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Forord

Denne bog er beregnet til et fgrste kursus i lineaer algebra, men vi har lagt veegt pa
at fremstille dette materiale pa en sddan made, at det implicit fremstar i sin naturlige
generalitet. Vi har ogsa lagt veegt pa ikke-kommutativitet, og vi benytter saledes ikke,
at ab og ba er ens, medmindre det er ngdvendigt.

Vores hovedkilde som inspiration har vaeret den uovertrufne praesentation af lineser
algebra i N. Bourbaki, Algebra I og Algebra II. Vores gennemgang af determinanten er
ogsa steerkt inspireret af H. A. Nielsen, Lineser Algebra, Aarhus Universitet fra 1988.
Endvidere er bogens layout og visse figurer overfgrt fra Niels Vigand Pedersen, Lineaer
Algebra, Kgbenhavns Universitet, 2. udgave fra 2009, revideret af Morten Risager.

Vi takker Anna Schgtt-Edholm og Katja Thorseth for ngje gennemlaesning bogen.

Kgbenhavn, oktober 2017, Lars Hesselholt og Nathalie Wahl
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Hvordan man leeser denne bog

Matematik adskiller sig fra andre naturvidenskaber ved, at matematiske begreber har
preecise definitioner, og at matematiske udsagn har praecise beviser. Alle matematiske
begreber er opbygget fra det grundlaeggende begreb “maengde”, der som det eneste er
udefineret, og alle matematiske beviser fremkommer i princippet ved at kombinere de
grundlaeggende udsagn om maengder, der er beskrevet i Zermelo-Fraenkel aksiomerneE]

Det formelle grundlag betyder dog ikke, at ideer, der udtrykkes i matematik, er lgsrevet
fra resten af verden. Snarere er matematik i denne sammenhaeng ligesom musik i den
forstand, at man skal leere at spille et instrument, for man kan udtrykke sine ideer. Det
er ogsa afggrende, at man leerer definitioner helt rigtigt og ikke kun nogenlunde rigtigt,
ligesom det i musik er vigtigt, at man rammer de rigtige toner.

At leese en matematisk tekst som denne er derfor en aktiv proces, hvor man typisk
ikke forstar nye begreber fuldt ud, den fgrste gang man laeser dem, men ma ga tilbage
og genlaese definitioner og saetninger samtidigt med, at man laeser eksempler og laver
opgaver eller browser 1 WikipediaE] Det kan ogsa tit veere nyttigt at teenke pa ekstreme
tilfeelde, sdsom “Hvad siger denne definition, hvis A er den tomme matrix?”

Skal man ogséa leese og forsta beviser? Med tiden, ja. Beviser er matematikkens svar pa
eksperimenter i den forstand, at beviser benyttes til at afggre om et udsagn geelder. Det
er ikke sa let at sige praecist, hvad et formelt bevis erE] men uformlet bestar et bevis
1 at angive, hvordan et udsagn, som man gnsker at bevise, logisk falger fra en raekke
udsagn, som antages at geelde, ved hjalp af logiske operationer. At finde et bevis for
et udsagn er dog ikke nogen formel proces og kreever typisk en dyb forstaelse af det
udsagn, man gnsker at vise. Omvendt forstar man typisk ogsa et udsagn langt bedre,
hvis man forstar dets bevis (eller beviser)f_f] og da beviser er en matematikers eneste
veerktgjer, er det vigtigt at leere sig disse.

Bogen kan lases i flere omgange og pa flere niveauer. De fleste begreber i lineaer algebra
har saledes mening i meget stor generalitet, ligesom de fleste saetninger geelder meget
generelt. Vi tillader derfor skalarer, der er mere generelle end reelle tal og komplekse
tal, da de farste fem kapitler ikke anvender de mere specielle (arkimediske) egenskaber
ved de reelle og komplekse tal. I fgrste omgang er leeseren dog mere end velkommen til
at forestille sig, at skalarer enten er reelle tal eller komplekse tal.

For eksempel lyder det farste aksiom “Vx Vy (Vz (z € x © z € y) = x = y)”, hvilket betyder, at hvis to
maengder x og ¥ har de samme elementer, sa er x = y. Det andet aksiom lyder “IxVy(—y € x)”, hvilket
betyder, at der findes en maengde, der ingen elementer har, og ifslge det forste aksiom findes der hgjst
én sadan maengde. Vi kalder denne maengde for den tomme maengde og betegner den med “@”.

2 Den engelske version af Wikipedia er ofte en fremragende kilde, iseer hvad eksempler angar.
Definitionen af et formelt bevis kan findes i Kenneth Kunen, The foundations of mathematics, Studies
in Logic (London), 19, Mathematical Logic and Foundations. College Publications, London, 2009.

4 Saetning|4.4.14|er eksempel herpa.
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0 Skalarer

Hele vejen igennem bogen vil vi arbejde med en grundlaeggende maengde af “tal”, som
vi betegner F. Vi siger, at elementer a € F er skalarer. De to hovedeksempler, vi har i
tankerne, er de reelle tal F = R og de komplekse tal F = C. Vi specificerer nedenfor de
aritmetiske strukturer “+” og “-” pa meengden af skalarer, som vi skal ggre brug af.
Disse aritmetiske strukturer er alle velkendte fra de reelle og de komplekse tal.

