anden søjle med den anden søjle minus den tredje søjle.

Det følger fra beviset for sætning 3.2.1, at der gælder følgende rekursive formler for
determinanten. Disse formler kaldes for Laplace-udvikling, da de skyldes Laplace.

Sætning 3.2.8 (Laplace) Lad A være en n×n-matrix med indgange i et legeme F.

(D7) Determinanten af A kan udregnes ved udvikling langs i’te række:

det(A)=
n∑

j=1
(−1)i+ jai j det(A i j).

(D8) Determinanten af A kan udregnes ved udvikling langs j’te søjle:

det(A)=
n∑

i=1
(−1)i+ j det(A i j)ai j.

Bevis Vi beviser først (D7). I eksistensdelen af beviset for sætning 3.2.1 beviste vi,
at det(A) definereret ved udvikling langs første række opfylder (D1)–(D4). Valget af
den første række spillede dog ingen rolle, og en mindre modifikation af beviset viser
at udvikling af deteminanten langs en vilkårlig række ligeledes opfylder (D1)–(D4).
Resultatet følger derfor fra entydigheden af determinanten.

Vi beviser dernæst (D8). Ifølge beviset for entydighedsdelen af sætning 3.2.1 er

det(A)=
n∑

i=1
(−1)i−1 det(A i1)ai1 =

n∑
i=1

(−1)i+1 det(A i1)ai1,

hvilket viser (D8) for j = 1. Vi lader nu B være den matrix, der fremkommer fra A ved
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at ombytte den første søjle og den j’te søjle, og har da identiteten

det(B)=
n∑

i=1
(−1)i+1 det(Bi1)bi1,

som vi netop har bemærket. Det følger da fra (D5) er det(B)=−det(A), og per definition
af matricen B er bi1 = ai j. Endvidere fremkommer Bi1 fra n× (n−1)-matricen

B1 =
(
b2 · · · b j−1 b j b j+1 · · · bn

)= (
a2 · · · a j−1 a1 a j+1 · · · an

)
ved at fjerne den i’te række, mens A i j fremkommer fra n× (n−1)-matricen

A j =
(
a1 a2 · · · a j−1 a j+1 · · · an

)
ved at fjerne den i’te række. Vi bemærker nu, at A j kan omdannes til B1 ved at foretage
j−2 ombytninger to søjler. Det følger heraf, at A i j ligeledes kan omdannes til Bi1 ved
at foretage j−2 ombytninger af to søjler, og derfor viser (D5), at

det(Bi1)= (−1) j−2 det(A i j).

Vi har således alt i alt vist, at

det(A)=−det(B)=−
n∑

i=1
(−1)i+1 det(Bi1)bi1

=−
n∑

i=1
(−1)i+1+ j−2 det(A i j)ai j =

n∑
i=1

(−1)i+ j det(A i j)ai j

som ønsket. Dette viser (D8) og dermed sætningen. 2

Eksempel 3.2.9 Vi udregner determinanten af matricen

A =
5 −1 1

0 2 −3
2 6 4


fra eksempel 3.2.5. Laplace-udvikling langs første søjle giver

det(A)= det(A11) ·5−det(A21) ·0+det(A31) ·2,

hvor

A11 =
5 −1 1

0 2 −3
2 6 4

=
(
2 −3
6 4

)
og A31 =

5 −1 1
0 2 −3
2 6 4

=
(−1 1

2 −3

)
.
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Vi behøver ikke at udregne A21 og dens determinant, da a21 = 0. Fra sætning 3.1.1 har
vi nu, at det(A11)= 2 ·4− (−3) ·6= 26 og det(A31)= (−1) · (−3)−1 ·2= 1, så

det(A)= 26 ·5+1 ·2= 132.

Vi bemærker, at det altid er en fordel at udvikle en determinant langs en række eller
søjle, der indeholder mange nuller, jo flere desto bedre. For dermed behøver man ikke
udregne de tilsvarende summander i Laplace-udviklingen. I dette eksempel kunne vi
lige så godt have valgt at udvikle determinanten langs den anden række.

Bemærkning 3.2.10 Det er naturligvis vigtigt at huske fortegnene i udviklingen af
determinant efter en række eller en søjle. De minder om et skakbræt

(+)
,

(+ −
− +

)
,

+ − +
− + −
+ − +

 ,


+ − + −
− + − +
+ − + −
− + − +

 , . . . ,

hvor man begynder med “+” i det øverste venstre hjørne.

Sætning 3.2.11 Lad F være et legeme og lad (−)∗ : F→ F være en skævinvolution. Hvis
A er en n×n-matrix med indgange i F, og hvis A∗ er den adjungerede matrix, da er

det(A∗)= det(A)∗.

Bevis Beviset er igen ved induktion på n ≥ 0. For n = 0 er sætningen triviel, så vi
antager, at sætningen allerede er bevist for n = p−1 og beviser den for n = p. Lad os
skrive a′

i j = a∗
ji for den (i, j)’te indgang i A∗. Da endvidere (A∗)i j = (A ji)∗, gælder det, at

det(A∗)=
p∑

i=1
(−1)i+1 det((A∗)i1)a′

i1 =
p∑

j=1
(−1)1+ j det((A1 j)∗)a∗

1 j

=
p∑

j=1
(−1)1+ j det(A1 j)∗ a∗

1 j = (
p∑

j=1
(−1)1+ ja1 j det(A1 j))∗ = det(A)∗,

hvor den første lighed følger fra (D8); den anden fra vores indledende bemærninger;
den tredje fra den induktive hypotese, at sætningen gælder for (p−1)×(p−1)-matricer;
den fjerde fra definitionen af en antiinvolution; og den femte fra (D7). Vi har nu vist
induktionsskridtet og dermed sætningen. 2
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Korollar 3.2.12 Hvis A er en kvadratisk matrix med indgange i et legeme F, og hvis
At er den transponerede matrix, da gælder det, at det(At)= det(A).

Bevis Dette er udsagnet i sætning 3.2.11 i det tilfælde, hvor (−)∗ = id: F→ F. 2

Eksempel 3.2.13 Korollar 3.2.12 og eksempel 3.2.7 viser, at

det

2 2 2
0 3 3
0 0 4

= det

2 0 0
2 3 0
2 3 4

= 24.

Desuden viser sætning 3.1.1, at

det
(

2 1
−i 4

)
= 2 ·4−1 · (−i)= 8+ i og det

(
2 i
1 4

)
= 2 ·4− i ·1= 8− i.

Så de to komplekse matricer, der er hinandens adjungerede matrix, har konjugerede
determinanter, som de skal have ifølge sætning 3.2.11.

Korollar 3.2.14 Hvis A er en hermitisk kompleks matrix, da er det(A) et reelt tal.

Bevis Vi lader F=C med kompleks konjugation som skævinvolution. Vi minder om, at
en kvadratisk matrix A med indgange i C per definition er hermitisk, hvis A = A∗. Vi
konkluderer derfor fra sætning 3.2.11, at

det(A)= det(A∗)= det(A)∗,

hvilket viser, at det(A) er et reelt tal. For z ∈C er reel, hvis og kun hvis z = z∗. 2

Eksempel 3.2.15 Ifølge sætning 3.1.1 er

det
(

2 i
−i 4

)
= 2 ·4− (−i) · i = 7.

Determinanten af denne komplekse hermitiske matrix er altså reel, hvilket den skal
være ifølge korollar 3.2.14.

Den følgende sætning giver en version af (D1)–(D3) og (D5)–(D6) for rækkevektorer i
stedet for søjlevektorer i matricen.
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Sætning 3.2.16 Lad F være et legeme og n et naturligt tal. Følgende udsagn gælder:

(D1’) For alle 1≤ j ≤ n og a1, . . . ,a j−1,b j, c j,a j+1, . . . ,an ∈ M1,n(F) er

det


a1
...

b j + c j
...

an

= det


a1
...

b j
...

an

+det


a1
...

c j
...

an

 .

(D2’) For alle 1≤ j ≤ n, a1, . . . ,an ∈ M1,n(F) og c ∈ F gælder det, at

det


a1
...

c ·a j
...

an

= c ·det


a1
...

a j
...

an

 .

(D3’) Hvis A ∈ Mn,n(F) har to ens rækker, da er det(A)= 0.

(D5’) Hvis B fremkommer ved ombytning af to rækker i A, da er det(B)=−det(A).

(D6’) Hvis B fremkommer fra A ved at addere et multiplum af en række i A til en
anden række i A, da er det(B)= det(A).

Bevis Hvis a1, . . . ,an ∈ M1,n(F) er rækkevektorer, da er at
1, . . . ,at

n ∈ Mn,1(F) søjlevekto-
rer, og ifølge korollar 3.2.14 har n×n-matricen

A =

 a1
...

an

 ∈ Mn(F)

den samme determinant som dens transponerede n×n-matrix

At =

 a1
...

an


t

= (
at

1 · · · at
n
) ∈ Mn(F).

De ønskede identiteter (D1’)–(D3’) og (D5’)–(D6’) angående rækkevektorer følger nu fra
de tilsvarende identiteter (D1)–(D3) og (D5)–(D6) angående søjlevektorer. 2
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3 Determinant

Vi illustrerer i detaljer i næste afsnit, hvordan rækkeoperationer og søjleoperationer
anvendes til at udregne determinanter. Men først viser vi et par yderligere resultater
om determinanten.

Sætning 3.2.17 Hvis A og B er n×n-matricer med indgange i et legeme F, da er

det(AB)= det(A)det(B).

Bevis Givet a ∈ F, betragter vi afbildningen deta : Mn(F)→ F defineret ved

deta(B)= a ·det(B).

Ved en mindre modifikation af beviset for entydighedsdelen af sætning 3.2.1 kan man
vise, at denne afbildning er entydigt bestemt ved, at den opfylder (D1)–(D3) i sæt-
ning 3.2.1 samt den nye betingelse (D4)a, at deta(In)= a. Det er derfor tilstrækkeligt at
vise, at afbildningen d : Mn(F)→ F defineret ved

d(B)= det(AB)

opfylder (D1)–(D3) samt (D4)a, hvor a = det(A). For da giver entydighedsudsagnet, at
d(B) = deta(B), hvilket præcis giver det(AB) = det(A)det(B) som ønsket. Vi viser nu, at
afbildningen d : Mn(F)→ F opfylder (D1). Hvis B = (

b1 · · · bk · · · bn
)
, da er

AB =

 a11 a12 · · · a1n
...

...
...

an1 an2 · · · ann




b11 · · · b1k · · · b1n
b21 · · · b2k · · · b2n

...
...

...
bn1 · · · bnk · · · bnn

= (
Ab1 · · · Abk · · · Abn

)

ifølge definitionen af matrix produktet. Hvis derfor bk = ck +dk, da er

d
(
b1 · · · bk · · · bn

) = det
(
Ab1 · · · A(ck +dk) · · · Abn

)
= det

(
Ab1 · · · Ack + Adk · · · Abn

)
= det

(
Ab1 · · · Ack · · · Abn

)+det
(
Ab1 · · · Adk · · · Abn

)
= d

(
b1 · · · ck · · · bn

)+d
(
b1 · · · dk · · · bn

)
,

hvilket viser, at d : Mn(F)→ F opfylder (D1). Her følger den første lighed og fjerde lighed
fra definitionen af matrix produktet, den anden lighed følger fra den distributive lov for
matrixmultiplikation, mens den tredje lighed følger fra (D1) for determinanten. Beviset
for (D2) og (D3) er tilsvarende, mens (D4)a fås fra d(I)= det(AI)= det(A)= a. 2
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3.2 Determinant for n×n-matricer

Korollar 3.2.18 Hvis en kvadratisk matrix A er invertibel, så er det(A) invertibel, og

det(A−1)= det(A)−1.

Især er det(A) 6= 0.

Bevis Da AA−1 = I = A−1A, viser sætning 3.2.17, at

det(A) ·det(A−1)= det(AA−1)= 1= det(A−1A)= det(A−1) ·det(A),

idet det(I)= 1. Derfor er det(A) er invertibel med invers det(A−1). 2

Eksempel 3.2.19 Vi har set i eksempel 2.4.10, at matricerne

A =
(

1 2
−1 3

)
og B =

(
3/5 −2/5
1/5 1/5

)
= A−1

er hinandens inverse, og ifølge sætning 3.1.1 er deres determinanter

det(A)= 1 ·3− (−1) ·2= 5 og det(B)= 3
5
· 1
5
− 1

5
· (−2

5
)= 5

25
= 1

5
.

De er dermed hinanden inverse, som de skal være ifølge korollar 3.2.18.

Bemærkning 3.2.20 Hvis A og B er n×n-matricer, da medfører den kommutative lov
for multiplikation af skalarer samt sætning 3.2.17, at det altid gælder, at

det(AB)= det(A)det(B)= det(B)det(A)= det(BA),

også selvom matricerne AB og BA sædvanligvis ikke er ens. Vi bemærker også, at

det(A+B) 6= det(A)+det(B),

undtaget i trivielle tilfælde.

Eksempel 3.2.21 Vi betragter 2×2-matricerne

A =
(
1 0
0 −1

)
og B =

(
1 1
0 1

)
med AB =

(
1 1
0 −1

)
og BA =

(
1 −1
0 −1

)
.

Selvom AB 6= BA, så er det(AB)=−1= det(BA).

113



3 Determinant

Vi giver endelig en lukket1 formel for determinanten af en n×n-matrix. En bijektiv
afbildning σ : {1,2, . . . ,n}→ {1,2, . . . ,n} kaldes for en permutation af n bogstaver. Der er

n!= n · (n−1) · (n−2) · . . . ·1

forskellige permutationer af n bogstaver. En permutation σ af n bogstaver kaldes for en
transposition, hvis der findes 1≤ k < l ≤ n, sådan at

σ(i)=


l hvis i = k,
k hvis i = l,
i ellers.

Man kan vise, at enhver permutation kan udtrykkes som en sammensætning af et antal
transpositioner. En sådan opskrivning er dog generelt ikke entydig.

Eksempel 3.2.22 De 2! = 2 permutationer af 2 bogstaver er identitetsafbildningen
id: {1,2}→ {1,2} og transpositionen σ : {1,2}→ {1,2}, der ombytter 1 og 2.

Til en permutation af n bogstaver σ : {1,2, . . . ,n}→ {1,2, . . . ,n} tilordner vi matricen

P(σ)= (
eσ(1) eσ(2) · · · eσ(n)

) ∈ Mn(F),

som vi kalder for den tilhørende permutationsmatrix. Hvis σ og τ er to permutationer
af n bogstaver, så er deres sammensætning σ◦τ igen en permutation af n bogstaver, og

P(σ◦τ)= P(σ) ·P(τ).

Vi definerer fortegnet af en permutationen σ af n bogstaver til at være determinanten

sign(σ)= det(P(σ))= det
(
eσ(1) eσ(2) · · · eσ(n)

) ∈ F.

Eksempel 3.2.23 For de to permutationer af to bogstaver i eksempel 3.2.22 er

P(id)=
(
1 0
0 1

)
og P(σ)=

(
0 1
1 0

)
,

så deres fortegn er henholdsvis sign(id)= 1 og sign(σ)=−1.

1 Dette betyder, at formlen i modsætning til Laplace-udvikling ikke er rekursiv.
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3.2 Determinant for n×n-matricer

Det følger fra sætning 3.2.17, at hvis σ og τ er to permutationer af n bogstaver, da er

sign(σ◦τ)= sign(σ)sign(τ),

og det følger endvidere fra (D5) at fortegnet af en transposition er −1. Generelt gælder
det altså, at hvis σ er en permutation af n bogstaver, og hvis σ er en sammensætning af
r tranpositioner, da er sign(σ)= (−1)r ∈ F.

Sætning 3.2.24 (Leibniz) Lad A = (ai j) være en kvadratisk matrix af orden n med
indgange i et legeme F. Da er

det(A)=
∑
σ

sign(σ)aσ(1),1aσ(2),2 · · ·aσ(n),n,

hvor summen løber over de n! mulige permutationer af n bogstaver.

Bevis For alle 1≤ j ≤ n skriver vi den j’te søjle a j i A som en linearkombination

a j =
n∑

i=1
eiai j

af standardbasen (e1, . . . , en) for Fn. Vi får da ved gentagen brug af (D1) og (D2), at

det(A)= det
(
a1 a2 · · · an

)
=

∑
σ

det
(
eσ(1) eσ(2) · · · eσ(n)

)
aσ(1),1aσ(2),2 · · ·aσ(n),n,

hvor summen løber over de nn mulige afbildninger σ : {1,2, . . . ,n} → {1,2, . . . ,n}. Hvis en
sådan afbildning σ ikke er injektiv, da har matricen

(
eσ(1) eσ(2) · · · eσ(n)

)
to eller flere

søjler, der er ens, og derfor viser (D3), at dens determinant lig med nul. Det er således
kun summander, der er indicerede af injektive, eller ækvivalent, bijektive afbildninger
σ : {1,2, . . . ,n}→ {1,2, . . . ,n}, som bidrager til summen. Dette viser sætningen. 2

Eksempel 3.2.25 For en 2×2-matrix specialiserer sætning 3.2.24 til den formel

det
(
a11 a12
a21 a22

)
= a11a22 −a21a12,

som vi gav i sætning 3.1.1; og for en 3×3-matrix, får vi formlen

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11a22a33 +a12a23a31 +a13a21a32
−a13a22a31 −a12a21a33 −a11a23a32

med 3!= 6 summander. For en 4×4-matrix har formlen 4!= 24 summander, mens den
for en 5×5-matrix giver den 5!= 120 summander.
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3 Determinant

3.3 Triangulære matricer og beregning af
determinanter

Der er to hovedmetoder til beregning af determinanter: (1) at bruge Laplace-udvikling
langs en række eller en søjle samt (2) at anvende rækkeoperationer og søjleoperationer
til at omdanne matricen til en triangulær matrix, som vi nu definerer. Man skal dog her
være forsigtig med at huske på, at en rækkeoperation af type Mi(c) og en søjleoperation
af type Mj (c) begge ændrer determinantens værdi med faktoren c.

Definition 3.3.1 En n×n-matrix B = (bi j) kaldes for nedre triangulær, hvis bi j = 0 for
alle 1≤ i < j ≤ m; øvre triangulær, hvis bi j = 0 for alle 1≤ j < i ≤ m; og triangulær, hvis
den er enten nedre triangulær eller øvre triangulær.

Specielt er en diagonal matrix en triangulær matrix. Generelt er diagonalindgangene
i en triangulær matrix af særlig betydning.

Eksempel 3.3.2 Blandt 3×3-matricerne

A =
2 0 0

0 8 0
8 7 2

 , B =
2 6 3

0 4 −6
0 0 12

 og C =
2 0 0

0 8 0
0 0 1


er A nedre triangulær og B øvre triangulær, mens C er både øvre og nedre trianguær
og derfor en diagonal matrix. Vi har markeret diagonalindgangene med blåt.

Sætning 3.3.3 Determinanten af en triangulær n×n-matrix B er lig med produktet

det(B)= b11b22 · · ·bnn

af diagonalindgangene.

Bevis Vi beviser udsagnet for B nedre triangulær; beviset for B øvre triangulær er
ganske tilsvarende. Beviset er ved induktion på n ≥ 0, og tilfældet n = 0 gælder trivielt.
Vi antager derfor, at udsagnet er vist for n = p−1 og viser det for n = p. Så vi lader

B =


b11 0 0 · · · 0
b21 b22 0 · · · 0
b31 b32 b33 · · · 0

...
...

... . . . ...
bp1 bp2 bp3 · · · bpp


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3.3 Triangulære matricer og beregning af determinanter

og får ved Laplace-udvikling langs første række, at

det(B)= b11 ·det(B11)+0 ·det(B12)+·· ·+0 ·det(B1p)= b11 ·det(B11).

Endvidere er undermatricen B11 en nedre triangulær (p−1)× (p−1)-matrix med diago-
nalindgange b22, . . . ,bpp, så ifølge den induktive antagelse er

det(B11)= b22 · · · bpp.

Dette viser induktionsskridtet og dermed sætningen. 2

Det er altså let at bestemme determinanten af en triangulær matrix. Generelt for
en kvadratisk matrix A består den mest effektive strategi til bestemmelse af det(A)
i at anvende række- og søjleoperationer til at omdanne A til en triangulær matrix B,
hvorved det(A) udtrykkes ved det(B) ved hjælp af sætning 3.2.1, 3.2.3 og 3.2.16. Da
det(B) er givet ved sætning 3.3.3, bestemmer dette det(A).

Eksempel 3.3.4 Vi betragter 4×4-matricen

A =


1 1 3 5
0 0 2 3
1 2 1 3
3 1 5 9

 ,

og anvender rækkeoperationer til at omdanne den til en triangulær matrix B, idet vi
er omhyggelige med at notere, hvorledes disse operationer påvirker determinanten.

det(A) (D5′)= −det


1 1 3 5
1 2 1 3
0 0 2 3
3 1 5 9

 (D1′)= −det


1 1 3 5
0 1 −2 −2
0 0 2 3
0 −2 −4 −6


(D1′)= −det


1 1 3 5
0 1 −2 −2
0 0 2 3
0 0 −8 −10

 (D1′)= −det


1 1 3 5
0 1 −2 −2
0 0 2 3
0 0 0 2

 = −4.

Her har vi først anvendt (D5’) til at ombytte den anden og tredje række, hvilket ændrer
determinantens fortegn. Derefter har vi anvendt (D1’) til at addere −1 gange 1. række
til 2. række og −3 gange 1. række til 4. række. Vi har så igen anvendt (D1’) til at
addere 2 gange 2. række til 4. række, og endelig har vi anvendt (D1’) til at addere 4
gange 3. række til 4. række. Sætning 3.3.3, at determinanten af den øvre triangulære
matrix B er 4, og vi konkluderer derfor, at det(A)=−4.

117



3 Determinant

Eksempel 3.3.5 Til sammenligning bestemmer vi determinanten af 4×4-matricen A
i eksempel 3.3.4 ved Laplace-udvikling langs 2. række.

det


1 1 3 5
0 0 2 3
1 2 1 3
3 1 5 9

 =−0+0−2 ·det


1 1 3 5
0 0 2 3
1 2 1 3
3 1 5 9

+3 ·det


1 1 3 5
0 0 2 3
1 2 1 3
3 1 5 9


=−2 ·det

1 1 5
1 2 3
3 1 9

+3 ·det

1 1 3
1 2 1
3 1 5


=−2 ·

(
det

1 1 5
1 2 3
3 1 9

 ·5−det

1 1 5
1 2 3
3 1 9

 ·3+det

1 1 5
1 2 3
3 1 9

 ·9
)

+3 ·
(
3 ·det

1 1 3
1 2 1
3 1 5

−1 ·
1 1 3

1 2 1
3 1 5

+5 ·det

1 1 3
1 2 1
3 1 5

)

=−2 ·
(
det

(
1 2
3 1

)
·5−det

(
1 1
3 1

)
·3+det

(
1 1
1 2

)
·9

)
+3 ·

(
3 ·det

(
1 3
2 1

)
−1 ·det

(
1 3
1 1

)
+5 ·det

(
1 1
1 2

))
=−2 ·

(
(−5) ·5− (−2) ·3+1 ·9

)
+3 ·

(
3 · (−5)−1 · (−2)+5 ·1

)
=−2 · (−10)+3 · (−8)= 20−24=−4.

Vi har valgt at udvikle determinanten langs 2. række, fordi den har mange nuller.
Vi har derefter udviklet den første og anden 3×3-matrix efter henholdsvis 3. søjle og
2. række, markeret med rødt. Og endelig har vi brugt formlen i sætning 3.1.1 til at
udregne de seks 2×2-determinanter.

Laplace-udvikling er mest anvendelig til bestemmelse af determinanten af matricer,
hvor de fleste indgange er nul.2 Det er dog lettere at lave fejl og sværere at opdage dem
ved Laplace-udvikling end ved udregning ved hjælp af række- og søjleoperationer.

Eksempel 3.3.6 Vi udregner determinanten af matricen

A =
2 16 3

4 8 −6
8 16 12


2En sådan matrix kaldes for en “sparse matrix” på engelsk.
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3.3 Triangulære matricer og beregning af determinanter

ved at anvende søjleoperationer til at omdanne A til en triangulære matrix.

det(A)= det

2 16 3
4 8 −6
8 16 12

 (D2)= det

1 2 1
2 1 −2
4 2 4

 ·24 ·3 (D6)= det

1 0 0
2 −3 −4
4 −6 0

 ·24 ·3

(D2)= det

1 0 0
2 1 1
4 2 0

 ·26 ·32 (D6)= det

1 0 0
2 1 0
4 2 −2

 ·26 ·32 =−2732 =−1152.

Vi har først anvendt (D2) til at flytte den fælles faktor 2 fra 1. søjle, den fælles faktor
8 fra 2. søjle og den fælles faktor 3 fra 3. søjle udenfor determinanten; dernæst har vi
anvendt (D6) og har adderet 1. søjle gange −2 til 2. søjle og 1. søjle gange −1 til 3. søjle;
vi har så anvendt (D2) til at flytte den fælles faktor −3 i 2. søjle og den fælles faktor −4
i 3. søjle udenfor determinanten; og endelig har vi anvendt (D6) og har adderet 2. søjle
gange −1 til 3. søjle. Sætning 3.3.3 giver determinanten af den triangulære matrix.

Eksempel 3.3.7 Man kan ofte med fordel anvende både (D1)–(D6) og de tilsvarende
rækkevarianter (D1’)–(D6’) til at udregne determinanter. Som eksempel udregner vi
følgende determinant ved at ombytte rækker og søjler, idet vi husker, at en ombytning
af to rækker eller søjler skifter fortegn på determinanten.

det


0 0 0 0 3
0 2 0 0 5
0 3 −2 0 −4
0 −6 1 2 2
8 1 2 3 4

 (D5)= −det


8 1 2 3 4
0 2 0 0 5
0 3 −2 0 −4
0 −6 1 2 2
0 0 0 0 3



(D5)= +det


8 1 2 3 4
0 −6 1 2 2
0 3 −2 0 −4
0 2 0 0 5
0 0 0 0 3

 (D5′)= −det


8 3 2 1 4
0 2 1 −6 2
0 0 −2 3 −4
0 0 0 2 5
0 0 0 0 3

= 26 ·3= 192.

Her har vi markeret med rødt de rækker og søjler, vi ombytter, og i den øvre triangu-
lære matrix til sidst har vi markeret diagonalindgangene med blåt. Til sidst har vi
benyttet sætning 3.3.3 til at udregne determinanten af den triangulære matrix.
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3.4 Determinant og invers matrix

Vi har set i korollar 3.2.18, at determinanten af en invertibel matrix er invertibel, og
vi skal nu vise det omvendte udsagn. Mere præcist giver vi en formel for den inverse
matrix udtrykt ved determinanten. Vi husker på, at et element i et legeme er invertibelt,
hvis og kun hvis det er forskellig fra nul.

Sætning 3.4.1 Lad F være et legeme, lad A ∈ Mn(F), og antag, at det(A) ∈ F er inverti-
bel. Da er matricen A invertibel og matricen C ∈ Mn(F), hvis (i, j)’te indgang er

ci j = (−1)i+ j det(A ji)det(A)−1,

er den inverse matrix af A. Her er A ji den ( j, i)’te undermatrix af A.

Bevis Vi udregner den (i,k)’te indgang i produkt matricen D = AC,

dik =
n∑

j=1
ai j c jk =

n∑
j=1

(−1) j+kai j det(Ak j)det(A)−1,

og betragter i = k og i 6= k særskilt. Hvis i = k, da er

dii =
( n∑

j=1
(−1) j+iai j det(A i j)

)
det(A)−1 = det(A)det(A)−1 = 1,

hvor den midderste identitet er Laplace-udvikling af det(A) langs i’te række. Hvis i 6= k,
da betragter vi matricen B, der fremkommer fra A ved at erstatte den k’te række med
den i’te række. På den ene side viser (D3’), at det(B) = 0, da den i’te og k’te række i B
er ens. Og på den anden side giver Laplace-udvikling langs den k’te række, at

det(B)=
n∑

j=1
(−1)k+ jbk j det(Bk j)=

n∑
j=1

(−1)k+ jai j det(Ak j),

hvor den anden lighed følger fra definitionen af B. Derfor er

dik = (−1)i+k det(B)det(A)−1 = 0.

Dermed har vi vist at AC = D = I. Vi ser ligeledes, at CA = I, ved enten at foretage en
lignende udregning eller ved at bruge sætning 2.5.22, så C = A−1. 2

Korollar 3.4.2 Lad F være et legeme, lad A ∈ Mn(F). Matricen A er invertibel i Mn(F),
hvis og kun hvis det(A) er invertibel i F. I givet fald er det(A−1)= det(A)−1.

120



3.4 Determinant og invers matrix

Bevis Det følger af korollar 3.2.18 og sætning 3.4.1. 2

Bemærkning 3.4.3 Vi lader A ∈ Mn(R) være en invertibel matrix og antager, at alle
indgange i A er heltal. Da er det(A) og det(A ji) også heltal, og sætning 3.4.1 viser derfor,
at indgangene i C = A−1 er rationale tal med samme nævner det(A). Dette forklarer at
matricen A−1 i eksempel 2.4.10 havde indgangene af form m/5 med m ∈Z, idet det(A)= 5
i dette eksempel.

Eksempel 3.4.4 For 2×2-matricer viser sætning 3.4.1, at(
a11 a12
a21 a22

)−1

=
(

a22d−1 −a12d−1

−a21d−1 a11d−1

)
,

forudsat at determinanten d = a11a22 −a21a12 er invertibel.

Bemærkning 3.4.5 Hvis F er et legeme, så skriver vi

SLn(F)⊂GLn(F)

for delmængden af de invertible n×n-matricer, der består af de n×n-matricer, der har
determinant lig med 1. At sådanne matricer er invertible følger fra sætning 3.4.1, idet
1 ∈ F er invertibel. Det følger endvidere fra korollar 3.2.17, at hvis A,B ∈ SLn(F), da er
også AB ∈ SLn(F). Dermed er (SLn(F), · ) en gruppe, som defineret i bemærkning 2.4.15.
Vi kalder denne gruppe for den specielle lineære gruppe. Gruppen (SLn(R), · ) består
således af de lineære isomorfier af Rn, der bevarer volumen.

Hvis A er invertibel, så har ligningssystemet Ax = b den entydige løsning x = A−1b.
Denne løsning kan også udtrykkes ganske elegant ved hjælp af determinanter.

Sætning 3.4.6 (Cramers regel) Lad A være en invertibel n×n-matrix med indgange
i et legeme F, lad a1, . . . ,an ∈ Fn være søjlevektorerne i A og lad b ∈ Fn være en vilkårlig
søjlevektor. Da er den entydige løsning x= A−1b til ligningen Ax= b givet ved

x=

x1
...

xn

 med xi =
det

(
a1 . . . ai−1 b ai+1 . . . an

)
det

(
a1 . . . ai−1 ai ai+1 . . . an

) .

Bevis Formlen for A−1 = C = (ci j) fra sætning 3.4.6 viser, at

xi =
(
ci1 ci2 · · · cin

)
b =

n∑
j=1

ci jb j =
m∑

j=1
(−1)i+ j det(A ji)det(A)−1b j,
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3 Determinant

og vi skal derfor vise, at

m∑
j=1

(−1)i+ jb j det(A ji)= det
(
a1 . . . ai−1 b ai+1 . . . an

)
.

Summen på venstre side er præcis udviklingen langs i’te søjle af determinanten på
højre side, så den ønskede identitet følger fra sætning 3.2.8. 2

Eksempel 3.4.7 Vi betragter det reelle ligningssystem Ax= b, hvor

A =
(
5 1
3 4

)
og b =

(
2
3

)
.

Da det(A) = 17 er invertibel, så er A ifølge sætning 3.4.1 også invertibel, og vi kan
derfor anvende sætning 3.4.6 til at finde den entydige løsning x. Sætningen siger, at

x=
(
x1
x2

)
med x1 =

det
(
2 1
3 4

)
det

(
5 1
3 4

) = 5
17

og x2 =
det

(
5 2
3 3

)
det

(
5 1
3 4

) = 9
17

.

3.5 Polynomier

Vi har allerede bemærket, at for at definere determinanten er det nødvendigt, at den
kommutative lov (P3) gælder for multiplikation af skalarer, men vi har ikke brugt, at
enhver skalar a ∈ F med a 6= 0 er invertibel. Vi kan derfor mere generelt tillade skalarer
i en kommutativ ring, som vi nu definerer. Alle resultater i dette kapitel gælder stadig,
hvis legemet F erstattes af den kommutativ ring Z af hele tal eller F[t] af polynomier
med koefficienter i F. Vi definerer sidstnævnte, som vi anvender i kapitel 5, nedenfor.

Definition 3.5.1 En kommutativ ring er en triple (R,+, · ) af en mængde R og to af-
bildninger + : R×R → R og · : R×R → R, sådan at:

(A1) For alle a,b, c ∈ R er (a+b)+ c = a+ (b+ c).

(A2) Der findes et element 0 ∈ R, sådan at a+0= a = 0+a for alle a ∈ R.

(A3) For alle a ∈ R, findes b ∈ R, sådan at a+b = 0= b+a.

(A4) For alle a,b ∈ R er a+b = b+a.
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(P1) For alle a,b, c ∈ R er (a · b) · c = a · (b · c).

(P2) Der findes et element 1 ∈ R, sådan at a · 1= a = 1 · a for alle a ∈ R.

(P4) For alle a,b ∈ R er a · b = b · a.

(D1) For alle a,b, c ∈ R er a · (b+ c)= (a · b)+ (a · c)

(D2) For alle a,b, c ∈ R er (a+b) · c = (a · c)+ (b · c).

Vi misbruger ofte notation og skiver blot R for den kommutative ring (R,+, · ). Vi
siger, at a ∈ R er invertibel, hvis der findes b ∈ R, sådan at a · b = 1= b · a. Et legeme er
således en kommutativ ring, hvor 0 6= 1, og hvor ethvert a ∈ R med a 6= 0 er invertibelt.

Eksempel 3.5.2 (1) Mængden Z af hele tal sammen med afbildningerne + : Z×Z→Z

og · : Z×Z→Z givet ved sædvanlig sum og produkt af hele tal udgør en kommutativ
ring. Denne kommutative ring er ikke et legeme, da ±1 ∈ Z er de eneste invertible
elementer. For eksempel findes der ikke et b ∈Z, sådan at 2 · b = 1= b · 2.
(2) Mængden C0(R) af kontinuerte funktioner f : R→ R sammen med afbildningerne
+ : C0(R)×C0(R)→ C0(R) og · : C0(R)×C0(R)→ C0(R) defineret ved

( f + g)(x)= f (x)+ g(x) og ( f · g)(x)= f (x) · g(x)

udgør en kommutativ ring. Elementerne “0” og “1” i denne kommutative ring er de
konstante funktioner med værdi 0 og 1, mens de invertible elementer er de kontinuerte
funktioner f : R→ R, sådan at f (x) 6= 0 for alle x ∈ R. For eksempel er id: R→ R ikke
invertibel, da id(0)= 0.

Vi definerer et polynomium med koefficienter i en kommutativ ring R til at være
en følge (a0,a1,a2, . . . ) af elementer i en kommutativ ring R, sådan at ai 6= 0 for højst
endeligt mange i. Vi vil dog altid indføre en variabel “t” og skrive∑

i≥0
ai ti

i stedet for (a0,a1,a2, . . . ), og vi siger da, at ai er koefficienten til ti. Vi definerer nu
henholdsvis summen og produktet af to polynomier ved

(
∑
i≥0

ai ti)+ (
∑
i≥0

bi ti)=
∑
i≥0

(ai +bi) ti

(
∑
i≥0

ai ti) · (
∑
j≥0

b j t j)=
∑
k≥0

(
∑

i+ j=k
ai ·b j ) tk.
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Vi bemærker, at sum og produkt af polynomier er defineret ved, at vi lader som om, den
variable “t” var et element i R.

Eksempel 3.5.3 Normalt undlader vi at skrive de koefficienter ai, der er lig med 0.
Så en typisk sum og et typisk produkt af to polynomier er for eksempel

(2t3 − t2 +3t+1)+ (t2 +2t+1)= 2t3 +5t+2,

(2t3 − t2 +3t+1) · (t2 +2t+1)= 2t5 +3t4 +3t3 +5t2 +5t+1.

Specielt skriver vi 0 for det polynomium, hvis koefficienter alle er 0, og vi skriver 1 for
det polynomium, hvis koefficient til ti er 1 for i = 0 og 0 for i > 0.

Sætning 3.5.4 Hvis R er en kommutativ ring, da udgør mængden R[t] af polynomier
med koefficienter i R sammen med sum og produkt af polynomier en kommutativ ring.

Bevis Vi viser (P1) og (D1); (D2) vises ligesom (D1), mens de øvrige egenskaber følger
umiddelbart fra de tilsvarende egenskaber for R. Ifølge definitionen af produktet af
polynomier samt henholdsvis (D2) og (D1) for skalarer gælder det, at

(
∑
i≥0

ai ti ·
∑
j≥0

b j t j) ·
∑
k≥0

cktk =
∑
l≥0

(
∑

i+ j+k=l
(aib j)ck ) tl ,∑

i≥0
ai ti · (

∑
j≥0

b j t j ·
∑
k≥0

cktk)=
∑
l≥0

(
∑

i+ j+k=l
ai(b j ck) ) tl ,

og dermed følger (P1) for polynomier fra (P1) for skalarer.∑
i≥0

ai ti · (
∑
j≥0

b j t j +
∑
j≥0

c j t j)=
∑
k≥0

(
∑

i+ j=k
ai(b j + ck) ) tk,

(
∑
i≥0

ai ti ·
∑
j≥0

b j t j)+ (
∑
i≥0

ai ti ·
∑
j≥0

c j t j)=
∑
k≥0

(
∑

i+ j=k
(aib j +ai c j) ) tk,

således at (D1) for polynomier følger fra (D1) for skalarer. 2

Hvis d er et helt tal, så siger vi, at et polynomium

p = p(t)=
∑
i≥0

ai ti ∈ R[t]

har grad højst d og skriver deg(p)≤ d, hvis ai = 0 for alle i > d. Vi skriver også

R[t]≤n = {p ∈ R[t] | deg(p)≤ d}⊂ R[t]

for delmængden af polynomier af grad højst d ≥ 0. Specielt er nulpolynomiet det eneste
polynomium, der har grad højst d for alle d, mens de konstante polynomier præcis er
de polynomier, der har grad højst 0.
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3.5 Polynomier

Lemma 3.5.5 Lad p, q ∈ R[t] være polynomier med koeffcienter i en kommutativ ring
R. Da gælder følgende udsagn:

(1) Hvis deg(p)≤ d og deg(q)≤ e, da er deg(p+ q)≤max{d, e}.

(2) Hvis deg(p)≤ d og deg(q)≤ e, da er deg(p · q)≤ d+ e.

Bevis Både (1) og (2) følger direkte fra definitionerne. 2

Hvis p(t) = ad td + ·· · + a1t1 + a0t0 med ad 6= 0, da siger vi, at p(t) har grad d, og vi
skriver da deg(p(t)) = d. Med andre ord er graden p(t) det mindste hele tal d, sådan at
deg(p(t))≤ d. Vi bemærker, at graden af nulpolynomiet ikke er defineret.

Eksempel 3.5.6 Polynomierne p(t)= t2+2t−1 og q(t)=−t2+2 har begge grad 2. Deres
produkt p(t) ·q(t)=−t4−2t3+3t2+4t−2 har grad 4, mens deres sum p(t)+q(t)= 2t+1
har grad 1.

Generelt er udsagnene i lemma 3.5.5 det bedste, man kan sige om graden af sum og
produkt af polynomier. For generelt kan R indeholde nuldivisorer, hvilke er elementer
a,b ∈ R, sådan at a 6= 0 og b 6= 0, men a ·b = 0. Men hvis R ikke indeholder nuldivisorer,
da gælder det mere præcise udsagn, at deg(p · q)= deg(p) ·det(q) for alle p, q ∈ R[t], der
begge er forskellige fra nulpolynomiet.

Vi betragter nu determinantafbildningen

det: Mn(R[t])→ R[t]

for n×n-matricer med indgange i R[t]. Denne findes ifølge sætning 3.2.1, der som nævnt
gælder for enhver kommutativ ring.

Sætning 3.5.7 Lad R[t] være den kommutative ring af polynomier med koefficienter i
en kommutativ ring R, og lad P = (pi j) ∈ Mn(R[t]) være en matrix med indgange i R[t].
Hvis deg(pi j)≤ d for alle 1≤ i, j ≤ n, da er

deg(det(P))≤ dn.

Bevis Beviset er ved induktion på n ≥ 0, og tilfældet n = 0 er trivielt. (Det er tilfældet
n = 1 naturligvis også.) Så vi antager, at sætningen gælder for n = r−1 og viser, at den
gælder for n = r. Ved Laplace-udvikling langs første række får vi, at

det(P)=
r∑

j=1
(−1)1+ j p1 j det(P1 j).
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3 Determinant

Her er deg(p1 j) ≤ d per antagelse, og deg(det(P1 j)) ≤ d(r −1) per induktion, og derfor
viser lemma 3.5.5, at deg(det(P))≤ d+d(r−1)= dr som ønsket. 2

Eksempel 3.5.8 Ved hjælp af sætning 3.1.1 udregner vi, at

det
(
5− t 2

1 3− t

)
= (5− t)(3− t)−2= t2 −8t+13.

Vi ser, at indgangene i matricen er polynomier af grad højst 1, mens determinanten er
et polynomium af grad højst 1 ·2= 2.

Vi forklarer nu, hvordan den variable “t” kan tilordnes en værdi, dvs. hvordan man
kan “evaluere” et polynomium på et element. En afbildning

f : R → S

mellem to kommutative ringe siges at være en ringhomomorfi, hvis den opfylder:

(R1) For alle a,b ∈ R er f (a+b)= f (a)+ f (b).

(R2) For alle a,b ∈ R er f (a ·b)= f (a) · f (b).

(R3) f (1R)= 1S.

En ringhomomorfi f : R → S og et element s ∈ S giver anledning til en ringhomomorfi

ev f , s : R[t]→ S,

der er defineret ved formlen

ev f , s(
∑
i≥0

ai ti)=
∑
i≥0

f (ai)si.

Bemærk, at sum og produkt af polynomier netop er defineret, sådan at denne afbildning
er en ringhomomorfi. Hvis f : R → S er underforstået, så skriver vi også p(s) i stedet for
ev f , s(p) og siger, at p(s) fremkommer fra p(t) ved at substituere s ∈ S for t.

Eksempel 3.5.9 (1) Lad f : R → S være identitetsafbildningen id: R→ R af de reelle
tal. Givet p(t) ∈ R[t], kan vi da substituere a ∈ R for t, hvilket giver p(a) = eva(p) ∈ R.
Hvis for eksempel p(t)= 3t2 + t−4, og a = 5, så er p(5)= ev5(p)= 3 ·52 +5−4= 76.
(2) Lad f : R → S være den kanoniske inklusion f : R→C af de reelle tal i de komplekse
tal. Givet p(t) ∈ R[t], kan vi da substituere a ∈ C for t, hvilket giver p(a) = eva(p) ∈ C.
Hvis p(t)= 3t2 + t−4, og a = 1+ i ∈C, så er p(1+ i)= 3(1+ i)2 + (1+ i)−4=−3+7i.

126
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(3) Lad R = R og lad S = C0(R) være den kommutative ring af kontinuerte funktioner
fra eksempel 3.5.2. Vi lader f : R→ C0(R) være afbildningen, der til c ∈R tilordner den
konstante funktion f (c) : R→ R med værdi c, og bemærker, at identitetsafbildningen
id: R→R er et element i S = C0(R). Vi skriver “x” for dette element, hvilket giver

ev f , x : R[t]→ C0(R),

der er en ringhomomorfi og afbilder p(t) til den kontinuerte funktion p(x), der fås ved
at substituere x ∈ S for t. Hvis p(t)= 3t2+ t−4 ∈R[t], så er p(x) ∈ C0(R) den kontinuerte
funktion givet ved p(x)= 3x2 + x−4.

Vi siger, at s ∈ S er en rod i polynomiet p(t) ∈ R[t], hvis p(s) = 0. For eksempel har
polynomiet p(t) = t2 + 1 ∈ R[t] ingen rødder i R, mens ±i er rødder i C. Den følgende
vigtige sætning kaldes for algebraens fundamentalsætning. Der gik mere end 250 år,
fra Cardano først indførte komplekse tal i 1545, indtil Gauss i 1799 og Argand i 1806
beviste denne sætning. Undervejs var der mange forsøg på både at bevise og modbevise
sætningen.