0.1 Afbildninger

En afbildning er en triple bestaende af to mangder X og Y og en rege]E] f, der til ethvert
element x € X tilordner et element f(x) € Y. Vi skriver denne triple som

[ X—Y eller XLY

og kalder maengderne X og Y for afbildningens domane og codomaeene.

Eksempel 0.1.1 Afbildningerne f: R— R og g: R — [0,00), hvor f(x) = x% og g(x) = x2,
er to forskellige afbildninger, da deres codomaner er to forskellige maengder.

Vi minder om, at en afbildning f: X — Y er injektiv, hvis der for alle y € Y findes
hgjst ét x € X, sadan at f(x) = y; at den er surjektiv, hvis der for alle y € Y findes mindst
ét x € X, sadan at f(x) = y; og den er bijektiv, hvis der for alle y € Y findes preecis ét
x € X, sadan at f(x) = y. Vi bemeerker, at en afbildning er bijektiv, hvis og kun hvis den
bade er injektiv og surjektiv.

Eksempel 0.1.2 Afbildningen f: R — R fra eksempel er hverken injektiv eller
surjektiv, mens afbildningen g: R — [0,00) er surjektiv, men ikke injektiv. For hvis
y€[0,00), da er g(x) =y for x = £,/y, s& g: R— [0,00) er surjektiv, men da det for y >0
geelder, at +,/y # —/y, sd er g: R— [0,00) ikke injektiv.

IFormelt definerer vi en regel til at veere en delmeengde f ¢ X x Y, sddan at det for alle x € X geelder, at
der preecis findes ét element y € Y, sddan at (x,y) € f. Vi skriver da y = f(x) i stedet for (x,y) € f.
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Figur 0.1: Injektive, surjektive og bijektive afbildninger

Givet afbildninger g: Y — Z og f: X — Y, sadan at domanet af den fgrste afbildning
er lig med codomeanet af den anden, da definerer vi den sammensatte afbildning

Xg—of)Z

ved (go f)(x) = g(f(x)). Vi siger ogsa, at diagrammet
Y
RN
X—"r 7z

kommuterer, hvis A = go f. Vi definerer identitetsafbildningen af en maengde X til at
veere afbildningen idy : X — X givet ved idx(x) = x.

Lemma 0.1.3 En afbildning f: X — Y er bijektiv, hvis og kun hvis der eksisterer en
afbildning g: Y — X, sadan at fog =1dy og go f =1idy.

Bevis Vi antager fgrst, at der findes en afbildning g: Y — X, saddan at fog =idy og
gof =idy, og viser, at f: X — Y er bijektiv. Givet y € Y, da opfylder x = g(y) € X, at

fx)=f(g®)=(fog)y)=idy(y) =y,
sa f: X —Y er surjektiv. Hvis ogsa x’' € X opfylder, at f(x') =y, da er
x' =idx () = (go F)x) = g(f(x") = g(y) = g(f(x)) = (g o f)(x) =idx (x) = x,

sa f: X — Y er ogsa injektiv og dermed bijektiv. Omvendt, hvis f: X — Y er bijektiv,
sa lader vi g: Y — X veere afbildningen, der til y € Y tilordner det entydigt bestem-
te element x € X, sadan at f(x) =y. Hvis x € X og y €Y, da er udsagnene “f(x) = y”
og “x = g(y)” derfor ensbetydende. Specielt er udsagnene “f(g(y)) = y” og “g(y) = g(y)”
ensbetydende, hvilket viser, at f o g = idy. Tilsvarende er udsagnene “g(f(x)) = x” og
“f(x) = f(x)” ensbetydende, hvilket viser, at ogsa go f =idy. O

Hvis f: X — Y er bijektiv, sa er afbildningen g: Y — X med fog=1idy og gof =idy,
entydigt bestemt. For hvis ogsa g’: Y — X opfylder fog' =idx og g'of =idy, da er

g=goidy =go(fog)=(gof)og =idxog' =g



0.2 Legemer

Vi kalder afbildningen g: Y — X for den inverse afbildning af f: X — Y. Den betegnes

sommetider med f~1: Y — X. Vi bemaerker, at det ifglge lemma kun er bijektive
afbildninger, der har en invers afbildning.

Eksempel 0.1.4 Vi lader a € R og betragter afbildningen f: R — R, der er defineret
ved f(x) =ax. Hvis a #0, da er f: R — R bijektiv, og dens inverse afbildning g: R — R
er givet ved g(y) =a ly. Hvisa =0, da er f(x) =0 for alle x € R, s& /: R — R er hverken
injektiv eller surjektiv, og har derfor ikke nogen invers afbildning.

0.2 Legemer

Vi lader [ veere et vilkarligt legeme, hvilket vil sige en maengde af skalarer udstyret med

sum og produkt, der opfylder de saedvanlige aritmetiske regler. Den preecise definition
er som fglger.

Definition 0.2.1 Et legeme er en triple (F,+, -), der bestar af en meengde F samt to
afbildninger +: FxF —F og - : F xF — [, sadan at det gaelder:

(Al) For alle a,b,ceFer(a+b)+c=a+(b+c).

(A2) Der findes et element 0 € F, sddan at a +0=a =0+ a for alle a € F.