Sætning 3.5.10 (Gauss-Argand) Ethvert ikke-konstant polynomium med koefficien-
ter i C har mindst en rod i C.

Bevis Vi henviser til en af de følgende lærebøger for et bevis.

(1) David S. Dummit og Richard M. Foote. Abstract algebra. Third Edition. John Wiley
& Sons, Inc., Hoboken, NJ, 2004.

(2) Serge Lang. Algebra. Revised third edition. Graduate Texts in Mathematics, 211.
Springer-Verlag, New York, 2002.

De to bøger præsenterer det samme bevis. I den først bog, er beviset givet i Theorem 35
på side 615–617; og i den anden bog, er beviset givet i Example 5 på side 272–273. 2

Man viser da ved polynomiumsdivision, at ethvert polynomium p(t) ∈ C[t] af grad
præcis d ≥ 0 har præcis d rødder i C, talt med multiplicitet.

Sætning 3.5.11 Lad p(t) = ad td + ad−1td−1 + ·· · + a1t+ a0 ∈ C[t] være et polynomium
med koefficienter i C, sådan at d ≥ 0 og ad 6= 0. Da findes z1, . . . , zd ∈C, sådan at

p(t)= ad(t− z1) · · · · · (t− zd).
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Bevis Påstanden følger fra sætning 3.5.10 ved brug af den euklidiske algoritme. Denne
er bevist i Theorem 1.1 i Lang’s bog (2) på side 173–174. 2

Eksempel 3.5.12 Vi anvender formlen for rødderne i et andengradspolynomium til at
faktorisere polynomiet p(t)= t2 −4t+13. Diskriminanten er

∆= (−4)2 −4 ·1 ·13= (−4) · (−4+13)=−4 ·9= (6i)2,

så de to rødder er t = 1
2 (−(−4)±6i)= 2±3i. Den euklidiske algoritme viser da, at

p(t)= (t− (2+3i))(t− (2−3i)).

Vi bemærker, at de to rødder er konjugerede, fordi p(t) har reelle koefficienter.

Eksempel 3.5.13 Vi illustrerer Euklids algoritme. Polynomiet

p(t)= t3 −6t2 +5t+12

har a = −1 som rod, og den euklidiske algoritme viser da, at der findes et entydigt
bestemt polynomium q(t), sådan at p(t)= (t+1)q(t). Vi gennemfører divisionen

t2 −7t+12
t+1 t3 −6t2 +5t+12

t3 + t2

−7t2

−7t2 −7t
12t
12t+12

0

og ser, at t+1 går op i p(t) med kvotient q(t)= t2−7t+12. Vi kan yderligere faktorisere
q(t) ved hjælp af formlen for rødderne i et andengradspolynomium og får derved, at

p(t)= (t+1)(t−3)(t−4).

Vi bemærker, at beviset for algebraens fundamentalsætning ikke er konstruktivt, så
sætningen siger altså blot, at der en findes en rod, men den siger ikke noget om, hvordan
man bærer sig ad med at finde en rod. For et generelt polynomium p(t) ∈C[t], kan man
kun undtagelsesvis finde z ∈C, der opfylder p(z)= 0 eksakt. For ligegyldigt hvor mange
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cifre af p(z), man udregner, kan man generelt ikke vide, at der ikke vil dukke ikke-nul
cifre op i p(z), hvis man regner længere. Man skal derfor nøje vurdere den fejl, man
begår ved at lade som om ligheden p(z)= 0 gælder eksakt.

3.6 Opgaver

3.1 Udregn determinanten af følgende matricer:

(
2 −1
1 1

)
,

2 −2 3
4 3 1
2 0 1

 ,

1 2 1
5 π 5
2 1/2 2

 .

3.2 Bestem determinanterne af følgende matricer:

A =


1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

 , B =
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
, C =

(
1+ i 2

1 1− i

)
.

3.3 Bestem determinanterne af følgende matricer:
1 0 0 1
2 2 2 2
3 3 0 4
4 0 0 8

 ,


1 2 3 4
0 2 3 0
0 2 0 0
1 2 4 8

 .

3.4 Afgør om følgende udsagn er sande eller falske.

a)

det

8 8 8
2 3 2
5 6 7

= 8 ·det

1 1 1
2 3 2
5 6 7


b)

det

0 0 c
0 b e
a d f

=−abc.

c)

det


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

= abcd.
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d)

det


0 0 0 a
0 0 b 0
0 c 0 0
d 0 0 0

=−abcd.

3.5 Udregn determinanten af den følgende matrix:

A =


a 0 0 0 1
0 a 0 1 0
0 0 b 0 0
0 1 0 a 0
1 0 0 0 a


3.6 Udregn determinanter af de følgende matricer:

(
2 1
1 2

)
,

2 1 0
1 2 1
0 1 2

 ,


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

 .

3.7 (?) Udregn determinanten af matricen

A =
0 0 1

1 0 0
0 1 0

 .

Beskriv afbildningen f : R3 →R3, der er defineret ved f (x)= Ax, geometrisk.

3.8 Bestem determinanten af matricerne

A =
(
2+ i 4
3i 1− i

)
og B =

 2 3−4i −2+ i
0 1+ i 0
3i 3+4i 1− i

 .

3.9 (?) For alle n ≥ 0 betragter vi den lineære isomorfi fn : Rn →Rn defineret ved

fn


x1
x2
...

xn

=


xn
...

x2
x1

 .

a) Angiv for alle n ≥ 0 matricen An, der repræsenter fn : Rn → Rn med hensyn til
standardbasen for både domænet og codomænet.
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b) Beregn determinanten af An for alle 0≤ n ≤ 9, gerne ved brug af Maple, og opstil
på baggrund heraf en hypotese for værdien af det(An) for alle n ≥ 0.

c) Bevis den hypotese, der blev opstillet i (b).

d) En lineær isomorfi f : Rn → Rn siges at være orienteringsbevarende, hvis deter-
minanten af matricen A, der repræsenterer afbildningen med hensyn til stan-
dardbasen for både domænet og codomænet, er positiv. For hvilke n ≥ 0 er afbild-
ningen fn : Rn →Rn orienteringsbevarende?

3.10 De beregninger, der skal udføres for at udregne determinanten af en matrix, kan
opdeles i tre typer, nemlig multiplikation; addition; og fortegnsskift. For at forstå
effektiviteten af beregning ved Laplace-udvikling, vil vi udelukkende se på antallet
af multiplikationer.

a) Redegør for, at der ved beregning af determinanten af en generel n× n-matrix
ved Laplace-udvikling (sætning 3.2.8) skal udføres n! multiplikationer.

b) Udfør følgende kommandoer i Maple:
>with(LinearAlgebra):
>detTime:=[seq([n,time(Determinant(RandomMatrix(n,n)))],n=1..100)]:
>plot(detTime);

og forklar (eventuelt ved at slå kommandoerne op med ?time osv.) hvilket eks-
periment, der herved er udført.

c) Redegør for, at (a) og (b) viser, at Maple ikke benytter Laplace-udvikling til be-
regning af determinanter.

3.11 Besvar følgende spørgsmål:

a) Hvad kan man sige om determinanten af en matrix, hvori to rækker er ens?

b) Hvordan ændres værdien af determinanten, hvis man skifter fortegn på alle
indgange i en række?

c) Hvordan ændres værdien af determinanten, hvis man skifter fortegn på alle
indgange i matricen?

d) Er det rigtigt, at hvis indgange i en matrix er forskelige fra nul, da er også
determinanten forskellig fra nul?

3.12 Vi lader t være et reelt tal og betragter matricen

A =
1 t 0

t 1 t
0 t 1

 .

a) Beregn det(A).

b) Gør rede for, at A er invertibel for t 6= ±
p

1/2.
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c) Anvend for t 6= ±
p

1/2 Cramers regel til at løse ligningssystemet Ax= b, hvor

b =
 t

0
t

 .

3.13 Vi betragter matricerne

A =


1 1 2 3
0 2 4 5
0 0 3 6
0 0 0 4

 og B =


4 0 0 0
5 3 0 0
6 7 2 0
8 9 0 1

 .

a) Udregn det(A) og det(B).

b) Udregn det(AB).

c) Udregn det(AB−1).

3.14 For ethvert reelt tal c betragter vi matricen:

A =
1 2 1

1 c+1 1
1 2 c+1

 .

Afgør for hvilke værdier af c, matricen A er invertibel, og bestem for disse værdier
af c den inverse matrix A−1.

3.15 Omform ved hjælp af rækkeoperationer matricen

A =


1 0 −a 0
0 1 0 2

−1 0 1 0
0 1+a 0 1


til en øvre triangulær matrix og afgør herved, for hvilke værdier af a den givne
matrix er invertibel.

3.16 Afgør ved hjælp af determinanten, om de følgende ligningssystemer har en entydig
løsning:

a)
x1 +2x2 − x3 = 5

3x1 +2x3 = −4
x1 +3x2 + x3 = 19

b)
x1 +2x2 − x3 = 51

3x1 + x2 +2x3 = 7
−2x1 −4x2 +2x3 = 25
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3.6 Opgaver

3.17 Vis, at hvis alle indgange i en kvadratisk matrix A er hele tal, og hvis det(A)=±1,
så er alle indgange i A−1 ligeledes hele tal. [Vink: brug sætning 3.4.1.]

3.18 (?) Lad A være en n× n-matrix og antag, at ligningssystemet Ax = 0 har 0 som
eneste løsning. Vis, at ligningssystemet Akx= 0 ligeledes har 0 som eneste løsning.

3.19 Den følgende opgave viser, at en ringhomomorfi mellem to legemer altid er injektiv.
Vi definerer kernen af en ringhomomorfi ϕ : R → S til at være delmængden

ker(ϕ)= {r ∈ R |ϕ(r)= 0}.

a) Vis, at ker(ϕ)= {0}, hvis og kun hvis ϕ er injektiv.

b) Vis, at kernen ker(ϕ) for en ringhomomorfi opfylder, at hvis u ∈ ker(ϕ) og r ∈ R,
da er også u · r ∈ ker(ϕ).

c) Vis, at en ringhomomorfi ϕ : F→ F′ mellem to legemer altid er injektiv.

[Vink: Antag, at ker(ϕ) 6= {0} og anvend (b) til at vise, at 1 ∈ ker(ϕ).]

3.20 Find to 2×2–matricer A og B så at det(A+B) 6= det(A)+det(B).

3.21 (?) Lad F være et legeme, og lad V = Fn. Lad k ≥ 0, og lad V k være mængden af
k-tupler af vektorer i V . Givet k lineære afbildninger

f1, . . . , fk : V → F,

betragter vi afbildningen ω : V k → F defineret ved

ω(v1, . . . ,vk)= det


f1(v1) f1(v2) . . . f1(vk)
f2(v1) f2(v2) . . . f2(vk)

...
... . . . ...

fk(v1) fk(v2) . . . fk(vk)

 .

Afbildningen er et eksempel på en alternerende form, og opgaven går ud på at ef-
tervise de følgende egenskaber.

(a) Vis, at afbildningen ω : V k → F er antisymmetrisk i den forstand, at det for alle
1≤ i < j ≤ k gælder, at

ω(. . . ,vi, . . . ,v j, . . . )=−ω(. . . ,v j, . . . ,vi, . . . ).

(b) Vis, at hvis der findes 1 ≤ i < j ≤ k, sådan at f i = f j, da er ω : V k → F lig med
nulafbildningen.

(c) Vis, at hvis v1 = v′
1 +v′′

1, så er

ω(v1,v2, . . . ,vk)=ω(v′
1,v2, . . . ,vk)+ω(v′′

1,v2, . . . ,vk).
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4 Vektorrum
Lad A være en m×n-matrix med indgange i et legeme F. I kapitel 1 har vi beskrevet en
algoritme, der producerer en parametrisering af løsningsmængden

NA = {x ∈ Fn | Ax= 0}⊂ Fn

til det homogene lineære ligningssystem Ax = 0; se sætning 1.2.17. Denne algoritme
afhænger dog af nogle temmeligt arbitrære valg såsom definitionen af en matrix på
reduceret echelonform. I modsætning til det afhænger løsningmængden NA selv ikke af
nogle valg, og vi ønsker derfor at udvikle vores begrebsverden, sådan at vi direkte kan
udtrykke, hvad denne løsningsmængde “er” for en størrelse. Hertil indfører vi begrebet
vektorrum, som vi allerede har stiftet bekendtskab med i afsnit 2.2.

4.1 Vektorrum

Vi lader F være et legeme, og som før tænker vi på F= R eller F= C. Hele dette kapitel
virker dog ligeså godt for skævlegemer, så F=H er også tilladt. Et (abstrakt) vektorrum
består af en mængde, hvis elementer vi kalder vektorer, udstyret med to operationer
“+” og “ · ”, som vi kalder vektorsum og skalarmultiplikation.

Definition 4.1.1 Lad F være et legeme. Et højre F-vektorrum er en triple (V ,+, · ), der
består af en mængde V og to afbildninger + : V ×V →V og · : V ×F→V , sådan at:

(A1) For alle x, y, z ∈V er (x+ y)+ z = x+ (y+ z).

(A2) Der findes et element 0 ∈V , sådan at x+0= x= 0+ x for alle x ∈V .

(A3) For alle x ∈V , findes y ∈V , sådan at x+ y= 0= y+ x.

(A4) For alle x, y ∈V er x+ y= y+ x.

(V1) For alle x ∈V og a,b ∈ F er (x ·a) ·b = x · (ab).

(V2) For alle x, y ∈V og a ∈ F er (x+ y) ·a = (x ·a)+ (y ·a).

(V3) For alle x ∈V og a,b ∈ F er x · (a+b)= (x ·a)+ (x ·b).

(V4) For alle x ∈V er x ·1= x.
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Man definerer venstre F-vektorrum tilsvarende; den eneste forskel er, at vektorerne
kan multipliceres med skalarer fra venstre i stedet for fra højre.

Bemærkning 4.1.2 Lad F være et legeme og lad (V ,+, · ) være et F-vektorrum.
(1) Vektoren 0 ∈ V i (A2) er entydigt bestemt. For hvis 0 og 0′ begge opfylder (A2), da

viser (A2) for henholdsvis 0 og 0′, at 0′ = 0+0′ = 0. Vi kalder 0 ∈V for nulvektoren.
(2) Givet x ∈ V , da er vektoren y ∈ V i (A3) entydigt bestemt. For hvis y og y′ begge

opfylder (A3), så viser (A3) for henholdsvis y og y′ samt (A1) og (A2), at

y= y+0= y+ (x+ y′)= (y+ x)+ y′ = 0+ y′ = y′.

Vi skriver −x for vektoren y og kalder den for den modsatte vektor af x.
(3) Vi definerer differencen af to vektorer x og y til at være vektoren x− y= x+ (−y).
(4) Man viser som i sætning 0.2.3, at x ·0= 0 og x · (−1)=−x.

Der findes rigtig mange vektorrum inden for matematik. Vi giver nogle eksempler.

Eksempel 4.1.3 (1) Mængden Mm,1(F) af m×1-matricer med indgange i F sammen
med afbildningerne + : Mm,1(F)×Mm,1(F)→ Mm,1(F) og · : Mm,1(F)×M1,1(F)→Mm,1(F),
der er givet ved matrixsum og matrixprodukt, udgør et højre F-vektorrum. Her har vi
identificeret M1,1(F) med F. Vi skriver (Fm,+, · ) for dette højre F-vektorrum og kalder
det for F-vektorrummet af søjlevektorer af dimension m. Vi har allerede betragtet dette
vektorrum i afsnit 2.2.
(2) Mængden M1,n(F) af 1×n-matricer med indgange i F sammen med afbildningerne
+ : M1,n(F)× M1,n(F) → M1,n(F) og · : M1,1(F)× M1,n(F) →M1,n(F) givet ved matrixsum
og matrixprodukt udgør et venstre F-vektorrum, hvor vi identificerer M1,1(F) med F. Vi
indfører ikke anden notation for dette vektorrum.
(3) Mængden Mm,n(F) af m×n-matricer med indgange i F sammen med afbildninger-

ne + : Mm,n(F)× Mm,n(F) → Mm,n(F) og · : Mm,n(F)× F→ Mm,n(F), hvor den første er
matrixsum, og hvor den anden afbilder (A,a) med A = (ai j) ∈ Mm,n(F) og a ∈ F til

A ·a = (ai j ·a) ∈ Mm,n(F),

er et højre vektorrum. Vi bemærker, at skalarmultiplikationen i dette vektorrum er
ikke givet ved matrixmultiplikation.
(4) Hvis triplen (F,+, · ) er et legeme, da er den samme triple både et højre og et venstre
vektorrum. For aksiomerne for et legeme i Definition 0.2.1 medfører aksiomerne for et
vektorrum i Definition 4.1.1.
(5) Vi har i (4) givet mængden C af komplekse tal en struktur af højre C-vektorrum.

Vi kan også give denne en struktur af højre R-vektorrum med vektorsum + : C×C→C

og skalarmultiplikation · : C×R→C defineret ved

(x1 + ix2)+ (y1 + i y2)= (x1 + y1)+ i(x2 + y2),
(x1 + ix2) ·a = x1a+ ix2a.
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(6) Mængden C af komplekse tal kan ligeledes gives en struktur af højre Q-vektorrum
med vektorrum + : C×C→C og skalarmultiplikation · : C×Q→C defineret ved

(x1 + ix2)+ (y1 + i y2)= (x1 + y1)+ i(x2 + y2),
(x1 + ix2) ·a = x1a+ ix2a.

(7) Mængden V = { |↑〉 z1+|↓〉 z2 | z1, z2 ∈C} af formelle komplekse linearkombinationer
af symbolerne |↑〉 og |↓〉, som læses “spin op” og “spin ned”, sammen med afbildningerne
+ : V ×V →V og · : V ×C→V defineret ved

(|↑〉 z1 +|↓〉 z2)+ (|↑〉w1 +|↓〉w2)= |↑〉 (z1 +w1)+|↓〉 (z2 +w2)
(|↑〉 z1 +|↓〉 z2) ·w = |↑〉 z1w+|↓〉 z2w

er et højre C-vektorrum. Vektorerne i dette vektorrum repræsenterer spintilstandene
af en enkelt partikel.
(8) Mængden F[t]≤d af polynomier med koefficienter i F og af grad højst d sammen

med afbildningerne + : F[t]≤d ×F[t]≤d → F[t]≤d og · : F[t]≤d ×F[t]≤0 → F[t]≤d defineret
til at være henholdsvis sum og produkt af polynomier udgør et højre F-vektorrum, idet
vi identificerer F[t]≤0 med F.
(9) Mængden C0(R) af kontinuerte funktioner f : R→ R sammen med afbildningerne
+ : C0(R)×C0(R)→ C0(R) og · : C0(R)×R→ C0(R) defineret ved

( f + g)(x)= f (x)+ g(x) og ( f ·a)(x)= f (x) ·a

udgør et højre R-vektorrum.

Vi vil i denne bog altid betragte højre F-vektorrum, og vi vil derfor forkorte og sige
F-vektorrum i stedet for højre F-vektorrum. Hvis F = R eller F = C, så siger vi også, at
et F-vektorrum er henholdsvis et reelt vektorrum og et komplekst vektorrum. Hvis F er
underforstået, så vil vi sommetider sige vektorrum i stedet for F-vektorrum. Desuden
vil vi, som det er sædvane, misbruge notation og skrive V for vektorrummet (V ,+, · ).

Definition 4.1.4 Lad F være et legeme, og lad (V ,+, · ) være et F-vektorrum. En del-
mængde U ⊂ V siges at være stabil med hensyn til vektorrumsstrukturen på V , hvis
følgende er opfyldt:

(1) Nulvektoren 0 ∈V tilhører U ⊂V .

(2) Hvis x, y ∈U ⊂V , da er også x+ y ∈U ⊂V .

(3) Hvis x ∈U ⊂V og a ∈ F, da er også x ·a ∈U ⊂V .
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Vi bemærker, at (1) medfører, at U ⊂ V er ikke er den tomme delmængde. Omvendt,
hvis U ⊂ V ikke er den tomme delmængde og opfylder (3), da opfylder U ⊂ V også (1).
For vi kan da vælge u ∈U , og (3) viser dermed, at 0= u ·0 ∈U .

Eksempel 4.1.5 (1) Vi påstår, at delmængden

U =
{

x=
(
x1
x2

)
∈R2 ∣∣ x1 = x2

}
⊂V =R2

er stabil med hensyn til vektorrumsstrukturen på R2. For 0 ∈U , da 0= 0, så (1) gælder;
hvis x, y ∈U , så er også x+ y ∈U , fordi “x1 = x2” og “y1 = y2” medfører “x1+ y1 = x2+ y2”,
så (2) gælder; og hvis x ∈U og a ∈R, da er x ·a ∈U , idet “x1 = x2” medfører “x1a = x2a”,
så (3) gælder også.
(2) Vi påstår modsat, at delmængden

S =
{

x=
(
x1
x2

)
∈R2 ∣∣ x2 = 1

}
⊂V =R2

ikke er stabil med hensyn til vektorrumsstrukturen på R2. Vi påstår faktisk, at ingen
af betingelserne (1)–(3) i definition 4.1.4 er opfyldt af S ⊂ V . For 0 ∉ S, da 0 6= 1; hvis
x, y ∈ S, da er x+ y ∉ S, da x2 + y2 = 1+1 6= 1; og hvis endelig x ∈ S og 1 6= a ∈ R, da er
x ·a ∉ S, idet x2 ·a = 1 ·a 6= 1.

U S

Figur 4.1: U ⊂R2 er stabil under vektorrumsstrukturen på R2, mens S ⊂R2 ikke er det.

Lad U ⊂ V være en delmængde af et F-vektorrum (V ,+, · ), der er stabil med hensyn
til vektorrumsstrukturen på V . Da giver vektorsummen og skalarmultiplikationen på
V anledning til afbildningerne +′ : U ×U →U og ·′ : U ×F→U givet ved

x+′ y= x+ y og x ·′ a = x ·a,

hvor x, y ∈U og a ∈ F. For (2) sikrer netop, at x+ y ∈U , mens (3) sikrer, at x ·a ∈U . Vi
siger, at afbildningerne +′ : U ×U →U og ·′ : U ×F→U fremkommer ved restriktion af
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afbildningerne + : V ×V →V og · : V ×F→V . Vi vil ofte misbruge notation og ligeledes
skrive + : U ×U →U og · : U ×F→U for de restringerede afbildninger.

Sætning 4.1.6 Lad F være et legeme, lad (V ,+, · ) være et F-vektorrum, lad U ⊂ V
være en delmængde, der er stabil med hensyn til vektorrumsstrukturen på V , og lad
+′ : U×U →U og ·′ : U×F→U være afbildningerne, der fremkommer ved restriktion af
afbildningerne + : V ×V →V og · : V ×F→V . Da er også (U ,+′, ·′ ) et F-vektorrum.

Bevis Vi ønsker at vise, at de restringerede afbildninger +′ og ·′ opfylder (A1)–(A4)
og (V1)–(V4) i definition 4.1.4. Da + og · opfylder (A1)–(A4) og (V1)–(V4), følger det
umiddelbart, at +′ og ·′ opfylder (A1), (A4) og (V1)–(V4), og vi viser nu, at (A2) og (A3)
er opfyldt. Så lad 0 ∈ V være nulvektoren. Ifølge (1) er 0 ∈ U , og for alle x ∈ U gælder
det, at

x+′ 0= x+0= x= 0+ x= 0+′ x,

idet (A2) gælder i V . Dette viser, at også (U ,+′, · ) opfylder (A2). Hvis endelig x ∈U , så
viser (3), at også x · (−1) ∈U , og udregningen

x+′ (x · (−1))= x+ (x · (−1))= x+ (−x)= 0= (−x)+ x= (x · (−1))+ x= (x · (−1))+′ x

viser derfor, at (U ,+′, ·′ ) opfylder (A3). 2

Definition 4.1.7 Lad F være et legeme. Et F-vektorrum (U ,+′, ·′ ) siges at være et un-
derrum af et F-vektorrum (V ,+, · ), hvis U er en delmængde af V , der er stabil med
hensyn til vektorrumsstrukturen på V , og hvis +′ : U ×U →U og ·′ : U ×F→U netop
er afbildningerne, der fremkommer ved restriktion af + : V ×V →V og · : V ×F→V .

Vi vil herefter misbruge notation og blot skrive, at U ⊂ V er et underrum i stedet for
at skrive, at U ⊂ V er stabil under vektorrumsstrukteren på V , og at (U ,+′, ·′ ) er et
underrum af (V ,+, · ). Vi siger således, at i eksempel 4.1.5 er U ⊂R2 et underrum, mens
S ⊂R2 ikke er det.

Lemma 4.1.8 Lad A være en m×n-matrix med indgange i et legeme F. Delmængden

NA = {x ∈ Fn | Ax= 0}⊂ Fn,

der består af løsninger til det homogene ligningssystem “Ax= 0”, er et underrum af Fn.
Tilsvarende er delmængden

RA = {Ax ∈ Fm | x ∈ Fn}⊂ Fm,

der består af de vektorer b ∈ Fm, for hvilke ligningen “Ax= b” har mindst én løsning, et
underrum af Fm.
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Bevis Vi viser, at NA ⊂ Fn opfylder (1)–(3) i definition 4.1.4. Da A0 = 0, er (1) opfyldt;
hvis Ax = 0 og Ay = 0, da er A(x+ y) = Ax+ Ay = 0+0 = 0, så (2) er opfyldt; og hvis
Ax = 0, da er også A(xa) = (Ax)a = 0a = 0, så (3) er opfyldt. Dermed er NA ⊂ Fn stabil
med hensyn til vektorrumsstrukturen på Fn og definerer derfor ifølge sætning 4.1.6 et
underrum af Fn.

Tilsvarende viser vi, at RA ⊂ Fm opfylder (1)–(3) i definition 4.1.4. Da A0 = 0 er (1)
opfyldt; hvis Ax= b og Ay= c, da er A(x+ y)= Ax+Ay= b+c, så (2) er opfyldt; og hvis
Ax= b, sa er A(xa)= (Ax)a = ba, så også (3) er opfyldt. 2

Definition 4.1.9 Lad A være en m×n-matrix med indgange i et legeme F. Da kaldes
underrummene NA ⊂ Fn og RA ⊂ Fm for nulrummet og søjlerummet af matricen A.

Vi bemærker, at mængden af løsninger til den inhomogene ligning “Ax = b” ikke er
et underrum af vektorrummet Fn, hvis b 6= 0. For da er A0 6= b, så (1) i definition 4.1.4
ikke opfyldt. Vi skal dog se i korollar 4.6.6, at løsningsmængden til Ax = b altid er et
affint underrum.

Eksempel 4.1.10 Underrummet U ⊂R2 fra eksempel 4.1.5 er netop nulrummet

NA = {
x ∈R2 ∣∣ Ax= 0

}= {(
x1
x2

)
∈R2 ∣∣ (

1 −1
)(x1

x2

)
= 0

}
⊂R2

for A = (
1 −1

) ∈ M1,2(R). Og givet et vilkårligt b ∈R, da opfylder

x=
(
b
0

)
∈R2,

at Ax= b, hvilket viser, at søjlerummet RA ⊂R er hele R.

Eksempel 4.1.11 Per definition består søjlerummet af matricen

A =
(

1 −i
−1 i

)
∈ M2,2(C)

af de vektorer b ∈C2, for hvilke der findes z ∈C2, sådan at Az = b. Da

Az =
(

1 −i
−1 i

)(
z1
z2

)
=

(
z1 − iz2
−z1 + iz2

)
=

(
1

−1

)
(z1 − iz2) ∈C2,

konkluderer vi, at

RA = {(
1

−1

)
· z

∣∣ z ∈C}⊂C2.
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4.2 Lineære afbildninger

Vi har allerede defineret og studeret lineære afbildninger f : Fn → Fm i sektion 2.3, og vi
udvider nu dette begreb til afbildninger mellem generelle vektorrum.

Definition 4.2.1 Lad F være et legeme og lad V og W være F-vektorrum. En afbildning
f : V →W er lineær, hvis den opfylder følgende betingelser:

(L1) For alle x, y ∈V gælder det, at f (x+ y)= f (x)+ f (y).

(L2) For alle x ∈V og a ∈ F gælder det, at f (x ·a)= f (x) ·a.

Vi understreger, at en lineær afbildning f : V →W mellem to vektorrum altid afbilder
nulvektoren i V til nulvektoren i W . Det følger nemlig fra (L1), at

f (0)+ f (0)= f (0+0)= f (0),

hvorfra udsagnet følger ved at trække f (0) fra på begge sider af lighedstegnet. Vi vil
også sige, at en afbildning g : V → W er affin1, hvis afbildningen f : V → W defineret
ved f (x)= g(x)−g(0) er lineær. For eksempel er identitetsafbildningen id: V →V og nu-
lafbildningen 0 : V →W begge lineære. Den konstante afbildning b : V →W med værdi
b ∈W er altid affin, og den er lineær hvis og kun hvis b = 0.

Eksempel 4.2.2 (1) Lad F være et legeme og lad F[t] være F-vektorrummet af polyno-
mier med koefficienter i F. Da er afbildningen D : F[t]→ F[t], der til et polynomium

p(t)=
∑
n≥0

antn

tilordner det formelt afledte polynomium

p′(t)=
∑
n≥1

nantn−1,

en lineær afbildning.
(2) Hvis V er et F-vektorrum, og hvis U ⊂ V er et underrum, da er den kanoniske
inklusion i : U → V , som er defineret ved i(u) = u, en lineær afbildning. Lad også W
være et F-vektorrum. Da gælder det endvidere, at en afbildning f : W → U er lineær,
hvis og kun hvis den sammensatte afbildning i ◦ f : W →V er lineær.
(3) Lad C0(R) være R-vektorrummet af kontinuerte afbildninger f : R→ R fra eksem-
pel 4.1.3 (9). Da er afbildningen i : R→ C0(R), der er defineret ved i(a)(x)= ax, lineær.

1I fysikliteraturen anvendes “lineær” ofte i betydningen “affin”.
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4 Vektorrum

Vi viser nu, at lineære afbildninger h : Fn →V fra F-vektorrummet Fn til et vilkårligt
F-vektorrum V er i 1-1 korrespondance med n-tupler (v1, . . . ,vn) af vektorer i V .

Lemma 4.2.3 Lad F være et legeme, lad V være et F-vektorrum, og lad (v1, . . . ,vn) være
en n-tuple af vektorer i V . Da findes der præcis én lineær afbildning h : Fn → V , sådan
at h(ei)= vi for alle 1≤ i ≤ n, nemlig afbildningen givet ved

h(x)= v1x1 +v2x2 +·· ·+vnxn.

Bevis Hvis h : Fn →V er lineær og opfylder, at h(ei)= vi for alle 1≤ i ≤ n, da er

h(x)= h(e1x1 +·· ·+ enxn)= h(e1)x1 +·· ·+h(en)xn = v1x1 +·· ·+vnxn,

hvilket viser entydighedsudsagnet. Omvendt opfylder afbildningen h : Fn →V defineret
ved denne formel, at h(ei) = vi for alle 1 ≤ i ≤ n, og vi viser nu, at den er lineær. For at
vise, at h : Fn →V opfylder (L1), lader vi x, y ∈ Fn og udregner, at

h(x+ y)= v1(x1 + y1)+·· ·+vn(xn + yn)
= (v1x1 +·· ·+vnxn)+ (v1 y1 +·· ·+vn yn)= h(x)+h(y),

som ønsket. Her følger den anden lighed ved gentagen anvendelse af (V3). For at vise,
at h : Fn →V opfylder (L2), lader vi x ∈ Fn og a ∈ F og udregner, at

h(xa)= v1(x1a)+·· ·+vn(xna)= (v1x1 +·· ·+vnxn)a = h(x)a

som ønsket. Her følger den anden lighed ved gentagen anvendelse af (V1) og (V2). 2

Eksempel 4.2.4 Lad V = C0([0,2π]) være vektorrummet af kontinuerte afbildninger
f : [0,2π]→R fra eksempel 4.1.3 (9). Da er afbildningen h : R2 → C0([0,2π]) givet ved

h
(
a1
a2

)
= cos(x)a1 +sin(x)a2

den entydigt bestemte lineære afbildning, sådan at h(e1)= cos(x) og h(e2)= sin(x).

Lemma 4.2.5 Lad F være et legeme, og lad U , V og W være F-vektorrum. Givet to
lineære afbildninger f : V →W og g : U →V , da er f ◦ g : U →W igen lineær.
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4.2 Lineære afbildninger

Bevis Vi viser, at f ◦ g : U →W opfylder (L1) og (L2). For alle x, y ∈U , gælder det, at

( f ◦ g)(x+ y)= f (g(x+ y))= f (g(x)+ g(y))= f (g(x))+ f (g(y))= ( f ◦ g)(x)+ ( f ◦ g)(y),

hvilket viser, at f ◦ g : U →W opfylder (L1). Ligeledes gælder det for alle x ∈U og a ∈ F,
at

( f ◦ g)(x ·a)= f (g(x ·a))= f (g(x) ·a)= f (g(x)) ·a,

hvilket viser, at f ◦ g : U →W opfylder (L2). 2

Mens lighed giver god mening for tal, så er det ikke noget godt begreb for vektorrum.
Vi kan tænke på to vektorrum V og W som værende to sprog og ønsker da i stedet at
spørge, om der findes en måde at oversætte fra et sprog til et andet. Endvidere er det
vigtigt at kende den præcise oversættelse og ikke blot vide, om en oversættelse findes
eller ej. Dette formaliseres i det generelle begreb isomorfi, som vi nu indfører.

Definition 4.2.6 Lad F være et legeme. En lineær afbildning f : V → W mellem to
F-vektorrum er en isomorfi, hvis der findes en lineær afbildning g : W → V , sådan at
f ◦ g = idW og g ◦ f = idV .

Vi viser, at en lineær afbildning er en isomorfi, hvis og kun hvis den er bijektiv.

Sætning 4.2.7 Lad F være et legeme og lad f : V → W være en lineær afbildning mel-
lem to F-vektorrum. Da er følgende udsagn ækvivalente:

(1) Afbildningen f : V →W er en bijektion.

(2) Afbildningen f : V →W er en isomorfi.

Bevis Vi antager først (1) og viser (2). Da f er bijektiv, findes der ifølge lemma 0.1.3 en
afbildning g : W →V , som opfylder, at f ◦g = idW og g◦ f = idV . Vi skal vise, at g : W →V
er lineær. Da f : V →W opfylder (L1), gælder det for alle y, z ∈W , at

y+ z = f (g(y))+ f (g(z))= f (g(y)+ g(z)),

hvilket netop viser, at g(y+ z)= g(y)+ g(z). Og da f : V →W også opfylder (L2), gælder
det endvidere for alle y ∈W og a ∈ F, at

y ·a = f (g(y)) ·a = f (g(y) ·a),

hvilket viser, g(y ·a)= gf (g(y) ·a)= g(y) ·a. Altså er g lineær, hvilket viser (2).
Vi antager dernæst (2) og viser (1). Da f er en isomorfi, findes der per definition en

lineær afbildning g : W → V , sådan at f ◦ g = idW og g ◦ f = idV . Specielt følger det fra
lemma 0.1.3, at f : V →W er en bijektion. 2
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4 Vektorrum

Eksempel 4.2.8 (1) Lad os betragte M2,3(F) som et F-vektorrum med vektorsum og
skalarmultiplikation defineret som i eksempel 4.1.3 (3). Da er afbildningen

h : F6 → M2,3(F)

defineret ved

h(x)=
(
x1 x2 x3
x4 x5 x6

)
en lineær bijektion. Ifølge sætning 4.2.7 er den dermed en isomorfi.
(2) Lad V = { |↑〉 z1+|↓〉 z2 | z1, z2 ∈C} være det komplekse vektorrum af formelle linear-
kombinationer af symbolerne |↑〉 og |↓〉 fra eksempel 4.1.3 (7). Da er afbildningen

h : C2 →V

defineret ved h(z)= |↑〉 z1+|↓〉 z2 en lineær bijektion. Ifølge sætning 4.2.7 er den dermed
en isomorfi.

Vi viser nu, at det for lineære afbildninger er særligt let at afgøre, hvorvidt de er
injektive eller ej.

Lemma 4.2.9 Hvis F er et legeme, og hvis f : V →W er en lineær afbildning mellem to
F-vektorrum, da er de følgende udsagn ækvivalente:

(1) Afbildningen f : V →W er injektiv.

(2) Hvis v ∈V og f (v)= 0, så er v= 0.

Bevis Vi minder om, at f : V → W er injektiv, hvis der for alle w ∈ W , højst findes ét
v ∈ V , sådan at f (v) = w. Så (1) medfører per definition (2). Vi antager derfor, at (2)
gælder, og viser (1). Vi skal vise, at hvis v1,v2 ∈ V og f (v1) = f (v2), da er v1 = v2. Vi
lader derfor v= v1 −v2 og udregner, at

f (v)= f (v1 −v2)= f (v1 +v2 · (−1)) (L1)= f (v1)+ f (v2 · (−1))
(L2)= f (v1)+ f (v2) · (−1)= f (v1)− f (v2)= 0.

Ifølge vores antagelse, at f : V → W opfylder (2), medfører dette, at v = 0. Men da er
v1 = v2, hvilket viser, at f : V →W opfylder (1) som ønsket. 2
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4.3 Basis for et vektorrum

Eksempel 4.2.10 Vi anvender lemma 4.2.9 til at vise, at den lineære afbildning

h : R2 → C0([0,2π])

fra eksempel 4.2.4, som er defineret ved h(a) = cos(x)a1 +sin(x)a2, er injektiv. Vi skal
vise, at hvis a ∈ R2 og h(a) = 0, da gælder det nødvendigvis, at a = 0. Vi husker på, at
nulvektoren 0 ∈ C0([0,2π]) er nulafbildningen 0 : [0,2π] → R, som er givet ved 0(x) = 0
for alle x ∈ [0,2π]. Vi skal derfor vise, at hvis

cos(x)a1 +sin(x)a2 = 0

for alle x ∈ [0,2π], så er både a1 = 0 og a2 = 0. Vi kan tænke på denne ligning som et
lineært ligningssystem i de to variable a1 og a2 og med uendeligt mange ligninger, der
er indicerede ved x ∈ [0,2π]. For x = 0 har vi ligningen

a1 = cos(0)a1 +sin(0)a2 = 0,

som viser, at a1 = 0. Og for x = π
2 har vi ligningen

a2 = cos(π2 )a1 +sin(π2 )a2 = 0,

som viser, at a2 = 0. Dette viser, at h : R2 → C0([0,2π]) er injektiv.

4.3 Basis for et vektorrum

Vi indfører nu tre helt centrale egenskaber. Disse begreber knytter sig ikke til enkelte
vektorer i et vektorrum, men derimod til familier af vektorer, og de kræver derfor nogen
tilvænning. De tre centrale egenskaber af en familie af vektorer i et vektorrum V er, at
den kan være lineært uafhængig, at den kan frembringe V , eller at den kan være en
basis for V . For letheds skyld vil vi for det meste kun betragte endelige familier; vi
betragter uendelige familier sidst i afsnittet.

Lad (xi)i∈I være en familie af elementer i en mængde X indiceret ved en mængde I.
Hvis I er endelig, så siger vi, at familien (xi)i∈I er endelig, og hvis I = {1,2, . . . ,n}, så
skriver vi også (x1, x2, . . . , xn) i stedet for (xi)i∈I og siger, at denne familie er en n-tuple
af elementer i X . Standardbasen (e1, . . . , en) fra definition 2.2.4 en således en n-tuple af
vektorer i Fn, og for enhver mængde X er den tomme familie ( ) den entydigt bestemte
0-tuple af elementer i X . Vi understreger, at en familie af elementer ikke er det samme
som en mængde af elementer. For eksempel er 1-tuplen (1) og 2-tuplen (1,1) forskellige,
mens mængderne {1} og {1,1} er ens. Vi betegner altid familier med runde paranteser,
mens vi betegner mængder med Tuborgparanteser.
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4 Vektorrum

Definition 4.3.1 Lad F være et legeme, og lad V være et F-vektorrum. En vektor v ∈V
siges at være en linearkombination af en endelig familie (vi)i∈I af vektorer i V , hvis
der findes en familie af skalarer (ai)i∈I med samme index mængde, sådan at

v=
∑
i∈I

viai.

Vi bemærker, at hvis v er en linearkombination af (vi)i∈I , da vil der generelt være
flere familier af skalarer (ai)i∈I , sådan at v=∑

i∈I viai.

Eksempel 4.3.2 (1) I ethvert vektorrum V er nulvektoren 0 en linearkombination af
den tomme familie ( ). For den tomme sum i V er per definition lig med 0.
(2) Vi viste i lemma 2.2.6, at enhver vektor x ∈ Fn på entydig vis kan skrives som en
linearkombination af standardbasen (e1, . . . , en), nemlig,

x= e1x1 +·· ·+ enxn.

(3) Enhver vektor x ∈R2 er en linearkombination af familien

(
v1 =

(
2
1

)
, v2 =

(
1
1

))
,

idet det for familien af skalarer (a1,a2)= (x1 − x2,−x1 +2x2) gælder, at

x=
(
x1
x2

)
=

(
2
1

)
(x1 − x2)+

(
1
1

)
(−x1 +2x2)= v1a1 +v2a2.

Endvidere er familien af skalarer (a1,a2) med denne egenskab entydigt bestemt af x.
(4) Enhver vektor x ∈R2 er en linearkombination af familien

(
v1 =

(
2
1

)
, v2 =

(
1
1

)
,v3 =

(
0
1

))
,

idet x, som vi netop har set, kan skrives som en linearkombination af familien (v1,v2).
Imidlertid er familien af skalarer (a1,a2,a3), sådan at x = v1a1 + x2a2 + v3a3, ikke
entydigt bestemt af x. For eksempel er både(

1
0

)
=

(
2
1

)
·1+

(
1
1

)
· (−1)+

(
0
1

)
·0 og

(
1
0

)
=

(
2
1

)
·0+

(
1
1

)
·1+

(
0
1

)
· (−1).

Faktisk er der uendeligt mange måder at skrive x ∈ R2 som en linearkombination af
familien (v1,v2,v3).
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4.3 Basis for et vektorrum

(5) Lad A ∈ Mm,n(F), og lad (a1, . . . ,an) være den familie af vektorer i Fm, der består af
søjlerne i A. En vektor b ∈ Fm er da en linearkombination

b = a1x1 +a2x2 +·· ·+anxn

af denne familie, hvis og kun hvis ligningssystemet Ax = b har mindst én løsning
x ∈ Fn. I givet fald er familien af skalarer (x1, . . . , xn) entydigt bestemt af b, hvis og kun
hvis ligningssystemet Ax= b har netop én løsning x ∈ Fn.
(6) Lad F[t]≤d være vektorrummet af polynomier med koeffcienter i F af grad højst d

fra eksempel 4.1.3 (8). Enhver vektor p(t) i dette vektorrum er en linearkombination
af familien af vektorer (t0, t1, . . . , td). For hvis p(t)=∑

0≤n≤d antn, da er

p(t)=
∑

0≤n≤d
tn ·an.

Vi bemærker, at familien af skalarer (a0,a1, . . . ,ad) er entydigt bestemt af p(t).
(4) Lad C0([0,2π],C) være C-vektorrummet af kontinuerte funktioner f : [0,2π] → C.

Vektoren exp(ix) i dette vektorrum er en linearkombination

exp(ix)= cos(x) ·1+sin(x) · i

af familien af vektorer (cos(x),sin(x)). Familien af skalarer (1, i) er igen entydig.

Delmængden af et vektorrum V , der består af alle linearkombinationer af en endelig
familie af vektorer (vi)i∈I kaldes for spannet af (vi)i∈I og betegnes span((vi)i∈I). Vi viser
nu, at denne delmængde udgør et underrum U ⊂V , og vi kalder dette for underrummet
frembragt af familien (vi)i∈I .

Lemma 4.3.3 Lad F være et legeme, lad V være et F-vektorum, og lad (vi)i∈I være en
endelig familie af vektorer i V . Da udgør delmængden

U = span((vi)i∈I)⊂V ,

der består af alle linearkombinationer af familien (vi)i∈I , et underrum af V .