(A3) For allea e, findesderet beF,sdadanata+b5=0=5+a.

(A4) For allea,beFera+b=b+a.

(P1) For allea,b,ceFer(a-b)-c=a-(b-c).

(P2) Der findes et element 1 €F, sddanata-1=a =1-a for alle a € .

(P3) Foralle0#a€l, findes belF, sidanata-b=1=b-a. Endvidere er 0 # 1.
(P4) For allea,befFera-b=5-a.

(D1) For alle a,b,ceFera-(b+c)=(a-b)+(a-c).

(D2) For alle a,b,ceFer(a+b)-c=(a-c)+(b-c).

Vi forkorter normalt og skriver ab i stedet for a-b. Vi forkorter ogsa normalt og skriver
blot F for legemet (F, +, -). Dette er et eksempel pa misbrug af notation, idet vi benytter
symbolet F til at betegne to forskellige objekter.
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Eksempel 0.2.2 Vi giver fglgende mere eller mindre velkendte eksempler pa legemer.

(R) Det bedst kendte eksempel pa et legeme er nok legemet af reelle tal (R, +, -), hvor
R er maengden af reelle tal, og hvor “+” og “-” er henholdsvis den saedvanlige sum
og det seedvanlige produkt af reelle tal.

(@) Et andet velkendt eksempel er legemet af rationale tal (Q,+, ), hvor Q c R er
delmaengden af rationale tal, og hvor igen “+” og “-” er de sa&dvanlige sum og
produkt operationer.

(C) Et meget vigtigt eksempel er legemet af komplekse tal (C,+, ), som bestar af
maengden af komplekse tal

C={a+ib|a,beR}
med “+” og “-” defineret ved henholdsvis

(a+ib)+(c+id)=(a+c)+i(b+d)
(@+1ib) - (c+id)=(ac—-bd)+i(ad +bec).

Det modsatte element af a +ib er —a +i(—b), som vi ogsa skriver —a —ib, og, hvis
a+1b #0, da er det multiplikativt inverse element af a + ib givet ved
1 a—1ib a—1ib a . b
= = = —1 .
a+ib (a+ib)a—-ib) a?2+b%2 a?2+0b2 a?2+0b2

(F2) Det mindste legeme er legemet (Fo,+, -), hvor Fg = {0, 1}, og hvor 1+ 1 er defineret
til at vaere lig med 0.

Der findes mange andre legemer, endelige som uendelige, og lineser algebra fungerer
over et vilkarligt legeme. I dette kursus vil vi dog kun bruge R og C som eksempler.

De grundlaeggende egenskaber (A1)—(A4), (P1)-(P4) og (D1)—(D2), der per definition
geelder for sum og produkt i et legeme, har flere konsekvenser, som er velkendte for de
reelle og de komplekse tal, men som altid gaelder sa snart de grundlaeggende betingelser
er opfyldt. Vi naevner her nogle af de vigtigste:

(1) Elementet 0 € F, der opfylder (A2), er entydigt bestemt. For hvis 0 og 0’ begge
opfylder (A2), da gaelder

0=0+0"=0".

Vi kalder O € [ for nul-elementet i [F.
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(2) Givet a €, da er elementet b € [, der opfylder (A3) ligeledes entydigt bestemt. For
hvis bade b og b’ opfylder (A3), da er

b=b+0=b+(a+b)=(b+a)+b' =0+b"=b.
Vi skriver —a for dette element b og kalder det for det modsatte element af a.

(83) Man viser tilsvarende, at elementet 1 € F, der opfylder (P2), er entydigt bestemt;
vi kalder dette element for et-elementet i F. Hvis a € F, og der findes b € [, sddan
at ab =1 = ba, sa ser vi ligeledes, at elementet b € F er entydigt bestemt af a € F.
Vi siger da, at a er invertibel, og at vi skriver a! for det entydigt bestemte b € F,
sadan at ab =1 = ba, og kalder det for det multiplikativt inverse element af a. Sa
ifglge (P3) geelder det i et legeme [, at ethvert element a # 0 er invertibelt.

(4) Hvisa+c=b+c,saera=>, idet

a2 a10Qatc+e)L@+e)+(—c)

=(b+)+(=)Eb+c+(=NCb+0Y b,

Det vil sige, at vi kan traekke et vilkarligt ¢ € F fra pa begge sider at et lighedstegn.

Tilsvarende gaelder det for alle ceF med ¢ #0, at hvisa-c=b-¢, sa er a = b, fordi

(P2) (P3) — (P1)
aZ2a1%a(c-ecH=Z(@-c)e

:(b'C)'C_l(I;I)b-(c-c_l)(P:B)b-l(P:Q)b_

-1

Det vil sige, at vi kan dividere med c € F pa begge sider af et lighedstegn, forudsat
at ¢ er invertibel. Vi kan derimod ikke dividere med 0, fordi 0 ikke er invertibel.

Vi neevner derudover de fglgende to konsekvencer af Definition[0.2.1}

Saetning 0.2.3 Lad [ vaere et legeme. For alle a € F gzelder fplgende:
(E1) a-0=0=0-a.

(E2) a-(-1)=-a=(-1)-a.

Bevis Vi beviser forst (E1). Givet a € F, da er

42 @D

a-0=a-(0+0) = (a-0)+(a-0),

og ved at treekke a -0 fra venstre og hgjre side far vi da, at 0 = (a - 0) som gnsket.
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Vi viser dernaest (E2). Ifglge bemaerkning (2) ovenfor, er —a € F det entydigt bestemte
element, der opfylder a + (—a) =0 = (—a) + a. Men udregningerne

(P2) D2) (A3) (E1)

a+(-1)-a=1la+(-1):a =1+(-1))-a =0-a =
®2) (43)

(-D-a+a@(D-a+1-a®a-Q+(-1)Fa-0%0

viser, at elementet (—1)-a ogsa har denne egenskab, hvilket viser (E2). O

[ {3

Bemsgerkning 0.2.4 Triplen (Z,+, -), hvor Z er maengden af hele tal, og hvor “+” og
er de seedvanlige sum og produkt operationer, opfylder alle aksiomerne i Definition
med undtagelse af (P3). For +1 og —1 er de eneste elementer i Z, der er invertible, sa
ikke alle 0 # x € Z er invertible. Dermed er (Z, +, -) altsa ikke noget legeme. En triple af
denne art kaldes for en kommautativ ring. Disse forekommer i enorm variation

0.3 Hgjre og venstre multiplikation

Hvis (F,+, -) er et legeme, sa gaelder det ifglge aksiom (P4), at a-b =b-a for alle a,b €F.
Med andre ord, sa ggr det ingen forskel, om vi ganger a med b fra hgjre eller fra venstre.
Der forekommer dog naturligt ogsa tripler (F,+, -), der opfylder alle aksiomerne for at
veere et legeme med undtagelse af (P4), og vi siger da, at (F, +, -) er et skaeviegeme.

Et klassisk eksempel pa et skaevlegeme er Hamilton’s kvaternioner, som vi beskriver
i eksempel nedenfor. Enhedskvaternioner bestemmer rotationer af 3-dimensionalt
rum, og “a-b” svarer da til forst at udfere rotationen bestemt af b og dernzest rotationen
bestemt af a, mens “b-a” svarer til at udfgre disse rotationer i modsat rakkefgplge,
hvilket typisk ikke er det samme.

I lineaer algebra spiller multiplikation fra hgjre og venstre forskellige roller, og vi
gor det derfor til en regel altid at veere forsigtige med, hvilken side vi ganger fra. Den
kommutative lov (P4) geelder saledes ikke for multiplikation af matricer, som vi indfgrer
i kapitel 2. For eksempel kan rotationer af 3-dimensionalt rum udtrykkes ved matricer,
og sammesatning af rotationer svarer da til matrixmultiplikation. Endelig er (P4) slet
ikke ngdvendig i de fleste af de efterfelgende kapitler, og mange beviser bliver faktisk
lettere, nar man ikke tillader sig at bruge (P4).

Eksempel 0.3.1 Hamilton’s kvaternioner er skeevlegemet (H, +, -), hvor
H={a+ib+jc+kd|a,b,c,d R}

er mangden af kvaternioner, og hvor “+” er defineret ved

(a1+1by +j01 +kdq1)+(ag+iby +j02 +kdg)
= (a1 +a2)+ i(bl +bz)+j(cl +Cz)+k(d1 +d2),

2 Det mere end 5000 sider lange Stacks Project (stacks.math.columbia.edu) omhandler kommutative
ringe og deres egenskaber.



0.4 Opgaver

« »

mens “-” er defineret ved

(a1 + ibl +jCl +kd1) - (ag + ib2 +jCz +kd2)
=(a1a2—b1bg —cica—d1d2) +i(a1bg + biag +c1da —dic2)
+j(a102 = b1d2 +cia9 +d1b2) +k(a1d2 + blcg = Clb2 + dlaz).

For eksempel er i - j = k, mens j-i = —k, sa multiplikation er ikke kommutativ.

0.4 Opgaver

0.1

0.2

0.3

Vis, at afbildningen f: R — R? defineret ved

u u+v
7[o)= ()
er bijektiv, og angiv den inverse afbildning g: R — R?.

Afggr 1 hvert af folgende tilfeelde, om den angivne afbildning f: X — Y er injektiv,
surjektiv og/eller bijektiv, og angiv billedet af f: X — Y. Hvis f: X — Y er bijektiyv,
angiv da ogsa den inverse afbildning g: Y — X.

a) f:R-R, f(x)=x2
b) f:R—R, f(x)=x>.

¢) [:R2 R, f(i):xy.

d f:R2—R2 (x):(“y).
) f f v = lemy
e) f:R~{0} >R, f(x)=1.

) f:R~{0} =R~{0}, f(x)=1.
g) £:00,11—1[0,11, f(x)=x2.

Afggr, om hver af de folgende afbildninger er injektiv, surjektiv og/eller bijektiv.
Hyvis afbildningen er bijektiv, angiv da ogsa den inverse afbildning.

a) Afbildningen f: C — R? defineret ved

_ (Re(2)
@)= (Im(z)) :

b) Afbildningen g: C2 — R? defineret ved

)= im0
glw| ™ \im))
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0.4

0.5

¢) Afbildningen A : C? — C? defineret ved

Vi betragter maengderne

A ={a,b,c} B={2,3,5,7,11}
D ={a,w} E={I,V,XLL,C,D,M}.