Bevis Vi skal vise, at delmængden U ⊂ V opfylder (1)–(3) i definition 4.1.4. Vi kan
udtrykke nulvektoren som 0=∑

i∈I vi ·0. Derfor er 0 ∈U , så (1) er opfyldt. Og hvis både
x = ∑

i∈I viai og y = ∑
i∈I vibi er i U , da er x+ y = ∑

i∈I viai +
∑

i∈I vibi =
∑

i∈I vi(ai + bi)
også i U , så (2) er også opfyldt. Hvis endelig x = ∑

i∈I viai er i U og a ∈ F, så er også
xa = (

∑
i∈I viai)a =∑

i∈I vi(aia) i U , hvilket viser, at (3) er opfyldt. 2
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4 Vektorrum

Definition 4.3.4 Lad F være et legeme, lad V være et F-vektorrum og lad (vi)i∈I være
en endelig familie af vektorer i V .

(1) Familien af vektorer (vi)i∈I siges at være lineært uafhængig, hvis den eneste
familie af skalarer (ai)i∈I , for hvilken det gælder, at∑

i∈I
viai = 0,

er nulfamilien (ai)i∈I , hvor ai = 0 for alle i ∈ I. Ellers siges familien (vi)i∈I at
være lineært afhængig.

(2) Familien af vektorer (vi)i∈I siges at frembringe eller udspænde V , hvis enhver
vektor v ∈V er en linearkombination

v=
∑
i∈I

viai

af familien (vi)i∈I .

(3) Familien af vektorer (vi)i∈I siges at være en basis for V , hvis den både er lineært
uafhængig og frembringer V .

Det er ofte lettest at bruge definitionen ovenfor til at afgøre om en given familie af
vektorer i et vektorrum er en basis eller ej. Det følgende lemma giver en alternativ
karakterisering af baser, og antyder samtidigt, hvorfor dette begreb er så nyttigt.

Lemma 4.3.5 Lad F være et legeme, lad V være et F-vektorrum, og lad (vi)i∈I være en
endelig familie af vektorer i V . Da er følgende ækvivalent:

(i) Familien (vi)i∈I er en basis for V .

(ii) Enhver vektor v ∈V kan skrives som en linearkombination af familien (vi)i∈I , og
denne opskrivning er entydig.

Bevis Vi antager først (i) og viser (ii). Da (vi)i∈I frembringer V , kan enhver vektor
v ∈ V per definition skrives som en linearkombination v = ∑

i∈I viai af familien (vi)i∈I .
Vi skal derfor vise, at hvis også v=∑

i∈I vibi, da er ai = bi for alle i ∈ I. Men∑
i∈I

vi(ai −bi)=
∑
i∈I

viai −
∑
i∈I

vibi = v−v= 0,

og da (vi)i∈I er lineært uafhængig, konkluderer vi, at ai−bi = 0 for alle i ∈ I. Dette viser
som ønsket, at (ii) gælder.
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4.3 Basis for et vektorrum

Vi antager dernæst (ii) og viser (i). Da enhver vektor v ∈ V kan skrives som en li-
nearkombination af familien (vi)i∈I , så frembringer denne familie V . Endvidere kan
nulvektoren 0 ∈V altid skrives som linearkombinationen 0=∑

i∈I vi ·0, og per antagelse
er denne opskrivning entydig. Derfor er (vi)i∈I også lineært uafhængig, hvilket viser,
at (i) gælder. 2

e1

e2 v1

v2
v1

v2

v3

v1

Figur 4.2: Familierne (e1, e2) og (v1,v2) er baser for R2, mens familierne (v1,v2,v3) og
(v1) ikke er der; se eksempel 4.3.6.

Eksempel 4.3.6 (1) Vi betragter de følgende tre vektorer i R2:

v1 =
(
2
1

)
, v2 =

(
1
1

)
og v3 =

(−1
3

)
.

Familien (v1) er lineært uafhængig, da v1a1 = 0 medfører, at a1 = 0. Den frembringer
imidlertid ikke R2, da vektoren v2 for eksempel ikke er en linearkombination af (v1).
Familien (v1,v2) er også lineært uafhængig, da v1a1 +v2a2 = 0, hvis og kun hvis

2a1 +a2 = 0
a1 +a2 = 0,

og da dette ligningssystem har kun den ene løsning, hvor både a1 = 0 og a2 = 0. Vi
så eksempel 4.3.2, at (v1,v2) frembringer R2, så dermed er (v1,v2) en basis for R2.
Familien (v1,v2,v3) frembringer også R2, fordi delfamilien (v1,v2) gør det, men den er
ikke lineært uafhængig. For ligningssystemet v1a1+v2a2+v3a3 = 0 har løsninger, hvor
a1, a2 og a3 ikke alle er nul, for eksempel a1 = 4, a2 =−7 og a3 = 1.
(2) I ethvert vektorrum V er den tomme familie ( ) lineært uafhængig, da betingelsen
i definition 4.3.4 (1) trivielt er opfyldt. Den tomme familie er dermed en basis for V ,
hvis og kun hvis V = {0}. For den tomme sum er per definition lig med 0.
(3) Ifølge lemma 2.2.6 er standardbasen (e1, . . . , em) i definition 2.2.4 en basis for Fm.
(4) En endelig familie af vektorer (vi)i∈I , hvor der findes et j ∈ I, sådan at v j = 0, er

lineært afhængig. For lad (ai)i∈I være familien af skalarer, hvor a j = 1 og ai = 0 for
i 6= j. Da er

∑
i∈I viai = 0, selvom (ai)i∈I ikke er nulfamilien.
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4 Vektorrum

Ifølge lemma 4.1.8 er nulrummet NA ⊂ Fn af en m× n-matrix A et underrum, og vi
finder nu i et eksempel en basis herfor. Vi giver en generel algoritme i sætning 4.5.11.

Eksempel 4.3.7 (Basis for nulrum) Vi har tidligere i eksempel 1.2.16 betragtet den
følgende matrix A og udregnet den entydigt bestemte matrix A′, der er på reduceret
echelonform og rækkeækvivalent med A.

A =
0 0 2 −1 8

1 −2 3 2 1
3 −6 10 6 5

 A′ =
1 −2 0 0 3

0 0 1 0 2
0 0 0 1 −4


Vi aflæser heraf, at den fælles løsningsmængde til “Ax= 0” og “A′ x= 0” er givet ved

NA = NA′ =
{


2t1 −3t2

t1
−2t2

4t2
t2


∣∣∣ t1, t2 ∈ F

}
.

Med andre ord har vi vist, at familien

(
v1 =


2
1
0
0
0

 , v2 =


−3

0
−2

4
1


)

udgør en basis for nulrummet NA = NA′ ⊂ F5.

Lemma 4.1.8 viser tilsvarende, at søjlerummet RA ⊂ Fm af en m× n-matrix A er et
underrum. Vi viser nu, at familien af søjler i A frembringer dette underrum, hvilket
forklarer navnet.

Eksempel 4.3.8 (Frembringere for søjlerummet) Hvis A ∈ Mm,n(F) er en matrix,
da frembringer familien (a1, . . . ,an), der består af søjlerne i matricen A, søjlerummet
RA = { Ax | x ∈ Fn}⊂ Fm. For hvis x= e1x1 +·· ·+ enxn, da er

Ax= A(e1x1 +·· ·+ enxn)= (Ae1) x1 +·· ·+ (Aen) xn = a1x1 +·· ·+anxn.

Familien (a1, . . . ,an) er generelt ikke lineært uafhængig og er derfor i almindelighed
ikke en basis for RA ⊂ Fm. Vi angiver senere i sætning 4.5.8 en generel algoritme, der
viser, hvordan denne familie udtyndes til en basis.
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Lemma 4.3.9 Lad (a1, . . . ,an) være den n-tuple af vektorer i Fm, der består af søjlerne
i en m×n-matrix A ∈ Mm,n(F).

(1) Familien (a1, . . . ,an) er lineært uafhængig, hvis og kun x = 0 er den eneste løsning
til “Ax = 0.” Dette gælder endvidere, hvis og kun hvis “Ax = b” højst har én løsning
for alle b ∈ Fm.

(2) Familien (a1, . . . ,an) frembringer Fm, hvis og kun “Ax = b” har mindst én løsning
for alle b ∈ Fm.

(3) Familien (a1, . . . ,an) er en basis for Fm, hvis og kun hvis “Ax = b” har præcis én
løsning for alle b ∈ Fm. Dette gælder endvidere, hvis og kun hvis A er invertibel.

Bevis En løsning x ∈ Fn til ligningssystemet “Ax = b” udtrykker netop b ∈ Fm som en
linearkombination Ax= a1x1+·· ·+anxn af familien (a1, . . . ,an). Den første påstand i (1)
samt påstanden (2) følger derfor fra definition 4.3.4. Den sidste del af (1) fås igen ved at
bemærke, at hvis både Ay= b og Az = b, så er x= y− z en løsning til “Ax= 0.” Endelig
udtrykker den første påstand i (3) netop ækvivalensen af de to udsagn i lemma 4.3.5,
mens den sidste påstand følger fra sætning 2.4.9. 2

Eksempel 4.3.10 Vi udregnede i eksempel 3.2.9, at matricen

A =
5 −1 1

0 2 −3
2 6 4

 ∈ M3(R)

har determinant det(A) = 132 6= 0. Da det(A) er invertibel i R, er A derfor invertibel
ifølge sætning 3.4.1. Derfor viser lemma 4.3.9 altså, at familien

(
a1 =

5
0
2

 , a2 =
−1

2
6

 , a3 =
 1
−3

4

)

er en basis for R3.

Ifølge lemma 4.2.3 bestemmer en n-tuple (v1, . . . ,vn) af vektorer i et F-vektorrum V en
entydig lineær afbildning h : Fn →V , sådan at h(ei)= vi for alle 1≤ i ≤ n. Vi viser nu, at
denne afbildning præcis er injektiv, surjektiv eller bijektiv eftersom n-tuplen (v1, . . . ,vn)
er lineært uafhængig, frembringer V eller er en basis for V .

151



4 Vektorrum

Sætning 4.3.11 Lad F være et legeme, og lad V være et F-vektorrum. Lad (v1, . . . ,vn)
være en n-tuple af vektorer i V , og lad h : Fn → V være den entydigt bestemte lineære
afbildning, sådan at h(ei)= vi for alle 1≤ i ≤ n. Da gælder følgende udsagn:

(1) Familien (v1, . . . ,vn) er lineært uafhængig, hvis og kun hvis h : Fn →V er injektiv.

(2) Familien (v1, . . . ,vn) frembringer V , hvis og kun hvis h : Fn →V er surjektiv.

(3) Familien (v1, . . . ,vn) er en basis for V , hvis og kun hvis h : Fn →V er bijektiv.

Bevis Per definition er familien (v1, . . . ,vn) lineært uafhængig, hvis og kun hvis det for
alle x ∈ Fn gælder, at hvis h(x) = 0, så er x = 0. Og ifølge lemma 4.2.9 er dette tilfældet,
hvis og kun hvis h : Fn →V er injektiv. Dette viser (1).

Familien (v1, . . . ,vn) frembringer per definition V , hvis og kun hvis enhver vektor
v ∈V er en linearkombination v = v1x1 +·· ·+vnxn af (v1, . . . ,vn). Dette betyder præcist,
at h : Fn →V er surjektiv, hvorfor (2) følger.

Endelig er (v1, . . . ,vn) en basis, hvis og kun hvis den både er lineært uafhængig og
frembringer V , og vi har netop vist, at dette er tilfældet, hvis og kun hvis afbildningen
h : Fn →V både er injektiv og surjektiv. Dette viser (3). 2

Hvis (v1, . . . ,vn) er en basis for V , så viser sætning 4.3.11, at den entydige lineære
afbildning h : Fn →V , sådan at h(ei)= vi for alle 1≤ i ≤ n, er en isomorfi. Vi skal i næste
afsnit se, at dette tillader os at oversætte alle spørgsmål i lineær algebra, der angår
V , til tilsvarende spørgsmål, der angår Fn. Det er dog vigtigt at huske på, at denne
oversættelse afhænger af valget af basis for V .

Korollar 4.3.12 Lad A være en m×n-matrix af rang 0 ≤ r ≤ min{m,n} med indgange
i et legeme F, og lad (a1, . . . ,an) være familien af søjlevektorer i A.

(1) Familien (a1, . . . ,an) er lineært uafhængig, hvis og kun hvis r = n.

(2) Familien (a1, . . . ,an) frembringer Fm, hvis og kun hvis r = m.

(3) Familien (a1, . . . ,an) er en basis for Fm, hvis og kun hvis r = m = n.

Særligt er familien (a1, . . . ,an) en basis hvis og kun hvis A er invertibel.

Bevis Da den entydigt bestemte lineære afbildning h : Fn → Fm, sådan at h(ei)= ai for
1 ≤ i ≤ n, er givet ved h(x) = a1x1 + ·· · +anxn = Ax, følger påstanden umiddelbart fra
sætning 4.3.11 og sætning 2.5.15. 2
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Eksempel 4.3.13 Vi betragter igen matricen

A =
0 0 2 −1 8

1 −2 3 2 1
3 −6 10 6 5


fra eksempel 4.3.7. Den entydigt bestemte matrix A′, der er rækkeævivalent til A og
på reduceret echelonform, udregnes til at være

A′ =
1 −2 0 0 3

0 0 1 0 2
0 0 0 1 −4

 .

Matricen A′ har 3 ledende indgange, og derfor er rank(A)= 3. Da A er en 3×5-matrix,
sådan at m = 3 og n = 5, og da r = rank(A)= 3= m, så viser korollar 4.3.12, at søjlerne
i A frembringer R3.

Korollar 4.3.14 Lad A være en n × n-matrix med indgange i et legeme F, og lad
(a1, . . . ,an) være familien af søjlevektorer i A. Familien (a1, . . . ,an) er en basis for Fn,
hvis og kun hvis det(A) 6= 0.

Bevis Dette er en direkte konsekvens af korollar 3.4.2 and korollar 4.3.12. 2

Vi skal nu vise, at et vektorrum, der er frembragt af en endelig familie af vektorer,
har en basis. Vi viser et mere præcist resultat, som er mere anvendeligt. Generelt, hvis
(xi)i∈I er en familie af elementer i en mængde X , og hvis J ⊂ I er en delmængde, så
siger vi, at familien (xi)i∈J er en delfamilie af familien (xi)i∈I . Særligt er alle delfamilier
af en n-tuple (x1, . . . , xn) af formen (xi1 , . . . , xi p ), hvor 0 ≤ p ≤ n og 1 ≤ i1 < ·· · < i p ≤ n.
For eksempel er den tomme familie ( ) og familierne (v1,v3) og (v2) alle delfamilier af
familien (v1,v2,v3). Den følgende sætning er den lineære algebras hovedsætning.

Sætning 4.3.15 Lad F være et legeme og lad V være et F-vektorrum. Hvis (vi)i∈I er en
endelig familie af vektorer i V , som frembringer V , og hvis (vi)i∈K er en lineært uaf-
hængig delfamilie deraf, da findes en mængde J med K ⊂ J ⊂ I, sådan at delfamilien
(vi)i∈J er en basis for V .

Bevis Vi ønsker at finde K ⊂ J ⊂ I, sådan at (vi)i∈J er en basis for V . Vi ved, at der
findes K ⊂ J ⊂ I, sådan at (vi)i∈J er lineært uafhængig, for det er rigtigt for J = K .
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Vi vælger derfor et K ⊂ J ⊂ I, sådan at (vi)i∈J er lineært uafhængig, og sådan at J er
maksimal i den forstand, at hvis J ⊂ S ⊂ I og (vi)i∈S er lineært uafhængig, da er S = J.
Vi vil nu vise, at familien (vi)i∈J også frembringer V .

Så vi antager modsætningsvis, at dette ikke er tilfældet og viser, at det strider mod
maksimaliteten af J. Ifølge vores antagelse findes der en vektor v ∈ V , som ikke er
en linearkombination af (vi)i∈J , og da familien (vi)i∈I frembringer V , kan vi yderligere
antage, at v= vh, hvor h ∈ I og h ∉ J. Vi lader S = J∪ {h}⊂ I og viser, at familien (vi)i∈S
er lineært uafhængig. Så lad ∑

i∈S
viai = 0

være en linearkombination, der er lig med nulvektoren. Hvis ah 6= 0, da er

vh =
∑
i∈J

vi · (−aia−1
h )

en linearkombination af (vi)i∈J . Men da vi netop har antaget, at vh ikke er en line-
arkombination af (vi)i∈J , konkluderer vi, at ah = 0. Deraf følger, at∑

i∈J
viai =

∑
i∈S

viai = 0,

og da (vi)i∈J er lineært uafhængig, følger det, at ai = 0 for alle i ∈ J. Vi har altså hermed
vist, at ai = 0 for alle i ∈ S, hvilket viser, at (vi)i∈S er lineært uafhængig. Men S 6= J, så
dette strider mod maksimaliteten af J, og vi konkluderer derfor, at vores antagelse, at
familien (vi)i∈J ikke frembringer V er forkert. Så familien (vi)i∈J frembringer V og er
samtidigt lineært uafhængig og derfor en basis for V . Dette viser sætningen. 2

Definition 4.3.16 Et vektorrum V er endeligt frembragt, hvis der findes en endelig
familie (vi)i∈I af vektorer i V , der frembringer V .

Sætning 4.3.15 viser særligt, at et endeligt frembragt vektorrum V har en endelig
basis. Lad nemlig (vi)i∈I være en endelig familie af vektorer i V , der frembringer V .
Da den tomme delfamile ( ) er lineært uafhængig, viser sætning 4.3.15, at der findes
;⊂ J ⊂ I, sådan at (vi)i∈J er en basis for V .

Eksempel 4.3.17 Vi betragter igen familien (v1,v2,v3) af vektorer i R2, hvor

v1 =
(
2
1

)
, v2 =

(
1
1

)
og v3 =

(−1
3

)
.

Som vi bemærkede i eksempel 4.3.6 (1), så frembringer denne familie R2, men den er
ikke lineært uafhængig. De tre delfamilier (v1,v2), (v1,v3) og (v2,v3) er alle lineært
uafhængige og frembringer R2, og de udgør dermed alle baser for R2. De første to af
disse indeholder den lineært uafhængige familie (v1) som en delfamilie, mens dette
ikke er tilfældet for den tredje.
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Sætning 4.3.15 siger specielt, at enhver endelig familie af vektorer, der frembringer
et vektorrum, har en delfamilie, der er en basis for dette vektorrum. Sætningen siger
dog ikke, at en sådan basis er entydig, og eksempel 4.3.17 viser da også, at dette ikke er
tilfældet. Sætningen og dens bevis siger heller ikke noget om, hvordan man bærer sig
ad med at finde en sådan basis. Dette vender vi tilbage til i afsnit 4.5.

Sætning 4.3.18 Lad F være et legeme, og lad V være et F-vektorrum, der er frembragt
af en familie (v1, . . . ,vm) af m vektorer. Hvis (w1, . . . ,wn) er en lineært uafhængig familie
af n vektorer i V , så er n ≤ m.

Bevis Ifølge sætning 4.3.15 findes der en delfamilie (vi1 , . . . ,vik ) af (v1, . . . ,vm), som er
en basis for V . Ifølge sætning 4.3.11 er den lineære afbildning h : Fk →V defineret ved

h(x)= vi i x1 +·· ·+vik xk

derfor bijektiv. Samme sætning viser, at den lineære afbildning g : Fn →V defineret ved

g(y)= w1 y1 +·· ·+wn yn

er injektiv. Dermed er den sammensatte afbildning h−1◦g : Fn → Fk lineær og injektiv, og
korollar 2.5.16 viser derfor, at n ≤ k. Da også k ≤ m, følger det, at n ≤ m som ønsket. 2

Eksempel 4.3.19 (1) I eksempel 4.3.6 (1) viste vi, at familien (v1,v2,v3) af vektorer i
R2 ikke er lineært uafhængig. Men dette følger også fra sætning 4.3.18, som viser, at
en lineært uafhængig familie af vektorer R2 aldrig kan bestå af mere end 2 vektorer.
For familien (e1, e2) består af 2 vektorer og frembringer R2.
(2) Familien (1, t, t2, t3, . . . ) i vektorrummet F[t] af alle polynomier er lineært uafhængig.
Fordi denne familie er uendelig, viser sætning 4.3.18, at vektorrummet F[t] ikke er
endeligt frembragt.

Sætning 4.3.20 Lad F være et legeme og V et endeligt frembragt F-vektorrum. Hvis
både (v1, . . . ,vm) og (w1, . . . ,wn) er baser for V , så er m = n.

Bevis Da familien (v1, . . . ,vm) frembringer V , og da familien (w1, . . . ,wn) er lineært
uafhængig, viser sætning 4.3.18, at m ≥ n, og uligheden m ≤ n vises tilsvarende. 2

Sætning 4.3.20 viser, at det følgende dimensionsbegreb er veldefineret.
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Definition 4.3.21 Lad V være et endeligt frembragt vektorrum over et legeme F, og
lad (v1, . . . ,vd) være en basis for V . Da kaldes det naturlige tal

dimF(V )= d

for dimensionen af V .

Hvis F er underforstået, så skriver vi dim(V ) i stedet for dimF(V ).

Eksempel 4.3.22 (1) For ethvert legeme F har vektorrummet Fm dimension

dimF(Fm)= m.

For standardbasen (e1, . . . , em) er en basis for Fm.
(2) Underrummet NA ⊂ F5, som vi betragtede i eksempel 4.3.7, har dimension

dimF(NA)= 2.

For familien (v1,v2) fra eksempel 4.3.7 er en basis.
(3) Det reelle vektorrum C, som vi betragtede i eksempel 4.1.3 (5), har dimension

dimR(C)= 2.

For (1, i) er en basis, da ethvert z ∈C kan skrives entydigt som z = 1·a+i·b med a,b ∈R.
(4) Lad F[t]≤d være F-vektorrummet af polynomier med koefficienter i F og af grad

højst d, som vi betragtede i eksempel 4.1.3 (8). Det har dimension

dimF(F[t]≤d)= d+1.

For familien (t0, t1, . . . , td) er en basis, da ethvert polynomium p(t) af grad højst d kan
skrives entydigt som en linearkombination p(t)= t0 ·a0+ t1 ·a1+·· ·+ td ·ad, og indeks-
mængden {0,1, . . . ,d}, som har d+1 elementer.

Vi ønsker nu at vise, at hvis V er et endeligt frembragt vektorrum, og hvis U ⊂ V er
et underrum, så er dim(U) ≤ dim(V ). Det er dog ikke trivielt at vise, at vektorrummet
U er endeligt frembragt, så vi viser først, at dette faktisk er tilfældet.

Sætning 4.3.23 Lad F være et legeme, lad V være et endeligt frembragt F-vektorrum,
og lad U ⊂V være et underrum. Da er U endeligt frembragt, og dim(U)≤ dim(V ).
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Bevis Vi viser først, at U er endeligt frembragt. Så vi lader (v1, . . . ,vm) være en familie
af vektorer, der frembringer V , og antager, at U ikke er endeligt frembragt. Vi viser
da, at der for alle n ≥ 0 findes en lineært uafhængig familie (u1, . . . ,un) af vektorer i U ,
hvilket er i modstrid med sætning 4.3.18. Beviset for denne påstand er ved induktion
på n ≥ 0, og tilfældet n = 0 gælder, da den tomme familie er lineært uafhængig. Så
vi antager, at påstanden er bevist for n = p−1 og viser den for n = p. Per induktion
findes der en lineært uafhængig familie (u1, . . . ,up−1) af p− 1 vektorer i U , og da U
per antagelse ikke er endeligt frembragt, er underrummet U ′ ⊂ U frembragt af denne
familie ikke hele U . Vi kan derfor vælge en vektor up ∈UàU ′, og vi viser nu, at familien
(u1, . . . ,up−1,up) af p vektorer i U er lineært uafhængig. Så vi lader

u1a1 +·· ·+up−1ap−1 +upap = 0

være en linearkombination af (u1, . . . ,up), som er lig med nulvektoren, og skal da vise,
at ai = 0 for alle 1≤ i ≤ p. Hvis ap 6= 0, da er 2

up =−(u1a1 +·· ·+up−1ap−1)a−1
p ,

hvilket strider mod, at up ∉U ′. Så ap = 0, og derfor er

u1a1 +·· ·+up−1ap−1 = 0,

hvoraf det følger, at ai = 0 for 1 ≤ i ≤ p − 1, idet (u1, . . . ,up−1) er lineært uafhængig.
Dette viser induktionsskridtet og dermed påstanden, at der for alle n ≥ 0 findes en
lineært uafhængig familie (u1, . . . ,un) af vektorer i U . Men denne familie er da også en
lineært uafhængig familie af vektorer i V , hvilket er i modstrid med sætning 4.3.18. Vi
slutter derfor, at vores antagelse, at U ikke er endeligt frembragt var forkert, hvilket
viser, at U er endeligt frembragt som ønsket. Vi anvender endelig sætning 4.3.15 til at
vælge baser (u1, . . . ,un) for U og (v1, . . . ,vm) for V . Familien (u1, . . . ,un) er da specielt
en lineær uafhængig familie af vektorer i V , mens familien (v1, . . . ,vm) af vektorer i V
frembringer V . Derfor viser sætning 4.3.18, at

dim(U)= n ≤ m = dim(V )

som ønsket. 2

Sætning 4.3.24 Lad F være et legeme, lad V være et endeligt frembragt F-vektorrum,
og lad d = dimF(V ). Da gælder følgende udsagn:

(1) Enhver lineært uafhængig familie (v1, . . . ,vm) af vektorer i V er en delfamilie af
en basis (v1, . . . ,vm,vm+1, . . . ,vd) for V .

(2) Enhver familie (v1, . . . ,vn) af vektorer i V , der frembringer V , har en delfamilie
(vi1 , . . . ,vid ), der er en basis for V .

2 Bemærk, at vi anvender, at F er et legeme, sådan at det for alle elementer a ∈ F gælder, at hvis a 6= 0,
da er a invertibel.

157



4 Vektorrum

Bevis For at bevise (1) lader vi (vm+1, . . . ,vp) være en endelig familie af vektorer i V , der
frembringer V . Da frembringer familien (v1, . . . ,vm,vm+1, . . . ,vp) ligeledes V , og den in-
deholder den lineært uafhængige familie (v1, . . . ,vm) som en delfamilie. Sætning 4.3.15
viser derfor, at der findes en delmængde

{1,2, . . . ,m}⊂ J ⊂ {1,2, . . . ,m,m+1, . . . , p},

sådan at delfamilien (vi)i∈J er en basis for V , og ved om nødvendigt at reindicere, kan
vi antage, at J = {1,2, . . . ,m,m+1, . . . ,d}. Dette viser (1).

Endelig følger (2) umiddelbart fra sætning 4.3.15, som viser, at der findes

;⊂ {i1, . . . , id}⊂ {1,2, . . . ,n},

sådan at delfamilien (vi1 , . . . ,vid ) er en basis for V . 2

Vi illustrerer de sidste to sætninger med følgende simple eksempel.

Eksempel 4.3.25 Vi betragter igen underrummet fra eksempel 4.1.5,

U =
{

x=
(
x1
x2

)
∈R2 ∣∣ x1 = x2

}
⊂V =R2.

Da V er endeligt frembragt af dimension 2, så viser sætning 4.3.23, at U er endeligt
frembragt af dimension højst 2, og det er da heller ikke svært at se, at familien

(
v1 =

(
1
1

) )
er en basis for U . Så U har dimension 1. Hvis vi betragter (v1) som en familie af
vektorer i V , da er denne familie derfor lineært uafhængig. Ifølge sætning 4.3.24 findes
der derfor en basis for V , som indeholder (v1) som en delfamilie. Standardbasen (e1, e2)
for V har ikke denne egenskab, da v1 hverken er lig med e1 eller e2. Derimod er

(
v1 =

(
1
1

)
,v2 =

(
1
0

))
en basis for V , som indeholder (v1) som en delfamilie. For eksempel er

det
(
v1 v2

)= det
(
1 1
1 0

)
=−1 6= 0,

og lemma 4.3.9 viser derfor, at (v1,v2) er en basis for V . Se også figur 4.3.
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U

v1

v2

Figur 4.3: Underrum U ⊂V =R2 og basis for V som indholder en basis for U .

Bemærkning 4.3.26 Vi skitserer her, hvordan begreber og sætninger i dette afsnit
udvides til vektorrum, der ikke antages at være endeligt frembragte.

Vi definerer en linearkombination af en familie af vektorer i et vektorrum som følger.
Hvis a = (ai)i∈I er en familie af skalarer, da definerer vi dens support til at være

supp(a)= {i ∈ I | ai 6= 0}⊂ I,

og vi siger, at a = (ai)i∈I har endelig support, hvis supp(a)⊂ I er en endelig delmængde.
Vi lader nu V være et vektorrum og lader (vi)i∈I være en familie af vektorer i V . Hvis
(ai)i∈I er en familie af skalarer, der er indiceret ved den samme mængde I og som har
endelig support, da definerer vi ∑

i∈I
viai =

∑
i∈supp(a)

viai

og kalder denne sum for en linearkombination af familien (vi)i∈I . Vi bemærker, at mens
højresiden er en endelig sum og derfor meningsfuld, er venstresiden blot et symbol,
der ved denne ligning defineres til at være lig med højresiden. Med denne definition
af en linearkombination kan definition 4.3.4 nu udvides til vilkårlige familier mutatis
mutandis.

Den lineære algebras hovedsætning gælder generelt og siger, at hvis (vi)i∈I er en
familie af vektorer i V , der frembringer V , og hvis (vi)i∈K er en lineært uafhængig
delfamilie, da findes K ⊂ J ⊂ I, sådan at delfamilien (vi)i∈J er en basis for V . Man kan
dog ikke bevise denne sætning uden at anvende Zorns lemma.3 Et vektorrum V har
altid en familie af vektorer, der frembringer V , nemlig identitetsfamilien (v)v∈V , og den
tomme familie er en lineært uafhængig delfamilie heraf. Dermed har V en basis, som
kan være (vilkårligt) uendelig.

3 A. Blass. Existence of bases implies the axiom of choice. Axiomatic Set Theory (Boulder, CO, 1983),
31–33, Contemp. Math., 31, Amer. Math. Soc., Providence, RI, 1984.
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Man kan også vise, at to baser for det samme vektorrum nødvendigvis består af det
samme “antal” vektorer. Mere præcist, hvis (vi)i∈I og (w j) j∈J er to baser for V , da har
mængderne I og J samme kardinalitet4 α, og man definerer da dimensionen af V til
at være dimF(V ) = α. For eksempel har F[t] dimension ℵ0, hvilket er kardinaliteten af
de naturlige tal, mens vektorrummet, der består af alle følger (ai)i∈N af skalarer ai ∈ F,
har dimension 2ℵ0 , hvilket er kardinaliteten af de reelle tal.

4.4 Matrixrepræsentation af lineære afbildninger

Som Descartes har lært os, er det lettest at lave udregninger ved at bruge koordinater.
Vi indfører nu koordinater for endeligt frembragte vektorrum og matrixrepræsentation
for lineære afbildninger mellem endeligt frembragte vektorrum. Det er dog vigtigt at
huske, at begge begreber afhænger af valg af baser.

Vi viste i lemma 4.2.3, at en n-tuple (v1, . . . ,vn) af vektorer i et vektorrum V entydigt
bestemmer en lineær afbildning h : Fn → V , sådan at h(ei) = vi for alle 1 ≤ i ≤ n, og vi
viste i sætning 4.3.11, at denne afbildning er en isomorfi, hvis og kun hvis (v1, . . . ,vn) er
en basis for V .

Definition 4.4.1 Lad V være et endeligt frembragt vektorrum over et legeme F. Lad
(v1, . . . ,vn) være en basis for V , og lad h : Fn →V være den lineære isomorfi givet ved

h(x)= v1x1 +v2x2 +·· ·+vnxn.

Givet en vektor v ∈ V , da kaldes den entydigt bestemte søjlevektor x ∈ Fn, sådan at
h(x)= v for koordinaterne af v ∈V med hensyn til basen (v1, . . . ,vn).

Eksempel 4.4.2 (1) Vi betragter igen basen(
v1 =

(
2
1

)
, v2 =

(
1
1

))
for V = R2 fra eksempel 4.3.6 (1). Den entydigt bestemte lineære isomorfi h : R2 → V ,
som opfylder, at h(e1)= v1 og h(e2)= v2, er da givet ved

h(x)= v1x1 +v2x2 =
(
2 1
1 1

)(
x1
x2

)
=

(
2x1 + x2

x1 + x2

)
.

Vi ønsker at bestemme koordinaterne x ∈R2 af vektoren

v=
(
5
3

)
∈V

4 Kenneth Kunen. Set Theory. Studies in Logic (London), 34. College Publications, London, 2011. Kar-
dinaliteten af en mængde er defineret i Definition I.10.11.
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med hensyn til basen (v1,v2). Per definition er x ∈R2 den entydigt bestemte søjlevektor,
sådan at h(x)= v. Denne søjlevektor er altså løsningen til ligningssystemet(

2 1
1 1

)(
x1
x2

)
=

(
5
3

)
,

som er

x=
(
x1
x2

)
=

(
2 1
1 1

)−1 (
5
3

)
=

(
1 −1

−1 2

)(
5
3

)
=

(
2
1

)
.

Vi har dermed udregnet, at v= v1 ·2+v2 ·1.
(2) Vi betragter vektorrummet V = F[t]≤d af polynomier med koefficienter i F og af grad
højst d fra eksempel 4.1.3. Familien (t0, t1, . . . , td) er en basis for V , og den entydige
lineære isomorfi h : Fd+1 →V , sådan at h(ei)= ti−1 for alle 1≤ i ≤ d+1, er givet ved

h(x)= t0 · x1 + t1 · x2 +·· ·+ td · xd+1 = x1 + x2t+·· ·+ xd+1td.

Vi aflæser heraf, at koordinaterne af vektoren p(t)= a0+a1t+·· ·+ad td ∈V med hensyn
til basen (t0, t1, . . . , td) for V er lig med søjlevektoren

x=

a0
...

ad

 ∈ Fd+1.

Vi bemærker det forvirrende indeksskift, som skyldes, at vi i dette afsnit kun tillader
baser at være indiceret ved I = {1,2, . . . ,n} og ikke ved for eksempel I = {0,1, . . . ,d}.
(3) Vi lader V = {|↑〉 z1 +|↓〉 z2 | z1, z2 ∈C } være C-vektorrummet fra eksempel 4.1.3 (7)

og betragter basen ( v1 = |↑〉1/p2+ |↓〉1/p2 , v2 = |↑〉1/p2− |↓〉1/p2 ) herfor. Den entydige
lineære afbildning h : C2 →V , sådan at h(e2)= v1 og h(e2)= v2, er da givet ved

h(w)= v1w1 +v2w2 = ( |↑〉 1p
2
+|↓〉 1p

2
)w1 + ( |↑〉 1p

2
−|↓〉 1p

2
)w2

= |↑〉 ( 1p
2
w1 + 1p

2
w2)+|↓〉 ( 1p

2
w1 − 1p

2
w2).

Koordinaterne w ∈ C2 af vektoren v = |↑〉1/p2+|↓〉 i/p2 med hensyn til basen (v1,v2) er
dermed den entydige løsning til ligningssystemet(

1/p2 1/p2
1/p2 −1/p2

)(
w1
w2

)
=

(
1/p2
i/p2

)
,

som er

w=
(
w1
w2

)
=

(
1/p2 1/p2
1/p2 −1/p2

)−1 (
1/p2
i/p2

)
=

(
1/2+ i/2
1/2− i/2

)
.
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Vi skal nu vise, at givet to endeligt frembragte vektorrum samt baser for disse, da kan
enhver lineær afbildning mellem disse vektorrum på entydig vis repræsenteres ved en
matrix. Det er vigtigt at huske denne sætning helt præcist, da den danner grundlaget
for alle beregninger, der har med lineære afbildninger at gøre.

Sætning 4.4.3 Lad F være et legeme, og lad f : V → W være en lineær afbildning fra
et n-dimensionalt F-vektorrum til et m-dimensionalt F-vektorrum. Lad (v1, . . . ,vn) og
(w1, . . . ,wm) være baser for henholdsvis V og W , og lad

A = (ai j) ∈ Mm,n(F)

være matricen, hvis j’te søjle er koordinaterne for f (v j) ∈W med hensyn til (w1, . . . ,wm).
Hvis v ∈ V og w = f (v) ∈ W , og hvis x ∈ Fn og y ∈ Fm er koordinaterne for v ∈ V med
hensyn til (v1, . . . ,vn) og for w ∈W med hensyn til (w1, . . . ,wm), da er

y= Ax.

Matricen A ∈ Mm,n(F) er endvidere entydigt bestemt ved denne egenskab.

Bevis Ifølge definition 4.4.1 kan vi skrive v ∈V entydigt som

v=
n∑

j=1
v j x j,

hvor x ∈ Fn er koordinaterne af v med hensyn til basen (v1, . . . ,vn). Vi anvender f på
denne ligning og udnytter henholdsvis (L1) og (L2) til at omskrive højresiden:

f (v)= f (
n∑

j=1
v j x j)=

n∑
j=1

f (v j x j)=
n∑

j=1
f (v j) x j.

Ifølge definition 4.4.1 kan vi ligeledes skrive vektoren f (v j) ∈W entydigt som

f (v j)=
m∑

i=1
wiai j,

hvor

a j =

 a1 j
...

am j

 ∈ Fm

er koordinaterne af f (v j) med hensyn til basen (w1, . . . ,wm). Vi substituerer disse sidste
ligninger i udtrykket for w= f (v) overfor, hvilket giver

w=
n∑

j=1
(

m∑
i=1

wi ai j) x j =
m∑

i=1
wi (

n∑
j=1

ai j x j).
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Da koordinaterne y ∈ Fm af vektoren w med hensyn til basen (w1, . . . ,wm) er entydigt
bestemt, aflæser vi af denne ligning, at

yi =
n∑

j=1
ai j x j

for alle 1 ≤ i ≤ m. Dermed har vi vist, at y = Ax som ønsket, hvor A = (ai j). Endelig
er matricen A entydigt bestemt, idet koordinaterne a j ∈ Fm for vektoren f (v j) ∈W med
hensyn til basen (w1, . . . ,wm) er entydigt bestemte. 2

Sætning 4.4.3 giver en 1-1-korrespondance mellem lineære afbildninger f : V →W og
matricer A ∈ Mm,n(F). Denne 1-1-korrespondance afhænger af valget af baser (v1, . . . ,vn)
for V og (w1, . . . ,wm) for W , og vi indfører derfor følgende terminologi.

Definition 4.4.4 Lad F være et legeme, og lad f : V → W være en lineær afbildning
fra et n-dimensionalt F-vektorrum til et m-dimensionalt F-vektorrum. Lad (v1, . . . ,vn)
og (w1, . . . ,wm) være baser for henholdsvis V og W . Da kaldes matricen

A = (ai j) ∈ Mm,n(F),

hvis j’te søjle er koordinaterne for f (v j) ∈W med hensyn til basen (w1, . . . ,wm) for W ,
for matricen, der repræsenterer f : V → W med hensyn til baserne (v1, . . . ,vn) for V og
(w1, . . . ,wm) for W .

Bemærkning 4.4.5 Vi kan reformulere definitionen af den matrix A ∈ Mm,n(F), der
repræsenterer den lineære afbildning f : V →W med hensyn til basen (v1, . . . ,vn) for V
og basen (w1, . . . ,wm) for W som følger. Lad h : Fn → V og k : Fm → W være de entydigt
bestemte lineære isomorfier, sådan at h(e j) = v j for alle 1 ≤ j ≤ n og k(ei) = wi for alle
1≤ i ≤ m. Der findes netop én lineær afbildning g : Fn → Fm, sådan at diagrammet

V W

Fn Fm

f
//

h

OO

k

OO

g
//

kommuterer, nemlig, g = k−1 ◦ f ◦ h, og vi påstår, at A ∈ Mm,n(F) også repræsenterer
afbildningen g : Fn → Fm med hensyn til standardbaserne. For da f ◦h = k◦ g, så gælder
det for alle 1≤ j ≤ n, at

g(e j)= e1a1 j + e2a2 j +·· ·+ emam j,

hvis og kun hvis
f (v j)= w1a1 j +w2a2 j +·· ·+wmam j,

hvilket viser påstanden.
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Eksempel 4.4.6 (1) Lad F være et legeme, og betragt vektorerne v1,v2 ∈ F2, hvor

v1 =
(
7
2

)
, v2 =

(
3
1

)
.

Familien (v1,v2) er en basis for F2, og matricen P ∈ M2(F), der repræsenterer identitets-
afbildningen id: F2 → F2 med hensyn til basen (v1,v2) for domænet og standardbasen
(e1, e2) for codomænet, er per definition givet ved

P =
(
7 3
2 1

)
.

Søjlene i P er nemlig koordinaterne af vektorerne v1 = id(v1) og v2 = id(v2) med hensyn
til standardbasen (e1, e2) for F2. Denne matrix er altså ikke identitetsmatricen, hvilket
skyldes, at vi ikke anvender den samme basis for domænet og codomænet.
(2) Matricen A ∈ Mn(F), der repræsenterer identitetsafbildning id : V →V med hensyn
til den samme basis (v1, . . . ,vn) for både domænet og codomænet, er identitetsmatricen
A = In. Per definition er den j’te søjle i A nemlig koordinaterne af id(v j) = v j med
hensyn til basen (v1, . . . ,vn), og udregningen

v j =
∑
i< j

vi ·0+v j ·1+
∑
i> j

vi ·0

viser, at koordinaterne af v j med hensyn til denne basis er lig med e j ∈ Fn.
(3) Vi betragter den lineære afbildning D : F[t]≤2 → F[t]≤1, der til et polynomium

p(t)= a0 +a1t+a2t2

tilordner det formelt afledte polynomium

D(p(t))= p′(t)= a1 +2a2t.

Vi aflæser da fra udregningen

D(t0)= 0= t0 ·0+ t1 ·0
D(t1)= 1= t0 ·1+ t1 ·0
D(t2)= 2t = t0 ·0+ t1 ·2,

at den matrix A ∈ M2,3(F), der repræsenterer D med hensyn til basen (t0, t1, t2) for
domænet og (t0, t1) for codomænet, er givet ved

A =
(
0 1 0
0 0 2

)
.
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Bemærkning 4.4.7 Vi vil symbolisere, at f : V → W er repræsenteret af A ∈ Mm,n(F)
med hensyn til baserne (v1, . . . ,vn) for V og (w1, . . . ,wm) for W med figuren

V
f

//W

(v1, . . . ,vn)
A

// (w1, . . . ,wm).

Denne notation er ikke standard, men som vi skal se nedenfor, gør den det lettere at
overskue, hvordan sammensætning af lineære afbildninger oversættes til matrixsprog.
Vi understreger, at den prikkede pil ikke betegner en afbildning.

Eksempel 4.4.8 Med notationen fra bemærkning 4.4.7 udtrykker vi den situation, vi
betragtede i eksempel 4.4.6, som følger.

F2F2 id //

(e1, e2)(v1,v2) P //

F[t]≤1F[t]≤2
D //

(t0, t1)(t0, t1, t2) A //

Sætning 4.4.9 Lad F være et legeme, lad U , V og W være F-vektorrum af dimension
henholdsvis p, n og m, og lad (u1, . . . ,up), (v1, . . . ,vn) og (w1, . . . ,wm) være baser for
henholdsvis U , V og W . Lad f : V → W og g : U → V være lineære afbildninger, og lad
A ∈ Mm,n(F), B ∈ Mn,p(F) og C ∈ Mm,p(F) være matricerne, der repræsenterer henholdsvis
f : V →W , g : U →V og f ◦ g : U →W med hensyn til de givne baser. Da er

C = AB.

Bevis For u ∈ U lader vi x ∈ Fp, y ∈ Fn og z ∈ Fm være koordinaterne for henholdsvis
u ∈U med hensyn til basen (u1, . . . ,up), v = g(u) ∈ V med hensyn til basen (v1, . . . ,vn),
og w= f (g(u)) ∈W med hensyn til basen (w1, . . . ,wm). Ifølge sætning 4.4.3 er

z = Ay= A(Bx)= (AB)x,

og da matricen C, der repræsenterer f ◦ g : U → W med hensyn til baserne (u1, . . . ,up)
for U og (w1, . . . ,wm) for W , er entydigt bestemt, konkluderer vi, at C = AB som ønsket.
Vi bemærker, at vi i udregningen ovenfor har anvendt det ikke-trivielle faktum, at den
associative lov gælder for matrixmultiplikation, hvilket vi viste i sætning 2.1.10. 2
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Bemærkning 4.4.10 Med notationen fra bemærkning 4.4.7 kan vi udtrykke udsagnet
i sætning 4.4.9 ved følgende diagram.

U V W
g

//
f

//

f ±g

&&

(u1, . . . ,up) (v1, . . . ,vn) (w1, . . . ,wm)B // A //

AB

77

Vi bemærker, at den rækkefølge, hvori de to afbildninger f og g sammensættes, er den
samme som den rækkefølge, hvori de to matricer A og B, der repræsenterer dem med
hensyn til de valgte baser, multipliceres.

Korollar 4.4.11 Lad F være et legeme, og lad f : V →W være en lineær afbildning fra et
n-dimensionalt F-vektorrum V til et m-dimensionalt F-vektorrum W . Hvis A ∈ Mm,n(F)
er matricen, der repræsenterer f : V → W med hensyn til baser (v1, . . . ,vn) for V og
(w1, . . . ,wm) for W , da er de følgende udsagn ækvivalente:

(1) Der findes en lineær afbildning g : W →V , sådan at f ◦ g = idW og g ◦ f = idV .

(2) Der findes en matrix B ∈ Mn,m(F), sådan at AB = Im og BA = In.

I givet fald repræsenterer matricen B ∈ Mn,m(F) afbildningen g : W →V med hensyn til
basen (w1, . . . ,wm) for W og (v1, . . . ,vn) for V .

Bevis Vi antager først (1), og for at vise (2) betragter vi følgende figur.

W V W
g

//
f

//

f ±g = idW

&&

(w1, . . . ,wm) (v1, . . . ,vn) (w1, . . . ,wm)B // A //

AB = Im

77

Lad B ∈ Mn,m(F) være matricen, der repræsenterer g : W → V med hensyn til baserne
(w1, . . . ,wm) for W og (v1, . . . ,vn) for V . Ifølge sætning 4.4.9 er AB ∈ Mm(F) da matricen,
der repræsenterer f ◦ g = idW : W →W med hensyn til den samme basis (w1, . . . ,wm) for
både domænet og codomænet, og denne matrix er derfor lig med identitetsmatricen Im.
Vi ser tilsvarende, at g ◦ f = idV medfører, at BA = In, så (2) gælder.
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Omvendt, hvis (2) gælder, så lader vi g : W → V være den lineære afbildning, der er
repræsenteret af B ∈ Mn,m(F) med hensyn til baserne (w1, . . . ,wm) for W og (v1, . . . ,vn)
for V . Ifølge sætning 4.4.9 er f ◦ g : W →W den lineære afbildning, der er repræsenteret
af AB = Im med hensyn til den samme basis (w1, . . . ,wm) for domænet og codomænet,
og denne lineære afbildning er derfor lig med identitetsafbildningen idW . Beviset for at
BA = In medfører, at g ◦ f = idV , er tilsvarende, så (1) følger. 2

Hvis de ækvivalente udsagn (1) og (2) i korollar 4.4.11 gælder, da er m = n, idet en
invertibel matrix altid er kvadratisk. Vi viser nu følgende mere præcise resultat.

Sætning 4.4.12 Lad F være et legeme, og lad f : V → W være en lineær afbildning
mellem F-vektorrum. Da er f en isomorfi hvis og kun hvis det for enhver basis (vi)i∈I
for V gælder, at familien ( f (vi))i∈I er en basis for W . I givet fald har V og W samme
dimension.

Bevis Vi antager først, at f er en isomorfi. Vi lader (vi)i∈I være en basis for V og skal
da vise, at ( f (vi))i∈I er en basis for W . Så lad g : W → V være den inverse afbildning af
f : V →W . Givet en vektor w ∈W , da kan vi skrive v = g(w) ∈V som en linearkombina-
tion v=∑

i∈I viai. Det følger derfor, at

w= f (v)= f (
∑
i∈I

viai)=
∑
i∈I

f (vi)ai,

hvilket viser, at familien ( f (vi))i∈I frembringer W . Og hvis en linearkombination∑
i∈I

f (vi)ai

er lig med nulvektoren, da er også∑
i∈I

viai =
∑
i∈I

g( f (vi))ai = g(
∑
i∈I

f (vi)ai)

lig med nulvektoren, og da (vi)i∈I er lineært uafhængig, er alle ai derfor lig med nul.
Dette viser, at familien ( f (vi))i∈I også er lineært uafhængig og dermed en basis for W .
Specielt har V og W derfor samme dimension. Omvendt, hvis (vi)i∈I er en basis for V
og ( f (vi))i∈I en basis for W , da giver formlen g(

∑
i∈I f (vi)ai) =

∑
i∈I viai en veldefineret

og lineær afbildning g : W → V . Per definition er f ◦ g = idW og g ◦ f = idV , hvilket som
ønsket viser, at f : V →W er en isomorfi. 2

Eksempel 4.4.13 Vi har i eksempel 4.4.6 bestemt matricen P ∈ M2(F), der repræsen-
terer identitetsafbildningen id: F2 → F2 med hensyn til basen (v1,v2) for domænet og
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standardbasen (e1, e2) for codomænet. Eftersom identitetsafbildningen er sin egen in-
verse afbildning, viser korollar 4.4.11, at matricen, der repræsenterer id: F2 → F2 med
hensyn til standardbasen (e1, e2) for domænet og basen (v1,v2) for codomænet er

P−1 =
(

1 −3
−2 7

)
.

Her har vi brugt eksempel 3.4.4 til at udregne den inverse matrix.

Vi skal nu se, hvordan matricen, der repræsenterer en lineær afbildning med hensyn
til ét valg af baser, bestemmer matricen, der repræsenterer den samme afbildning med
hensyn til et andet valg af baser. Vi opfordrer læseren til at huske det simple bevis for
den følgende sætning i stedet for det komplicerede udsagn.

Sætning 4.4.14 Lad F være et legeme, og lad f : V →W være en lineær afbildning fra et
n-dimensionalt F-vektorrum V til et m-dimensionalt F-vektorrum W . Lad A ∈ Mm,n(F)
være matricen, der repræsenterer f : V → W med hensyn til baser (v′

1, . . . ,v′
n) for V og

(w′
1, . . . ,w′

m) for W , og lad B ∈ Mm,n(F) være matricen, der repræsenterer f : V →W med
hensyn til baser (v1, . . . ,vn) for V og (w1, . . . ,wm) for W . Da er

B =Q−1AP,

hvor P ∈ Mn(F) repræsenterer idV : V →V med hensyn til basen (v1, . . . ,vn) for domænet
og basen (v′

1, . . . ,v′
n) for codomænet, og hvor Q ∈ Mm(F) repræsenterer idW : W →W med

hensyn til basen (w1, . . . ,wm) for domænet og basen (w′
1, . . . ,w′

m) for codomænet.

Bevis Den følgende figur illustrerer den information, vi har til rådighed.

V W

V W

f
//

idV

OO

idW

OO

f
//

(v0
1, . . . ,v0

n) (w0
1, . . . ,w0

m)

(v1, . . . ,vn) (w1, . . . ,wm)

A

''

P

EE

Q

YY

B
88
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Ifølge sætning 4.4.9 er matricen C, der repræsenterer idW ◦ f = f ◦ idV : V → W med
hensyn til baserne (v′

1, . . . ,v′
n) for V og (w1, . . . ,wm) for W , lig med

C =QB = AP,

og da identitetsafbildningen idW : W → W er en isomorfi, følger det fra korollar 4.4.11,
at matricen Q er invertibel. Derfor er B =Q−1AP som ønsket. 2

Bemærkning 4.4.15 Vi aflæser udsagnet i sætning 4.4.14 fra figuren i beviset som
følger. Vi ønsker at skrive den prikkede pil “B” som en sammensætning af de øvrige
prikkede pile og bemærker, at dette kræver, at pilen “Q” vendes om. Pilen i den modsatte
retning er da “Q−1”, og den findes, fordi Q er invertibel.

Eksempel 4.4.16 Vi betragter den lineære afbildning f : F3 → F2, der er repræsenteret
med hensyn til standardbaserne (e1, e2, e3) for F3 og (e1, e2) for F2 af matricen

A =
(
2 4 1
1 −1 0

)
∈ M2,3(F),

og vi ønsker at bestemme matricen B ∈ M2,3(F), der repræsenterer f : F3 → F2 med
hensyn til de nye baser

(
v1 =

2
0
3

 ,v2 =
0

1
1

 ,v3 =
1

0
1

)
og

(
w1 =

(
1
1

)
,w2 =

(
3
2

))

for henholdsvis F3 og F2. Vi betragter derfor den følgende figur.

F3 F2

F3 F2

f
//

id
F3

OO

id
F2

OO

f
//

(e1, e2, e3) (e1, e2)

(v1,v2,v3) (w1,w2)

A

&&

P

DD

Q

ZZ

B
88
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4 Vektorrum

Vi ser direkte fra definitionen af de nye basisvektorer, at

P =
2 0 1

0 1 0
3 1 1

 ∈ M3(F) og Q =
(
1 3
1 2

)
∈ M2(F),

og vi konkluderer derfor fra sætning 4.4.14, at

B =Q−1AP =
(−2 3

1 −1

)(
2 4 1
1 −1 0

)2 0 1
0 1 0
3 1 1

=
(−8 −13 −3

5 6 2

)
.

Her har vi anvendt eksempel 3.4.4 til at udregne Q−1.

Korollar 4.4.17 Lad F være et legeme, og lad V være et n-dimensionalt F-vektorrum.
Lad (v1, . . . ,vn) og (w1, . . . ,wn) være baser for V , og lad P ∈ Mn(F) være matricen,
der repræsenterer idV : V → V med hensyn til basen (v1, . . . ,vn) for domænet og basen
(w1, . . . ,wn) for codomænet. Hvis x ∈ Fn og y ∈ Fn er koordinaterne af en vektor v ∈ V
med hensyn til henholdsvis (v1, . . . ,vn) og (w1, . . . ,wn), da er

y= Px.

Bevis Påstanden følger umiddelbart af sætning 4.4.3 anvendt på idV : V →V . 2

Eksempel 4.4.18 Vi betragter en vektor

y= e1 y1 + e2 y2 + e3 y3 ∈ F3

og ønsker at bestemme koordinaterne x ∈ F3 af denne vektor med hensyn til den nye
basis (v1,v2,v3) for F3 fra eksempel 4.4.16. Ifølge korollar 4.4.17 gælder det da, at

y= Px,

hvor P er matricen, der repræsenterer id: F3 → F3 med hensyn til basen (v1,v2v3) for
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domænet og basen (e1, e2, e3) for codomænet. Vi bestemmer derfor P−1,

(P | I)=
 2 0 1 1 0 0

0 1 0 0 1 0
3 1 1 0 0 1


+(−1)R1 2 0 1 1 0 0

0 1 0 0 1 0
1 1 0 −1 0 1

 + (−2)R3

 0 −2 1 3 0 −2
0 1 0 0 1 0
1 1 0 −1 0 1

 +2R2

+ (−1)R2 0 0 1 3 2 −2
0 1 0 0 1 0
1 0 0 −1 −1 1

 R1 ↔ R3

(I | P−1)=
 1 0 0 −1 −1 1

0 1 0 0 1 0
0 0 1 3 2 −2

 ,

og konkluderer, at

x= P−1 y=
−1 −1 1

0 1 0
3 2 −2

y1
y2
y3

=
 −y1 − y2 + y3

y2
3y1 +2y2 −2y3

 .

Bemærkning 4.4.19 For at kunne skifte koordinater og lave lignende udregninger er
det kun nødvendigt at huske følgende:

(a) Definitionen af matricen, der repræsenterer en lineær afbildning med hensyn til
givne baser for dens domæne og codomæne.

(b) Hvis to lineæere afbildning sammensættes, så multiplicereres de matricer, der
repræsenterer dem, i samme rækkefølge.

Koordinatskift svarer til at anvende disse principper på identitetsafbildningen. Det er
en god idé at tegne figurer, som vi har gjort ovenfor, for ikke at blive forvirret over,
hvilken vej afbildningerne går, og hvilken rækkefølge, de sammensættes i.

Bemærkning 4.4.20 Lineære afbildninger mellem uendeligt dimensionale vektorrum
forekommer naturligt i mange sammenhænge. For eksempel har mængden C0([a,b]) af
kontinuerte reelle funktioner f : [a,b] → R en reel vektorrumsstruktur med vektorsum
og skalarmultiplikation defineret ved ( f + g)(x) = f (x)+ g(x) og ( f · a)(x) = f (x) · a, og
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afbildningen I : C0([a,b])→R defineret ved

I( f )=
∫ b

a
f (x)dx

er da en lineær afbildning. Dimensionen af C0([a,b]) er imidlertid 22ℵ0 , så det er ikke
muligt at studere dette vektorrum med de algebraiske metoder, vi har udviklet her. I
stedet betragter vi C0([a,b]) som et topologisk vektorrum, hvilket gør det muligt at tale
om (visse) uendelige summer, og som sådan udgør den tællelige familie (xn)n∈N ifølge
Weierstrass’ approksimationssætning en slags basis.

4.5 Kerne og billede

Vi definerer kernen og billedet af en lineær afbildning og viser, hvordan disse begreber
giver anledning til en bedre forståelse af lineære ligningssystemer.

Definition 4.5.1 Lad F være et legeme. Hvis f : V →W er en lineær afbildning mellem
to F-vektorrum, da kaldes

ker( f )= {v ∈V | f (v)= 0}⊂V og im( f )= { f (v) ∈W | v ∈V }⊂W

henholdsvis kernen af f : V →W og billedet af f : V →W .

Lemma 4.5.2 Lad f : V → W være en lineær afbildning mellem to F-vektorrum. Da er
ker( f )⊂V underrum af V og im( f )⊂W underrum af W .

Bevis Vi skal vise, at ker( f ) ⊂ V og im( f ) ⊂ W opfylder (1)–(3) i definition 4.1.4 og
begynder med ker( f ) ⊂ V . Da f (0) = 0, er 0 ∈ ker( f ), så (1) gælder. Hvis f (u) = 0 og
f (v)= 0, da er også f (u+v)= f (u)+ f (v)= 0+0= 0, så (2) gælder. Endelig, hvis f (v)= 0,
da er f (v ·a)= f (v) ·a = 0 ·a = 0, så også (3) gælder.

Vi betragter dernæst im( f )⊂W . Da 0= f (0), er 0 ∈ im( f ), så (1) gælder. Hvis w= f (u)
og z = f (v), da er w+ z = f (u)+ f (v) = f (u+v), så (2) gælder. Og hvis w = f (v), da er er
w ·a = f (v) ·a = f (v ·a), så også (3) gælder. Vi har nu bevist lemmaet. 2

Eksempel 4.5.3 (1) For nulafbildningen 0 : V →W er ker(0) = V og im(0) = {0}, og for
identitetsafbildningen idV : V →V er ker(idV )= {0} og im(idV )=V .
(2) Hvis f : Fn → Fm er repræsenteret af matricen A ∈ Mm,n(F) med hensyn til de

respektive standardbaser, da er ker( f ) = NA lig med nulrummet for A, og im( f ) = RA
er lig med søjlerummet af A.
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Vi ser af eksempel 4.5.3, at det for både nulafbildningen og identitetsafbildningen
gælder, at summen af dimensionerne af kernen og billedet er lig med dimensionen af
domænet. Vi skal nu vise, at denne identitet, der kaldes Grassmanns dimensionsformel,
gælder helt generelt.

Sætning 4.5.4 Lad F være et legeme. Hvis f : V → W er en lineær afbildning mellem
endeligt dimensionale F-vektorrum, da er

dim(ker( f ))+dim(im( f ))= dim(V ).

Bevis Vi vælger baser (v1, . . . ,vp) og (w1, . . . ,wr) for henholdsvis ker( f ) og im( f ), hvilket
er muligt ifølge sætning 4.3.15, og vælger yderligere en familie (vp+1, . . . ,vp+r) af vek-
torer i V , sådan at f (vp+i) = wi, for alle 1 ≤ i ≤ r. Vi påstår, at (v1, . . . ,vp,vp+1, . . . ,vp+r)
er en basis for V , hvorfra sætningen umiddelbart følger. For at vise påstanden, viser vi
først, at familien (v1, . . . ,vp,vp+1, . . . ,vp+r) er lineært uafhængig. Så vi lader

v1a1 +·· ·+vpap +vp+1ap+1 +·· ·+vp+rap+r = 0

være en linearkombination, der er lig med 0, og skal vise at ai = 0 for alle 1 ≤ i ≤ p+ r.
Vi anvender den lineære afbildning f : V →W på begge sider af ligningen og får

w1ap+1 +·· ·+wrap+r = 0,

idet f (vi) = 0 for 1 ≤ i ≤ p, og f (vp+i) = wi for 1 ≤ i ≤ r. Da familien (w1, . . . ,wr) er
lineært uafhængig, konkluderer vi, at ap+i = 0 for 1 ≤ i ≤ r. Den oprindelige ligning er
altså

v1a1 +·· ·+vpap = 0,

og da også (v1, . . . ,vp) er lineært uafhængig, følger det, at ai = 0 for 1≤ i ≤ p. Dette viser,
at familien (v1, . . . ,vp,vp+1, . . . ,vp+r) er lineært uafhængig som ønsket. Vi mangler at
vise, at denne familie også frembringer V . Så lad v ∈ V være en vilkårlig vektor, og lad
w= f (v) ∈W . Da (w1, . . . ,wr) frembringer W , kan vi skrive w= w1b1+·· ·+wrbr som en
linearkombination heraf. Da er

f (v− (vp+1b1 +·· ·+vp+rbr))= w− (w1b1 +·· ·+wrbr)= 0,

hvilket viser, at v− (vp+1b1 +·· ·+vp+rbr) ∈ ker( f ), og vi kan derfor skrive denne vektor
som en linearkombination

v− (vp+1b1 +·· ·+vp+rbr)= v1a1 +·· ·+vpap

af familien (v1, . . . ,vp), der per antagelse frembringer ker( f ). Men dermed er

v= v1a1 +·· ·+vpap +vp+1b1 +·· ·+vp+rbr

en linearkombination af (v1, . . . ,vp,vp+1, . . . ,vp+r) som ønsket. Dette viser påstanden og
dermed sætningen. 2
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Bemærkning 4.5.5 Grassmanns dimensionsformel giver et kvantitativt udtryk for, at
desto mindre billedet af en lineær afbildning f : V → W er, desto større må dens kerne
være og vice versa. Vi bemærker også, at dimensionen af codomænet W ikke spiller no-
gen rolle i sætningen, udover at det nødvendigvis altid gælder, at dim(im( f ))≤ dim(W).

Eksempel 4.5.6 (1) For nulafbildningen 0 : V →W har kernen samme dimension som
V , mens billedet har dimension 0. For identitetsafbildningen idV : V → V har kernen
dimension 0, mens billedet har samme dimension som V .
(2) For den lineære afbildning f : F4 → F3 defineret ved

f (x)=
1 0 0 0

0 1 0 0
0 0 0 0

x

er ker( f ) = {x ∈ F4 | x1 = 0 og x2 = 0}, mens im( f ) = {y ∈ F3 | y3 = 0}. Så ker( f ) har basis
(e3, e4) og dimension 2, mens im( f ) har basis (e1, e2) og dimension 2. Dermed er

dim(ker( f ))+dim(im( f ))= 2+2= 4= dim(F4),

som sætning 4.5.4 viser.

Definition 4.5.7 Lad F være et legeme, og lad f : V → W være en lineær afbildning
mellem endeligt frembragte F-vektorrum. Da kaldes dimensionen

rank( f )= dim(im( f ))

af billedet af f : V →W for rangen af f : V →W .

Vi vil nu relatere rang af lineære afbildninger til rang af matricer fra definition 2.5.13.
Hvis A er en m×n-matrix med indgange i et legeme F, og hvis f : Fn → Fm er den lineære
afbildning defineret ved f (x)= Ax, da er

ker( f )= NA = { x ∈ Fn | Ax= 0 }⊂ Fn

lig med nulrummet for A, mens

im( f )= RA = { Ax ∈ Fm | x ∈ Fn }⊂ Fm

er lig med søjlerummet for A. Vi har set, at Gauss-elimination giver en algoritme til at
bestemme en basis for nulrummet, og vi skal nu se, at Gauss-elimination ligeledes giver
en algoritme til at bestemme en basis for søjlerummet.
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Sætning 4.5.8 Lad A være en m×n-matrix med indgange i et legeme F og lad A′ være
den entydigt bestemte matrix på reduceret echelonform, der er rækkeækvivalent med A.
Hvis 1≤ j1 < ·· · < jr ≤ n indicerer de søjler i A′, der indeholder en ledende indgang, da
er familien (a j1 , . . . ,a jr ) bestående af de tilsvarende søjler i A en basis for RA ⊂ Fm.

Bevis Vi vælger en invertibel matrix P ∈ Mm(F), sådan at A′ = P A, hvilket er muligt
ifølge sætning 2.5.11. Hvis y = Ax, da er P y = P Ax = A′x, hvilket viser, at afbildnin-
gen f : RA → RA′ defineret ved f (y) = P y er veldefineret. Vi lader Q ∈ Mm(F) være den
inverse matrix til P og g : RA′ → RA den lineære afbildning defineret ved g(z) =Qz. Vi
bemærker, at f og g er hinandens inverse.

Vi minder om, at for en vilkårlig m×n-matrix C er dens j’te søjle givet ved c j = Ce j.
Specielt gælder det for søjlerne a j i A og a′

j i A′, at

f (a j)= Pa j = P Ae j = A′e j = a′
j og g(a′

j)=Qa′
j =QA′e j = Ae j = a j.

Vi minder ligeledes om, at vi fra eksempel 4.3.8 ved, at familien (a′
1, . . . ,a′

n) frembringer
RA′ . Vi påstår, at familien (e1, . . . , er) er en basis for RA′ . Denne familie er en familie af
vektorer i RA′ , idet det ifølge definitionen af en matrix på reduceret echelonform gælder,
at a′

js
= es for alle 1≤ s ≤ r. Familien er endvidere lineært uafhængig, da den er lineært

uafhængig som en familie af vektorer i Fm. Endelig frembringer den RA′ , idet det ifølge
definitionen af en matrix på reduceret echelonform gælder, at a′

i j = 0 for alle r < i ≤ m
og 1≤ j ≤ n. Dette viser påstanden, og sætning 4.4.12 viser da, at familien

(g(e1), . . . , g(er))= (g(a′
j1

), . . . , g(a′
jr

))= (a j1 , . . . ,a jr )

er en basis for RA som ønsket. 2

Sætningen giver specielt en algoritme, der til en given n-tuple af vektorer i Fm, der
frembringer Fm, giver en delfamilie, der er en basis for Fm. Vi illustrerer nu dette.

Eksempel 4.5.9 Vi betragter 5-tuplen af vektorer i F3 givet ved

(
a1 =

1
3
2

 , a2 =
2

4
3

 , a3 =
1

9
5

 , a4 =
3

0
1

 , a5 =
2

7
8

)
,

og vi anvender da eksempel 4.3.8 og sætning 4.5.8 til at finde en delfamilie heraf, der
en basis for F3, hvis dette er muligt. Vi omdanner derfor matricen

A =
1 2 1 3 2

3 4 9 0 7
2 3 5 1 8

 ,
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hvis j’te søjle er a j, til en matrix A′ på reduceret echelonform, hvilket giver

A′ =
1 0 7 0 −39

0 1 −3 0 31
0 0 0 1 −7

 .

De ledende indgange i A′ findes i søjlerne 1, 2 og 4, så ifølge sætning 4.5.8 er delfamili-
en (a1,a2,a4) derfor en basis F3. Vi bemærker, at grunden til at en sådan basis findes
i dette tilfælde er, at rank(A) = 3 = m. Hvis dette ikke havde været tilfældet, så ville
den oprindelige tuple ikke frembringe hele F3, men et underrum deraf, og vi ville da i
stedet have fundet en basis for dette underrum.

Korollar 4.5.10 Lad F være et legeme, lad A være en m×n-matrix med indgange i F,
og lad f : Fn → Fm være den lineære afbildning defineret ved f (x)= Ax. Da er

rank( f )= rank(A).

Bevis Sætning 4.5.8 viser, at dimensionen af søjlerummet RA er lig med antallet r af
ledende indgange i den entydigt bestemte matrix A′, der er på reduceret echelonform
og rækkeækvivalent med A. Det gælder altså, at

rank( f )= dim(im( f ))= dim(RA)= r = rank(A)

som ønsket. 2

Sætning 4.5.11 Lad A være en m×n-matrix med indgange i et legeme F og lad A′ være
den entydigt bestemte matrix på reduceret echelonform, der er rækkeækvivalent med A.
Lad 1 ≤ j1 < ·· · < jr ≤ n og 1 ≤ k1 < ·· · < kp ≤ n indicere de søjler i A′, der henholdsvis
indeholder og ikke indeholder ledende indgange, og for 1≤ i ≤ p lad

ci = eki −
r∑

s=1
e js a

′
s,ki

.

Da udgør familien (c1, . . . , cp) en basis for nulrummet NA = NA′ ⊂ Fn.

Bevis Vi viser først, at (c1, . . . , cp) er en familie af vektorer i NA′ . Vi påstår nemlig, at

A′ci = A′(eki −
r∑

s=1
e js a

′
s,ki

) = a′
ki
−

r∑
s=1

a′
js

a′
s,ki

= a′
ki
−

r∑
s=1

esa′
s,ki

= 0.
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Her følger den første identitet fra definitionen af ci, mens den anden skyldes identiteten
A′e js = a′

js
. Den tredje or fjerde identitet følger af, at for 1 ≤ s ≤ r er den js’te søjle i A′

lig med es, og at for alle r < s ≤ m er a′
s,ki

= 0. Dette viser, at ci ∈ NA′ for alle 1≤ i ≤ p.
Vi viser dernæst, at familien (c1, . . . , cp) er lineært uafhængig. Så lad

c1a1 + c2a2 +·· ·+ cpap = 0

være en linearkombination, der er lig med nulvektoren. For 1 ≤ i ≤ p udtrykker den
ki ’te ligning i dette ligningssystem, at ai = 0, da eki kun optræder i vektoren cki . Dette
viser som ønsket, at (c1, . . . , cp) er lineært uafhængig.

Vi mangler at vise, at (c1, . . . , cp) frembringer NA′ . Sætning 4.5.4 og korollar 4.5.10
viser, at dim(NA′)= n− r = p. Dermed er (c1, . . . , cp) altså en lineært uafhængig p-tuple
af vektorer i det p-dimensionale vektorrum NA′ , og sætning 4.3.24 viser derfor som
ønsket, at denne p-tuple er en basis for NA′ . 2

Vi illustrerer endelig algoritmerne i sætning 4.5.11 og sætning 4.5.8, der producerer
baser for henholdsvis kernen og billedet af en lineær afbildning f : Fn → Fm.

Eksempel 4.5.12 Vi betragter afbildningen f : F4 → F3 givet ved f (x)= Ax, hvor

A =
2 4 3 7

0 0 1 1
1 2 1 3


og ønsker at bestemme en basis for ker( f ) og im( f ). Vi omdanner derfor først A til en
matrix A′ på reduceret echelonform ved hjælp af rækkeoperationer.

A =
 2 4 3 7

0 0 1 1
1 2 1 3

 +(−2)R3

 0 0 1 1
0 0 1 1
1 2 1 3

 +(−1)R2

+(−1)R2 0 0 0 0
0 0 1 1
1 2 0 2

 R1 ↔ R3

A′ =
 1 2 0 2

0 0 1 1
0 0 0 0


Her har vi igen markeret de indgange, vi ønsker at ændre med rødt, og vi har mar-
keret de r = 2 ledende indgange i A′ = B med blåt. Så im( f ) har dimension r = 2, og
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Grassmanns dimensionsformel viser, at ker( f ) har dimension n− r = 4−2 = 2. Da de
ledende indgange i A′ findes i søjle 1 og 3, viser sætning 4.5.8, at

(
a1 =

2
0
1

 , a3 =
3

1
1

)

er en basis for im( f ). Og ifølge sætning 4.5.11 er
(
c1, c2

)
en basis for ker( f ), hvor

c1 = e2 − (e j1 b12 + e j2 b22) =


0
1
0
0

−


1
0
0
0

2−


0
0
1
0

0 =


−2

1
0
0


og

c2 = e4 − (e j1 b14 + e j2 b24) =


0
0
0
1

−


1
0
0
0

2−


0
0
1
0

1 =


−2

0
−1

1

 .

4.6 Affine underrum og kvotientrum

Lad V være et vektorrum over et legeme F, og lad U ⊂ V være et underrum. I dette
afsnit vil vi sige, at U ⊂ V er et lineært underrum for at huske på, at det altid gælder,
at 0 ∈U . Givet et vilkårligt v ∈V er delmængden

v+U = {v+u | u ∈U}⊂V

ikke et lineært underrum, medmindre v ∈U . Vi viser nedenfor, at løsningsmængden til
et inhomogent ligningssystem “Ax = b” enten er tom eller på formen v+NA ⊂ Fn, hvor
NA ⊂ Fn er det lineære underrum af løsninger til det homogene ligningssystem “Ax= 0”.
Vi indfører følgende begreb.

Definition 4.6.1 Lad F være et legeme, lad V være et F-vektorrum, og lad U ⊂V være
et lineært underrum. En delmængde T ⊂V er et affint underrum parallelt med U ⊂V ,
hvis der findes v ∈ T, sådan at

T = v+U = {v+u | u ∈U}⊂V .
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4.6 Affine underrum og kvotientrum

Eksempel 4.6.2 Den følgende figur illustrerer det lineære underrum U ⊂ R2 og det
affine underrum T ⊂R2 parallelt med U , hvor

U = {
(
8
3

)
t | t ∈R} og T =

(−8
−1

)
+U .

//

OO

•
0

•v

U

T

Lemma 4.6.3 Lad V være et vektorrum, lad U ⊂ V være et lineært underrum, og lad
T ⊂ V være et affint underrum parallet med U ⊂ V . Da gælder det for alle v ∈ T, at
T = v+U . Desuden er T ⊂V et lineært underrum, hvis og kun hvis T =U .

Bevis Hvis T er et affint underrum, da er T = v+U for en vektor v ∈V . Idet 0 ∈U , ved
vi, at v ∈ T. Hvis også v′ ∈ T = v+U , så findes der u ∈U , sådan at v′ = v+u. Derfor er

v′+U = (v+u)+U = v+ (u+U)⊂ v+U .

Ved at ombytte v og v′ i argumentet, ser vi ligeledes, at v+U ⊂ v′+U , hvilket viser
den første påstand i lemmaet. For at vise den anden påstand antager vi, at T ⊂ V er et
lineært underrum parallelt med U ⊂ V . Da er 0 ∈ T per definition, så ifølge den første
påstand er T = 0+U =U . 2

Eksempel 4.6.4 Det affine underrum T i eksempel 4.6.2 kan også skrives som

T =
(
0
2

)
+U ,

idet (
0
2

)
=

(−8
−1

)
+

(
8
3

)
og

(
8
3

)
∈U .
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Lemma 4.6.5 Lad F være et legeme, lad f : V → W være en lineær afbildning mellem
to F-vektorrum, og lad U = ker( f )⊂V være kernen af f : V →W . Lad w ∈W , og lad

T = f −1(w)= {v ∈V | f (v)= w}

være det inverse billede ved f : V → W . Da er T ⊂ V enten den tomme delmængde eller
et affint underrum parallelt med U ⊂V .

Bevis Hvis T ⊂V er tom, er der ikke noget at vise, så vi antager, at T ⊂V ikke er tom.
Vi kan da vælge v ∈ T og skal vise, at T = v+U . Hvis u ∈U , da er

f (v+u)= f (v)+ f (u)= w+0= w,

hvilket viser, at v+U ⊂ T. Omvendt gælder det for alle v′ ∈ T, at

f (v′−v)= f (v′)− f (v)= w−w= 0,

hvilket viser, at u = v′−v ∈U . Så v′ = v+u ∈ v+U , og derfor er også T ⊂ v+U . 2

Korollar 4.6.6 Lad A ∈ Mm,n(F) være en m× n-matrix med indgange i et legeme F.
Løsningsmængden til det lineære ligningssystem Ax= b er et affint underrum parallelt
med løsningsmængden til det homogene ligningssystem Ax= 0.

Bevis Løsningsmængden til det homogene ligningssystem Ax= 0 er netop nulrummet
NA ⊂ Fn, som ifølge lemma 4.1.8 er et lineært underrum. Lad endvidere f : Fn → Fm

være den lineære afbildning defineret ved f (x)= Ax. Løsningsmængden til det lineære
ligningssystem Ax= b er netop delmængden f −1(b)⊂ Fn, mens NA = ker( f ). Påstanden
følger derfor fra lemma 4.6.5. 2

Eksempel 4.6.7 Vi betragter det lineære ligningssystem “Ax= b,” hvor

A =
(
1 2
2 4

)
og b =

(
3
6

)
,

og for at løse det omdanner vi totalmatricen (A | b) til matricen

(A′ | b′)=
(

1 2 3
0 0 0

)
,

der er på reduceret echelonform. Vi aflæser heraf, at den fælles løsningsmængde til
ligningssystemerne “Ax= b” og “A′x= b′” er lig med det affine underrum

T = { (
1
1

)
+

(−2
1

)
t
∣∣ t ∈ F }= (

1
1

)
+{ (−2

1

)
t
∣∣ t ∈ F }= (

1
1

)
+NA ⊂ F2

parallelt med løsningsmængden NA ⊂ F2 til det homogene ligningssystem “Ax= 0.”
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Givet et lineært underrum U ⊂V af et vektorrum V , danner vi nu et vektorrum V /U ,
hvis vektorer er de affine underrum T ⊂V , der er parallelle med U ⊂V .

Definition 4.6.8 Lad F være et legeme, lad V være et F-vektorrum, og lad U ⊂V være
et lineært underrum. Kvotientrummet af V med hensyn til U ⊂V er vektorrummet

(V /U ,+, · ),

hvor V /U er mængden af affine underrum T ⊂V , der er parallelle med U ⊂V , og hvor
vektorsum og skalarmultiplikation er givet ved henholdsvis

(v+U)+ (v′+U)= (v+v′)+U og (v+U) ·a = (v ·a)+U .

Et affint underrum T ⊂ V , der er parallelt med det lineære underrum U ⊂ V , udgør
altså en enkelt vektor i kvotientvektorrummet V /U . Specielt er U ⊂ V nulvektoren i
dette vektorrum. Vi definerer den kanoniske5 projektion til at være afbildningen

p : V →V /U

givet ved p(v)= v+U og bemærker, at vektorsum og skalarmultiplikation på V /U netop
er defineret, sådan at denne afbildning er lineær.

Sætning 4.6.9 Lad F være et legeme, lad V være et endeligt frembragt F-vektorrum, og
lad U ⊂V være et lineært underrum. Da er

dim(V /U)= dim(V )−dim(U).

Bevis Den kanoniske projektion p : V → V /U er surjektiv og ker(p) = U . Udsagnet
følger derfor af Grassmanns dimensionsformel (sætning 4.5.4). 2

Hvis U ⊂ V er et lineært underrum af et vektorrum V , så kalder vi dimensionen af
kvotientrummet V /U for codimensionen af det lineære underrum U ⊂ V . Da er U = V ,
hvis og kun hvis codimensionen af U ⊂V er lig med nul. Vi siger endvidere, at U ⊂V er
en hyperplan, hvis codimensionen af U ⊂V er lig med 1. Vi bemærker endelig, at det er
muligt for codimensionen af et lineært underrum U ⊂V at være endelig, selvom U og V
begge er uendeligdimensionale vektorrum.

5Med “kanonisk” udtrykker vi blot, at vi foretrækker projektionsafbildningen p(v)= v+U fremfor andre
projektionsafbildninger, såsom q(v)=−v+U . Ordet har ikke noget matematisk indhold.
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Eksempel 4.6.10 Hvis X ⊂Rn er en åben delmængde, da udgør mængden C∞(X ,Rm)
af de vilkårligt ofte kontinuert differentiable afbildninger f : X → Rm med vektorsum
og skalarmultiplikation defineret ved

( f + g)(x)= f (x)+ g(x) og ( f ·a)(x)= f (x) ·a
et reelt vektorrum. Hvis m = n, så siger vi, at g ∈ C∞(X ,Rn) er et vektorfelt på X . Vi
lader n = 2 og definerer gradienten og rotationen til at være de lineære afbildninger

C∞(X ,R)
grad

// C∞(X ,R2) rot // C∞(X ,R),

der er givet ved

grad( f )=
(
∂ f /∂x1

∂ f /∂x2

)
og rot

(
g1
g2

)
= ∂g1

∂x2
− ∂g2

∂x1
.

Et vektorfelt g ∈ im(grad) siges at være konservativt, mens et vektorfelt g ∈ ker(rot)
siges at være rotationsfrit. Ethvert konservativt vektorfelt er rotationsfrit, idet

(rot◦grad)( f )= ∂2 f
∂x2∂x1

− ∂2 f
∂x1∂x2

= 0,

men det omvendte er generelt ikke tilfældet. Så

im(grad)⊂ ker(rot)

er et underrum, men det er i almindelighed ikke hele rummet. Kvotientrummet

H1(X )= ker(rot)/ im(grad)

kaldes for de Rham-cohomologien af X i grad 1. Skønt vektorrummene ker(rot) og
im(grad) begge er uendeligdimensionale (medmindre X er den tomme mængde), så er
kvotientrummet H1(X ) typisk endeligdimensionalt. Dimensionen af dette vektorrum
er lig med antallet af “huller” i X . For eksempel er

dim(H1(R2))= 0,

hvilket er det (måske) velkendte resultat, at ethvert rotationsfrit vektorfelt defineret
på hele R2 er konservativt, mens man kan vise, at

dim(H1(R2 à {0}))= 1.

Lad os vise, at vektorfeltet g : R2 à {0}→R2 defineret ved

g(x)=


−x2

x2
1 + x2

2x1

x2
1 + x2

2


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er rotationsfrit, men at det ikke er konservativt. Dette medfører, at elementet

g+ im(grad) ∈ H1(R2 à {0})

ikke er nul. Vi antager, at g = grad( f ) er konservativt, og viser, at denne antagelse
fører til en modstrid. Antagelsen viser, at∫ 2π

0

d
dt

f
(
cos t
sin t

)
dt = f

(
cos(2π)
sin(2π)

)
− f

(
cos(0)
sin(0)

)
= f

(
1
0

)
− f

(
1
0

)
= 0,

mens en direkte udregning ved brug af kædereglen viser, at∫ 2π

0

d
dt

f
(
cos t
sin t

)
dt =

∫ 2π

0
〈 g

(
cos t
sin t

)
,
(−sin t

cos t

)
〉dt =

∫ 2π

0
dt = 2π,

hvilket giver den ønskede modstrid. At rot(g)= 0 eftervises ved direkte udregning.

Vi betragter igen de lineære afbildninger

U i // V
p
// V /U

defineret ved i(u)= u og p(v)= v+U , som vi kalder for den kanoniske inklusion og den
kanoniske projektion. Den sammensatte afbildning p ◦ i er da lig med nulafbildningen,
idet U ∈V /U er nulvektoren i kvotientrummet.

Sætning 4.6.11 Lad F være et legeme, lad V være et F-vektorrum, og lad U ⊂ V være
et lineært underrum. Hvis f : V →W er en lineær afbildning, sådan at f ◦ i : U →W er
lig med nulafbildningen, da findes der præcis én lineær afbildning

V /U
f̄
//W ,

sådan at f = f̄ ◦ p.

Bevis Da vi ønsker, at f = f̄ ◦ p, er vi tvunget til at definere f̄ : V /U →W ved

f̄ (v+U)= f (v),

og vi skal derfor vise, at denne definition er meningsfuld. Hvis v+U = v′+U , så findes
der u ∈U , sådan at v= v′+u, og derfor er

f (v)= f (v′+u)= f (v′)+ f (u)= f (v′)+0= f (v′),

hvilket viser, at afbildningen f̄ : V /U → W er veldefineret. Endelig er denne afbildning
lineær, fordi f : V →W er lineær. 2
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4.7 Opgaver

4.1 Beskriv underrummet U ⊂R3 frembragt af familien (v1,v2), hvor

v1 =
0

1
0

 og v2 =
1

1
0

 .

4.2 Undersøg for de følgende familier af vektorer i R3 om de er lineært uafhængige, om
de frembringer R3, og om de udgør en basis for R3. Hvis familien er lineært afhæn-
gig, angiv da også en linearkombination af familien, som er lig med nulvektoren
0.

a) Familien (u1,u2), hvor

u1 =
1

1
0

 og u2 =
1

1
1

 .

b) Familien (v1,v2,v3), hvor

v1 =
1

0
0

 , v2 =
−1

1
0

 og v3 =
 0
−1

0


c) Familien (w1,w2,w3), hvor

w1 =
1

0
0

 , w2 =
1

1
0

 og w3 =
1

1
1

 .

d) Familien (a1,a2,a3,a4), hvor

a1 =
0

0
1

 , a2 =
0

1
1

 , a3 =
 0

1
−1

 og a4 =
−1

1
0

 .

4.3 Undersøg i hvert af de følgende tilfælde, om den givne familie af vektorer i R4 er
lineært uafhængig, om den frembringer R4, og om den er en basis for R4. Hvis fa-
milien er lineært afhængig, angiv da også en linearkombination af familien, som er
lig med nulvektoren 0.

a) Familien (v1,v2,v3,v4), hvor

v1 =


1
1
2
1

 , v2 =


1
0
0
2

 , v3 =


4
6
8
6

 , v4 =


0
3
2
1

 .
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b) Familien (v1,v2,v3), hvor

v1 =


1
1
1
1

 , v2 =


1
0
0
2

 , v3 =


0
1
0
2

 .

c) Familien (v1,v2,v3,v4), hvor

v1 =


1
1
1
1

 , v2 =


2
3
1
2

 , v3 =


3
1
2
1

 , v4 =


2
1
1
1

 .

d) Familien (v1,v2,v3), hvor

v1 =


4
2

−1
3

 , v2 =


6
5

−5
1

 , v3 =


2

−1
3
5

 .

4.4 Vis, at delmængden

Rn
≥0 = {x ∈Rn | xi ≥ 0 for alle 1≤ i ≤ n}⊂Rn

ikke er stabil med hensyn til vektorrumsstrukturen på Rn.

4.5 Lad (Cn,+,∗) være triplen, hvor + : Cn ×Cn → Cn er den sædvanlige vektorsum, og
hvor ∗ : Cn ×C→Cn er defineret ved

x∗ z = x · |z|.

Her er |z| =p
z̄z ∈R absolutværdien af z ∈C. Vis, at (Cn,+,∗) ikke er et C-vektorrum.

4.6 (?) Lad (M4(R),+,∗) være triplen, hvor + : M4(R)×M4(R)→ M4(R) er matrixsum, og
hvor ∗ : M4(R)×H→ M4(R) er defineret ved

A∗ (a+bi+ c j+dk) = A ·


a −b −c −d
b a −d c
c d a −b
d −c b a

 .

Vis at (M4(R),+, ·) er et (højre) H-vektorrum.

[Vink: Vi ved allerede, at matrixsum opfylder (A1)–(A4) i definition 4.1.1, så det er
tilstrækkeligt at vise, at også (V1)–(V4) er opfyldt.]
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4.7 Lad V = M2(F) være mængden af 2× 2-matricer med indgange i et legeme F, og
betragt triplen (V ,+, ∗ ), hvor + : V ×V → V er matrixsum, mens ∗ : V ×F→ V er
defineret ved (

x11 x12
x21 x22

)
∗a =

(
x11a x12a
x21a x22a

)
.

Vi bemærker, at “∗” ikke er matrixprodukt.

a. Eftervis, at (V ,+, ∗ ) er et F-vektorrum.

b. Givet vektorerne

x=
(
1 −1
2 0

)
, y=

(
2 1
0 −1

)
og z =

(
4 5

−4 −3

)
i V , find alle skalarer a,b ∈ F, sådan at

x∗a+ y∗b = z.

4.8 Afgør i hvert af de følgende tilfælde, om den angivne delmængde af R4 er stabil med
hensyn til den sædvanlige vektorrumsstruktur på R4 eller ej.

a) Delmængden af alle vektorer x, hvis førstekoordinat x1 er et helt tal.

b) Delmængden af alle vektorer x, hvis førstekoordinat x1 er lig med 0.

c) Delmængden bestående af alle vektorer x, hvis førstekoordinat x1 eller anden-
koordinat x2 eller begge er lig med 0.

d) Delmængden bestående af alle vektorer x, hvis førstekoordinat x1 og andenko-
ordinat x2 tilfredsstiller ligningen x1 +2x2 = 0.

e) Delmængden bestående af alle vektorer, hvis førstekoordinat x1 og andenkoor-
dinat x2 tilfredsstiller ligningen x1 +2x2 = 1.