Angiv for hver af fglgende afbildninger, om den er injektiv og/eller surjektiv. Angiv
den inverse afbilding i de tilfaelde, hvor afbildningen er bijektiv.

a) Afbildningen f: A — B defineret ved
fla)=2, f(d) =11, fle)=2.
b) Afbildningen g: D — A defineret ved
g(a)=0b, gw)=a.

c) Afbildningen h: E — A defineret ved

h()=c, h(V)=a, h(X)=a, h(L) =0,
h(C)=c, h(D) =0, h(M) =a.

d) Afbildningen i: A uD — B defineret ved
i(a)="1, i(b)=3, i(c)=11, i(a)=2, (w)=5.

Afbildningerne f,g: R? — R3 er givet ved

X1 X1 +x9 X1 X1+ X9 + 2x3
f X9 |=[|x9+x3], glxe|= X9 + X3 .
X3 X1+Xx3 X3 X1+Xx3

a) Gor rede for, at f: R3 — R3 er bijektiv, mens g: R — R? ikke er bijektiv.
b) Angiv den inverse afbildning til f: R? — R3.



0.4 Opgaver

0.6 Lad X,Y og Z vere maengder, oglad f: X —Y og g: Y — Z vere afbildninger.
a) Vis,at hvis f: X — Y og g: Y — Z begge er injektive, da er gof: X — Z ogsa
injektiv.
b) Vis, at hvis f: X — Y og g: Y — Z begge er surjektive, da er gof: X — Z ogsa
surjektiv.

c) Vis,at hvis f: X - Y og g: Y — Z begge er bijektive, da er gof: X — Z bijektiyv,
og at det endvidere gelder, at (gof) 1 =f"log™1: Z - X.

d) Vis, at hvis gof: X — Z er injektiv, sa er ogsa f: X — Y injektiv.
e) Vis, at hvis gof: X — Z er surjektiv, sa er ogsa g: Y — Z surjektiv.

0.7 (%) Angiv en bijektiv afbildning f: [0,1] — [0, 1).
[Vink: Afbildningen f: [0,1] — [0, 1) kan ikke veere kontinuert.]






1 Lineaere ligningssystemer

I dette kapitel indfgrer vi lineaere ligningssystemer og beskriver en algoritme til at
finde deres lgsninger. Denne algoritme eller metode, der allerede er beskrevet i den
kinesiske tekst “Ni kapitler om den matematiske kunst” skrevet omkring begyndelsen
af vor tidsregning, blev langt senere genfundet af fgrst Newton og senere Gauss, og gar
nu, noget uretfaerdigt, under navnet Gauss-elimination. Denne algoritme er utroligt
effektiv og er grundlaget for stort alle beregninger i linezer algebra.

Algoritmen bestar i at omforme ligningssystemer ved hjeelp af raekkeoperationer, der
ikke @ndrer lgsningsmaengden, men ggr det muligt umiddelbart at angive denne. Vi
samler al information om et linegert ligningssystem i en matrix, og vi indfgrer en speciel
form for matricer, som vi kalder matricer pa reduceret echelonform, hvor det tilhgrende
ligningssystem umiddelbart kan lgses. Gauss-elimination er da en algoritme, der ved
hjalp af reekkeoperationer omdanner en given matrix til en entydigt bestemt matrix pa
reduceret echelonform.

Lgsning af linesere af ligningssystem ved Gauss-elimination er beskrevet i detaljer i
s@tning nedenfor. I grove treek afggr algoritmen, om der er lgsninger eller ej, og
hvis der er lgsninger, sa bliver de alle fundet af algoritmen. Specielt afggr algoritmen,
om der er nul, én eller flere Igsninger.

Vi minder om fra kapitel [0} at vi arbejder med skalarer i et legeme F, som for os er
enten de reelle eller de komplekse tal. De eneste egenskaber ved de reelle og komplekse
tal, som vi anvender, er, at de kan adderes og multipliceres, og at disse operationer
opfylder legemesaksiomerne beskrevet i definition[0.2.1]

1.1 Linezere ligningssystemer

Det linegere ligningssystem
4dx1+x9 =9
x1—x2 =1
bestar af to ligninger “4x1 + x9 = 9” og “x1 —x9 = 1” med to ubekendte x1 og x9. Det er

ikke sveert at se, at x1 = 2 og x9 = 1 tilfredsstiller begge ligninger, og derfor er en lgsning
til ligningssystemet, samt at dette er den eneste lgsning. Vi angiver denne lgsning som

)
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1 Lineare ligningssystemer

Generelt siger vi, at et system af ligninger pa formen

aiixitaiexg+--+aipxn = bl

ag21xX1+ag2xg + - +agnxXy = bg

Am1X1 +AmoaXo+ -+ AmnXn =bm

med a;;,b; € F er et linezert ligningssystem med m ligninger i n ubekendte over F, og
vi kalder skalarerne a;; og b; for ligningssystemets koefficienter og konstanter. Ved en
lpsning til ligningssystemet forstar vi en familie af n skalarer

X1
X2
Xn

der samtidigt tilfredstiller de m ligninger i systemet. Den mangde, der bestar af alle
lgsninger til ligningssystemet, kaldes for ligningssystemets lgsningsmangde.