4.9 Lad U være et vektorrum, og lad V ,W ⊂U være to underrum.

a) Vis, at
V ∩W = {u ∈U | u ∈V og u ∈W}⊂U

er et underrum. [Vink: Eftervis (1)–(3) i definition 4.1.4.]

b) Vis, at
V +W = {v+w ∈U | v ∈V og w ∈W}⊂U

er et underrum.

4.10 Undersøg, om familien (v1,v2,v3,v4), hvor

v1 =


0
1
1
1

 , v2 =


1
0
1
1

 , v3 =


1
1
0
1

 og v4 =


1
1
1
0

 ,

er en basis for R4.
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4.11 Lad U ⊂R5 være underrummet frembragt af (v1,v2,v3,v4), hvor

v1 =


1
1

−5
0
5

 , v2 =


1
4

−5
1
3

 , v3 =


3
2
5
2
2

 , v4 =


2

−2
10

1
−1

 .

Angiv en delfamilie af (v1,v2,v3,v4), der er en basis for U , og skriv de af vektorer-
ne v1,v2,v3,v4, der ikke tilhører den angivne basis, som en linearkombination af
denne.

4.12 Betragt de følgende vektorer i R6:

v1 =



1
0
1
0
1
0

 , v2 =



0
1
1
1
1

−1

 , w1 =



4
−5
−1
−5
−1

5

 , w2 =



−3
2

−1
2

−1
−2

 .

Undersøg, om de to familier (v1,v2) og (w1,w2) frembringer det samme underrum
af R6 eller ej.

4.13 Lad U ⊂R3 være underrummet frembragt af (v1,v2), hvor

v1 =
 1

4
−7

 og v1 =
 2
−5

4

 .

Bestem alle a ∈R, sådan at vektoren 1
a
5


tilhører underrummet U .

4.14 Vis, at familien (v1,v2,v3,v4), hvor

v1 =


1
2
3
4

 , v2 =


3
1
5
2

 , v3 =


2
4
1
2

 , v4 =


2
9
0
7

 ,
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er en basis for R4, og skriv vektoren

v=


2
4
1
3


som en linearkombination af denne basis.

4.15 Lad U ⊂R4 være underrummet frembragt af (v1,v2,v3,v4,v5), hvor

v1 =


1
0

−1
1

 , v2 =


0
1
2

−1

 , v3 =


2
1
0
1

 , v4 =


1
1
1
0

 , v5 =


3
2
1
1

 .

a) Find en delfamilie af familien (v1,v2,v3,v4,v5), der indeholder v1 og v5 og er en
basis for U .

b) Find en delfamilie af familien (v1,v2,v3,v4,v5), der indeholder v3 og v4, og er en
basis for U .

4.16 Denne opgave viser, at en lineær afbildning f : V → W mellem F-vektorrum kan
defineres ved at angive dens værdi på vektorerne i en basis for V . Dette kan ses
som en generalisering af lemma 4.2.3.

a) Hvis (vi)i∈I er en basis for V , og hvis (wi)i∈I er en familie af vektorer i W , der er
indiceret ved den samme indeksmængde I, da definerer formlen

f (
∑
i∈I

viai)=
∑
i∈I

wiai

en veldefineret afbildning f : V →W . Vis, at denne afbildning er lineær.

b) Lad g : V → W være en lineær afbildning, og lad (vi)i∈I være en basis for V .
Vis, at den lineære afbildning f : V → W , der fremkommer som i a) fra familien
(g(vi))i∈I af vektorer i W , er lig med g : V →W .

4.17 (?) Lad (C,+, · ) være det reelle vektorrum, hvor C er mængden af komplekse tal,
hvor + : C×C→C er sum af komplekse tal, og hvor · : C×R→C er defineret ved

(x+ i y) ·a = xa+ i ya.

Lad (V ,+, · ) være det reelle vektorrum af reelle 2×2-matricer fra opgave 4.7.

a) Vis, at afbildningen f : C→V defineret ved

f (x+ i y)=
(
x −y
y x

)
er lineær.
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b) Find en basis for det reelle vektorrum C og bestem dets dimension.

c) Find ligeledes en basis for det reelle vektorrum V og bestem dets dimension.

4.18 (?) Lad F være et legeme. Vis, at vektorummet af polynomier F[t] ikke er endeligt
frembragt.

[Vink: Vis, at (t0, t1, t2, . . . ) er en lineært uafhængig familie i F[t], hvor man skal
bruge bemærkning 4.3.26.]

4.19 Lad V være et vektorrum af dimension n, og lad (v1,v2, . . . ,vk) være en lineært
uafhængig familie af vektorer i V . Afgør om følgende udsagn er korrekte eller ej.

a) Det gælder nødvendigvis, at k ≤ n.

b) Hvis k = n, da er (v1,v2, . . . ,vk) en basis for V .

c) Hvis (v1,v2, . . . ,vk) er en basis for V , da er k = n.

d) Familien (v1, . . . ,vk) er en delfamilie af en basis

(v1, . . . ,vk,vk+1, . . . ,vn)

for vektorrummet V .

e) Familien (v1, . . . ,vk) er en delfamilie af præcis én basis

(v1, . . . ,vk,vk+1, . . . ,vn)

for vektorrummet V .

4.20 Vi betragter familien (
v1 =

(
2
5

)
, v2 =

(
3
7

))
af vektorer i F2.

a) Vis, at (v1,v2) er en basis for F2.

b) Angiv matricen P, der repræsenterer id: F2 → F2 med hensyn til basen (v1,v2)
for domænet og standardbasen (e1, e2) for codomænet.

c) Bestem matricen, der repræsenterer id: F2 → F2 med hensyn til basen (e1, e2) for
domænet og basen (v1,v2) for codomænet.

d) Find koordinaterne y ∈ F2 for vektoren

x=
(
x1
x2

)
∈ F2

med hensyn til basen (v1,v2).
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4.21 Vi betragter familien v1 =
 1

0
0

 , v2 =
−1

1
0

 , v3 =
 1
−1

1


af vektorer i F3.

a) Vis, at (v1,v2,v3) er en basis for F3.

b) Angiv matricen P, der repræsenterer id: F3 → F3 med hensyn til basen (v1,v2,v3)
for domænet og standardbasen (e1, e2, e3) for codomænet.

c) Bestem matricen, der repræsenterer id: F3 → F3 med hensyn til baserne (e1, e2, e3)
for domænet og (v1,v2,v3) for codomænet.

d) Find koordinaterne y ∈ F3 af vektoren

x=
x1

x2
x3

 ∈ F3

med hensyn til basen (v1,v2,v3).

4.22 Vi betragter den lineære afbildning f : F3 → F2, der er repræsenteret af matricen

A =
(
2 7 3
1 14 6

)
med hensyn til de respektive standardbaser. Vi betragter også basenu1 =

1
0
1

 , u2 =
1

2
2

 , u3 =
0

1
1


for F3 og basen (

v1 =
(
1
2

)
, v2 =

(
2
3

))
for F2.

a) Find matricen P, der repræsenterer identitetsafbildningen id: F3 → F3 med hen-
syn til basen (u1,u2,u3) for domænet og standardbasen (e1, e2, e3) for codomæ-
net.

b) Find ligeledes matricen Q, der repræsenterer id: F2 → F2 med hensyn til basen
(v1,v2) for domænet og standardbasen (e1, e2) for codomænet.

c) Angiv sammenhængen mellem matricerne A, P og Q, og den matrix B, der re-
præsenterer f : F3 → F2 med hensyn til basen (u1,u2,u3) for domænet og basen
(v1,v2) for codomænet.
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d) Bestem matricen B.

e) Tegn en figur som i eksempel 4.4.16.

4.23 Vi betragter den lineære endomorfi f : F3 → F3, der er repræsenteret af matricen

A =
−4 −3 3
−2 3 0
−7 −1 4


med hensyn til standardbasen for både domænet og codomænet. Vi betragter end-
videre den nye basis v1 =

0
1
1

 , v2 =
1

1
2

 , v3 =
1

1
3


for F3.

a) Angiv matricen P, der repræsenterer id: F3 → F3 med hensyn til basen (v1,v2,v3)
for domænet og standardbasen (e1, e2, e3) for codomænet.

b) Udtryk matricen B, der repræsenterer f : F3 → F3 med hensyn til basen (v1,v2,v3)
for både domænet og codomænet, ved hjælp af matricerne A og P.

c) Bestem matricen B.

d) Tegn en figur som i eksempel 4.4.16.

4.24 Lad (v1,v2,v3) være familien af vektorer i F3, hvor

v1 =
−1

1
1

 , v2 =
 1

0
−1

 , v3 =
 0

1
1

 .

a) Vis, at (v1,v2,v3) er en basis for F3.

b) Angiv matricen P, der repræsenterer id: F3 → F3 med hensyn til basen (v1,v2,v3)
for domænet og standardbasen (e1, e2, e3) for codomænet.

c) Om en lineær endomorfi f : F3 → F3 vides det, at matricen B, der repræsenter
endomorfien med hensyn til basen (v1,v2,v3) for både domænet og codomænet,
er givet ved

B =
 1 0 1

1 1 0
−1 2 1

 .

Udtryk matricen A, der repræsenterer f : F3 → F3 med hensyn til standardbasen
(e1, e2, e3) for både domænet og codomænet ved hjælp af matricerne B og P.

d) Bestem matricen A.
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e) Tegn en figur som i eksempel 4.4.16.

4.25 Vi betragter den lineære endomorfi f : F3 → F3, f (x)= Ax, hvor

A =
−1 5 −5

1 3 −1
−4 4 −2

 ,

samt basen (v1,v2,v3) for F3, hvor

v1 =
0

1
1

 , v2 =
1

0
1

 , v3 =
1

1
0

 .

a) Angiv matricen P, der repræsenterer id: F3 → F3 med hensyn til basen (v1,v2,v3)
for domænet og standardbasen (e1, e2, e3) for codomænet.

b) Udtryk matricen B, der repræsenterer f : F3 → F3 med hensyn til basen (v1,v2,v3)
for både domænet og codomænet, ved hjælp af matricerne A og P.

c) Bestem matricen B.

d) Afgør om f : F3 → F3 er isomorfi eller ej.

e) Tegn en figur som i eksempel 4.4.16.

4.26 Lad f : F4 → F3 være afbildningen givet ved f (x)= Ax, hvor

A =
2 1 8 −1

2 0 4 −2
0 1 4 1

 .

a) Bestem dimensionerne af ker( f ) og im( f ).

b) Angiv baser for ker( f ) og im( f ).

4.27 Lad f : F5 → F3 være afbildningen givet ved f (x)= Ax, hvor

A =
2 −4 −1 5 −4

1 −2 0 2 −1
1 −2 1 1 1

 .

a) Bestem dimensionerne af ker( f ) og im( f ).

b) Angiv baser for ker( f ) og im( f ).

4.28 Vis, at hvis A ∈ Mm,n(F) og B ∈ Mn,p(F), da er

rank(AB)≤ rank(A).

[Vink: Oversæt til et spørgsmål om lineære afbildninger.]
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4.29 Den direkte sum af to F-vektorrum (U ,+, · ) og (V ,+, · ) er F-vektorrummet

(U ,+, · )⊕ (V ,+, · )= (U ×V ,+, · ),

hvor U ×V = {(u,v) | u ∈U ,v ∈V } er mængden af ordnede par af en vektor i U og en
vektor i V , og hvor (u,v)+(u′,v′)= (u+u′,v+v′) og (u,v)·a = (u ·a,v·a). Vi forkorter
normalt og skriver U ⊕V i stedet for (U ,+, · )⊕ (V ,+, · ).

a) Vis, at hvis familierne (u1, . . . ,um) og (v1, . . . ,vn) er baser for henholdsvis U og
V , da er familien

((u1,0), . . . , (um,0), (0,v1), . . . , (0,vn))

en basis for U⊕V . Bemærk, at da gælder det, at dim(U⊕V )= dim(U)+dim(V ).

Vi antager nu, at U og V begge er underrum af et F-vektorrum W .

b) Vis, at afbildningen
f : U ⊕V →W

defineret ved f (u,v)= u+v er lineær.

c) Vis, at afbildningen
g : U ∩V →U ⊕V

defineret ved g(w)= (w,−w) er lineær og injektiv.

d) Vis, at ker( f )= im(g).

e) Konkluder, at hvis U og V er endeligt frembragte, da er

dim(U +V )+dim(U ∩V )= dim(U)+dim(V ),

hvor U +V = {u+v ∈W | u ∈U ,v ∈V }⊂W . [Vink: Bemærk, at U +V = im( f ).]

4.30 Vi betragter vektorrummet F[t]≤3 af polynomier

p(t)= a0t0 +a1t1 +a2t2 +a3t3

af grad højst 3 med koefficienter i F samt basen (t0, t1, t2, t3) for dette vektorrum; se
eksempel 4.3.22.

a) Angiv matricen A for den lineære afbildning

f : F[t]≤3 → F[t]≤3

givet ved f (p(t)) = p(t+1) med hensyn til basen (t0, t1, t2, t3) for både domænet
og codomænet.
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b) Angiv matricen B for den lineære afbildning

g : F[t]≤3 → F[t]≤3

givet ved g(p(t)) = p(t−1) med hensyn til basen (t0, t1, t2, t3) for både domænet
og codomænet.

c) Hvad er sammenhængen mellem matricerne A og B?

4.31 Lad C0(R) være vektorrummet af kontinuerte funktioner f : R→R fra eksempel 4.1.3 (9),
og lad C1(R) være underrummet af de funktioner ϕ : R→R, der er differentiable, og
hvis afledte funktion ϕ′ : R→R er kontinuert. Lad a ∈R være et reelt tal.

a) Vis, at afbildningen D : C1(R)→ C0(R) defineret ved

D(ϕ)(x)=ϕ′(x)

er lineær.

b) Vis, at afbildningen Ia : C0(R)→ C1(R) defineret ved

Ia( f )(x)=
∫ x

a
f (t)dt

er lineær.

c) Bestem de sammensatte afbildninger

D ◦ Ia : C0(R)→ C0(R) og Ia ◦D : C1(R)→ C1(R).

d) (?) Konkluder heraf, at C1(R) ikke er endeligt frembragt.

[Vink: Anvend sætning 4.3.18.]

4.32 Lad R[t]≤d være vektorrummet af polynomier af grad højst d med reelle koefficien-
ter fra eksempel 4.1.3 (8). Givet d+1 forskellige reelle tal x0, x1, . . . , xd, definerer vi
afbildningen f : R[t]≤d →Rd+1 ved

f (p(t))=


p(x0)
p(x1)

...
p(xd)

 .

a) Vis, at afbildningen f : R[t]≤d →Rd+1 er lineær.

b) Vis, at afbildningen f : R[t]≤d →Rd+1 er injektiv. [Vink: Hvor mange rødder kan
et polynomium af grad ≤ d have?]

c) Konkluder, at afbildningen f : R[t]≤d →Rd+1 er en isomorfi.
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d) (?) Er det samme tilfældet, hvis R erstattes af et vilkårlig legeme F?

4.33 (?) Betragt vektorrummet V af alle C∞-afbildninger fra R til R med vektorsum og
skalarmultiplikation defineret ved

( f + g)(x)= f (x)+ g(x) og ( f ·a)(x)= f (x) ·a,

hvor f , g ∈V og a ∈R.

a) Givet a1, . . . ,an ∈ V , vis at delmængden af V , der består af alle løsninger f ∈ V
til den homogene differentialligning

an(x)
dn

dxn f (x)+·· ·+a1(x)
d
dx

f (x)= 0

er et underrum af V .

b) Vis, at det samme gælder for delmængden af V , der består af alle løsninger til
ligningen

an(x)Ln( f )+·· ·+a1(x)L1( f )= 0,

hvor a1, . . . ,an ∈V og L1, . . . ,Ln : V →V er lineære afbildninger.

c) Vis, at underrumet i (b) kan beskrives som kernen for en lineær afbildning
L : V →V .

d) Forklar, at (a) er et specialtilfælde af (b).

4.34 (?) Fibonacci-følgen6 ( f1, f2, f3, . . . ) er den følge af naturlige tal , der er defineret
rekursivt ved at sætte f1 = f2 = 1 og kræve, at det for alle n ≥ 1 gælder, at

fn+2 = fn+1 + fn.

De første få led i følgen er således

f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13, f8 = 21, . . . .

Vi betragter denne følge som en følge af reelle tal og vil nu anvende lineær algebra
til at udlede følgende lukkede formel for det n’te led i Fibonacci-følgen:

fn = 1p
5

(
1+

p
5

2

)n

− 1p
5

(
1−

p
5

2

)n

.

Hertil definerer vi V til at være mængden af alle de følger af reelle tal

x= (x1, x2, x3, . . . ),
6 Følgen optræder i Fibonaccis bog Liber Abaci fra 1202, der som den første indførte det hindu-arabiske

talsystem i vesten. Formålet med bogen var at demonstrere fordelene ved dette talsystem fremfor det
romerske talsystem.
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for hvilke xn+2 = xn+1 + xn for alle n ≥ 1. Så Fibonacci-følgen f = ( f1, f2, f3, . . . ) er et
element i V . Vi definerer + : V ×V →V og · : V ×R→V ved

x+ y= (x1 + y1, x2 + y2, x3 + y3, . . . ),
x ·a = (x1a, x2a, x3a, . . . ).

a) Vis, at (V ,+, · ) er et reelt vektorrum.

b) Lad x = (x1, x2, x3, . . . ) og y = (y1, y2, y3, . . . ) tilhøre V . Vis, at x = y, hvis og kun
hvis x1 = y1 og x2 = y2.

c) Vi betragter de to elementer u,v ∈V defineret ved

u = (1,0,1,1,2,3,5, . . . ),
v= (0,1,1,2,3,5,8, . . . ).

Vis, at familien (u,v) er en basis for V og konkluder, at V har dimension 2.

d) For alle t ∈R betragter vi følgen

x(t)= (t, t2, t3, . . . , tn, . . . )

af reelle tal. Vis, at der foruden t = 0 netop findes to reelle tal t = u og t = v, sådan
at x(t) ∈V , og bestem disse to tal.

e) Vis, at familien (x(u), x(v)) er en basis for V .

f) Find endelig de entydigt bestemte reelle tal a og b, sådan at

f = x(u) ·a+ x(v) ·b,

og konkluder herfra, at den lukkede formel for Fibonacci-tallene gælder.

4.35 Lad C0(R) være R-vektorrummet af kontinuerte funktioner f : R→R. For alle N ≥ 0,
definerer vi

TrigN(R)⊂ C0(R)

til af være underrummet, der er frembragt af familien

(1,cos(x),sin(x),cos(2x),sin(2x), . . . ,cos(Nx),sin(Nx)).

Her betegner “1” den konstante funktion med værdi 1, mens “cos(nx)” og “sin(nx)”
betegner de trigonometriske funktioner x 7→ cos(nx) og x 7→ sin(nx). Med andre ord
består TrigN(R)⊂ C0(R) af alle kontinuerte funktioner f : R→R, der kan skrives på
formen

f (x)= a0 +
N∑

n=1

(
cos(nx) ·an +sin(nx) ·bn

)
med ai,bi ∈R.
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a. Vis, at familien (1,cos(x),sin(x)) er lineært uafhængig, og bestem dimensionen
af Trig1(R).

[Vink: Man kan tænke på a0 +cos(x)a1 +sin(x)b1 = 0 som et lineært liningssy-
stem i variable a0, a1 og b1 med uendeligt mange ligninger, der er parametri-
seret ved x ∈R. Det, der skal vises, er, at dette ligningssystem kun har den ene
løsning a0 = a1 = b1 = 0.]

I det næste spørgsmål kan det anvendes uden bevis, at familien

(1,cos(x),sin(x),cos(2x),sin(2x))

er lineært uafhængig og dermed en basis for Trig2(R).

b. Vis, at de kontinuerte funktioner cos2(x) og sin2(x) tilhører Trig2(R) og bestem
deres koordinater med hensyn til basen ovenfor.

Trigonometriske polynomier har et væld af anvendelser, for i digital repræsentation
af lyd. Hvis et signal repræsenteres af et trigonometrisk polynomium, da angiver
koefficienterne an og bn en alternativ og komprimeret repræsentation af signalet.
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5 Egenværdier og egenrum

Vi skal nu betragte lineære endomorfier, som er lineære afbildninger f : V → V , der
har samme domæne og codomæne. For disse introducerer vi begreberne egenværdi og
egenrum, som i sidste ende fører til den såkaldte Iwasawa-dekomposition af lineære
endomorfier. Den simpleste del er de lineære endomorfier, der er diagonaliserbare i den
forstand, at der findes en basis, hvori de er repræsenteret af en diagonalmatrix. De nye
begreber egenværdi og egenrum er også vigtige begreber i sig selv. Således er observable
i kvantemekanik repræsenteret af lineære endomorfier, mens de mulige værdier, som
disse observable kan antage ved måling, er disse lineære endomorfiers egenværdier.

Vi antager igen i dette kapitel, at den kommutative lov gælder for multiplikation af
skalarer.

5.1 Egenværdier og egenrum for kvadratiske matricer

Vi definerer først begreberne egenværdi og egenrum for kvadratiske matricer. Givet to
kvadratiske matricer A = (ai j) ∈ Mn(F) og B = (bi j) ∈ Mn(F) med indgange i et legeme
F, definerer vi A +Bt ∈ Mn(F[t]) til at være den kvadratiske matrix med indgange i
polynomiumsringen F[t], der er givet ved

A+Bt = (ai j +bi j t) ∈ Mn(F[t]).

Vi kan da betragte dens determinant

det(A+Bt) ∈ F[t],

som ifølge sætning 3.5.7 er et polynomium af grad højst n. Vi skal her kun betragte
tilfældet, hvor B =−I er den modsatte matrix af identitetsmatricen.

Definition 5.1.1 Hvis F er et legeme og A ∈ Mn(F), da kaldes polynomiet

χA(t)= det(A− I t)= det


a11 − t a12 . . . a1n

a21 a22 − t . . . a2n
...

... . . . ...
an1 an2 . . . ann − t


for det karakteristiske polynomium af A.
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5 Egenværdier og egenrum

For eksempel er det karakteristiske polynomium af en 2×2-matrix givet ved

χA(t)= det
(
a11 − t a12

a21 a22 − t

)
= (a11 − t)(a22 − t) − a12a21

= t2 − (a11 +a22)t+ (a11a22 −a12a21),

hvilket vi kan skrive mere kompakt som χA(t)= t2−tr(A)t+det(A), hvor tr(A) er sporet
af A, som er defineret til at være summen af diagonalindgangene.

Eksempel 5.1.2 (1) For den komplekse matrix

A =
(

3− i 1−2i
1+2i 3+ i

)
giver ovenstående formel for det karakteristiske polynomium, at

χA(t)= t2 − tr(A)t+det(A)= t2 −6t+5= (1− t)(5− t).

(2) Vi udregner det karakteristiske polynomium af den reelle matrix

A =
1 2 0

0 3 1
0 2 2


ved Laplace-udvikling af determinanten efter første søjle.

χA(t)= det(A− I t)= det

1− t 2 0
0 3− t 1
0 2 2− t

= (1− t)det
(
3− t 1

2 2− t

)
= (1− t)

(
(3− t)(2− t)−2

)= (1− t)(4−5t+ t2)= (1− t)2(4− t)

Bemærkning 5.1.3 Lad f : V → V være en lineær endomorfi af et endeligt frembragt
F-vektorrum, og lad A ∈ Mn(F) være matricen, der repræsenterer f : V →V med hensyn
til den samme basis (v1, . . . ,vn) for både domænet og codomænet. Vi skal nu vise, at
det karakteristiske polynomium χA(t) kun afhænger af f : V → V . Hvis også B ∈ Mn(F)
repræsenterer f : V →V med hensyn til den samme basis (w1, . . . ,wn) for både domænet
og codomænet, da gælder det ifølge sætning 4.4.14, at

B = P−1AP,

hvor P ∈ Mn(F) er matricen, der repræsenterer identitetsafbildningen idV : V → V med
hensyn til baserne (w1, . . . ,wn) for domænet og (v1, . . . ,vn) for codomænet. Den følgende
figur illustrerer koordinatskiftet mellem de to baser.
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V V

V V

f
//

idV

OO

idV

OO

f
//

(v1, . . . ,vn) (v1, . . . ,vn)

(w1, . . . ,wn) (w1, . . . ,wn)

A

&&

P

DD

P

ZZ

B
88

Vi viser nu, at de karakteristiske polynomier χA(t) og χB(t) er ens, hvorfor det fælles
polynomium kun afhænger af den lineære endomorfi f : V →V .

Sætning 5.1.4 Lad A ∈ Mn(F) være en kvadratisk matrix med indgange i et legeme F.
For enhver invertibel matrix P ∈ Mn(F) gælder det, at

χP−1 AP (t)= χA(t).

Bevis Vi påstår, at det for alle Q ∈ Mn(F[t]) gælder, at

Q(I t)= (I t)Q.

Denne påstand viser, at

P−1(A− I t)P = P−1AP −P−1(I t)P = P−1AP −P−1P(I t)= P−1AP − I t,

og det følger derfor fra sætning 3.2.17, at

χA(t)= det(A− I t)= det(P)−1 det(A− I t)det(P)= det(P−1(A− I t)P)

= det(P−1AP − I t)= χP−1 AP (t)

som ønsket. Vi mangler at vise påstanden. Den (i,k)’te indgang i Q(I t) lig med
n∑

j=1
qi j ·δ jkt = qik · t,

mens den (i,k)’te indgang i (I t) ·Q er lig med
n∑

j=1
δi j t · q jk = t · qik.

Men qik · t = t · qik, da den kommutative lov gælder for multiplikation af polynomier. Vi
har nu vist påstanden og dermed sætningen. 2
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5 Egenværdier og egenrum

Lad A ∈ Mn(F) være en kvadratisk matrix. Ved at substituere skalaren λ ∈ F for t i det
karakteristiske polynomium χA(t) ∈ F[t] få vi skalaren

χA(λ)= det(A− Iλ)= det


a11 −λ a12 . . . a1n

a21 a22 −λ . . . a2n
...

... . . . ...
an1 am2 . . . ann −λ

 ∈ F.

Vi skriver derfor også Iλ for diagonalmatricen diag(λ, . . . ,λ).

Lemma 5.1.5 Hvis F er et legeme, og hvis A ∈ Mn(F) er en kvadratisk matrix, da er

NA−Iλ = {v ∈ Fn | Av= vλ }⊂ Fn.

Bevis Per definition er v ∈ NA−Iλ, hvis og kun hvis (A− Iλ)v = 0, og dette gælder, hvis
og kun hvis Av= (Iλ)v. Vi bemærker nu, at det for alle v ∈ Fn gælder, at

(Iλ)v =

λv1
...

λvn

 =

v1λ
...

vnλ

 = vλ,

idet vi har antaget, at den kommutative lov gælder for multiplikation af skalarer. 2

Vi udtrykker lemma 5.1.5 ved at sige, at på underrummet NA−Iλ ⊂ Fn er den venstre
multiplikation med A givet ved højre skalering med vægt λ.

Eksempel 5.1.6 Vi udregner nulrummet NA−I7 for matricen

A =
(
5 8
1 3

)
ved at anvende rækkeoperationer til at omdanne matricen B = A− I7 til en matrix B′

på reduceret echelonform.

B =
(−2 8

1 −4

)
(−1

2 ) ·R1

(
1 −4
1 −4

)
+ (−1)R1

B′ =
(

1 −4
0 0

)
Vi aflæser, at nulrummet NA−I7 ⊂ F2 er det en-dimensionale underrum med basis(

v1 =
(
4
1

) )
.
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x 7

Figur 5.1: På nulrummet NA−I7 fra eksempel 5.1.6 er venstre multiplikation med A lig
med højre skalering med 7.

Definition 5.1.7 Lad A være en n×n-matrix med indgange i et legeme F.

(1) En skalar λ ∈ F er en egenværdi for A, hvis NA−Iλ 6= {0}.

(2) Hvis λ ∈ F er en egenværdi for A, så kaldes nulrummet NA−Iλ for egenrummet
hørende til egenværdien λ ∈ F.

(3) Hvis λ ∈ F er en egenværdi for A, så kaldes enhver vektor v ∈ NA−Iλ, der ikke er
nulvektoren, for en egenvektor for A hørende til egenværdien λ ∈ F.

Ifølge lemma 5.1.5 er en vektor v en egenvektor for A hørende til egenværdien λ,
hvis og kun hvis den ikke er nulvektoren og opfylder Av = vλ. Vi bemærker, at mens
egenrummet NA−Iλ hørende til egenværdi λ ∈ F er entydigt bestemt, så er der mange
egenvektorer v hørende til egenværdi λ. Hvis nemlig v er en egenvektor hørende til
egenværdi λ, og a ∈ F er forskellig fra nul, da er va også en egenvektor hørende til λ.

Sætning 5.1.8 Egenværdierne af en kvadratisk matrix A ∈ Mn(F) med indgange i et
legeme F er præcis rødderne i F af det karakteristiske polynomium χA(t) ∈ F[t].

Bevis Per definition er λ ∈ F en egenværdi for A, hvis den homogene ligning

(A− Iλ)x= 0

har en ikke-triviel løsning x = v 6= 0, og da matricen A − Iλ er kvadratisk, er dette
tilfældet, hvis og kun hvis matricen A − Iλ ikke er invertibel. Ifølge sætning 3.4.1 er
matricen A − Iλ invertibel, hvis og kun hvis dens determinant χA(λ) = det(A − Iλ) er
invertibel, og da F er et legeme, er χA(λ) invertibel, hvis og kun hvis χA(λ) 6= 0. Vi har
hermed vist, at λ ∈ F er en egenværdi for A, hvis og kun hvis χA(λ)= 0 som ønsket. 2
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5 Egenværdier og egenrum

Definition 5.1.9 Lad λ ∈ F være en egenværdi for en kvadratisk matrix A ∈ Mn(F).
Den geometriske multiplicitet af λ er dimensionen af egenrummet NA−Iλ hørende til
λ, mens den algebraiske multiplicitet af λ er det største hele tal k ≥ 1, for hvilket der
findes q(t) ∈ F[t], sådan at

χA(t)= (λ− t)k · q(t).

Vi beviser senere i sætning 5.3.7, at den algebraiske multiplicitet af en egenværdi
altid er større end eller lig med den geometriske multiplicitet.

Eksempel 5.1.10 (1) Identitetsmatricen I ∈ Mn(F) har karakteristisk polynomium

χI(t)= det(I − I t)= (1− t)n.

Sætning 5.1.8 viser derfor, at λ= 1 er eneste egenværdi. Den algebraiske multiplicitet
er lig med n, og da NI−I1 = NO = Fn, er også den geometriske multiplicitet lig med n.
Bemærk nemlig, at Ix= x= x ·1 for alle x ∈ Fn.
(2) Nulmatricen O ∈ Mn(F) har karakteristisk polynomium

χO(t)= det(O− I t)= det(−I t)= (−t)n.

Så λ = 0 er eneste egenværdi med algebraisk multiplicitet n, og da NO−I0 = NO = Fn,
er den geometriske multiplicitet også lig med n. For Ox= 0= x ·0 for alle x ∈ Fn.
(3) Det karakteristiske polynomium af matricen

A =
(
5 8
1 3

)
fra eksempel 5.1.6 er

χA(t)= det
(
5− t 8

1 3− t

)
= t2 −8t+7= (t−1)(t−7).

Så A har egenværdier λ1 = 1 og λ2 = 7, der begge har algebraisk multiplicitet 1. Vi
udregnede egenrummet hørende til egenværdien λ2 = 7 i eksempel 5.1.6. Da det er
en-dimensionalt, har λ2 = 1 geometrisk multiplicitet 1. Vi udregner tilsvarende, at

NA−Iλ1 = NA−I =
{(−2

1

)
· t

∣∣∣ t ∈ F
}
⊂ F2,

hvilket viser, at også λ1 = 1 har geometrisk multiplicitet 1.
(4) Det karakteristiske polynomium af matricen

A =
(
0 −1
1 0

)
∈ M2(F)
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5.1 Egenværdier og egenrum for kvadratiske matricer

udregnes til at være

χA(t)= det
(−t −1

1 −t

)
= t2 +1.

Hvis F=R, så har matricen A altså ingen egenværdier, men hvis F=C, da er

χA(t)= (t− i)(t+ i),

så A har egenværdierne λ1 =+i og λ2 =−i, begge med algebraisk multiplicitet 1. For
at bestemme egenrummet hørende til λ1 = +i omdanner vi matricen B = A − I i ved
hjælp af rækkeoperationer til en matrix B′ på reduceret echelonform.

B =
(−i −1

1 −i

)
i ·R1

(
1 −i
1 −i

)
+ (−1)R1

B′ =
(

1 −i
0 0

)
Egenrummet for A ∈ M2(C) hørende til λ1 =+i er altså givet ved

NA−I i =
{(

i
1

)
· t | t ∈C

}
⊂C2.

For λ2 =−1, omdanner vi tilsvarende C = A− I(−i) ved hjælp af rækkeoperationer til
en matrix C′ på reduceret echelonform.

C =
(

i −1
1 i

)
(−i) ·R1

(
1 i
1 i

)
+ (−1)R1

C′ =
(

1 i
0 0

)
Vi aflæser egenrummet for A ∈ M2(C) hørende til egenværdien λ2 =−i til at være

NA+I i =
{(−i

1

)
· t

∣∣∣ t ∈C
}
⊂C2.

Egenværdierne λ1 =+i og λ2 =−i har dermed også begge geometrisk multiplicitet 1.
(5) Det karakteristiske polynomium af matricen

A =
(
1 1
0 1

)
∈ M2(F)
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5 Egenværdier og egenrum

er χA(t) = (1− t)2, hvilket viser, at A har λ = 1 som eneste egenværdi med algebraisk
multiplicitet 2. Det tilhørende egenrum

NA−I1 =
{

x ∈ F2
∣∣∣ (

0 1
0 0

)
x= 0

}
=

{(
1
0

)
· t

∣∣∣ t ∈ F
}
⊂ F2

har imidlertid dimension 1, så egenværdien λ= 1 har altså geometrisk multiplicitet 1,
hvilket er mindre end den algebraiske multiplicitet 2.

Vi viser nu, at en familie af egenvektorer hørende til parvis forskellige egenværdier
nødvendigvis er lineært uafhængig.

Sætning 5.1.11 Lad F være et legeme, og lad A være en n×n-matrix med indgange i F.
Lad (λ1, . . . ,λp) være en familie af parvis forskellige egenværdier for A, og lad (v1, . . . ,vp)
være en familie af vektorer i Fm, sådan at vi er en egenvektor hørende til λi for alle
1≤ i ≤ p. Da er familien (v1, . . . ,vp) lineært uafhængig. Specielt er p ≤ n.

Bevis Vi beviser udsagnet ved induktion på p ≥ 0. Hvis p = 0, så gælder udsagnet, da
den tomme familie altid er lineært uafhængig. Vi antager derfor, at udsagnet allerede
er bevist for p = r−1 og beviser, at det gælder for p = r. Så vi lader

v1c1 +·· ·+vr cr = 0

være en linearkombination af (v1, . . . ,vr), som er lig med nulvektoren, og skal vise, at
ci = 0 for alle 1≤ i ≤ r. Hertil bemærker vi, at

(A− Iλi)(v j)= v j · (λ j −λi),

idet Av j = v jλ j og (Iλi)v j = v jλi. Dette viser, at

(A− Iλ1) . . . (A− Iλr−1)(v1c1 +·· ·+vr cr)= vr cr(λr −λ1) · · · (λr −λr−1).

Da venstresiden per antagelse er lig med 0, konkluderer vi, at cr = 0. Dermed er

v1c1 +·· ·+vr−1cr−1 = 0,

og den induktive hypotese viser derfor, at c1 = ·· · = cr−1 = 0. Altså er (v1, . . . ,vr) lineært
uafhængig, hvilket viser induktionsskridtet. Endelig følger den sidste påstand, at det
ifølge sætning 4.3.18 nødvendigvis gælder, at p ≤ n. 2

206



5.2 Diagonaliserbare matricer

Korollar 5.1.12 Lad F være et legeme, og lad A ∈ Mn(F) være en kvadratisk matrix
med indgange i F. Hvis (λ1, . . . ,λn) er en familie af n parvis forskellige egenværdier for
A, da er enhver familie (v1, . . . ,vn) af tilhørende egenvektorer en basis for Fn.

Bevis Familien af egenvektorer (v1, . . . ,vn) er lineært uafhængig ifølge sætning 5.1.11,
og da den består af n = dimF(Fn) vektorer, viser sætning 4.3.24, at den er en basis. 2

Eksempel 5.1.13 Vi så i eksempel 5.1.10, at matricen

A =
(
0 −1
1 0

)
∈ M2(C)

har egenværdier λ1 =+i og λ2 =−i, og at vektorerne

v1 =
(

i
1

)
og v2 =

(−i
1

)
er egenvektorer for henholdsvis λ1 og λ2. Dermed er (v1,v2) en familie af egenvektorer
hørende til n = 2 forskellige egenværdier for A. Ifølge korollar 5.1.12 er (v1,v2) dermed
en basis for C2. (Dette følger også af, at det

(
v1 v2

)= 2i 6= 0.)

5.2 Diagonaliserbare matricer

I dette afsnit studerer vi de diagonaliserbare matricer, som vi vil definere.

Definition 5.2.1 En kvadratisk matrix A ∈ Mn(F) kaldes diagonaliserbar, hvis der
findes en invertibel matrix P ∈ Mn(F), sådan at P−1AP er en diagonalmatrix D.

Lad A ∈ Mn(F) være en diagonaliserbar matrix, og lad P ∈ Mn(F) være en invertibel
matrix, sådan at D = P−1AP er en diagonalmatrix. Da matricen P er invertibel, udgør
den familie (v1, . . . ,vn), der består af søjler i P, en basis for Fn. Den lineære endomorfi
f : Fn → Fn defineret ved f (x) = Ax er da repræsenteret af matricen A med hensyn til
standardbasen (e1, . . . , en) for både domænet og codomænet. Bemærkning 5.1.3 viser, at
f : Fn → Fn er repræsenteret af D = P−1AP med hensyn til basen (v1, . . . ,vn) for både
domænet og codomænet. At A er diagonaliserbar udtrykker altså, at der findes en basis
(v1, . . . ,vn) for Fn, sådan at matricen, der repræsenterer f : Fn → Fn med hensyn til denne
basis for både domænet og codomænet, er en diagonalmatrix.
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Sætning 5.2.2 Lad F være et legeme, lad A,P ∈ Mn(F) være kvadratiske matricer, og
lad (v1, . . . ,vn) være familien af søjlevektorer i P. Da er følgende udsagn ækvivalente:

(1) Matricen P er invertibel og P−1AP er en diagonalmatrix.

(2) Familien (v1, . . . ,vn) er en basis for Fn og består af egenvektorer for A.

Hvis dette er tilfældet og hvis P−1AP = diag(λ1, . . . ,λn), så gælder det endvidere, at vi
er en egenvektor for A hørende til egenværdien λi for alle 1≤ i ≤ n.

Bevis Ifølge lemma 4.3.9 er P ∈ Mn(F) invertibel, hvis og kun hvis hvis familien

(v1, . . . ,vn)= (Pe1, . . . ,Pen)

af søjlevektorer i P er en basis for Fn. Endvidere er P−1AP = diag(λ1, . . . ,λn), hvis og kun
hvis P−1APei = eiλi for alle 1≤ i ≤ n, hvilket gælder, hvis og kun hvis APei = Peiλi for
alle 1 ≤ i ≤ n. Idet Pei = vi, gælder dette, hvis og kun hvis Avi = viλi for alle 1 ≤ i ≤ n,
hvilket netop betyder, at basen (v1, . . . ,vn) består af egenvektorer for A. 2

Korollar 5.2.3 En kvadratisk matrix A ∈ Mn(F) er diagonaliserbar, hvis og kun hvis
der findes en basis for Fn bestående af egenvektorer for A.

Bevis Dette følger umiddelbart fra definition 5.2.1 og sætning 5.2.2. 2

Eksempel 5.2.4 Vi undersøger om matricen

A =
(−4 −6

1 1

)
er diagonaliserbar. Dette er ifølge sætning 5.2.2 tilfældet, hvis og kun hvis der findes
en basis (v1,v2) for F2, der består af egenvektorer for A. Vi udregner

χA(t)= t2 − tr(A)t+det(A)= t2 +3t+2= (−2− t)(−1− t).

Altså har A to forskellige egenværdier λ1 =−2 og λ2 =−1 og er derfor diagonaliserbar
ifølge korollar 5.1.12. Vi bestemmer egenrummet hørende til λ1 = −2 og omdanner
derfor matricen B = A− I(−2) til en matrix B′ på reduceret echelonform.

B =
(−2 −6

1 3

)
(−1

2 ) ·R1

(
1 3
1 3

)
+ (−1)R1

B′ =
(

1 3
0 0

)
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Heraf ser vi, at

NA−I(−2) =
{(−3

1

)
· t

∣∣∣ t ∈ F
}

,

og tilsvarende ses, at

NA−I(−1) =
{(−2

1

)
· t

∣∣∣ t ∈ F
}

.

Sætning 5.2.2 viser derfor, at

P = (
v1 v2

)= (−3 −2
1 1

)
er invertibel, og at

P−1AP =
(−2 0

0 −1

)
= diag(−2,−1),

hvilket let eftervises.

Eksempel 5.2.5 Vi undersøger om matricen

A =
−1 0 −2

3 2 2
1 −1 3


er diagonaliserbar. Vi begynder med at udregne det karakteristiske polynomium.

χA(t)= det

−1− t 0 −2
3 2− t 2
1 −1 3− t

 (D6′)= det

2− t 2− t 0
3 2− t 2
1 −1 3− t


(D2′)= (2− t)det

1 1 0
3 2− t 2
1 −1 3− t

 (D6′)= (2− t)det

1 1 0
0 −1− t 2
0 −2 3− t


(D6)= (2− t)det

1 0 0
0 −1− t 2
0 −2 3− t

 (D6)= (2− t)det

1 0 0
0 1− t 2
0 1− t 3− t


(D2)= (2− t)(1− t)det

1 0 0
0 1 2
0 1 3− t

 (D6)= (2− t)(1− t)det

1 0 0
0 1 0
0 1 1− t


= (2− t)(1− t)2.

Vi ser herfra, at λ1 = 1 og λ2 = 2 er de eneste egenværdier af A, og at deres algebraiske
multipliciteter er henholdsvis 2 og 1.
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5 Egenværdier og egenrum

For at udregne egenrummet NA−I hørende til λ1 = 1 anvender vi rækkeoperationer
til at omdanne B = A− I til en matrix B′ på reduceret echelonform.

B =
−2 0 −2

3 1 2
1 −1 2

 +2 ·R3
+(−3) ·R3

 0 −2 2
0 4 −4
1 −1 2

 R1 ↔ R3

 1 −1 2
0 4 −4
0 −2 2

 1
4 ·R2

 1 −1 2
0 1 −1
0 −2 2

 +R2

+3R2

B′ =
 1 0 1

0 1 −1
0 0 0


Vi ser heraf, at egenrummet hørende til λ1 = 1 er givet ved

NA−I =
{−1

1
1

 t
∣∣∣ t ∈ F

}
⊂ F3,

og vi ser tilsvarende, at egenrummet NA−I 2 hørende til λ2 = 2 er givet ved

NA−I 2 =
{−2

1
3

 t
∣∣∣ t ∈ F

}
⊂ F3.

Den geometriske multiplicitet af både λ= 1 og λ= 2 er altså lig med 1. De to egenrum
udspænder et underrum af F3 af dimension 2, og derfor har F3 ikke nogen basis, der
består af egenvektorer for A. Så A er ikke diagonaliserbar.