Hvis konstanterne b; alle er lig med 0, siger vi, at ligningssystemet er homogent, og
ellers siger vi, at det er inhomogent. Ethvert homogent ligningssystem har lgsningen

mens et inhomogent ligningssystem ikke behgver at have nogen lgsning.

Eksempel 1.1.1 (Homogent og inhomogent ligningssystem) Ligningssystemet

2x1—3x9+x3 =—1
—xX1+x9—%x3 = 2
3x1+2x9+2x3 = 3

med m = 3 ligninger i n = 3 ubekendte er inhomogent; og ligningssystemet

2x1—3x9+x3 =0
—x1+x9—x3 =0
3x1+2x9+2x3 =0

er det tilhgrende homogene ligningssystem.
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1.2 Rakkeoperationer og Gauss-elimination

Det er nyttigt ikke at skulle skrive de variable x; hele tiden, og derfor samler vi
ligningssystemets koefficienter a;; i en m x n-matrix

aipz ai2 ... Qin
agl a9 .. Q9opn
A=| . . .
AQml1 Am2 ... Amn

som vi kalder ligningssystemets koefficientmatrix. Vi siger, at matricen har m raekker
og n sgjler. Hvis vi tilfgjer den ekstra sgjle

b1
b=|,
b
der bestar af ligningssystemets konstanter, sa far vi en m x (n + 1)-matrix
a1 a2 ... Qip| b1
(AlD)= a21' as ... azn. bz. ,
Amli Am2 ... Qmn | bm

som vi kalder ligningssystemets totalmatrix. Vi har her, som det er seedvane, inkluderet
en lodret linje, der adskiller koefficienter og konstanter. Linjen er ikke af matematisk
betydning og har udelukkende til formal at huske os pa, hvilket ligningssystem denne
matrix repraesenterer.

Eksempel 1.1.2 (Totalmatrix) Ligningssystemet i eksempel har totalmatrix

2 -3 1|-1
-1 1 -1 2 |.
3 2 2| 3

Den har 3 raekker og 4 sgjler, og er dermed en 3 x 4-matrix.

1.2 Raekkeoperationer og Gauss-elimination

I dette afsnit indferer vi raekkeoperationer og viser, hvordan de anvendes til at lgse
linezere ligningssystemer. Vi illustrerer fgrst dette med det simple eksempel

dx1+x2=9

X1 —X9 = 1,

13



1 Lineare ligningssystemer

hvor vi nu beskriver hver skridt i udregningen. Vi begynder med at addere den anden
ligning til den forste, og far da ligningssystemet

5x1 =10

x1—x9= 1.
Vi ganger dernaest den fgrste ligning med 1/5 og den anden med —1, hvilket giver

X1 = 2
—x1+x9=-1.

Endelig adderer vi den fgrste ligning til den anden og far derved

X1 = 2

X9 = 1.

De fire ligningssystemer har alle samme lgsningsmangde, da de operationer, vi har
udfgrt, kan inverteres og derfor bevarer lgsningsmangden. Vi konkluderer dermed, at
den feelles lgsningsmaengde bestar af den entydige lgsning

X1| _ 2
X9 1)
Vi skal nu vise, at denne lgsningsmetode virker for et generelt lineaert ligningssystem.

Sa vi betragter linesere ligningssystemer

alixi+aigxg+---+aipxy = bl

ag1xX1+agexg+:--+agnxy = bz

Am1X1+aAmaXo+ - +AmnXy, = by,

bestaende af m ligninger i n ubekendte og indfgrer de fglgende tre typer af operationer,
der omformer et sddant linesert ligningssystem til et nyt linesert ligningssystem med
samme lgsningsmaengde.

Type M: Multiplikation fra venstre af en ligning med en skalar ¢ # 0.

Type S: Addition af et venstre multiplum af en ligning til en anden ligning.

Type T: Ombytning af to ligninger.
Her indikerer “M”, “S” og “T” henholdsvis multiplikation, sum og transposition, og som

vi forklarede i afsnit sa skelner vi mellem multiplikation med skalarer fra venstre
og fra hgjre.
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1.2 Rakkeoperationer og Gauss-elimination

De tre typer af operationer bevarer bade antallet m af ligninger og antallet n af ube-
kendte. Endvidere galder det, at enhver lgsning til et givet ligningssystem igen er en
lgsning til det nye ligningssystem, der fremkommer ved at udfgre en af de tre typer
operationer.

Desuden har hver af de tre typer operationer en invers operation: For hvis vi ganger
ligning i med c # 0 fra venstre, si kan vi gange den nye ligning i med ¢! # 0 fra venstre
og derved fa den oprindelige ligning i tilbage. Og hvis vi adderer ¢ gange ligning ; til
ligning i # j, sa kan vi adderer —c gange ligning j til den nye ligning i og derved fa den
oprindelige ligning i tilbage. Endelig, hvis vi ombytter ligning i og j, sa kan vi ombytte
dem igen, og derved komme tilbage til, der hvor vi startede. Derfor er enhver lgsning til
det nye ligningssystem ogsa en lgsning til det oprindelige ligningssystem. Med andre
ord har de to ligningssystemer den samme lgsningsmaengde.

Vi udtrykker nu de tre typer operationer ved ligningssystemernes totalmatricer

a1 aig ... ain| b1

a1 age ... Qg | b2
(A]b)= . .

Aml Am2 --- Qmn | bm

hvor de svarer til de fglgende tre typer raeekkeoperationer pa matricer:

Type M: Multiplikation fra venstre af en raeekke med en skalar ¢ # 0.
Type S: Addition af et venstre multiplum af en raekke til en anden raekke.

Type T: Ombytning af to reekker.

Vi bemeerker, at disse raekkeoperationer bevarer antallet af reekker og antallet af sgjler.

Rakkeoperationer forstas lettest ved gennemgang af nogle eksempler. Disse eksemp-
ler illustrerer samtidigt, hvordan vi angiver raekkeoperationer.

Eksempel 1.2.1 Vi betragter igen ligningssystemet

4x1+x2=9

x1—x2=1,

som Vi lgste i starten af afsnitet. Vi udferer nu de raekkeoperationer pa ligningssyste-
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1 Lineare ligningssystemer

met totalmatrix (A | b), der svarer til de reekkeoperationer, vi anvendte tidligere.

(4 1| 9) +Rg
(Alb)= 1 -1l 1
5 0[10) Ry
1 -1 1
1 0] 2
1 -1] 1) (-1D-Re
1 0] 2
-1 1|-1] +R;
e (1 0] 2
A’16)= 0o 1| 1
Ligningssystemet hgrende til (A’ | ') er
X1 =2
X9 = 1,

hvilket er trivielt at lgse.

Bemszerkning 1.2.2 Vi bemaerker, at de fem matricer i eksempel ikke er lig med
hinanden, og at det derfor er forkert at skrive lighedstegn mellem dem.

Vi viser nu, at reekkeoperationer er invertible i den forstand, at hvis en given reekkeo-
peration omformer matricen A til matricen A’, s& omformer den inverse raekkeoperation
matricen A’ til matricen A.

Saetning 1.2.3 Rakkeoperationerne af type M, S og T er invertible, og de inverse raek-
keoperationer er givet fplger:

(1) Den inverse af rekkeoperationen af type M, der bestar i at gange raekke i med ¢ # 0
fra venstre, er reekkeoperationen af type M, der bestdr i at gange reekke i med ¢!
fra venstre.

(2) Den inverse af raeekkeoperationen af type S, der bestar i at addere ¢ gange raekke
J til reekke i # j, er reekkeoperationen af type S, der bestdr i at addere —c gange
reekke j til rekke i.

(3) Den inverse af raeekkeoperationen af type T, der bestdar i at ombytte raekke i og j, er
den samme raekkeoperation af type T.
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1.2 Rakkeoperationer og Gauss-elimination

Bevis Vi beviser (2); (1) og (3) vises tilsvarende. Sa lad A = (a;) veere en m x n-matrix,
oglad A’ = (0&}e ;) véere m x n-matricen, der fremkommer fra A ved raekkeoperationen af
type S, der adderer ¢ gange den i’te raekke til den j’te raekke. Da geelder det, at

, _Jajtc-a; hvisk=j,
Apr =

ap] hvis & # j.

Lad A" = (a},) veere m x n-matricen, der fremkommer fra A’ ved reekkeoperationen af
type S, der adderer —c gange den i’te reekke til den j’te reekke. Da gaelder det, at

, , L
" a’ +(—c)-ail hvis & =J,
Ap; =

ay, hvis & # j,
og vi skal vise, at A" = A. Hvis k # j, daer a}), =a}, =ap;, og hvis k= j, da er

a;{l = a;'l +(=c)-aj; =(@j+c-ap)+(=c)-ay=aj+(c-aj+(—c)-a;)

=ajj+(c+(=c)-a;;=a;;+0-a;;=a;+0=aj.
Dette viser seetningen. O
Eksempel 1.2.4 Vi betragter igen matricerne (A | b) og (A’ | b') fra eksempel

Vi udfgrer nu de inverse raekkeoperationer af de raekkeoperationer, vi udfgrte for at
omdanne (A | b) til (A’ | b'), og vi udfsrer dem endvidere i den omvendte reekkefglge.

Lo (1 0] 2
AI=\ o 1| 1)+c1-R;
1 o] 2

-1 1[-1) (-1)-Ry
1 0] 2\ 5R;
1 -1] 1
5 0]10) +(-1)-Ry
1 -1] 1
4 1| 9

@lo={ 4 _1| 1

De inverse reekkeoperationer, anvendt i omvendt reekkefglge, omdanner altsa matricen
(A’| b') til den oprindelige matrix (A | b).
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1 Lineare ligningssystemer

Saetning 1.2.5 Huis totalmatricen (A | b) for et linezrt ligningssystem kan omdannes
til totalmatricen (A’ | ') for et andet linezert ligningssystem ved at udfpre et endeligt
antal reekkeoperationer, sa har de to ligningssystemer den samme lgsningsmaengde.