Bemærkning 5.2.6 Ved udregning af det karakteristiske polynomium er der altid ri-
siko for at lave fejl, hvilket vil gøre alle følgende udregninger forkerte. En sådan fejl er
dog let at opdage. For hvis λ ikke er en egenværdi for A, så er B = A− Iλ en invertibel
matrix, og Gauss-elimination vil da bestemme den tilhørende rækkeækvivalente ma-
trix på reduceret echelonform til at være B′ = I. Så hvis Gauss-elimination af B = A− Iλ
giver B′ = I, så ved vi altså, at λ ikke er en egenværdi.
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5.2 Diagonaliserbare matricer

Vi viser nu, at hvis A,B ∈ Mn(F) er samtidigt diagonaliserbare i den forstand, at der
findes en basis for Fn, der består af egenvektorer for dem begge, da kommuterer A og B
nødvendigvis med hinanden.

Sætning 5.2.7 Lad A og B være to n×n-matricer med indgange i et legeme F. Hvis der
findes en basis (v1, . . . ,vn) for Fn bestående af vektorer, der både er egenvektorer for A
og B, så gælder det nødvendigvis, at AB = BA.

Bevis Ifølge sætning 5.2.2 er matricen P = (
v1 . . . vn

)
invertibel, og matricerne

P−1AP = diag(λ1, . . . ,λn)

og
P−1BP = diag(µ1, . . . ,µn)

er diagonalmatricer. Vi konkluderer derfor, at

AB = P diag(λ1, . . . ,λn)P−1P diag(µ1, . . . ,µn)P−1 = P diag(λ1µ1, . . . ,λnµn)P−1

og

BA = P diag(µ1, . . . ,µn)P−1P diag(λ1, . . . ,λn)P−1 = P diag(µ1λ1, . . . ,µnλn)P−1.

Heraf følger som ønsket, at AB = BA, idet vi har antaget, at den kommutative lov
gælder for multiplikation af skalarer. 2

Bemærkning 5.2.8 Til trods for, at sætning 5.2.7 er ganske let at vise, så har den
enorme konsekvenser, idet den er grundlaget for Heisenbergs ubestemthedsrelationer.
I kvantemekanik svarer observable og tilstande til henholdsvis matricer og vektorer,
og en observabel A har en veldefineret værdi λ i tilstanden v, hvis og kun hvis v er en
egenvektor for A med egenværdi λ. Sætning 5.2.7 siger derfor, at hvis AB 6= BA, så er
værdierne af de observable A og B ikke samtidigt veldefinerede.

Hvis matricen A er diagonaliserbar, og hvis P−1AP = diag(λ1, . . . ,λn), da følger det fra
sætning 5.1.4, at det karakteristiske polynomium faktoriserer som et produkt

χA(t)= χP−1 AP (t)= det
(
diag(λ1 − t, . . . ,λn − t)

)
= (λ1 − t) · . . . · (λn − t)

af førstegradspolynomier. Det omvendte udsagn gælder imidlertid ikke, medmindre
egenværdierne λ1, . . . ,λn er parvis forskellige. Vi har i stedet følgende resultat.
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5 Egenværdier og egenrum

Sætning 5.2.9 Lad A ∈ Mn(F) være en kvadratisk matrix med indgange i et legeme F.
Da er følgende udsagn ækvivalente:

(1) Det karakteristiske polynomium er et produkt af førstegradspolynomier,

χA(t)= (λ1 − t) · . . . · (λn − t).

(2) Der findes en invertibel matrix P ∈ Mn(F), sådan at matricen P−1AP er en øvre
triangulær matrix.

Bevis Vi antager først (1) og beviser (2). Beviset er ved induktion på n ≥ 0. Tilfældet
n = 0 gælder, da den tomme matrix både er invertibel og øvre triangulær. Så vi antager,
at (1) medfører (2) for n = r−1 og viser, at (1) medfører (2) for n = r. Vi vælger en egen-
vektor v1 hørende til λ1 og supplerer ved hjælp af sætning 4.3.24 til en basis (v1, . . . ,vn)
for Fn. Matricen Q = (

v1 . . . vn
)

er da invertibel (lemma 4.3.9), og

B =Q−1AQ =


λ1 b12 · · · b1p
0
... B11
0

 ,

fordi Q−1AQe1 =Q−1Av1 =Q−1v1λ1 = e1λ1. Ifølge sætning 5.1.4 er χB(t)= χA(t), og ved
Laplace-udvikling af determinanten efter første søjle får vi endvidere, at

χB(t)= det(B− Ir t)= (λ1 − t)det(B11 − Ir−1t)= (λ1 − t)χB11(t).

Per entydighed af polynomiumsdivision1 følger derfor, at

χB11(t)= (λ2 − t) · . . . · (λr − t).

Den induktive antagelse, at (1) medfører (2) for n = r − 1, viser nu, at der findes en
invertibel matrix R11 ∈ Mr−1(F), sådan at matricen C11 = R−1

11 B11R11 ∈ Mr−1(F) er øvre
triangulær. Vi lader da

R =


1 0 · · · 0
0
... R11
0

 ∈ Mr(F)

1 Dette følger fra Euklids algoritme. Et bevis kan findes på side 173–174 i Serge Lang, Algebra. Revised
third edition. Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002.
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5.2 Diagonaliserbare matricer

og P =QR ∈ Mr(F). Da er matricen

C = P−1AP = R−1Q−1AQR = R−1BR =


λ1 c12 · · · c1r
0
... C11
0

 ∈ Mr(F)

øvre triangulær, hvilket viser induktionsskridtet og derfor (2). Endelig følger den om-
vendte implikation, at (2) medfører (1), fra sætning 5.1.4 og sætning 3.3.3. 2

Vi bemærker, at algebraens fundamentalsætning (sætning 3.5.10) medfører, at den
første betingelse (1) i sætning 5.2.9 altid er opfyldt for F = C. Dette gælder dog ikke
nødvendigs for F=R. Forskellen er afspejlet i det følgende resultat.

Sætning 5.2.10 (1) Hvis A ∈ Mn(R) er en symmetrisk reel kvadratisk matrix, så findes
der en invertibel reel matrix P ∈ Mn(R), sådan at P−1AP ∈ Mn(R) er øvre triangulær.
(2) Hvis A ∈ Mn(C) er en vilkårlig kompleks kvadratisk matrix, så findes der en inver-

tibel komplex matrix P ∈ Mn(C), sådan at P−1AP ∈ Mn(C) er øvre triangulær.

Bevis Vi begynder med at vise (2). Ifølge korollar 3.5.11 er ethvert polynomium med
komplekse koefficienter et produkt af førstegradspolynomier. Dette gælder specielt for
det karakteristiske polynomium χA(t), og udsagnet (2) følger derfor fra sætning 5.2.9.

Vi viser dernæst (1). Vi lader B ∈ Mn(C) være matricen A ∈ Mn(R) betragtet som en
kompleks matrix. Det følger som før fra korollar 3.5.11, at

χB(t)= (λ1 − t) · . . . · (λn − t) ∈C[t],

hvor λ1, . . . ,λn ∈ C er egenværdierne af B. Vi påstår, at disse egenværdier alle er reelle
tal. Da den reelle matrix A er symmetrisk, er den komplekse matrix B hermitisk. Lad
nu λ ∈ C være en egenværdi for B, og lad 0 6= z ∈ Cn være en dertil hørende egenvektor.
Da er Bz = zλ, og derfor er z∗B∗ =λ∗z∗, hvilket medfører, at

λ∗z∗z = z∗B∗z = z∗Bz = z∗zλ,

idet B∗ = B. Men z 6= 0, så z∗z 6= 0, og vi konkluderer derfor, at λ∗ = λ, hvilket viser
påstanden. Polynomiumsidentiteten ovenfor viser derfor, at

χA(t)= (λ1 − t) · . . . · (λn − t) ∈R[t]

med λ1, . . . ,λn ∈R, og derfor følger (1) ved at anvende sætning 5.2.9 som før. 2
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5 Egenværdier og egenrum

Eksempel 5.2.11 Vi undersøger, om den komplekse matrix

A =
1 0 −i

i 1 −2+2i
0 0 1


er diagonaliserbar. Vi udregner det karakteristiske polynomium ved Laplace-udvikling
langs sidste række.

χA(t)= det

1− t 0 −i
i 1− t −2+2i
0 0 1− t

= (1− t)det
(
1− t 0

i 1− t

)
= (1− t)3

Så λ = 1 er den eneste egenværdi, og vi anvender Gauss-elimination på B = A− I for
at bestemme det tilhørende egenrum NA−I .

B =
0 0 −i

i 0 −2+2i
0 0 0

 R1 ↔ R2

 i 0 −2+2i
0 0 −i
0 0 0

 R1 · (−i)
R2 · i

1 0 2+2i
0 0 1
0 0 0

 +R2 · (−2−2i
8 )

B′ =
1 0 0

0 0 1
0 0 0


Heraf aflæser vi, at NA−I er det en-dimensionale underrum

NA−I =
{0

1
0

 t
∣∣∣ t ∈C

}
⊂C3.

Der findes altså ikke en basis af egenvektorer for A, og derfor er A ifølge korollar 5.2.3
ikke diagonaliserbar. Sætning 5.2.9 viser imidlertid, at der findes en invertibel matrix
P, sådan at P−1AP er øvre triangulær. For vi har med

P =
0 1 0

1 0 0
0 0 1

 , at P−1AP =
1 i −2+2i

0 1 −i
0 0 1

 .
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5.2 Diagonaliserbare matricer

Bemærkning 5.2.12 Det er let at udregne potenser af diagonaliserbare matricer. Hvis
nemlig D = diag(λ1, . . . ,λn), da er Dk = diag(λk

1 , . . . ,λk
n), og hvis D = P−1AP, da er

Dk = (P−1AP)k = P−1APP−1AP . . .P−1AP = P−1AkP,

idet vi fjerner de k−1 forekomster af PP−1 = I. Heraf følger, at

Ak = PDkP−1,

så op til et koordinatskift er det ligeså let at udregne potenser af en diagonaliserbar
matrix som af en diagonalmatrix. Vi bemærker også, at Ak igen er diagonaliserbar.

Eksempel 5.2.13 Vi anvender bemærkning 5.2.12 på den diagonaliserbare matrix A
i eksempel 5.2.4 og får, at

Ak = P diag((−2)k, (−1)k)P−1 =
(−3 −2

1 1

)(
(−2)k 0

0 (−1)k

)(−1 −2
1 3

)
(−3(−2)k −2(−1)k

(−2)k (−1)k

)(−1 −2
1 3

)
=

(
3(−2)k −2(−1)k 6(−2)k −6(−1)k

−(−2)k + (−1)k −2(−2)k +3(−1)k

)
.

Her har vi anvendt eksempel 3.4.4 til at udregne P−1.

Diagonalisering kan bruges til at forstå lineære processer, der gentager sig. Dette vil
vi nu illustrere med følgende simple eksempel.

Eksempel 5.2.14 I et land L bor der x personer på landet og y personer i byerne.
Man har observeret, at hvert år flytter 15% af befolkningen fra landet til byerne, mens
10% af befolkningen i byerne flytter på landet. Vi ønsker at bestemme, hvor mange
personer der vil være på landet og i byerne efter 20 år, hvis denne udvikling forsætter.

Vi observerer først, at i denne model er ændringen i befolkningssammensætning fra
år til år givet ved en lineær afbildning: efter et år er der x−15% x+10% y personer på
landet og y−10% y+15% x personer i byerne. Så de nye antal personer efter et år er(

85/100 x+ 10/100 y
15/100 x+ 90/100 y

)
=

(
17/20 1/10

3/20 9/10

)(
x
y

)
.

Efter 20 år vil befolkningssammensætningen i vores model derfor være

A20
(
x
y

)
, hvor A =

(
17/20 1/10
3/20 9/10

)
.

Vi udregner nu, at
χA(t)= t2 − 7

4 t+ 3
4 = (1− t)(3

4 − t),
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5 Egenværdier og egenrum

hvilket viser, at A har egenværdier λ1 = 1 og λ2 = 3/4. Korollar 5.1.12 og korollar 5.2.3
viser da, at A er diagonaliserbar. Vi udregner endvidere, at

NA−I =
{(

2
3

)
t
∣∣∣ t ∈R

}
⊂R2 og NA−I 3

4
=

{(−1
1

)
t
∣∣∣ t ∈R

}
⊂R2.

Det følger, at

A =
(
2 −1
3 1

)(
1 0
0 3/4

)(
2 −1
3 1

)−1

,

og derfor viser bemærkning 5.2.12, at

Ak =
(
2 −1
3 1

)(
1 0
0 3/4

)k (
2 −1
3 1

)−1

=
(

2 −1
3 1

)(
1k 0
0 (3/4)k

)(
1/5 1/5

−3/5 2/5

)
=

(
2/5+ 3/5 (3/4)k 2/5− 2/5 (3/4)k

3/5− 3/5 (3/4)k 3/5+ 2/5 (3/4)k

)
.

For k = 20, kan vi helt ignorere de led, der indeholder (3/4)k, idet (3/4)20 ∼ 0,003, hvilket
er ubetydeligt sammenlignet med 2/5 = 0,4 og 3/5 = 0,6. Denne simple model viser altså,
at efter 20 år er befolkningssammensætningen i landet L stabiliseret med omkring
40% x+40% y på landet og 60% x+60% y i byerne.

5.3 Egenværdier og egenrum for lineære endomorfier

Vi overfører nu de begreber, vi har indført i de sidste to afsnit, til lineære endomorfier
af endeligt frembragte abstrakte vektorrum, og vi begynder med det karakteristiske
polynomium.

Definition 5.3.1 Lad F være et legeme, og lad V være et F-vektorrum V af endelig
dimension n. Det karakteristiske polynomium af en lineær endomorfi f : V → V er da
det karakteristiske polynomium

χ f (t)= χA(t)= det(A− I t) ∈ F[t]

af den kvadratiske matrix A ∈ Mn(F), der repræsenterer f : V → V med hensyn til en
fælles basis (v1, . . . ,vn) for domænet og codomænet.

Vi viser nu, at denne definition er meningsfuld i den forstand, at χ f (t) ikke afhænger
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af valget af basis (v1, . . . ,vn) for V . Så lad også (w1, . . . ,wn) være en basis for V , og lad
B ∈ Mn(F) være matricen, der repræsenterer f : V → V med hensyn til denne basis for
både domænet og codomænet. Som vi forklarede i bemærkning 5.1.3 gælder det da, at

B = P−1AP,

hvor P ∈ Mn(F) er matricen, der repræsenterer identitetsafbildningen idV : V → V med
hensyn til basen (w1, . . . ,wn) for domænet og basen (v1, . . . ,vn) for codomænet. Derfor
viser sætning 5.1.4, at χA(t) = χB(t), og dermed er χ f (t) uafhængig af valget af basis.
Det er dog afgørende, at vi anvender den samme basis (v1, . . . ,vn) for både domænet og
codomænet af f : V →V .

Lad nu V være et vilkårligt F-vektorrum. Hvis λ ∈ F, da definerer formlen

(idV λ)(v)= vλ

en lineær endomorfi idV λ : V →V . For hvis v,w ∈V og µ ∈ F, da er

(idV λ)(v+w)= (v+w)λ= vλ+wλ= (idV λ)(v)+ (idV λ)(w)
(idV λ)(vµ)= (vµ)λ= v(µλ)= v(λµ)= (vλ)µ= (idV λ)(v)µ,

hvor vi har brugt den kommutative lov for multiplikation af skalarer. Særligt gælder
det for enhver lineær endomorfi f : V →V og λ ∈ F, at

Vλ = {v ∈V | f (v)= vλ}= ker( f − idV λ)⊂V

er et underrum af vektorrummet V .

Definition 5.3.2 Lad V være et vektorrum over et legeme F, lad f : V → V være en
lineær endomorfi, og lad Vλ = {v ∈V | f (v)= vλ}.

(1) En skalar λ ∈ F er en egenværdi for f : V →V , hvis Vλ 6= {0}.

(2) Hvis λ ∈ F er en egenværdi for f : V → V , så kaldes underrummet Vλ ⊂ V for
egenrummet for f : V →V hørende til egenværdien λ ∈ F.

(3) Hvis λ ∈ F er en egenværdi for f : V →V , så kaldes enhver vektor v ∈Vλ, der ikke
er nulvektoren, for en egenvektor for f : V →V hørende til egenværdien λ ∈ F.

En vektor v ∈V , der ikke er nulvektoren, er altså en egenvektor for f : V →V hørende
til egenværdien λ, hvis og kun hvis f (v)= vλ.
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Eksempel 5.3.3 (1) Nulafbildningen 0 : V →V har λ= 0 som eneste egenværdi, og

V0 = ker(0− idV 0)= ker(0)=V .

(2) Identitetsafbildningen idV : V →V har λ= 1 som eneste egenværdi, og

V1 = ker(idV − idV 1)= ker(0)=V .

(3) Mængden V = C∞(R) af funktioner f : R→ R, der er vilkårligt ofte differentiable,
har en reel vektorrumsstruktur, hvor vektorsum og skalarmultiplikation er givet ved
henholdsvis ( f + g)(x) = f (x)+ g(x) og ( f ·λ)(x) = f (x) ·λ, og afbildningen D : V → V ,
der til f ∈ V tilordner den afledte f ′ ∈ V , er en lineær endomorfi. Ethvert λ ∈ R er en
egenværdi for D : V →V , og det tilhørende egenrum er det en-dimensionale underrum

Vλ = {eλx · c | c ∈R}⊂V ,

da funktionerne f (x) = eλx · c udgør alle løsninger til differentialligningen D f = f λ.
Så endomorfien D : V → V har specielt uendeligt mange egenværdier. Sætning 5.1.11
viser, at dette kun er muligt, fordi vektorrummet V er uendeligdimensionalt.

Vi viser i sætning 5.3.6, at for et endeligt frembragt F-vektorrum V , er egenværdierne
af en lineær endomorfi f : V →V netop rødderne i F af dets karakteristiske polynomium
χ f (t). Vi begynder med følgende resultat.

Lemma 5.3.4 Lad F være et legeme, lad V være et endeligt frembragt F-vektorrum,
og lad g : V → V være en lineær endomorfi. Lad (v1, . . . ,vn) være en basis for V , lad
h : Fn →V være den entydigt bestemte lineære isomorfi, sådan at h(ei)= vi for 1≤ i ≤ n,
og lad B ∈ Mn(F) være matricen, der repræsenterer g : V →V med hensyn til denne basis
for både domænet og codomænet. Da gælder det, at h(NB)= ker(g).

Bevis Vi husker fra bemærkning 4.4.5, at den lineære endomorfi k : Fn → Fn, der er
givet ved k(x)= Bx, gør det følgende diagram kommutativt.

VV
g

//

Fn

h

OO

Fn

h

OO

k //

Vi påstår, at dette medfører, at h(NB)= ker(g). For hvis x ∈ NB = ker(k), så er

g(h(x))= h(k(x))= h(Bx)= h(0)= 0,
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så h(x) ∈ ker( f ). Omvendt, hvis v ∈ ker(g), da findes der x ∈ Fn, sådan at x = h(x), idet
h : Fn →V er surjektiv. Og da h : Fn →V også er injektiv, så viser udregningen

h(k(x))= g(h(x))= g(v)= 0,

at x ∈ ker(k)= NB. Dermed er v= h(x) ∈ h(NB), hvilket viser påstanden. 2

Korollar 5.3.5 Lad F være et legeme, lad V være et endeligt frembragt F-vektorrum,
og lad f : V → V være en lineær endomorfi. Lad (v1, . . . ,vn) være en basis for V , lad
h : Fn →V være den entydigt bestemte lineære isomorfi, sådan at h(ei)= vi for 1≤ i ≤ n,
og lad A ∈ Mn(F) være matricen, der repræsenterer f : V →V med hensyn til denne basis
for både domænet og codomænet. Da gælder det for alle λ ∈ F, at

h(NA−Iλ)=Vλ.

Særligt er λ en egenværdi for f : V →V , hvis og kun hvis λ er en egenværdi for A.

Bevis Identiteten h(NA−Iλ) = Vλ følger fra lemma 5.3.4 med g = f − idV λ : V → V . For
matricen B, der repræsenterer g : V →V med hensyn til den fælles basis (v1, . . . ,vn) for
domænet og codomænet, er B = A− Iλ, så NB = NA−Iλ, og ker(g)= ker( f − idV λ)=Vλ.

Endelig er λ per definition en egenværdi for f : V → V , hvis og kun hvis Vλ 6= {0}, og
da h : Fn → V er en isomorfi, så viser identiteten ovenfor, at dette er tilfældet, hvis og
kun hvis NA−Iλ 6= {0}, hvilket er definitionen på, at λ er en egenværdi for A. 2

Sætning 5.3.6 Lad F være et legeme, og lad V være et endeligt frembragt F-vektorrum.
Da er egenværdierne af en lineær endomorfi f : V →V præcis rødderne i F af det karak-
teristiske polynomium χ f (t) ∈ F[t].

Bevis Lad A ∈ Mn(F) være matricen, der repræsenterer f : V → V med hensyn til en
fælles basis (v1, . . . ,vn) for domænet og codomænet. Ifølge korollar 5.3.5 er λ ∈ F en egen-
værdi for f : V →V , hvis og kun hvis λ ∈ F er en egenværdi for A, og ifølge sætning 5.1.8
er dette tilfældet, hvis og kun hvis λ ∈ F er en rod i χA(t)= χ f (t). 2

Hvis λ ∈ F er en egenværdi for den lineære endomorfi f : V → V , så definerer vi igen
den geometriske multiplicitet til at være dimensionen af egenrummet Vλ hørende til λ;
og vi definerer den algebraiske multiplicitet til at være det maksimale hele tal k ≥ 1, for
hvilket der findes q(t) ∈ F[t], sådan at χ f (t)= (λ− t)k · q(t) ∈ F[t].
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5 Egenværdier og egenrum

Sætning 5.3.7 Lad F være et legeme og V et endeligt frembragt F-vektorrum. Givet en
egenværdi λ ∈ F for en lineær endomorfi f : V → V , da er den algebraiske multiplicitet
af λ større end eller lig med den geometriske multiplicitet af λ.

Bevis Vi vælger først en basis (v1, . . . ,vn) for egenrummet Vλ og supplerer dernæst
denne til en basis (v1, . . . ,vn,w1, . . . ,wp) for V . Da vektorerne v1, . . . ,vn er egenvektorer
for f : V → V hørende til λ, er matricen A ∈ Mn+p(F), der repræsenterer f : V → V med
hensyn til basen (v1, . . . ,vn,w1, . . . ,wp) for både domænet og codomænet, på formen

A =
(

Inλ B
Op,n C

)
,

hvor In ∈ Mn,n(F) er identitetsmatricen og Op,n ∈ Mp,n(F) er nulmatricen, og hvor de
to matricer B ∈ Mn,p(F) og C ∈ Mp,p(F) kan være vilkårlige. Ved at foretage Laplace-
udvikling af determinanten efter første søjle n gange får vi da, at

χ f (t)= det(A− In+pt)=
(

Inλ− Int B
Op,n C− Ipt

)
= (λ− t)n det(C− Ipt).

Dette viser, at den algebraiske multiplicitet af λ er større end eller lig med den geome-
triske multiplicitet n som ønsket. 2

Bemærkning 5.3.8 Lad os definere, at en lineær endomorfi f : V → V af et endeligt
frembragt F-vektorrum er diagonaliserbar, hvis der findes en basis for V , der består
af egenvektorer for f : V → V . Bemærkning 5.1.3 viser, at dette er tilfældet, hvis og
kun hvis matricen A, der repræsenterer f : V → V med hensyn til en vilkårlig, men
fælles, basis for domænet og codomænet, er diagonaliserbar. Vi har i sætning 5.1.11
vist, at egenvektorer hørende til forskellige egenværdier er lineært uafhængige. Derfor
er f : V →V diagonaliserbar, hvis og kun hvis det gælder, at∑

λ

dim(Vλ)= dim(V ),

hvor summen til venstre løber over de endeligt mange egenværdier af f : V →V . Vi har
netop vist i sætning 5.3.7, at det gælder følgende ulighed:∑

λ

dimVλ =
∑
λ

geometrisk multiplicitet (λ) ≤
∑
λ

algebraisk multiplicitet (λ).

Og da et polynomium af grad højst d med koefficienter i et legeme F højst kan have d
rødder i F, får vi endvidere følgende ulighed:∑

λ

algebraisk multiplicitet (λ) ≤ deg(χ f (t))= dim(V ).

Vi konkluderer altså, at f : V → V er diagonaliserbar, hvis og kun hvis de følgende
betingelser begge er opfyldt:
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5.4 Opgaver

(1) Den følgende identitet gælder:∑
λ

algebraisk multiplicitet (λ)= dim(V ).

(2) For enhver egenværdi λ af f : V →V er

geometrisk multiplicitet (λ)= algebraisk multiplicitet (λ).

Endelig viser algebraens fundamentalsætning (sætning 3.5.10), at betingelsen (1) altid
er opfyldt, hvis F=C.

5.4 Opgaver

5.1 Vi betragter polynomiet

p(t)= det

3− t −5 4
1 −t 1
1 1 −t

 .

a) Bestem p(t).

b) Udtryk p(t) som et produkt af førstegradspolynomier.

5.2 For hver af de nedenstående reelle matricer A ∈ M2(R), definerer vi B ∈ M2(C) til at
være matricen A betragtet som en kompleks matrix. Find i hvert af de tre tilfælde
eventuelle egenværdier og tilhørende egenrum for henholdsvis A og B. Undersøg
endvidere, om matricen A (resp. B) er diagonaliserbar, og find i givet fald en basis
for R2 (resp. C2), der består af egenvektorer for A (resp. B) samt en invertibel matrix
P ∈ M2(R) (resp. Q ∈ M2(C)), sådan at P−1AP (resp. Q−1BQ) er en diagonalmatrix.

a)

A =
(
2 4
5 1

)
.

b)

A =
(
0 2
2 0

)
.

c)

A =
(

0 2
−2 0

)
.

5.3 Betragt matricen

A =
 3 0 1
−1 4 1

1 0 3

 .
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5 Egenværdier og egenrum

a) Find egenværdierne for matricen A.

b) Find baser for de tilhørende egenrum.

c) Find en invertibel reel matrix P, sådan at P−1AP er en diagonalmatrix.

5.4 Betragt matricen

A =
(

1 1
−4 5

)
a) Find egenværdierne for matricen A.

b) Find baser for de tilhørende egenrum.

c) Redegør for, at der ikke findes en invertibel reel matrix P, sådan at P−1AP er en
diagonalmatrix.

5.5 Vi betragter den lineære endomorfi f : R4 →R4, der er repræsenteret af matricen

A =


1 0 0 −3
2 3 0 3

−2 −1 2 −3
0 0 0 4


med hensyn til standardbasen for både domænet og codomænet.

a) Bestem egenværdier og egenvektorer for A.

b) Angiv en basis (v1,v2,v3,v4) for R4, sådan at matricen D, der repræsenterer
f : R4 → R4 med hensyn til denne basis for både domænet og codomænet, er en
diagonalmatrix.

c) Angiv en invertibel matrix P, sådan at D = P−1AP.

5.6 Betragt matricen

A =
(
2 1+2i
0 i

)
.

a) Bestem egenværdier og egenvektorer for A

b) Angiv en invertibel matrix P, sådan at P−1AP er en diagonalmatrix.

5.7 Betragt matricen (
3+3i 0
−1+2i 6−3i

)
.

a) Bestem egenværdier og egenvektorer for A.

b) Angiv en invertibel matrix P, sådan at P−1AP er en diagonalmatrix.

5.8 Bevis at egenværdierne for en (øvre eller nedre) triangulær matrix A netop er dia-
gonalindgangene.

222



5.4 Opgaver

5.9 Lad F være et legeme.

(a) Vis, at hvis λ ∈ F, da er
B · Iλ= Iλ ·B

for alle B ∈ Mn(F). [Vink: Udregn begge matrixprodukter.]

(b) Lad A ∈ Mn(F) være en diagonaliserbar matrix med en enkelt egenværdi λ.
Bevis, at da er A = Iλ.

5.10 Vi har i opgave 2.9 defineret sporet tr(A) af en kvadratisk matrix A som summen
af diagonalindgangene og vist, at tr(AB)= tr(BA).

a) Lad f : V → V være en lineær endomorfi, og lad A og B være matricerne, der
repræsenterer f : V → V med hensyn til baser (v1, . . . ,vn) og (w1, . . . ,wn) for V .
Vis, at tr(A)= tr(B).

b) Lad A ∈ Mn(C), og lad λ1, . . . ,λk være egenværdierne af A. Vis, at hvis A er
diagonaliserbar, da er

tr(A)=
k∑

i=1
diλi

hvor di er den algebraiske multiplicitet af λi.

5.11 Vis, at det for enhver kompleks matrix A ∈ Mn(C) gælder, at

det(A)=
k∏

i=1
λ

di
i

hvor λ1, . . . ,λk er egenværdierne af A, og hvor di er den algebraiske multiplicitet af
egenværdien λi.

[Vink: Anvend sætning 5.2.10.]

5.12 I vektorrummet R3 er der givet den lineært uafhængige familie af vektorer

(
v1 =

1
1
1

 , v2 =
 1
−1

0

 , v3 =
0

1
1

)
.

En lineær endomorfi f :R3 →R3 er fastlagt ved

f (v1)= v2, f (v2)= v1 og f (v3)= 0.

a) Opskriv den matrix, der repræsenterer f : R3 →R3 i basen (v1,v2,v3).

b) Gør rede for, at f : R3 →R3 er diagonaliserbar.
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5 Egenværdier og egenrum

5.13 Vi betragter de lineære endomorfier f , g : R3 →R3, der er repræsenteret af

A =
−1 1 1

0 1 0
0 0 1

 og B =
0 0 1

0 0 1
0 0 1


med hensyn til standardbasen for både domænet og codomænet.

a) Find en basis (v1,v2,v3) for R3, som består af vektorer, der er egenvektorer for
både A og B.

b) Find en invertibel matrix P, sådan at P−1AP og P−1BP begge er diagonalmatri-
cer.

5.14 (?) En blind mus befinder sig i et rum på tegningen herunder og leder efter en ost.
Den går hvert minut til et nyt rum i et tilfældigt mønster, indtil den finder osten.
Musen bevæger sig med lige stor sandsynlighed ind i hvert af de tilstødende lokaler.
(F.eks. er sandsynligheden for at musen går fra rum 2 til 1 og fra rum 2 til 3, begge
lig med 1/2.) Og sådan fortsætter musen med at vandre indtil den finder osten,
hvorefter den forbliver i rum 5 og tilbringer resten af sine dage med at spise den
store ost. Til at beskrive musens bevægelse kan vi opskrive en overgangsmatrix P,
hvis elementer Pi j er sandsynlighederne for at musen går til rum i fra rum j. (Så
for eksempel er P12 = 1

2 = P32, mens P22 = P42 = P52 = 0.)

a) Opskriv matricen P ud fra musens mulige bevægelser. Gør herunder rede for,
hvorfor P55 = 1, mens Pi5 = 0 for i = 1,2,3,4.

b) Vi kan repræsentere startrummet for musen ved en standard enhedsvektor e j,
j = 1, . . . ,5, da musen starter i netop ét af rummene 1–5. Hvis musen befinder sig
i rum j, vil sandsynligheden for at træffe musen i næste minut i de forskellige
rum altså være givet ved vektoren P e j, som er den j’te søjle i matricen P. Her
er den i’te indgang i vektoren P e j lig med sandsynligheden for, at musen er i
det i’te rum efter et minut. Tjek, at matricen P fundet i a) har den egenskab.
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5.4 Opgaver

Mere generelt vil sandsynligheden for at træffe musen i de forskellige rum ef-
ter k minutter, hvis den starter i det j’te rum, være givet ved vektoren Pke j.
For hver j = 1,2,3,4, bestem (gerne ved brug af Maple) sandsynligheden for, at
musen finder osten på højst 10 minutter, givet at den starter i det j’te rum. Hvil-
ken af de 4 sandsynligheder er størst, og hvilken er mindst? Svarer det til dine
forventninger?

c) Musen starter i rum 1. Efter at have vandret i noget tid og stadig ikke have
fundet osten, kommer musen til at tænke, at den måske aldrig vil finde osten.
Vis, at sandsynligheden for at musen finder osten, dvs. befinder sig i rum 5 efter
k minutter, går mod 1 når k går mod uendelig.

[Hint: Diagonalisering].

(Til denne del af opgaven må der gerne bruges Maple til at finde egenværdier,
egenvektorer og inverse matricer.)

5.15 (?) Vi definerer en reel matrix A ∈ Mn(R) til at være skævsymmetrisk, hvis den
opfylder, at At =−A. Vis, at det for en sådan matrix gælder, at

χA(t)= (−1)nχA(−t).

5.16 Betragt matricen

A =
0 1 1

0 0 1
0 0 0

 .

a. Udregn A2, A3.

b. Udregn det(A).

c. Udregn egenværdierne og egenrummerne for matricen A. Er A diagonaliser-
bar?

Lad F være et legeme. En matrix N ∈ Mn(F) kaldes nilpotent, hvis der findes et
naturligt tal k sådan at, hvis man ganger matricen N med sig selv k gange, så får
man nulmatricen, dvs. hvis

Nk =On,n.

d. Vis, at hvis N er en nilpotent matrix, så er det(N)= 0.

e. Vis, at hvis N er en diagonaliserbar nilpotent matrix i Mn(F), så er matricen
N =On,n.

f. Hvad er det karakteristiske polynomium for N?
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6 Vektorrum med indre produkt

Dette kapitel omhandler geometriske strukturer på reelle og komplekse vektorrum.
Disse strukturer er ikke lineære, men derimod kvadratiske, af natur, og de afhænger
af et valg af en yderligere struktur, der kaldes for et indre produkt. Et indre produkt
giver således anledning til en norm eller længdemål af vektorer, samt til begrebet, at
to vektorer er ortogonale eller vinkelrette. I det reelle tilfælde er det også muligt at
definere vinklen mellem to vektorer. Vi viser den meget anvendelige Cauchy-Schwarz-
ulighed, hvorfra de fleste egenskaber for indre produkt og norm følger. Vi definerer og
studerer også lineære isometrier, som er de lineære afbildninger mellem vektorrum med
indre produkt, der bevarer denne ekstra geometriske struktur.

Vi siger, at en basis for et vektorrum med indre produkt er ortonormal med hensyn til
det indre produkt, hvis vektorerne i basen er parvis ortogonale og har norm 1. En stor
fordel ved en ortonormal basis er, at koordinaterne af en vektor med hensyn til denne
basis er givet ved indre produkt med basisvektorerne. Vi angiver endvidere en algorit-
me, der kaldes for Gram-Schmidt-ortogonalisering, der erstatter en vilkårlig basis med
en basis, der er ortonormal med hensyn til det indre produkt.

Endelig viser vi de såkaldte spektralsætninger for henholdsvis selvadjungerede lineæ-
re endomorfier af reelle vektorrum med indre produkt og normale lineære endomorfier
af komplekse vektorrum. I begge tilfælde udtaler sætningen, at der findes en basis af
egenvektorer for den lineære endomorfi, der endvidere er ortonormal med hensyn til
det indre produkt. Vi anvender til sidst spektralsætningerne til at bevise Sylvesters
klassifikation af hermitiske former på reelle og komplekse vektorrum.

I dette kapitel antager vi, at F = R eller F = C, men i de tre første afsnit gælder alle
udsagn og definitioner også for F=H med kvaternionisk konjugation.

6.1 Indre produkt

Vi betragter vektorrum over F=R eller F=C, og for a ∈ F definerer vi

a∗ =
{

a, hvis F=R,
ā, hvis F=C.

For reelle tal giver det mening at spørge, om et tal er positivt eller negativt, hvorimod
dette spørgsmål ikke giver mening for komplekse tal generelt. Vi bemærker imidlertid,
at hvis a ∈ F opfylder, at a = a∗, så er a ∈ R, uanset om F= R eller F= C. I dette tilfælde
er udsagnet “a > 0” derfor meningsfuldt, hvilket vi anvender i følgende definition.
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6 Vektorrum med indre produkt

Definition 6.1.1 Lad enten F=R eller F=C. Et indre produkt på et F-vektorrum V er
en afbildning 〈−,−〉 : V ×V → F, der opfylder følgende: For alle u,v,w ∈V og a ∈ F er

(H1) 〈u,v+w〉 = 〈u,v〉+〈u,w〉.

(H2) 〈u,va〉 = 〈u,v〉a.

(H3) 〈u+v,w〉 = 〈u,w〉+〈v,w〉.

(H4) 〈ua,v〉 = a∗〈u,v〉.

(H5) 〈v,u〉 = 〈u,v〉∗.

(P) For alle 0 6= u ∈V er 〈u,u〉 > 0.

Et F-vektorrum med indre produkt er et par (V ,〈−,−〉) bestående af et F-vektorrum V
og et indre produkt 〈−,−〉 : V ×V → F.

Vi minder om, at vi i afsnit 2.6 definerede en hermitisk form på V til at være en
afbildning 〈−,−〉 : V ×V → F, der opfylder (H1)–(H5), idet vi dog kun betragtede V = Fn.
Mens hermitiske former er defineret generelt for et skævlegeme F med skævinvolution
(−)∗, så giver positivitetsbetingelsen (P) i definitionen af et indre produkt kun mening,
hvis F er R, C eller H og (−)∗ de respektive konjugeringsafbildninger.

Eksempel 6.1.2 (1) Standard-indreproduktet 〈−,−〉 : Fn ×Fn → F defineret ved

〈x, y〉 = x∗y= x∗1 y1 +·· ·+ x∗n yn

er et indre produkt på Fn. Vi efterviser, at positivitetsbetingelsen (P) er opfyldt. Hvis
F=R, da er 〈x, x〉 = x2

1+·· ·+x2
n ≥ 0 med lighed, hvis og kun hvis x= 0. Og hvis F=C, da

er 〈x, x〉 = |x1|2 +·· ·+ |xn|2 ≥ 0, og der gælder igen lighed, hvis og kun hvis x= 0.
(2) Vi lader A = A∗ ∈ Mn(F) være en hermitisk matrix og husker fra sætning 2.6.10, at
afbildningen 〈−,−〉 : Fn ×Fn → F defineret ved

〈x, y〉 = x∗Ay

er en hermitisk form, hvilket vil sige, at den opfylder (H1)–(H5). Hvis denne afbildning
også opfylder (P), så siger vi, at den hermitiske matrix A ∈ Mm(F) er positiv definit. En
diagonalmatrix A = diag(λ1, . . . ,λn) er således hermitisk, hvis og kun hvis λ1, . . . ,λn
alle er reelle tal, og den er hermitisk og positiv definit, hvis og kun hvis λ1, . . . ,λn alle
er positive reelle tal. For eksempel er A = diag(−1,1, . . . ,1), der svarer til Minkowskis
hermitiske form, ikke positiv definit, så Minkowski-formen er ikke et indre produkt.
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6.1 Indre produkt

(3) Lad V = C0([a,b]) være det uendeligdimensionale reelle vektorrum af kontinuerte
funktioner f : [a,b]→R fra bemærkning 4.4.20. Da definerer formlen

〈 f , g〉 =
∫ b

a
f (x)g(x)dx

et indre produkt 〈−,−〉 : V ×V →R.

Definition 6.1.3 Lad enten F = R eller F = C, og lad V være et F-vektorrum. Givet et
indre produkt 〈−,−〉 : V ×V → F, da kaldes afbildningen ‖−‖ : V →R defineret ved

‖v‖ =
√
〈v,v〉

for normen hørende til 〈−,−〉.

Vi kalder også ‖v‖ for længden af v med hensyn til 〈−,−〉. Vi bemærker, at normen
af v er veldefineret, fordi 〈v,v〉 er et ikke-negativt reelt tal, og at normen af v selv er et
ikke-negativt reelt tal. Det gælder endvidere, at

‖va‖ = ‖v‖|a|

for alle v ∈V og a ∈ F. Her er |a| =
p

a∗a ∈R absolutværdien af a ∈ F.
Vi viser nu, at absolutværdien af det indre produkt af to vektorer altid er mindre

eller lig med produktet af deres norm. Denne ulighed, der kendes som Cauchy-Schwarz’
ulighed og skyldes Cauchy, Schwarz og Bunyakovsky, gælder i ethvert vektorrum med
indre produkt. Det er en enormt anvendelig ulighed, hvilket vi illustrerer med beviset
for trekantsuligheden nedenfor.

Sætning 6.1.4 (Cauchy-Schwarz) Lad enten F=R eller F=C, og lad (V ,〈−,−〉) være
et F-vektorrum med indre produkt. For alle v,w ∈V er

|〈v,w〉| ≤ ‖v‖‖w‖.

Bevis Hvis v = 0, er påstanden triviel, så vi antager, at v 6= 0. Beviset i dette tilfælde
beror på følgende snedige trick: Vi betragter vektoren

z = prv(w)= v · 〈v,w〉
〈v,v〉 ,
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6 Vektorrum med indre produkt

som vi kalder for projektionen af w på v. (Se også definition 6.2.7.) For udregningen

〈z,w− z〉 =
〈

v · 〈v,w〉
〈v,v〉 , w−v · 〈v,w〉

〈v,v〉
〉

=
(〈v,w〉
〈v,v〉

)∗
· 〈v,w〉 −

(〈v,w〉
〈v,v〉

)∗
· 〈v,v〉 · 〈v,w〉

〈v,v〉 = 0

viser, at z og w− z er ortogonale; se definition 6.2.1 nedenfor. Vi skriver nu w som
z+ (w− z) og udregner

〈w,w〉 = 〈
z+ (w− z), z+ (w− z)

〉= 〈z, z〉+0+0+〈w− z,w− z〉 ≥ 〈z, z〉,
hvor uligheden til højre gælder fordi 〈w− z,w− z〉 ≥ 0. Vi bemærker, at uligheden giver
mening, fordi begge sider af uligheden er reelle tal. Vi udregner endelig, at

〈z, z〉 =
〈

v · 〈v,w〉
〈v,v〉 ,v · 〈v,w〉

〈v,v〉
〉
=

(〈v,w〉
〈v,v〉

)∗
· 〈v,v〉 · 〈v,w〉

〈v,v〉 = 〈v,w〉∗
〈v,v〉 · 〈v,w〉 = |〈v,w〉|2

〈v,v〉 ,

idet 〈v,v〉∗ = 〈v,v〉. Så uligheden ovenfor er derfor ækvivalent med uligheden

〈v,v〉 · 〈w,w〉 ≥ |〈v,w〉|2,

fordi 〈v,v〉 > 0. Sætningen følger nu ved at uddrage kvadratroden på begge sider. 2

Lad V være et F-vektorrum med indre produkt 〈−,−〉 og tilhørende norm ‖−‖. Givet to
vektorer v og w i V , kan vi danne trekanten med hjørner 0, v og v+w, og vi kan betragte
‖v‖, ‖w‖ og ‖v+w‖ som længderne af de tre sider i denne trekant. Trekantsuligheden,
som vi nu viser, siger altså, at længden af én side i en trekant altid er mindre end eller
lig med summen af længderne af de to resterende sider.

Sætning 6.1.5 (Trekantsuligheden) Lad enten F = R eller F = C, og lad (V ,〈−,−〉)
være et F-vektorrum med indre produkt. Da gælder det for alle v,w ∈V , at

‖v+w‖ ≤ ‖v‖+‖w‖.

Bevis Vi bemærker først, at det for alle a = x+ i y ∈C gælder, at

a+a∗ = (x+ i y)+ (x− i y)= 2x ≤ 2
√

x2 + y2 = 2|a|,
og at samme ulighed gælder trivielt også for alle a ∈R. Vi udregner nu

‖v+w‖2 = 〈v+w,v+w〉 = 〈v,v〉+〈v,w〉+〈w,v〉+〈w,w〉
= ‖v‖2 +〈v,w〉+〈v,w〉∗+‖w‖2 ≤ ‖v‖2 +2|〈v,w〉|+‖w‖2

≤ ‖v‖2 +2‖v‖‖w‖+‖w‖2 = (‖v‖+‖w‖)2,

hvor den første af de to uligheder følger af den ulighed, vi viste i begyndelsen af beviset,
og den anden er Cauchy-Schwarz’ ulighed. Den ønskede ulighed følger ved at uddrage
kvadratroden. 2
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6.1 Indre produkt

For reelle vektorrum med indre produkt er Cauchy-Schwarz’ ulighed ækvivalent med
udsagnet, at det for alle vektorer v og w i vektorrummet gælder, at

−‖v‖‖w‖ ≤ 〈v,w〉 ≤ ‖v‖‖w‖.

Hvis v 6= 0 og w 6= 0, så kan vi ækvivalent skrive denne ulighed som

−1≤ 〈v,w〉
‖v‖‖w‖ ≤ 1,

fordi ‖v‖ > 0 og ‖w‖ > 0. Vi definerer nu vinklen mellem v og w til at være det entydigt
bestemte reelle tal 0≤ θ ≤π, sådan at

cos θ = 〈v,w〉
‖v‖‖w‖ .

Se eksempel 6.2.9 for relation til trigonometri og en definition af sinθ.

Eksempel 6.1.6 (1) Vi betragter R3 med standard-indreproduktet og udregner vink-
len mellem de to vektorer

x=
1

1
0

 og y=
1

1
1

 .

Per definition er denne det entydigt bestemte reelle tal 0≤ θ ≤π, sådan at

cos θ = 〈x, y〉
p〈x, x〉

√
〈y, y〉

= 2p
2
p

3
=

p
6

2
,

hvilket approksimativt er θ .= 35,26◦.
(2) Vi lader (C0([0,1]),〈−,−〉) være det reelle vektorrum med indre produkt fra eksem-
pel 6.1.2 (3), og lader f , g : [0,1]→R være de to vektorer heri defineret ved henholdsvis
f (x)= x og g(x)= x2. For at bestemme vinklen θ mellem f og g udregner vi:

〈 f , f 〉 =
∫ 1

0
f (x) f (x)dx =

∫ 1

0
x2dx = 1

3

〈 f , g〉 =
∫ 1

0
f (x)g(x)dx =

∫ 1

0
x3dx = 1

4

〈g, g〉 =
∫ 1

0
g(x)g(x)dx =

∫ 1

0
x4dx = 1

5

Det gælder altså, at

cosθ = 〈 f , g〉√
〈 f , f 〉 ·

√
〈g, g〉

=
p

3 ·
p

5
4

=
p

15
4

og dermed, at θ .= 14,48◦.
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6 Vektorrum med indre produkt

6.2 Ortogonalitet

Mens vinkelbegrebet kun giver mening for reelle vektorrum med indre produkt, så giver
begrebet ortogonalitet mening for vilkårlige F-vektorrum med indre produkt.

Definition 6.2.1 Lad enten F = R eller F = C, og lad (V ,〈−,−〉) være et F-vektorrum
med indre produkt.

(1) En vektor u ∈V er en enhedsvektor med hensyn til 〈−,−〉, hvis ‖u‖ = 1.

(2) To vektorer v,w ∈V er ortogonale med hensyn til 〈−,−〉, hvis 〈v,w〉 = 0.

(3) En familie (vi)i∈I af vektorer i V er ortogonal med hensyn til 〈−,−〉, hvis den
består af vektorer, der er parvis ortogonale med hensyn til 〈−,−〉.

(4) En familie (ui)i∈I af vektorer i V er ortonormal med hensyn til 〈−,−〉, hvis den
både er ortogonal med hensyn til 〈−,−〉 og består af enhedsvektorer med hensyn
til 〈−,−〉.

Vi bemærker, at ‖u‖ = 1, hvis og kun hvis 〈u,u〉 = 1.

Eksempel 6.2.2 (1) Standardbasen (e1, . . . , em) for Fm er ortonormal med hensyn til
standard-indreproduktet, fordi 〈ei, e j〉 = δi j.
(2) Den følgende familie (v1,v2) af vektorer i F2 er ortogonal, men ikke ortonormal,

med hensyn til standard-indreproduktet.

(
v1 =

(
1
1

)
, v2 =

(−1
1

))
For selvom 〈v1,v2〉 = 0, så er 〈v1,v1〉 = 2 6= 1 og 〈v2,v2〉 = 2 6= 1.
(3) Ved en udregning af integraler ses, at i vektorrummet C0([0,2π]) af kontinuerte

funktioner f : [0,2π]→R er familien

( 1p
2π

,
1p
π

cos(x),
1p
π

sin(x),
1p
π

cos(2x),
1p
π

sin(2x),
1p
π

cos(3x),
1p
π

sin(3x), . . .
)

ortonormal med hensyn til det indre produkt, som vi definerede i eksempel 6.1.2 (3).
Underrummet af C0([0,2π]), der er frembragt af denne familie af funktioner, kaldes
for vektorrummet af trigonometriske polynomielle funktioner. Disse anvendes blandt
andet til at modelere signaler.
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6.2 Ortogonalitet

Figur 6.1: Den trigonometriske polynomielle funktion sin(x)+ 1
3 sin(3x)+ 1

5 sin(5x).

Lemma 6.2.3 Lad enten F = R eller F = C, og lad (V ,〈−,−〉) være et F-vektorrum med
indre produkt. Enhver ortonormal familie af vektorer i V er lineært uafhængig.

Bevis Lad (vi)i∈I være en ortonormal familie af vektorer i V , og lad∑
i∈I

viai = 0

være en linearkombination af (vi)i∈I , der er lig med nulvektoren. (Hvis familien ikke er
endelig, så anvendes definitionen givet i bemærkning 4.3.26.) Vi skal da vise, at ai = 0
for alle i ∈ I. Ligningen ovenfor viser, at

〈vi,
∑
j∈I

v ja j〉 =
∑
j∈I

〈vi,v j〉a j =
∑
j∈I
δi ja j = ai

er lig med 〈vi,0〉 = 0 for alle i ∈ I som ønsket. 2

For at bestemme koordinaterne x ∈ Fn af en vektor w i et F-vektorrum V med hensyn
til en basis (v1, . . . ,vn), er det generelt nødvendigt at bestemme den entydige løsning
til ligningen v1x1 + ·· · + vnxn = w blandt vektorer i V . Vi skal nu se, at i modsætning
hertil, så kan koordinaterne a ∈ Fn af w ∈ V med hensyn til en basis (u1, . . . ,un), der er
ortonormal med hensyn til et indre produkt 〈−,−〉 på V , umiddelbart angives ved hjælp
af det indre produkt.

Sætning 6.2.4 Lad enten F = R eller F = C, lad (V ,〈−,−〉) være et F-vektorrum med
indre produkt, og lad (ui)i∈I være en ortonormal basis for V . Da er

w=
∑
i∈I

ui · 〈ui,w〉

for alle w ∈V .
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6 Vektorrum med indre produkt

Bevis Da enhver vektor w ∈V kan skrives entydigt som en linearkombination

w=
∑
j∈I

u j ·a j

af basen (u j) j∈I , følger sætningen af udregningen

〈ui,w〉 = 〈ui,
∑
j∈I

u j ·a j〉 =
∑
j∈I

〈ui,u j ·a j〉 =
∑
j∈I

〈ui,u j〉 ·a j = ai.

Her følger den anden og tredje identitet af henholdsvis (H1) og (H2), mens den sidste
identitet følger af 〈ui,u j〉 = δi j. 2

Eksempel 6.2.5 Ved at normere vektorerne i basen

(
v1 =

(
1
1

)
, v2 =

(−1
1

))
fra eksempel 6.2.2, får vi den nye basis

(
u1 =

(
1/p2
1/p2

)
, u2 =

(−1/p2
1/p2

))
,

der er ortonormal med hensyn til standard-indreproduktet. Sætning 6.2.4 viser da for
eksempel, at koordinaterne a ∈ F2 af vektoren

w=
(
3
5

)
∈ F2

med hensyn til basen (u1,u2) er givet ved

a=
(〈u1,w〉
〈u2,w〉

)
=

(
8/p2
2/p2

)
=

(
4
1

)
·
p

2.

Vi viser nu omvendt, at hvis koordinaterne af to vektorer med hensyn til en basis, der
er ortonormal med hensyn til et indre produkt, er kendte, da er det indre produkt af de
to vektorer lig med standard-indreproduktet af deres koordinatvektorer.

Sætning 6.2.6 Lad enten F=R eller F=C, lad (V ,〈−,−〉) være et endeligt frembragt F-
vektorrum med indre produkt, og lad (u1, . . . ,un) være en basis for V , der er ortonormal
med hensyn til 〈−,−〉. Lad v,w ∈V , og lad x, y ∈ Fn være koordinaterne for henholdsvis
v og w med hensyn til basen (u1, . . . ,un). Da er

〈v,w〉 = x∗y = x∗1 y1 +·· ·+ x∗n yn.
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6.2 Ortogonalitet

Bevis Den ønskede formel følger fra udregningen

〈v,w〉 = 〈
∑
i∈I

ui · xi,
∑
j∈J

u j · yj〉 =
∑
i∈I

〈ui · xi,
∑
j∈J

u j · yj〉 =
∑
i∈I

∑
j∈I

〈ui · xi,u j · yj〉

=
∑
i∈I

∑
j∈I

x∗i · 〈ui,u j · yj〉 =
∑
i∈I

∑
j∈I

x∗i · 〈ui,u j〉 · yj =
∑
i∈I

x∗i yi,

hvor anden, tredje, fjerde og femte identitet fås fra egenskaberne ved et indre produkt,
mens den sidste identitet fås fra 〈ui,u j〉 = δi j. 2

Definition 6.2.7 Lad enten F = R eller F = C, og lad (V ,〈−,−〉) være et F-vektorrum
med indre produkt. Givet vektorer v,w ∈V , kaldes vektoren

prv(w)= v · 〈v,w〉
〈v,v〉

for den ortogonale projektion af w på v med hensyn til 〈−,−〉.

Vi bemærker, at w−prv(w) er ortogonal på v, idet

〈v,w−prv(w)〉 = 〈
v,w−v · 〈v,w〉

〈v,v〉
〉= 〈v,w〉−〈v,v〉 · 〈v,w〉

〈v,v〉 = 0,

samt at w= prv(w)+ (w−prv(w)), hvilket er trivielt, men ofte ganske brugbart.

v

w

prv(w)

Figur 6.2: Ortogonal projektion prv(w) af vektoren w på vektoren v

Eksempel 6.2.8 Figur 6.2 illustrerer det følgende eksempel på ortogonal projektion i
R2 med hensyn til standard-indreproduktet:

v=
(

5
−1

)
, w=

(
2
4

)
og prv(w)=

(
5

−1

)
· 10−4
25+1

=
(

5
−1

)
· 3
13

.
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6 Vektorrum med indre produkt

Eksempel 6.2.9 Givet to vektorer v,w ∈ Rn, der begge er forskellige fra nulvektoren,
definerede vi i afsnit 6.1 vinklen θ mellem v og w til at være det entydigt bestemte
reelle tal 0≤ θ ≤π, for hvilket det gælder, at

cosθ = 〈v,w〉
‖v‖‖w‖ .

Vi bemærker nu, at cosθ også kan skrives som

cos(θ)= 〈v,w〉
‖v‖‖w‖ = ‖v‖〈v,w〉

〈v,v〉‖w‖ = ‖prv(w)‖
‖w‖ .

Hvis vektorerne v og w ikke er parallelle, da udspænder de en plan i Rn, og figuren ne-
denfor illustrerer, at cosθ som forventet er lig med længden af den hosliggende katete
prv w divideret med længden af hypotenusen w i den retvinklede trekant, som dannes
af vektorerne prv(w), w−prv(w) og w.

v

w

prv(w)

w−prv(w)

θ

Endvidere er sin(θ), op til et fortegn, lig med længden af den modstående katete divi-
deret med længden af hypotenusen i denne trekant,

sin(θ)=±‖w−prv(w)‖
‖w‖ ,

mens bestemmelsen af, om fortegnet er +1 eller −1, kræver en orientering af planen
udspændt af v og w. Ved hjælp af trekantsuligheden konkluderer vi, at

0≤ ‖w−prv(w)‖
‖w‖ ≤ 1,

og vi bemærker endvidere, at(‖prv(w)‖
‖w‖

)2
+

(‖w−prv(w)‖
‖w‖

)2
= 1.
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6.2 Ortogonalitet

Vi skal nu vise, at ethvert endeligt frembragt vektorrum med indre produkt har en
ortonormal basis. Mere præcist angiver vi en algoritme, der til en given basis tilordner
en ny basis, der er ortonormal med hensyn til det indre produkt. Algoritmen kaldes for
Gram-Schmidt-ortogonalisering.

Sætning 6.2.10 Lad enten F = R eller F = C, lad (V ,〈−,−〉) være et F-vektorrum med
indre produkt, og lad (w1, . . . ,wn) være en lineært uafhængig familie af vektorer i V .
Lad (v1, . . . ,vn) være familien af vektorer i V , hvori v j er defineret rekursivt ved

v j = w j −
∑

1≤k< j
prvk

(w j)

for alle 1≤ j ≤ n; og lad endvidere (u1, . . . ,un) være familien af vektorer i V , hvor

u j = v j · ‖v j‖−1

for alle 1≤ j ≤ n. Da gælder følgende udsagn:

(1) Familierne (u1, . . . ,un), (v1, . . . ,vn) og (w1, . . . ,wn) frembringer alle det samme
underrum af V .

(2) Familien (v1, . . . ,vn) er ortogonal med hensyn til 〈−,−〉.

(3) Familien (u1, . . . ,un) er ortonormal med hensyn til 〈−,−〉.

Hvis (w1, . . . ,wn) er en basis for V , da er (v1, . . . ,vn) og (u1, . . . ,un) dermed baser for V ,
som er henholdvis ortogonale og ortonormale med hensyn til 〈−,−〉.

Vi bemærker specielt, at v1 = w1 og u1 = w1 · ‖w1‖−1.

Bevis Vi beviser påstanden ved induktion på n ≥ 0. Tilfældet n = 0 er trivielt, så vi
antager, at påstanden er vist for n = r−1, og viser den for n = r. Ifølge den induktive
antagelse frembringer (r−1)-tuplerne (v1, . . . ,vr−1) og (w1, . . . ,wr−1) samme underrum
af V , og derfor frembringer r-tuplerne (v1, . . . ,vr−1,wr) og (w1, . . . ,wr−1,wr) også samme
underrum W af V . Fra definitionen af vr ved vi endvidere, at

wr = vr +
∑

1≤k<r
vk ·

〈vk,wr〉
〈vk,vk〉

,

hvilket viser, at r-tuplerne (v1, . . . ,vr−1,vr) og (v1, . . . ,vr−1,wr) begge frembringer W ,
og vi har dermed vist, at (v1, . . . ,vr) og (w1, . . . ,wr) begge frembringer W . Da r-tuplen
(w1, . . . ,wr) er lineært uafhængig, udgør denne en basis for W , og sætning 4.3.24 viser
da, at r-tuplen (v1, . . . ,vr) ligeledes er en basis for W . Vektorerne v1, . . . ,vr er derfor
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6 Vektorrum med indre produkt

alle forskellige fra 0, hvilket viser, at skalarerne ‖v1‖, . . . ,‖vr‖ alle er forskellige fra 0,
således at vektorerne u1, . . . ,ur er veldefinerede. Endvidere viser

v1 ·a1 +·· ·+vr ·ar = u1 · (‖v1‖ ·a1)+·· ·+ur · (‖vr‖ ·ar),

at også (u1, . . . ,ur) frembringer W . Dette viser induktionsskridtet for (1).
Ifølge den induktive antagelse er (v1, . . . ,vr−1) endvidere ortogonal med hensyn til

〈−,−〉. For at vise, at også (v1, . . . ,vr) er ortogonal med hensyn til 〈−,−〉, skal vi derfor
blot vise, at 〈vi,vr〉 = 0 for alle 1 ≤ i ≤ r−1. Så vi lader 1 ≤ i ≤ r−1 være fastholdt og
udregner, at

〈vi,vr〉 =
〈
vi,wr −

∑
1≤k<r

vk ·
〈vk,wr〉
〈vk,vk〉

〉
(H2)= 〈vi,wr〉 −

∑
1≤k<r

〈vi,vk〉 ·
〈vk,wr〉
〈vk,vk〉

= 〈vi,wr〉−〈vi,vi〉 ·
〈vi,wr〉
〈vi,vi〉

= 0,

hvor den sidste lighed følger af, at 〈vi,vk〉 = 0 for alle 1 ≤ k < r med i 6= k. Dermed er
(v1, . . . ,vr) ortogonal med hensyn til 〈−,−〉, hvilket viser induktionsskridet for (2).

Endelig viser udregningen

〈ui,u j〉 = 〈vi · ‖vi‖−1,v j · ‖v j‖−1〉 = ‖vi‖−1 · 〈vi,v j〉 · ‖v j‖−1 =
{

1 hvis i = j,
0 hvis i 6= j,

at (u1, . . . ,ur) er ortonormal med hensyn til 〈−,−〉. Dette viser induktionssskridtet for (3)
og dermed sætningen. Den sidste bemærkning følger af (1)–(3) og sætning 4.3.24. 2

Korollar 6.2.11 Lad enten F = R eller F = C. Ethvert endeligt frembragt F-vektorrum
med indre produkt (V ,〈−,−〉) har en basis, der er ortonormal med hensyn til 〈−,−〉.

Bevis Ifølge sætning 4.3.15 findes der en endelig basis for V . Vi vælger derfor en sådan
basis (w1, . . . ,wn) og anvender Gram-Schmidt-ortogonalisering til at omdanne denne til
en basis (u1, . . . ,un), der er ortonormal med hensyn til 〈−,−〉. 2

Eksempel 6.2.12 Vi anvender Gram-Schmidt-ortogonalisering til at omdanne basen

(
w1 =

1
1
1

 , w2 =
1

0
2

 , w3 =
0

1
1

)
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6.2 Ortogonalitet

for F3 til en basis (v1,v2v3), der er ortogonal med hensyn til standard-indreproduktet
〈−,−〉, og til en basis (u1,u2,u3), der er ortonormal med hensyn til 〈−,−〉.

v1 = w1 =
1

1
1


v2 = w2 −v1 ·

〈v1,w2〉
〈v1,v1〉

=
1

0
2

−
1

1
1

 · 1+0+2
1+1+1

=
 0
−1

1


v3 = w3 −v1 ·

〈v1,w3〉
〈v1,v1〉

−v2 ·
〈v2,w3〉
〈v2,v2〉

=
0

1
1

−
1

1
1

 · 0+1+1
1+1+1

−
 0
−1

1

 · 0−1+1
0+1+1

=
−2

1
1

 · 1
3

.

Vi har hermed fundet den nye basis

(
v1 =

1
1
1

 , v2 =
 0
−1

1

 , v3 =
−2

1
1

 · 1
3

)
,

der er ortogonal med hensyn til 〈−,−〉. Endelig normerer vi vektorerne i denne basis
og får derved basen

(
u1 =

1
1
1

 · 1p
3

, u2 =
 0
−1

1

 · 1p
2

, u3 =
−2

1
1

 · 1p
6

)
,

som er ortonormal med hensyn til 〈−,−〉. Her kan vi i stedet for at normere v3 ligeså
godt normere v′

3 = v3 ·3, sådan at vi slipper for den ubehagelige faktor 1/3.

Definition 6.2.13 Lad enten F = R eller F = C, og lad (V ,〈−,−〉) være et F-vektorrum
med indre produkt. Hvis U ⊂V er et underrum, så kaldes

U⊥ = {v ∈V | 〈u,v〉 = 0 for alle u ∈U}⊂V

for det ortogonale komplement af U ⊂V med hensyn til 〈−,−〉.
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6 Vektorrum med indre produkt

Lemma 6.2.14 Lad enten F= R eller F= C, og lad (V ,〈−,−〉) være et F-vektorrum med
indre produkt. Hvis U ⊂ V er et underrum, da er dets ortogonale komplement U⊥ ⊂ V
med hensyn til 〈−,−〉 ligeledes et underrum. Desuden er U ∩U⊥ = {0}.

Bevis Vi efterviser, at U⊥ ⊂ V opfylder definition 4.1.4 (1)–(3). Vi har 0 ∈ U⊥, idet
〈u,0〉 = 0 for alle u ∈U , så (1) er opfyldt. Hvis v1,v2 ∈U⊥, så gælder det for alle u ∈U ,
at 〈u,v1 + v2〉 = 〈u,v1〉 + 〈u,v2〉 = 0+0 = 0, så (2) er opfyldt. Hvis v ∈ U⊥ og a ∈ F, så
gælder det for alle u ∈U , at 〈u,v ·a〉 = 〈u,v〉 ·a = 0 ·a = 0, så også (3) er opfyldt. Dermed
er U⊥ ⊂V et underrum. Endelig følger U ∩U⊥ = {0} af positivitetsbetingelsen (P). 2

Eksempel 6.2.15 For underrummet U = {x ∈ R2 | x1 = x2} ⊂ R2 fra eksempel 4.1.5 er
dets ortogonale komplement med hensyn til standard-indreproduktet givet ved

U⊥ = {
(
x1
x2

)
∈R2 | x1 + x2 = 0}⊂R2.

UU⊥

Figur 6.3: Underrummene U ,U⊥ ⊂R2 fra eksempel 6.2.15.

Sætning 6.2.16 Lad enten F = R eller F = C, lad (V ,〈−,−〉) være et F-vektorrum med
indre produkt, lad U ⊂ V være et endeligt frembragt underrum, og lad U⊥ ⊂ V være
dets ortogonale komplement. Enhver vektor w ∈V kan da skrives entydigt som

w= prU (w)+ (w−prU (w))

med prU (w) ∈U og w−prU (w) ∈U⊥. Hvis endvidere (v1, . . . ,vn) er en basis for U , der er
ortogonal med hensyn til 〈−,−〉, så er

prU (w)= v1 ·
〈v1,w〉
〈v1,v1〉

+ · · ·+vn ·
〈vn,w〉
〈vn,vn〉

.
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6.2 Ortogonalitet

Bevis Vi bemærker først, at hvis (u1, . . . ,un) er en vilkårlig basis for U , og hvis v ∈ V
opfylder, at 〈ui,v〉 = 0 for alle 1≤ i ≤ n, så er v ∈U⊥. For vi kan skrive en vilkårlig vektor
u ∈U som en linearkombination u = u1a1 +·· ·+unan, og

〈u,v〉 = 〈u1a1 +·· ·+unan,v〉 = a∗
1〈u1,v〉+ · · ·+a∗

n〈un,v〉 = 0.

Vi lader nu (u1, . . . ,un) være en basis for U , der er ortonormal med hensyn til 〈−,−〉. En
sådan basis findes ifølge korollar 6.2.11. Hvis w= u+v med u ∈U og v ∈U⊥, da er

〈ui,w〉 = 〈ui,u+v〉 = 〈ui,u〉+〈ui,v〉 = 〈ui,u〉.
Derfor er vektoren u ∈U nødvendigvis givet ved

u = u1 · 〈u1,w〉+ · · ·+un · 〈un,w〉.
Vi definerer nu u ∈U til at være denne vektor og definerer v= w−u. Vi mangler at vise,
at v ∈U⊥. Da 〈ui,u j〉 = δi j, så gælder det for alle 1≤ i ≤ n, at

〈ui,v〉 = 〈ui,w− (u1 · 〈u1,w〉+ · · ·+un · 〈un,w〉)〉 = 〈ui,w〉−〈ui,w〉 = 0.

Altså er v ∈U⊥ som ønsket. 2

u

w

v1

v2

v1 ·
〈v1,w〉
〈v1,v1〉

v2 ·
〈v2,w〉
〈v2,v2〉

Figur 6.4: Den ortogonale projektion u = prU (w) af w på underrummet U ⊂ R3 med
basen (v1,v2), der er ortogonal med hensyn til standard-indreproduktet.

Definition 6.2.17 Lad enten F=R eller F=C, lad (V ,〈−,−〉) være et F-vektorrum med
indre produkt, og lad U ⊂V være et endeligt frembragt underrum. Afbildningen

prU : V →V

kaldes for den ortogonale projektion på U ⊂V med hensyn til 〈−,−〉.
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6 Vektorrum med indre produkt

Vi bemærker, at formlen for prU (w) i sætning 6.2.16 samt egenskaberne (H1)–(H2) af
et indre produkt viser, at den ortogonale projektion prU : V →V er en lineær afbildning.

Eksempel 6.2.18 Vi ønsker at bestemme den ortogonale projektion prU : R3 → R3 på
underrummet U ⊂R3 frembragt af familien

(
w1 =

 0
−1

1

 , w2 =
 1

2
0

)

med hensyn til standard-indreproduktet på R3, og vi anvender derfor Gram-Schmidt
algoritmen til at omdanne basen (w1,w2) for U til en ny basis (v1,v2), der er ortogonal
med hensyn til standard-indreproduktet.

v1 = w1

v2 = w2 −v1 ·
〈v1,w2〉
〈v1,v1〉

=
 1

2
0

−
 0
−1

1

 · 0−2+0
0+1+1

=
 1

1
1


Dermed er den ortogonale projektion prU : R3 →R3 givet ved

prU (x) = v1 ·
〈v1, x〉
〈v1,v1〉

+v2 ·
〈v2, x〉
〈v2,v2〉

=
 0
−1

1

 · 0− x2 + x3

0+1+1
+

 1
1
1

 · x1 + x2 + x3

1+1+1
,

hvoraf vi aflæser, at prU (x)= Ax, hvor

A =
1/3 1/3 1/3

1/3 5/6 −1/6
1/3 −1/6 5/6

 .

Med andre ord er A ∈ M3(R) den matrix, der repræsenterer prU : R3 → R3 med hensyn
til standardbasen (e1, e2, e3) for både domænet og codomænet.

6.3 Lineære isometrier

Vi vil nu betragte de lineære afbildninger mellem vektorrum med indre produkt, der
bevarer det indre produkt. Disse afbildninger bevarer da de geometriske strukturer,
som det indre produkt repræsenterer, såsom længder og vinkler. Vi viser specielt, at en
lineær isomorfi f : V → V af et endeligt frembragt vektorrum bevarer et indre produkt
〈−,−〉 på V , hvis og kun hvis den matrix A, der repræsenterer f : V →V med hensyn til
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6.3 Lineære isometrier

en fælles ortonormal basis for domæne og codomæne, opfylder, at A∗ = A−1. Her er A∗

den adjungerede matrix defineret i afsnit 2.6.

Definition 6.3.1 Lad enten F = R eller F = C, og lad (V ,〈−,−〉V ) og (W ,〈−,−〉W ) være
F-vektorrum med indre produkt. En lineær afbildning f : W →V , der opfylder

〈 f (w), f (w′)〉V = 〈w,w′〉W

for alle w,w′ ∈W , kaldes for en lineær isometri med hensyn til 〈−,−〉W og 〈−,−〉V .

Eksempel 6.3.2 (1) Vi betragter igen rotationen rθ : R2 →R2 gennem θ radianer imod
urets retning fra eksempel 2.3.13, der er givet ved rθ(x)= Bθx med

Bθ =
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
.

Udregningen

〈rθ(x), rθ(y)〉 = 〈(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
x,

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
y
〉

= cos(θ)x1 −sin(θ)x2)(cos(θ)y1 −sin(θ)y2)
+ (sin(θ)x1 +cos(θ)x2)(sin(θ)y1 +cos(θ)y2)

= (cos(θ)2 +sin(θ)2)x1 y1 + (cos(θ)2 +sin(θ)2)x2 y2

= x1 y1 + x2 y2 = 〈x, y〉

viser da, at rθ : R2 →R2 er en lineær isometri med hensyn til standard-indreproduktet.
(2) Lad enten F=R eller F=C, og lad f : F2 → F2 være den vægtede skalering

f (x)=
(
λ1 0
0 λ2

)
x.

Da viser udregningen

〈 f (x), f (y)〉 = 〈(
λ1 0
0 λ2

)
x,

(
λ1 0
0 λ2

)
y
〉= |λ1|2x1 y1 +|λ2|2x2 y2,

at f : F2 → F2 er en lineær isometri med hensyn til standard-indreproduktet på F2, hvis
og kun hvis |λ1| = 1 og |λ2| = 1.

Navnet “isometri” er noget forvirrende, idet det kunne antyde, at en lineær isometri
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6 Vektorrum med indre produkt

altid er en isomorfi, hvilket ikke er tilfældet. Derimod har vi følgende resultat.

Lemma 6.3.3 Lad enten F = R eller F = C, og lad (V ,〈−,−〉V ) og (W ,〈−,−〉W ) være to
F-vektorrum med indre produkt.

(1) En lineær isometri f : W →V er nødvendigvis injektiv.

(2) Hvis en lineær isometri f : W →V er en isomorfi med invers afbildning g : V →W ,
da er den inverse afbildning også en lineær isometri.

Bevis Vi viser først (1). Så vi lader w ∈W og antager, at f (w)= 0. Da er

〈w,w〉W = 〈 f (w), f (w)〉V = 〈0,0〉V = 0,

og positivitetsegenskaben (P) af 〈−,−〉W medfører derfor, at w = 0. Da afbildningen
f : W →V er lineær, konkluderer vi fra lemma 4.2.9, at den er injektiv.

Vi viser dernæst (2). Den inverse afbildning g : V →W er lineær ifølge sætning 4.2.7.
Så vi lader v,v′ ∈V og udregner, at

〈g(v), g(v′)〉W = 〈 f (g(v)), f (g(v′))〉V = 〈v,v′〉V ,

hvor den første gælder, da f : W → V er en lineær isometri, mens den anden gælder, da
afbildningerne f : W →V og g : V →W er hinandens inverse. 2

En lineær isometri som er også en isomorfi kaldes en isometrisk isomorfi.

Eksempel 6.3.4 Lad u ∈ Fn være en enhedsvektor med hensyn til standard-indrepro-
duktet. Da er afbildningen σu : F→ Fn defineret ved σu(a) = ua en lineær isometri,
men den er kun en isomorfi, hvis n = 1.

Vi indfører nu begrebet adjunktion for lineære afbildninger mellem vektorrum med
indre produkt. Vi anvender senere dette begreb til bedre at forstå lineære isometrier.

Definition 6.3.5 Lad enten F = R eller F = C, og lad (V ,〈−,−〉V ) og (W ,〈−,−〉W ) være
F-vektorrum med indre produkt. To lineære afbildninger f : W →V og g : V →W siges
at være adjungerede med hensyn til 〈−,−〉V og 〈−,−〉W , hvis

〈v, f (w)〉V = 〈g(v),w〉W

for alle v ∈V og w ∈W .
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6.3 Lineære isometrier

Vi skal vise, at enhver lineær afbildning mellem to endeligt frembragte vektorrum
med indre produkt har en entydigt bestemt adjungeret afbildning. Vi begynder med at
vise entydighedsudsagnet, som gælder mere generelt.

Lemma 6.3.6 Lad enten F = R eller F = C, og lad (V ,〈−,−〉V ) og (W ,〈−,−〉W ) være to
F-vektorrum med indre produkt. Lad f : W → V være en lineær afbildning, og lad
g,h : V → W være lineære afbildninger, der begge er adjungerede til f : W → V med
hensyn til 〈−,−〉V og 〈−,−〉W . Da er g = h.

Bevis Vi antager, at både g : V → W og h : V → W er adjungerede til f : W → V med
hensyn til 〈−,−〉V og 〈−,−〉W . For alle v ∈V og w ∈W gælder det da, at

〈g(v)−h(v),w〉W = 〈g(v),w〉W −〈h(v),w〉W = 〈v, f (w)〉V −〈v, f (w)〉V = 0.

Dette gælder specielt for w = g(v)− h(v), og positivitetsegenskaben (P) ved et indre
produkt medfører derfor, at g(w)−h(w)= 0 som ønsket. 2

Sætning 6.3.7 Lad enten F = R eller F = C, lad (V ,〈−,−〉V ) og (W ,〈−,−〉W ) være to en-
deligt frembragte F-vektorrum med indre produkt, og lad f : W → V være en lineær
afbildning. Lad (v1, . . . ,vm) og (w1, . . . ,wn) være baser for V og W , der er ortonormale
med hensyn til henholdsvis 〈−,−〉V og 〈−,−〉W .

(1) Der findes en entydigt bestemt lineær afbildning g : V → W , sådan at f : W → V
og g : V →W er adjungerede med hensyn til 〈−,−〉V og 〈−,−〉W .

(2) Hvis matricen A ∈ Mm,n(F) repræsenterer afbildningen f : W → V med hensyn
til de givne ortonormale baser, så repræsenterer den adjungerede matrix A∗ ∈
Mn,m(F) den adjungerede afbildning g : V →W med hensyn til disse baser.

Bevis Vi påstår, at hvis to lineære afbildninger f : W →V og g : V →W er repræsente-
ret ved adjungerede matricer A ∈ Mm,n(F) og A∗ ∈ Mn,m(F) med hensyn til ortonormale
baser (v1, . . . ,vm) for V og (w1, . . . ,wn) for W , så er de adjungerede lineære afbildninger.
Dette viser både (1) og (2), da entydighedsudsagnet i (1) allerede er vist i lemma 6.3.6.
Så lad v ∈V og w ∈W , og lad x ∈ Fm og y ∈ Fn være koordinaterne for v og w med hensyn
til de givne baser. Vi har da som ønsket, at

〈v, f (w)〉V = x∗(Ay)= (A∗x)∗y= 〈g(v),w〉W ,

hvor de to identiteter til højre og venstre følger af sætning 6.2.6, mens den midterste
identitet følger af sætning 2.6.7. 2
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6 Vektorrum med indre produkt

Eksempel 6.3.8 Vi lader W =R2 og V =R3 med standard-indreprodukterne og betrag-
ter den lineære afbildning f : W →V defineret ved f (x)= Ax, hvor

A =
2 3

0 1
1 −1

 .

Matricen A repræsenterer altså f : W → V med hensyn til standardbaserne (e1, e2)
og (e1, e2, e3), og da disse er ortogonale med hensyn til standard-indreprodukterne, så
repræsenterer den adjungerede matrix

A∗ = At =
(
2 0 1
3 1 −1

)
ifølge sætning 6.3.7 den adjungerede afbildning g : V →W . Udregningen

〈x, f (y)〉 = x1(2y1 +3y2)+ x2 y2 + x3(y1 − y2)
= (2x1 + x3)y1 + (3x1 + x2 − x3)y2 = 〈g(x), y〉

illustrerer dette forhold.

Udsagnet, at en lineær afbildning er en isometri, kan udtrykkes ved hjælp af dens
adjungerede lineære afbildning på følgende vis.

Lemma 6.3.9 Lad enten F = R eller F = C, og lad (V ,〈−,−〉V ) og (W ,〈−,−〉W ) være to
F-vektorrum med indre produkt. Hvis to lineære afbildninger f : W → V og g : V → W
er adjungerede med hensyn til 〈−,−〉V og 〈−,−〉W , da er f : W → V en lineær isometri
med hensyn til 〈−,−〉W og 〈−,−〉V , hvis og kun hvis g ◦ f = idW : W →W .

Bevis Da f : W →V og g : V →W er adjungerede, så er

〈 f (w), f (w′)〉V = 〈(g ◦ f )(w),w′〉W
for alle w,w′ ∈W . Derfor er f : W →V en lineær isometri, hvis og kun hvis

〈(g ◦ f )(w),w′〉W = 〈w,w′〉W
for alle w,w′ ∈W . Hvis dette gælder, så får vi for w′ = (g ◦ f )(w)−w, at

〈w′,w′〉W = 〈(g ◦ f )(w)−w,w′〉W = 〈(g ◦ f )(w),w′〉W −〈w,w′〉W = 0,

hvorfra vi konkluderer, at w′ = 0 og dermed, at g◦ f = idW . Hvis omvendt g◦ f = idW , så
er betingelsen ovenfor trivielt opfyldt. 2
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Sætning 6.3.10 Lad enten F = R eller F = C, og lad (V ,〈−,−〉V ) og (W ,〈−,−〉W ) være
to endeligt frembragte F-vektorrum med indre produkt. Lad f : W → V være en lineær
afbildning, og lad A ∈ Mm,n(F) være matricen, der repræsenterer f : W →V med hensyn
til ortonormale baser (v1, . . . ,vm) og (w1, . . . ,wn) for henholdsvis V og W . De følgende
udsagn (1)–(3) er ækvivalente.

(1) Afbildningen f : W →V er en lineær isometri.

(2) Det gælder, at A∗A = In.

(3) Familien (a1, . . . ,an) af vektorer i Fm, der består af søjlerne i A, er ortonormal
med hensyn til standard indre-produktet.

Tilsvarende er de følgende udsagn (4)–(6) ækvivalente.

(4) Afbildningen f : W →V er en isometrisk isomorfi.

(5) Matricen A er invertibel, og A−1 = A∗.

(6) Familien (a1, . . . ,an) af vektorer i Fm, der består af søjlerne i A, udgør en basis,
der er ortonormal med hensyn til standard indre-produktet.

Bevis Ifølge sætning 6.3.7 er den adjungerede afbildning g : V → W repræsenteret af
den adjungerede matrix A∗ ∈ Mn,m(F) med hensyn til de givne baser. Så g ◦ f = idW ,
hvis og kun hvis A∗A = In, og ækvivalensen af (1) og (2) følger derfor af lemma 6.3.9.
Vi bemærker endvidere, at den (i, j)’te indgang i A∗A er lig med a∗

i a j, som netop er
standard indre-produktet 〈ai,a j〉 af vektorerne ai og a j i Fm. Derfor er A∗A = In, hvis
og kun hvis 〈ai,a j〉 = δi j for alle 1≤ i, j ≤ n, hvilket viser, at (2) og (3) er ækvivalente.

Vi viser nu, at (4) og (5) er ækvivalente. Hvis (4) er opfyldt, da er f : W → V både en
lineær isometri, hvilket ifølge ækvivalensen af (1) og (2) medfører, at A∗A = In, og en
isomorfi, hvilket medfører, at A er invertibel. Endvidere er

A∗ = A∗(AA−1)= (A∗A)A−1 = A−1,

så (5) er opfyldt. Omvendt, hvis (5) er opfyldt, da medfører ækvivalensen af (1) og (2),
at f : W → V er en lineær isometri, og da A er invertibel, er f : W → V endvidere en
isomorfi, så (4) er opfyldt. Endelig viser korollar 4.3.12, at A er invertibel, hvis og kun
hvis familien (a1, . . . ,an) af vektorer i Fm, der består af søjlerne i A, er en basis, og
ækvivalensen af (5) og (6) følger derfor fra ækvivalensen af (2) og (3). 2
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6 Vektorrum med indre produkt

Eksempel 6.3.11 (1) Afbildningen f : R2 → R3 fra eksempel 6.3.8 er ikke en isometri
med hensyn til standard-indreprodukterne. For udregningen

A∗A =
(
2 0 1
3 1 −1

)2 3
0 1
1 −1

=
(
5 5
5 11

)

viser, at A∗A er forskellig fra I2.
(2) Vi har allerede vist, at rotationsafbildningen rθ : R2 → R2 fra eksempel 6.3.2 er en

isometrisk isomorfi med hensyn til standard-indreprodukterne, men udregningen

B∗
θ =

(
cos(θ) sin(θ)

−sin(θ) cos(θ)

)
= B−1

θ

bekræfter, at dette er tilfældet.
(3) Familen (e2, e3, e1) af vektorer i F3 udgør en basis, der er ortonormal med hensyn

til standard indre-produktet. Sætning 6.3.10 viser derfor, at matricen

A =
0 0 1

1 0 0
0 1 0


er invertibel med invers

A−1 = A∗ =
0 1 0

0 0 1
1 0 0

 ,

samt at afbildningen f : F3 → F3 givet ved f (x) = Ax er en isometrisk isomorfi. Denne
afbildning er en rotation omkring linjen gennem e1 + e2 + e3.

Vi vil i resten af dette afsnit udelukkende betragte lineære endomorfier, hvilket er
linære afbildninger, hvis domæne og codomæne er identitiske.

Definition 6.3.12 Lad enten F= R eller F=C og lad (V ,〈−,−〉) være et endeligt frem-
bragt F-vektorrum med indre produkt. Lad f : V →V være en lineær endomorfi, og lad
g : V →V være den adjungerede lineære endomorfi med hensyn til 〈−,−〉.

(1) Endomorfien f : V →V er selvadjungeret med hensyn til 〈−,−〉, hvis f = g.

(2) Endomorfien f : V →V er normal med hensyn til 〈−,−〉, hvis f ◦ g = g ◦ f .

Vi benytter de resultater, vi har vist ovenfor, til at vise følgende resultat for lineære
endomorfier.
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Sætning 6.3.13 Lad enten F=R eller F=C, lad (V ,〈−,−〉) være et endeligt frembragt F-
vektorrum med indre produkt, og lad (v1, . . . ,vn) være en basis for V , der er ortonormal
med hensyn til 〈−,−〉. Lad f : V → V være en lineær endomorfi, og lad A ∈ Mn(F) være
matricen, der repræsenterer f : V →V med hensyn den givne ortonormale basis.

(1) Endomorfien f : V →V er en isometri med hensyn til 〈−,−〉, hvis og kun hvis

A∗A = I.

Dette er endvidere tilfældet, hvis og kun hvis A∗ = A−1.

(2) Endomorfien f : V →V er selvadjungeret med hensyn til 〈−,−〉, hvis og kun hvis

A∗ = A.

(3) Endomorfien f : V →V er normal med hensyn til 〈−,−〉, hvis og kun hvis

A∗A = A A∗.

Bevis Den første del af (1) følger fra ækvivalensen af (1) og (2) i sætning 6.3.10. Da A
er kvadratisk, så medfører identiteten A∗A = I ifølge sætning 2.5.22, at A er invertibel
med invers A−1 = A∗. Påstandene (2) og (3) følger umiddelbart fra sætning 6.3.7 og
definition 6.3.12. 2

De klassiske betegnelser for de kvadratiske matricer A ∈ Mn(F), der opfylder enten
A∗ = A−1 eller A∗ = A, afhænger desværre af F. Det er der ikke noget at gøre ved, så
vi anfører disse klassiske betegnelser i den følgende definition, hvor vi også genkalder
nogle definitioner fra afsnit 2.6.

Definition 6.3.14 Lad enten F=R eller F=C.

(1) En kvadratisk matrix Q ∈ Mm(R), der opfylder Q∗ =Q−1, kaldes ortogonal; og en
kvadratisk matrix U ∈ Mm(C), der opfylder U∗ =U−1, kaldes unitær.

(2) En kvadratisk matrix A ∈ Mm(R), der opfylder A∗ = A, kaldes symmetrisk; og en
kvadratisk matrix A ∈ Mm(C), der opfylder A∗ = A, kaldes hermitisk.

(3) En kvadratisk matrix A ∈ Mm(F), der opfylder A∗A = AA∗, kaldes normal.

Vi bemærker, at den kvadratiske matrix P er invertibel med invers P−1 = P∗, hvis og
kun hvis familien (p1, . . . , pm) af vektorer i Fm, der består af søjlerne i P, er ortonormal
med hensyn til standard-indreproduktet; se beviset for sætning 6.3.10.
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6 Vektorrum med indre produkt

Eksempel 6.3.15 Enhver symmetrisk reel matrix er normal, men det omvendte er
ikke tilfældet. For eksempel er matricen

A =
(
2 −1
1 2

)
normal, idet

A∗A =
(

2 1
−1 2

)(
2 −1
1 2

)
=

(
5 0
0 5

)
=

(
2 −1
1 2

)(
2 1

−1 2

)
= AA∗,

men A er ikke symmetrisk. Vi bemærker også, at hvis B er en kvadratisk reel eller
kompleks matrix, da opfylder matricen A = B∗B altid, at A∗ = A. I det reelle tilfælde
er A således symmetrisk, mens den i det komplekse tilfælde er hermitisk.

Sætning 6.3.16 Lad enten F=R eller F=C.

(1) Hvis A,B ∈ Mm(F) opfylder A∗ = A−1 og B∗ = B−1, da er også (AB)∗ = (AB)−1.

(2) Hvis A ∈ Mm(F) opfylder A∗ = A−1, da er også (A−1)∗ = (A−1)−1.

Bevis De to påstande følger af de to udregninger

(AB)∗ = B∗A∗ = B−1A−1 = (AB)−1

A−1(A−1)∗ = A∗(A−1)∗ = (A−1A)∗ = I∗ = I,

hvor vi anvender sætning 2.6.7. 2

Bemærkning 6.3.17 En kvadratisk matrix S ∈ Mm(H), der opfylder S∗ = S−1 kaldes
for en unitær symplektisk matrix, og sætning 6.3.16 gælder ligeledes i dette tilfælde.
Man anvender klassisk betegnelserne

O(m)⊂GLm(R), U(m)⊂GLm(C) og Sp(m)⊂GLm(H)

for delmængden af de invertible m×m-matricer, der består af de m×m-matricer A, der
opfylder A∗ = A−1. Sætning 6.3.16 viser, at (O(m), · ), (U(m), · ) og (Sp(m), · ) er grupper,
og de kaldes for den ortogonale gruppe, den unitære gruppe og den symplektiske gruppe.
I modsætning hertil behøver en kvadratisk matrix A, der opfylder A∗ = A, ikke at være
invertibel; og hvis både A∗ = A og B∗ = B, så er (AB)∗ = B∗A∗ = BA, hvilket generelt
heller ikke er lig med AB. Så de selvadjungerede matricer udgør ikke en gruppe.
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6.4 Spektralsætningen

I dette afsnit viser vi den såkaldte spektralsætning for lineære endomorfier af endeligt
frembragte reelle og komplekse vektorrum med indre produkt. Sætningen siger, at der
findes en ortonormal basis for vektorrummet, der består af egenvektorer for den lineære
endomorfi, hvis og kun hvis denne er selvadjungeret i det reelle tilfælde og normal i
det komplekse tilfælde. I matrixsprog siger sætningen, at der for en reel symmetrisk
matrix A findes en ortogonal matrix Q, sådan at Q−1AQ er en reel diagonalmatrix,
mens der for en normal kompleks matrix A findes en unitær matrix U , sådan at U−1AU
er en kompleks diagonalmatrix. Beviset anvender algebraens fundamentalsætning til
at faktorisere det karakteristike polynomium hørende til den lineære endomorfi i et
produkt af førstegradspolynomier. Denne del af beviset er derfor ikke konstruktiv, men
givet denne faktorisering er resten af beviset algoritmisk, hvilket vi illustrerer med
passende eksempler i slutningen af afsnittet.

Sætning 6.4.1 Lad enten F=R eller F=C. En matrix A ∈ Mn(F) er både triangulær og
normal, hvis og kun hvis den er en diagonalmatrix.

Bevis Hvis A = diag(a1, . . . ,an) er en diagonal matrix, så er A specielt en triangulær
matrix, og udregningen

A∗A = diag(a1, . . . ,an)∗diag(a1, . . . ,an)= diag(a∗
1a1, . . . ,a∗

nan),
A A∗ = diag(a1, . . . ,an)diag(a1, . . . ,an)∗ = diag(a1a∗

1, . . . ,ana∗
n)

viser, at A er normal, idet den kommutative lov for multiplikation gælder i F. Så vi
antager omvendt, at A = (ai j) ∈ Mn(F) er en normal øvre triangulær matrix og viser,
at A er en diagonal matrix; beviset i tilfældet, hvor A er en normal nedre triangulær
matrix er tilsvarende. Da A er normal, gælder det for alle x, y ∈ Fn, at

〈Ax, Ay〉 = 〈A∗Ax, y〉 = 〈A A∗x, y〉 = 〈(A∗)∗ A∗x, y〉 = 〈A∗x, A∗y〉,

og ved at sætte x= y= ek, konkluderer vi derfor, at

|a1k|2 +·· ·+ |ank|2 = 〈Aek, Aek〉 = 〈A∗ek, A∗ek〉 = |ak1|2 +·· ·+ |akn|2

for alle 1 ≤ k ≤ n. Da A endvidere er øvre triangulær, er ai j = 0 for i > j, og det følger
derfor af den identitet, vi netop har fundet, at

|a1k|2 +·· ·+ |akk|2 = |akk|2 +·· ·+ |akn|2

for alle 1 ≤ k ≤ n. Vi viser ved induktion på 1 ≤ i ≤ n, at ai j = 0 for i < j, og begynder
med tilfældet i = 1. Den ovenstående identitet for k = 1 viser, at

|a11|2 = |a11|2 +|a12|2 +·· ·+ |a1n|2,
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hvorfor a12 = ·· · = a1n = 0 som ønsket. Så vi antager, at påstanden er vist for i = r−1, og
viser den for i = r. Det gælder da, at

|arr|2 = |a1r|2 +·· ·+ |arr|2 = |arr|2 +·· ·+ |arn|2,

idet den første identitet følger fra den induktive hypotese, mens den anden identitet
er den identitet, vi viste ovenfor, for k = r. Derfor er ar,r+1 = ·· · = arn = 0, hvilket viser
induktionsskridtet og dermed påstanden. Det gælder altså, at ai j = 0 for i 6= j, hvilket
som ønsket viser, at A er en diagonalmatrix. 2

Den følgende sætning kaldes for spektralsætningen for symmetriske matricer.

Sætning 6.4.2 For en kvadratisk matrix A ∈ Mn(R) er følgende udsagn ækvivalente:

(1) Matricen A er symmetrisk.

(2) Der findes en ortogonal matrix Q ∈ Mn(R), sådan at Q−1AQ er en diagonalmatrix.

Bevis Vi antager først (1) og viser (2). Ifølge sætning 5.2.10 findes der en invertibel
matrix P ∈ Mn(R), sådan at matricen P−1AP ∈ Mn(R) er øvre triangulær. Endvidere
producerer Gram-Schmidt-algoritmen en øvre triangulær matrix C ∈ Mn(R), sådan at
matricen Q = PC ∈ Mn(R) er ortogonal. For hvis (p1, . . . , pn) er basen, der består af
søjlerne i P, så giver Gram-Schmidt algoritmen en basis (u1, . . . ,un), der er ortonormal
med hensyn til standard-indreproduktet på Rn, hvor

u1 = p1c11

u2 = p1c12 + p2c22

...
un = p1c1n + p2c2n +·· ·+ pncnn,

og Q er da den ortogonale matrix med søjler u1, . . . ,un, mens C er den øvre triangulære
matrix med indgange ci j. Vi påstår, at Q−1AQ er både normal og øvre triangulær. For

(Q−1AQ)∗Q−1AQ = (Q∗AQ)∗Q∗AQ =Q∗A∗QQ∗AQ =Q∗A∗AQ

Q−1AQ(Q−1AQ)∗ =Q∗AQ(Q∗AQ)∗ =Q∗AQQ∗A∗Q =Q∗A A∗Q,

hvor vi bruger at Q∗ = Q−1. Da A er symmetrisk, er den normal, så vi har nu vist, at
Q−1AQ er normal. Endvidere er

Q−1AQ = (PC)−1APC = C−1P−1APC,

hvor P−1AP og C er øvre triangulære matricer. Men produktet af to øvre triangulære
matricer er igen en øvre triangulær matrix, og ved at bruge sætning 3.4.1 kan vi vise, at
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også den inverse matrix af en invertibel øvre triangulær matrix igen er øvre triangulær.
Dette viser vores påstand, og sætning 6.4.1 viser, at denne medfører (2).

Vi antager dernæst (2) og viser (1). Så lad Q ∈ Mn(R) være en ortogonal matrix, sådan
at Q−1AQ = D er en diagonalmatrix. Da D er symmetrisk, så viser udregningen

A∗ = (QDQ−1)∗ = (QDQ∗)∗ =QD∗Q∗ =QDQ−1 = A,

at også A er symmetrisk. Dette viser (1) og dermed sætningen. 2

Den næste sætning kaldes for spektralsætningen for normale komplekse matricer.

Sætning 6.4.3 For en kompleks kvadratisk matrix A ∈ Mn(C) er følgende ækvivalent:

(1) Matricen A er normal.

(2) Der findes en unitær matrix U ∈ Mn(C), sådan at U−1AU er en diagonalmatrix.

Bevis Beviset for, at (1) medfører (2) er helt som beviset for den tilsvarende implikation
i sætning 6.4.2. Den eneste forskel er, at “R” og “ortogonal” erstattes med henholdsvis
“C” og “unitær”. Vi antager derfor (2) og viser (1). Så lad U ∈ Mn(C) være en unitær
matrix, sådan at U−1AU = D er en diagonalmatrix. Da er A =UDU−1 =UDU∗, og da
diagonalmatricen D er normal, så viser udregningen

A∗A = (UDU∗)∗UDU∗ =UD∗U∗UDU∗ =UD∗DU∗,
A A∗ =UDU∗(UDU∗)∗ =UDU∗UD∗U∗ =UDD∗U∗

at også A er normal. Dette viser (1) og dermed sætningen. 2

Korollar 6.4.4 En normal kompleks matrix A ∈ Mn(C) er hermitisk, hvis og kun hvis
dens egenværdier er reelle.

Bevis Da A er normal, så findes der ifølge sætning 6.4.3 en unitær matrix U ∈ Mn(C),
sådan at U∗AU = diag(λ1, . . . ,λn) ∈ Mn(C) er en diagonalmatrix D. Hvis egenværdierne
λ1, . . . ,λn alle er reelle, da er D∗ = D hermitisk, og udregningen

A∗ = (UDU∗)=UD∗U∗ =UDU∗ = A

viser da, at A er hermitisk. Omvendt, hvis A = A∗ er hermitisk, så viser udregningen

D∗ = (U∗AU)∗ =U∗A∗U =U∗AU = D,

at D er hermitisk, og dermed er egenværdierne λ1, . . . ,λn alle reelle. 2
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Vi betragter konkrete eksempler nedenfor, men oversætter først sætning 6.4.2 og sæt-
ning 6.4.3 til udsagn om lineære endomorfier af henholdsvis reelle og komplekse vek-
torrum med indre produkt.

Sætning 6.4.5 Lad (V ,〈−,−〉) være et endeligt frembragt reelt vektorrum med indre
produkt. For en lineær endomorfi f : V →V er følgende ækvivalent:

(1) Endomorfien f : V →V er selvadjungeret.

(2) Der findes en basis for V , der både er ortonormal med hensyn til 〈−,−〉 og består
af egenvektorer for f : V →V .

Bevis Vi antager først (1) og viser (2). Vi vælger derfor en basis (v1, . . . ,vn) for V , som er
ortonormal med hensyn til 〈−,−〉, hvilket er muligt ifølge korollar 6.2.11. Da den lineære
endomorfi f : V → V er selvadjungeret med hensyn til 〈−,−〉, viser sætning 6.3.13, at
matricen A ∈ Mn(R), der repræsenterer f : V → V med hensyn til basen (v1, . . . ,vn) for
både domænet og codomænet, er symmetrisk. Derfor findes der ifølge sætning 6.4.2 en
ortogonal matrix Q = (qi j) ∈ Mn(R), sådan at

Q−1AQ = diag(a1, . . . ,an)

er en diagonalmatrix. Da Q ∈ Mn(R) er ortogonal, er familien (u1, . . . ,un), hvor

u j = v1q1 j +v2q2 j +·· ·+vnqn j,

en basis for V , der er ortonormal med hensyn til 〈−,−〉. For

〈ui,u j〉 = 〈v1q1i +v2q2i +·· ·+vnqni,v1q1 j +v2q2 j +·· ·+vnqn j〉
= q1i q1 j + q2i q2 j +·· ·+ qni qn j = q∗

i q j = δi j.

Desuden repræsenterer matricen Q identitetsafbildningen idV : V → V med hensyn til
basen (u1, . . . ,un) for domænet og basen (v1, . . . ,vn) for codomænet. Som illustreret af
figuren på næste side, så viser sætning 4.4.14, at matricen, der repræsenterer f : V →V
med hensyn til basen (u1, . . . ,un) for både domænet og codomænet, er diagonalmatricen

Q−1AQ = diag(λ1, . . . ,λn) ∈ Mn(R).

Så u j er en egenvektor for f : V →V hørende til egenværdien λ j, hvilket viser (2).
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Vi antager omvendt (2) og viser (1). Så vi lader (u1, . . . ,un) være en basis for V , der er
ortonormal med hensyn til 〈−,−〉 og består af egenvektorer for f : V → V . Lad λ j ∈ R
være egenværdien, sådan at f (u j) = u jλ j. Da er D = diag(λ1, . . . ,λn) ∈ Mn(R) matricen,
der repræsenterer f : V →V med hensyn til den valgte basis for både domænet og codo-
mænet. Da D er symmetrisk, og da (u1, . . . ,un) er ortonormal med hensyn til 〈−,−〉, så
viser sætning 6.3.7, at f : V →V er selvadjungeret med hensyn til 〈−,−〉. Dette viser (1)
og dermed sætningen. 2

Sætning 6.4.6 Lad (V ,〈−,−〉) være et endeligt frembragt komplekst vektorrum med
indre produkt. For en lineær endomorfi f : V →V er følgende ækvivalent:

(1) Endomorfien f : V →V er normal.

(2) Der findes en basis for V , der både er ortonormal med hensyn til 〈−,−〉 og består
af egenvektorer for f : V →V .

Bevis Beviset ligner helt beviset for sætning 6.4.5, idet vi anvender sætning 6.4.3 i
stedet for sætning 6.4.2 og erstatter “R” med “C”, “symmetrisk” og “selvadjungeret” med
“normal”, og “ortogonal” med “unitær”. 2

Vi bemærker, at spektralsætningerne og deres beviser kun siger, at en ortonormal
basis af egenvektorer findes, men de siger ikke, hvordan man bærer sig ad med at finde
en sådan basis. Problemet er at finde rødder i det karakteristiske polynomium. Hvis det
er gjort, så findes der en algoritme, som vi illustrerer ved nogle eksempler på de næste
sider, der angiver den ønskede basis. Undervejs kan man spare sig en del arbejde ved
at bemærke følgende.
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Korollar 6.4.7 Lad A ∈ Mn(F) være enten en symmetrisk reel matrix eller en normal
kompleks matrix. Egenvektorer x, y ∈ Fn, der hører til forskellige egenværdier λ,µ ∈ F, er
nødvendigvis ortogonale med hensyn til standard-indreproduktet på Fn.

Bevis Vi viser det komplekse tilfælde; det reelle tilfælde er helt tilsvarende. Vi lader
λ,µ ∈ F være to forskellige egenværdier for A og angiver baser for egenrummene NA−Iλ
og NA−Iµ som følger. Ifølge sætning 6.4.3 findes der en unitær matrix U ∈ Mn(C), sådan
at U∗AU = diag(λ1, . . . ,λn) er en diagonalmatrix. Så hvis I = {

i ∈ {1, . . . ,n} | λi = λ
}

og
J = {

j ∈ {1, . . . ,n} | λ j = µ
}
, da er (Uei | i ∈ I) og (Ue j | j ∈ J) baser for henholdsvis NA−Iλ

og NA−Iµ. Hvis nu x=∑
i∈I Ueiai ∈ NA−Iλ og y=∑

j∈J Ue jb j ∈ NA−Iµ, så er

〈x, y〉 =
∑

i∈I, j∈J
a∗

i 〈Uei,Ue j〉b j =
∑

i∈I, j∈J
a∗

i 〈ei, e j〉b j = 0

som ønsket, idet I ∩ J =;. Se også sætning 6.3.13. 2

Eksempel 6.4.8 Vi ønsker at finde en basis for R3, der er ortonormal med hensyn
til standard-indreproduktet, og som endvidere består af egenvektorer for den lineære
endomorfi f : R3 →R3 givet ved f (x)= Ax, hvor A ∈ M3(R) er den symmetriske matrix

A =
 1 2 −1

2 −2 2
−1 2 1

 .

Vi ved fra sætning 6.4.2, at dette er muligt. For at bestemme egenværdierne af A
udregner vi først det karakteristiske polynomium.

χA(t)= det(A− I t)= det

1− t 2 −1
2 −2− t 2

−1 2 1− t


(D6′)= det

 0 2(2− t) −t(2− t)
0 2− t 2(2− t)

−1 2 1− t

 (D2′)= (2− t)2 det

 0 2 −t
0 1 2

−1 2 1− t


(D6′)= (2− t)2 det

 0 0 −4− t
0 1 2

−1 2 1− t

 (D2′)= (2− t)2(−4− t)det

 0 0 1
0 1 2

−1 2 1− t


(D5′)= −(2− t)2(−4− t)det

−1 2 1− t
0 1 2
0 0 1

 = (2− t)2(−4− t)

Egenværdierne for A er altså λ1 = 2 og λ2 = −4. Her har vi benyttet sætning 3.3.3 til
at udregne determinanten af den triangulære matrix.
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Vi anvender dernæst Gauss-elimination til at finde baser for egenrummene hørende
til λ1 = 2 og λ2 = −4. Så vi omdanner matricen B = A − I ·2 til en rækkeækvivalent
matrix B′ på reduceret echelonform:

B =
−1 2 −1

2 −4 2
−1 2 −1

 +2×R1
+(−1)×R1−1 2 −1

0 0 0
0 0 0

 (−1)×R1

B′ =
 1 −2 1

0 0 0
0 0 0


Egenrummet NA−I·2 hørende til λ1 = 2, som er løsningsmængden til ligningssystemet
Bx= 0, kan derfor aflæses fra den rækkeækvivalente matrix B′ til at have basis

(
w1 =

 2
1
0

 , w2 =
−1

0
1

)
.

Tilsvarende omdanner vi matricen C = A + I ·4 til en rækkeækvivalent matrix C′ på
reduceret echelonform:

C =
 5 2 −1

2 2 2
−1 2 5

 +5×R3
+2×R3

 0 12 24
0 6 12

−1 2 5

 (1/12)×R1
(1/6)×R2
(−1)×R3 0 1 2

0 1 2
1 −2 −5

 +(−1)×R2

+2×R2 0 0 0
0 1 2
1 0 −1

 R1 ↔ R3

C′ =
 1 0 −1

0 1 2
0 0 0


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Egenrummet NA+I·4 hørende til λ2 =−4, som er løsningsmængden til ligningssystemet
Cx= 0, kan derfor aflæses fra C′ til at have basis

(
w3 =

 1
−2

1

)
idet x3 er eneste frie variabel.

Vi har nu fundet en basis (w1,w2,w3) for R3, bestående af egenvektorer for A. Den-
ne basis er dog ikke ortonormal med hensyn til standard-indreproduktet, og vi an-
vender derfor Gram-Schmidt-algoritmen til at omdanne den til en ortonormal basis
(u1,u2,u3). Vi ved dog allerede fra korollar 6.4.7, at w3 er ortogonal til både w1 og w2,
idet de hører til forskellige egenværdier for den symmetriske matrix A. Vi finder først
den ortogonale basis (v1,v2,v3), hvor

v1 = w1 =
 2

1
0


v2 = w2 −v1 ·

〈v1,w2〉
〈v1,v1〉

=
−1

0
1

−
 2

1
0

 · −2+0+0
4+1+0

=
−1

2
5

 · 1
5

v3 = w3 =
 1
−2

1

 .

Endelig får vi ved normalisering af vektorerne i denne basis den ortonormale basis

(
u1 =

2/p5
1/p5

0

 , u2 =
−1/p30

2/p30
5/p30

 , u3 =
 1/p6

−2/p6
1/p6

)
,

der består af egenvektorer for A. Den ortogonale matrix Q ∈ M3(R), der repræsenterer
identitetsafbildningen id: R3 →R3 med hensyn til den nye basis (u1,u2,u3) for domæ-
net og standardbasen (e1, e2, e3) for codomænet, er da givet ved

Q =
2/p5 −1/p30 1/p6

1/p5 2/p30 −2/p6

0 5/p30 1/p6

 ∈ M3(R),

og ifølge sætning 4.4.14 gælder det endvidere, at

Q−1AQ =
2 0 0

0 2 0
0 0 −4

 ∈ M3(R),

idet u1, u2 og u3 er egenvektorer for f : R3 →R3 hørende til egenværdierne 2, 2 og −4.
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Eksempel 6.4.9 Vi ønsker at finde en basis for C2, der er ortonormal med hensyn til
standard-indreproduktet og består af egenvektorer for den lineære endomorfi f : C2 →
C2 givet ved f (x)= Ax, hvor A ∈ M2(C) er den normale matrix

A =
(
2 −1
1 2

)
fra eksempel 6.3.15. Det karakteristiske polynomium er givet ved

χA(t)= det(A− I t)= det
(
2− t −1

1 2− t

)
= (2− t)2 +1= t2 −4t+5,

og det har diskriminant ∆= (−4)2 −4 ·1 ·5=−4 og rødder

λ1 =
−(−4)+

p
−4

2 ·1 = 2+ i og λ2 =
−(−4)−

p
−4

2 ·1 = 2− i.

Vi anvender nu Gauss-elimination til at bestemme baser for de to egenrum, der begge
nødvendigvis er en-dimensionale. Vi omdanner først B = A− Iλ1 til en rækkeækviva-
lent matrix B′ på reduceret echelonform.

B =
(−i −1

1 −i

) +i×R2

(
0 0
1 −i

)
R1 ↔ R2

B′ =
(

1 −i
0 0

)
Herved finder vi basen (

v1 =
(

i
1

))
for egenrummet NA−Iλ1 hørende til λ1 = 2+ i. Vi omdanner ligeledes C = A− Iλ2 til en
matrix C′ på reduceret echelonform.

C =
(

i −1
1 i

)
+(−i)×R2(

0 0
1 i

)
R1 ↔ R2

C′ =
(

1 i
0 0

)
Herved finder vi basen (

v2 =
(−i

1

))
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6 Vektorrum med indre produkt

for egenrummet NA−Iλ2 hørende til λ2 = 2− i. Basen (v1,v2) for C2 vides allerede at
være ortogonal, hvilket også følger af korollar 6.4.7, så vi behøver ikke at anvende
Gram-Schmidt. Endelig får vi ved normalisering direkte den ortonormale basis

(
u1 =

(−i/p2
1/p2

)
, u2 =

(
i/p2
1/p2

))
,

for C2, der består af egenvektorer for f : C2 → C2. Den unitære matrix U ∈ M2(C), der
repræsenterer identitetsafbildningen id: C2 →C2 med hensyn til den nye basis (u1,u2)
for domænet og standardbasen (e1, e2) for codomænet, er da givet ved

U =
(

i/p2 −i/p2
1/p2 1/p2

)
∈ M2(C),

og sætning 4.4.14 viser derfor, at

U−1AU =
(
2+ i 0

0 2− i

)
∈ M2(C),

idet u1 og u2 er egenvektorer for f : C2 →C2 med egenværdier henholdsvis 2+ i og 2− i.

6.5 Klassifikation af hermitiske former

Vi lader fortsat F=R eller F=C og lader (−)∗ : F→ F være skævinvolutionen givet ved

a∗ =
{

a hvis F=R,
ā hvis F=C.

Vi betragter hermitiske former 〈−,−〉 : V ×V → F på F-vektorrum V og bemærker, at
valget af skævinvolution medfører, at 〈v,v〉 er et reelt tal for alle v ∈ V . Dermed er den
følgende definition meningsfuld.

Definition 6.5.1 Lad F=R eller F=C, og lad 〈−,−〉 : V×V → F være en hermitisk form
på et F-vektorrum V .

(1) Et underrum W ⊂V er positiv definit med hensyn til 〈−,−〉, hvis 〈w,w〉 > 0 for alle
0 6= w ∈W .

(2) Et underrum W ⊂V er negativ definit med hensyn til 〈−,−〉, hvis 〈w,w〉 < 0 for alle
0 6= w ∈W .
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6.5 Klassifikation af hermitiske former

Eksempel 6.5.2 (1) En hermitisk form 〈−,−〉 : V ×V → F er et indre produkt, hvis og
kun hvis ethvert underrum W ⊂V er positiv definit med hensyn til 〈−,−〉, hvis og kun
hvis V er positiv definit med hensyn til 〈−,−〉.
(2) I tilfældet V =Rn med Minkowskis hermitiske form

〈x, y〉 =−x1 y1 + x2 y2 +·· ·+ xn yn

siger vi også, at et underrum W ⊂ V , der er positiv definit med hensyn til 〈−,−〉, er
“spacelike”, og at et underrum W ⊂ V , der er negativ definit med hensyn til 〈−,−〉, er
“timelike”. Det en-dimensionale underrum frembragt af (e1a1 + ·· ·+ enan) er således
spacelike, hvis a2

1 < a2
2 +·· ·+a2

n, mens det er timelike, hvis a2
1 > a2

2 +·· ·+a2
n.

Lad n være et naturligt tal, og lad p, q og r være naturlige tal, sådan at p+ q+ r = n.
Vi definerer da D(p, q, r) ∈ Mn(F) til at være diagonalmatricen

D(p, q, r)= diag(−1, . . . ,−1,0, . . . ,0,1, . . .1),

hvor de første p diagonalindgange er lig med −1; de næste q diagonalindgange er lig
med 0; og de sidste r diagonalindgange er lig med 1. Vi skal nu vise følgende sætning,
der kaldes Sylvesters inertisætning.

Sætning 6.5.3 (Sylvester) Lad enten F= R eller F= C, og lad 〈−,−〉 : V ×V → F være
en hermitisk form på et n-dimensionalt F-vektorrum.

(1) Der findes en basis (v1, . . . ,vn) for V og naturlige tal p, q og r, sådan at det for alle
v,w ∈V med koordinater x, y ∈ Fn med hensyn til basen (v1, . . . ,vn) gælder, at

〈v,w〉 = x∗D(p, q, r)y.

(2) De naturlige tal p, q og r afhænger ikke af valget af basis og er karakteriseret som
følger: p er den maksimale dimension af et underrum W ⊂V , der er negativ definit
med hensyn til 〈−,−〉; r er den maksimale dimension af et underrum W ⊂V , der er
positiv definit med hensyn til 〈−,−〉; og q = n− p− r.

Bevis Vi viser først (1) for F=R. Vi vælger en vilkårlig basis (w1, . . . ,wn) for V og lader
h : Rn → V være den entydigt bestemte isomorfi, sådan at h(ei) = wi for alle 1 ≤ i ≤ n.
Da h : Rn →V er lineær, så er 〈h(−),h(−)〉 en hermitisk form på Rn, så matricen

A = (〈h(ei),h(e j)〉)= (〈wi,w j〉) ∈ Mn(R)
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6 Vektorrum med indre produkt

er symmetrisk ifølge sætning 2.6.10. Hvis v,w ∈V har koordinater x, y ∈Rn med hensyn
til den valgte basis, da gælder det endvidere, at

〈v,w〉 = 〈h(x),h(y)〉 = x∗Ay.

Sætning 6.4.2 viser nu, at der findes en ortogonal matrix Q ∈ Mn(R), sådan at

Q∗AQ = diag(λ1, . . . ,λn) ∈ Mn(R)

er en diagonalmatrix. Vi påstår, at vi kan vælge Q ∈ Mn(R), sådan at

λ1 ≤λ2 ≤ ·· · ≤λn.

For ellers kan vi vælge en permutation af n bogstaver σ : {1, . . . ,n} → {1, . . . ,n}, sådan at
λσ(1) ≤ λσ(2) ≤ ·· · ≤ λσ(n). Permutationsmatricen P(σ) ∈ Mn(F) er da ortogonal, idet dens
søjler er standardenhedsvektorer, og

P(σ)∗Q∗AQP(σ)= diag(λσ(1), . . . ,λσ(n)) ∈ Mn(R).

Derfor kan og vil vi antage, at λ1 ≤λ2 ≤ ·· · ≤λn, idet vi ellers erstatter Q med QP(σ).
Vi lader nu p, q og r være de naturlige tal, sådan at λi < 0 for 1 ≤ i ≤ p; λi = 0 for

p+1≤ i ≤ p+q; og λi > 0 for p+q+1≤ i ≤ n. Vi lader dernæst R = diag(ρ1, . . . ,ρn) ∈ Mn(R)
være diagonalmatricen med diagonalindgange

ρ i =
{
|λi|−

1
2 hvis λi 6= 0,

1 hvis λi = 0.

Matricen R er symmetrisk, og den er valgt, sådan at

P∗AP = R∗Q∗AQR = D(p, q, r),

hvor vi skriver P = (pi j)=QR ∈ Mn(R). Endelig definerer vi

v j = w1 p1 j +w2 p2 j +·· ·+wn pn j

for alle 1 ≤ j ≤ n. Da er (v1, . . . ,vn) en basis for V , og hvis x, y ∈ Fn er koordinaterne for
v,w ∈V med hensyn til basen (v1, . . . ,vn), så er Px,P y ∈ Fn koordinaterne for v ∈V med
hensyn til basen (w1, . . . ,wn). Derfor er

〈v,w〉 = (Px)∗A(P y)= x∗P∗AP y= x∗D(p, q, r)y

som ønsket. Dette viser (1) for F = R; beviset for F = C er helt analogt, idet man blot
erstatter “symmetrisk” med “hermitisk”, “ortogonal” med “unitær” og sætning 6.4.2 med
sætning 6.4.3.

Vi mangler at vise (2). Vi betragter igen F = R; tilfældet F = C er helt analogt. Det er
ikke klart, at de naturlige tal p, q og r i beviset for (1) er uafhængige af vores valg af
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den ortogonal matrix Q ∈ Mn(R). Vi træffer nu et valg af en sådan matrix Q ∈ Mn(R) og
finder derefter en basis (v1, . . . ,vn) for V som i beviset for (1). Vi lader V<0 ⊂V være un-
derrummet frembragt af (v1, . . . ,vp) og lader V≥0 ⊂ V være underrummet frembragt af
(vp+1, . . . ,vn). Underrummet V<0 ⊂V har dimension p og er negativ definit med hensyn
til 〈−,−〉. Vi ønsker at vise, at hvis W ⊂ V er et underrum, der er negativ definit med
hensyn til 〈−,−〉, så er dimensionen af W højst p. Men W ∩V≥0 = {0}, og derfor er

dim(W)+dim(V≥0)≤ dim(V ),

hvilket viser, at dim(W) ≤ p som ønsket. Hermed har vi vist, at p er den maksimale
dimension af et underrum W ⊂ V , der er negativ definit med hensyn til 〈−,−〉. Beviset
for, at r er den maksimale dimension af et underrum W ⊂ V , der er positiv definit med
hensyn til 〈−,−〉 er helt tilsvarende. Dette afslutter beviset. 2

Bemærkning 6.5.4 Lad (V ,〈−,−〉) være som i sætning 6.5.3. Vi understreger, at et
maksimalt underrum W ⊂ V , der er enten negativ definit eller positiv definit med hen-
syn til den hermitiske form 〈−,−〉, ikke er entydigt. Det er kun de respektive dimensio-
ner p og r af sådanne underrum, der er entydigt bestemte.

Eksempel 6.5.5 Vi betragter igen Minkowskiformen på Rn fra eksempel 6.5.2, hvor
vi antager at n ≥ 2. Med notation som i sætning 6.5.3, er denne givet ved

〈x, y〉 = x∗D(p, q, r)y,

hvor p = 1, q = 0 og r = n−1. Sætning 6.5.3 viser derfor, at et timelike underrum højst
kan være en-dimensionalt. Vi har allerede set i eksempel 6.5.2, at det en-dimensionale
underrum frembragt af (e1a1 +·· ·+ enan) er timelike, hvis a2

1 > a2
2 +·· ·+a2

n. Så der er
altså uendeligt mange forskellige maksimale timelike underrum. Vi bemærker også,
at selvom q = 0, så findes der en-dimensionale underrum U ⊂ Rn, sådan at det for
alle x ∈U gælder, at 〈x, x〉 = 0. Delmængden C = {x ∈ Rn | 〈x, x〉 = 0} ⊂ Rn er en tosidet
kegle med keglepunkt 0, som kaldes “lyskeglen” og som udgør grænsen mellem de
“spacelike” og “timelike” dele af Rn.

6.6 Opgaver

6.1 Vi lader V =C2 og definerer afbildningen 〈−,−〉′ : V ×V →C ved

〈x, y〉′ = 3x̄1 y1 +4x̄2 y2.

a) Vis, at 〈−,−〉′ : V ×V →C er et indre produkt.
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6 Vektorrum med indre produkt

b) Find normen af vektorerne

x=
(
1
1

)
, y=

(−4
3

)
, z =

(p
3

2i

)
med hensyn til 〈−,−〉′.

c) Afgør, hvorvidt x og y er ortogonale med hensyn til 〈−,−〉′.
d) Afgør, hvorvidt x og y er ortogonale med hensyn til standard-indreproduktet

〈−,−〉 : V ×V →C.

6.2 Vi betragter R–vektorrummet V = C0([0,1]) af kontinuerte funktioner f : [0,1] → R

med det indre produkt 〈−,−〉 : V ×V →R defineret ved

〈 f , g〉 =
∫ 1

0
f (x)g(x)dx.

a) Eftervis, at 〈−,−〉 er et indre produkt i V .

[Det følgende resultat kan anvendes uden bevis: Given en kontinuert afbildning
h : [0,1] → R, sådan at h(x) ≥ 0 for alle x ∈ [0,1], da medfører

∫ 1
0 h(x)dx = 0, at

h(x)= 0 for alle x ∈ [0,1].]

b) Vis, at de kontinuerte funktioner f , g : [0,1]→R, der er defineret ved f (x)= 1 og
g(x)=

p
3(2x−1), er ortogonale enhedsvektorer med hensyn til 〈−,−〉.

c) Bestem normen af den kontinuerte funktion h : [0,1] → R, der er defineret ved
h(x)= xn, hvor n ≥ 0 er et helt tal, med hensyn til 〈−,−〉.

6.3 Vis, at det for reelle tal x1, . . . , xn gælder, at(
x1 +·· ·+ xn

)2 ≤ n
(
x2

1 +·· ·+ x2
n
)
.

(Vink: Anvend Cauchy-Schwarz’ ulighed).

6.4 Find vinklen mellem vektorerne x, y ∈R4 givet ved

x=


1
3
1
1

 og


0
1
1

−1


med hensyn til standard-indreproduktet på R4.

6.5 Lad U ⊂R4 være underrummet frembragt af den lineært uafhængige familie (w1,w2)
af vektorer i R4, hvor

w1 =


5
3
1
1

 og w2 =


−1
−3

3
−1

 .
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a) Omdan basen (w1,w2) for U til en basis (v1,v2), der er ortogonal med hensyn til
standard-indreproduktet på R4.

b) Omdan endvidere basen (v1,v2) for U til en basis (u1,u2), der er ortonormal med
hensyn til standard-indreproduktet på R4.

6.6 Vi betragter de følgende vektorer i R3:

v1 =
 1

2
2

 , v2 =
 0
−1

1

 .

a) Vis, at (v1,v2) er en ortogonal familie med hensyn til standard-indreproduktet
på R3 og konkluder, at den er lineært uafhængig.

b) Find en vektor w3, sådan at (v1,v2,w3) er en basis for R3.

c) Anvend Gram-Schmidt-ortogonalisering til at omdanne basen (v1,v2,w3) til en
basis (u1,u2,u3), der er ortonormal med hensyn til standard-indreproduktet.

d) Vis, at matricen P = (
u1 u2 u3

)
, er ortogonal.

e) Bestem koordinaterne af standardenhedsvektorerne e1, e2 og e3 med hensyn til
basen (u1,u2,u3).

6.7 Vi betragter de følgende vektorer i R4:

v1 =


1
0
0
1

 , v2 =


1
1
1

−1

 , v3 =


0
1

−1
0

 , v4 =


−1

1
1
1

 .

a) Eftervis, at familien (v1,v2,v3,v4) er ortogonal med hensyn til standard-indreproduktet
〈−,−〉 på R4 og konkluder, at den udgør en basis for R4.

b) Vis, at afbildningen f : R4 →R4 defineret ved

f (x)= v2 〈v1, x〉+v3 〈v2, x〉+v4 〈v3, x〉
er lineær.

c) Bestem matricen A, der repræsenterer f : R4 → R4 med hensyn til standardba-
sen (e1, e2, e3, e4) for både domænet og codomænet, samt matricen B, der repræ-
senterer f : R4 → R4 med hensyn til basen (v1,v2,v3,v4) for både domænet og
codomænet.

d) Beregn matricerne A2, A3, A4 samt B2, B3, B4, gerne ved brug af Maple.

e) Bestem dimensionen af billedet af f ◦n : R4 →R4, hvor

f ◦1 = f , f ◦2 = f ◦ f , f ◦3 = f ◦ f ◦ f , . . . ,

for alle n ≥ 1.

265



6 Vektorrum med indre produkt

6.8 Lad V være et vektorrum af dimension n, og lad (v1,v2, . . . ,vk) være en lineært
uafhængig familie af vektorer i V . Angiv med “ja” eller “nej” om følgende udsagn er
korrekte eller ej.

a. Hvis f : V →V er en lineær endomorfi af et endeligt frembragt komplekst vek-
torrum, så findes der en egenvektor for f : V →V .

b. Hvis f : V →V er en lineær endomorfi af et endeligt frembragt komplekst vek-
torrum, så har V en basis, der består af egenvektorer for f : V →V .

c. Ethvert endeligt frembragt reelt vektorrum med indre produkt (V ,〈−,−〉) har
en basis, der ortogonal med hensyn til 〈−,−〉.

d. Ethvert endeligt frembragt reelt vektorrum med indre produkt (V ,〈−,−〉) har
en basis, der ortonormal med hensyn til 〈−,−〉.

e. Lad (V ,〈−,−〉V ) og (W ,〈−,−〉W ) være to reelle vektorrum med indre produkt,
og lad f : V → W være en lineær afbildning. Hvis vektorerne v,v′ ∈ V er orto-
gonale med hensyn til 〈−,−〉V , så er vektorerne f (v), f (v′) ∈W ortogonale med
hensyn til 〈−,−〉W .

6.9 Lad Q ∈ M3(R) være matricen

Q =
 2/3 2/3 −1/3
−1/3 2/3 2/3

2/3 −1/3 2/3

 ∈ M3(R).

a) Eftervis, at Q er ortogonal.

b) Find Q−1.

6.10 Eftervis, at de tre Pauli-matricer

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
både er hermitiske og unitære komplekse matricer. Vis dernæst, at hver af de tre
Pauli-matricer har egenværdierne +1 og −1.

6.11 (?) Betragt triplen (M2(C),+, ·), hvor + : M2(C)× M2(C) → M2(C) er matrixsum, og
hvor · : M2(C)×R→ M2(C) er givet ved(

z1 z2
z3 z4

)
·a =

(
z1a z2a
z3a z4a

)
.

Det kan anvendes uden bevis, at (M2(C),+, ·) er et R-vektorrum.

a) Vis, at mængden V af hermitiske matricer udgør et underrum i M2(C)

b) Vis, at familien (I,σ1,σ2,σ3), hvor I er identitetsmatricen, og hvor σ1, σ2 og σ3
er Pauli-matricerne, udgør en basis for V .
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6.12 Lad Q ∈ Mn(R) være en ortogonal matrix, og lad U ∈ Mn(C) være en unitær matrix.

a) Vis, at |det(Q)| = 1.

b) Vis, at |det(U)| = 1.

(Vink: Husk, at for z ∈C er |z| =
p

z∗z . )

6.13 Lad Q ∈ Mn(R) være en ortogonal matrix.

a) Vis, at Q t(Q− I)=−(Q− I)t.

b) Vis, at hvis n er lige og det(Q)=−1, så er λ= 1 en egenværdi for matricen Q.

c) Vis, at hvis n er ulige og det(Q)= 1, så er λ= 1 en egenværdi for matricen Q.

(Vink: Hvis A ∈ Mn(F), så er det(−A)= (−1)n det(A).)

6.14 Find et eksempel på to symmetriske matricer A,B ∈ M2(R), sådan at deres ma-
trixprodukt AB ∈ M2(R) ikke er en symmetrisk matrix.

6.15 Lad f : R3 → R3 være den lineære endomorfi, der er repræsenteret med hensyn til
standardbasen (e1, e2, e3) for både domænet og codomænet af den symmetriske ma-
trix

A =
 3 1 −1

1 3 −1
−1 −1 5

 ∈ M3(R).

a) Udregn det karakteristiske polynomium χ f (t) og bestem samtlige egenværdier
af f : R3 →R3.

b) Bestem en basis (u1,u2,u3) for R3, der er ortonormal med hensyn til standard-
indreproduktet på R3 og består af egenvektorer for f : R3 →R3.

c) Angiv en ortogonal matrix Q, sådan at

D =Q−1AQ

er en diagonalmatrix.

6.16 Lad f : R3 → R3 være den lineære endomorfi, der er repræsenteret med hensyn til
standardbasen (e1, e2, e3) for både domænet og codomænet af den symmetriske ma-
trix

A =
 3 −1 −2
−1 3 2
−2 2 6

 ∈ M3(R).

a) Udregn det karakteristiske polynomium χ f (t) og bestem samtlige egenværdier
af f : R3 →R3.

b) Bestem en basis (u1,u2,u3) for R3, der er ortonormal med hensyn til standard-
indreproduktet på R3 og består af egenvektorer for f : R3 →R3.
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c) Angiv en ortogonal matrix Q, sådan at

D =Q−1AQ

er en diagonalmatrix.

6.17 Lad f : C2 → C2 være den lineære endomorfi, der er repræsenteret med hensyn til
standardbasen (e1, e2) for både domænet og codomænet af den normale matrix

A =
(
1 i
i 1

)
∈ M2(C).

a) Udregn det karakteristiske polynomium χ f (t) og bestem samtlige egenværdier
af f : C2 →C2.

b) Bestem en basis (u1,u2) for C2, der er ortonormal med hensyn til standard-
indreproduktet på C2 og består af egenvektorer for f : C2 →C2.

c) Angiv en unitær matrix U , sådan at

D =U−1AU

er en diagonalmatrix.

6.18 Lad A ∈ Mn(R) være en symmetrisk matrix. Vis, at hvis A2 er lig med nulmatricen,
så er A nødvendigvis lig med nulmatricen.

(Vink: Anvend spektralsætningen.)

6.19 Lad A ∈ Mn(C) være en normal kompleks matrix. Vis, at der findes en matrix B ∈
Mn(C), sådan at A = B2.

(Vink: Bemærk først, at der for alle z ∈ C findes w ∈ C, sådan at z = w2, og anvend
derefter spektralsætningen.)

6.20 Vis, at hvis A ∈ Mn(R) er en invertibel symmetrisk reel matrix, så er den inverse
matrix A−1 ∈ Mn(R) også symmetrisk.

(Vink: Brug spektralsætningen.)

6.21 (?) Lad A,B ∈ Mn(R) være symmetriske matricer, der opfylder, at

AB = BA.

a) Lad λ ∈ R være en egenværdi for A, og lad (u1, . . . ,ud) være en basis for egen-
rummet NA−Iλ, der er ortonormal med hensyn til standard-indreproduktet på
Rn. (Spektralsætningen viser, at disse findes.) Anvend antagelsen, at A og B
kommuterer, til at vise, at det for alle 1≤ i ≤ d gælder, at

Bui ∈ NA−Iλ.
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6.6 Opgaver

b) Vis, at matricen
C = (〈Bui,u j〉

) ∈ Md(R)

er symmetrisk.

c) Lad x ∈Rd være en egenvektor for den symmetriske matrix C. (En sådan findes
ifølge spektralsætningen.) Vis, at vektoren

v= u1x1 + . . .udxd

er en fælles egenvektor for A og B.

Man kan nu gentage beviset for sætning 6.4.2 og vise, at der findes en basis for Rn,
der er ortonormal med hensyn til standard-indreproduktet og består af egenvekto-
rer for både A og B. Bemærk også, at antagelsen AB = BA ifølge sætning 5.2.7 er
nødvendig.

6.22 (?) Vi lader C0(R) være det reelle vektorrum bestående af kontinuerte funktioner
f : R→R, og vi definerer

TrigN(R)⊂ C0(R)

til at være underrummet frembragt af familien(
1,cos(x),cos(2x),cos(3x), . . . ,cos(Nx)

)
.

Vi kalder en vektor i TrigN(R) for et signal for at understrege anvendelsen til re-
præsention af lyd. Det indre produkt

〈 f , g〉 =
∫ 2π

0
f (x)g(x)dx

på C0(R) definerer specielt et indre produkt på underrummet TrigN(R). Vi betragter
i det følgende signalerne

v0 =
1p
2

, v1 = cos(x), v2 = cos(2x), v3 = cos(3x)

i Trig3(R).

a. Vis, eventuelt ved brug af Maple, at for 0≤ i, j ≤ 3 er

〈vi,v j〉 =
{
π hvis i = j,
0 hvis i 6= j,

og konkludér, at familien (v0,v1,v2,v3) er en ortogonal basis for underrummet
Trig3(R) med hensyn til det indre produkt 〈−,−〉.

b. Angiv en basis (u0,u1,u2,u3) for Trig3(R), der er ortonormal med hensyn til
det indre produkt 〈−,−〉.
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6 Vektorrum med indre produkt

c. Vis, at hvis f , g ∈ Trig3(R) har koordinater henholdsvis x, y ∈ R4 med hensyn
til basen (v0,v1,v2,v3), så er

〈 f , g〉 =π(x1 y1 + x2 y2 + x3 y3 + x4 y4).

d. Betragt den lineære endomorfi ∆ : Trig3(R)→Trig3(R) defineret ved

∆( f )= d2 f
dx2 .

Find den matrix A ∈ M4(R), der repræsentere denne lineære endomorfi med
hensyn til basen (v0,v1,v2,v3) for både domænet og codomænet.

Den lineære endomorfi ∆ : Trig3(R) → Trig3(R) kaldes for Laplace operatoren. Den
er et eksempel på en differentialoperator.
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