Bevis Vi beviser setningen ved induktion pa antallet N = 0 af reekkeoperationer, der
benyttes til at omdanne (A | b) til (A’ | b'). Hvis N = 0, har man udfgrt ingen raekkeope-
rationer, s er (A | b) = (A’ | b’), og der er derfor ikke noget at vise. Vi antager dernzest,
at pastanden er bevist for N =r —1, og beviser den for N =r.

Sé lad (A | b) veere totalmatricen for et lineaert ligningssystem, og lad (A’ | b') veere
en matrix, der er fremkommet fra matricen (A | b) ved at udfgre r reekkeoperationer.
Vi skal vise, at ligningssystemerne hgrende til (A | b) og (A’ | b’) har den samme lgs-
ningsmangde. Lad (B | ¢) veere den matrix, der fremkommer fra (A | b) ved at udfere
de r —1 fgrste af de r reekkeoperationer. Per induktion ved vi da, at ligningssystemerne
hgrende til (A | b) og (B | ¢) har samme lgsningsmaengde, og det er derfor tilstraekkeligt
at vise, at ligningssystemerne hgrende til (B | ¢) og (A’ | b’) har samme lgsningsmaeng-
de. Men (A’ | b') fremkommer fra (B | ¢) ved at udfgre en enkelt rsekkeoperation, og
som vi allerede har bemaerket har de tilhgrende ligningssystemer derfor den samme
lgsningsmeengde. Dette viser induktionsskridtet og dermed seetningen. O

Eksempel 1.2.6 Hvis man er meget forsigtig, sa kan to eller flere operationer udfgres
i samme skridt forudsat, at de er ombyttelige. De fire operationer

0 1 2 1\ R1 <Ry
A=[1 7 3 1
0 4 6 -6/ 1 -Rs
1 7 3 1\ +(-1)Ry
0 1 2 1
0 2 3 -3/ +3'Ry
1 6 1 0
A=lo 1 2 1
0 5 9 0

omdanner A til A’. De fgrste to operationer er ombyttelige, da de ikke involverer de
samme raekker, og det samme geelder for de sidste to operationer.

Vi vil anvende raeekkeoperationer til at omdanne totalmatricerne af ligningssystemer,
til matricer pa en serlig form, som vi kalder reduceret echelonform. Definitionen, som
vi nu giver, forstas lettest ved samtidigt at betragte eksempel nedenfor.
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1.2 Rakkeoperationer og Gauss-elimination

Definition 1.2.7 En m x n-matrix med indgange i et legeme [,

a1l @12 -+ Qin
a1 a2 - Q2
A=(a;;)=]| . .. s
Am1 Am2 “°° Qmn

siges at vaere pa reduceret echelonform, hvis der findes r =0og 1< ji1<:--<j, <n,
sadan at fglgende geelder:

(1) For alle 1 <s <r gelder det, at

1 hvisi=s,
Qjj, = ..
0 hvisi #s.

(2) Forallel<s=<rogl=<j<j, gelder det, at as;=0.

(3) Foraller <i<mog1l<j=<n gelder det, at a;; =0.

Eksempel 1.2.8 Den fglgende 5 x 9-matrix er pa reduceret echelonform.

0107 0100 2
001302101
000016 303
0 000OOO0OTI1T1
0 00O0OO0OO0OTO0ODO

For denne matrix er r = 4, mens sgjlerne j; =2, jo =3, j3 =5 og j4 = 8 er dens specielle
sgjler. Betingelsen (1) udtrykker, at i sgjle nummer j er indgangen a;, lig med 1, mens
alle gvrige indgange er lig med 0. Indgangene a;;, = 1, som vi har markeret med blét,
kaldes for matricens ledende indgange. Betingelsen (2) udtrykker, at i en reekke, der
indeholder en ledende indgang, er alle indgange til venstre for den ledende indgang lig
med 0. Endelig udtrykker betingelsen (3), at i de sidste m —r raekker er alle indgange
lig med 0. Vi bemaerker, at disse m —r raekker er netop de raekker, der ikke indeholder
en ledende indgang.
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1 Lineare ligningssystemer

Figur 1.1: Betegnelsen “echelonform” har sin oprindelse i den militeere betegnelse
“echelonformation”. Figuren viser fly, der flyver i echelonformation.

Definition 1.2.9 I en matrix A, der er pa reduceret echelonform, kaldes antallet r af
ikke-nul raekker for matricens rang, mens den fgrste ikke-nul indgang fra venstre i en
raekke kaldes for raekkens ledende indgang.

I en matrix pa reduceret echelonform er de ledende indgange altsa alle lig med 1, og
antallet af ledende indgange i matricen er lig med rangen r.

Vi siger endvidere, at en m x n-matrix A = (a;;) er pa echelonform, hvis den opfylder
betingelserne (2) og (3) i definition [1.2.7|samt den svagere betingelse

(1) For alle 1 <s =<r galder det, at a, ;, #0.

Hvis en matrix A er pa echelonform, sa kalder vi igen antallet r af ikke-nul reekker
for matricens rang, og vi kalder den forste ikke-nul indgang fra venstre i en reekke for
raekkens ledende indgang. Rangen r er saledes igen lig med antallet af ledende indgange
1 matricen.

Eksempel 1.2.10 De to falgende 4 x 8-matricer, hvor “+” indikerer en vilkarlig skalar,
er henholdsvis pa reduceret echelonform og pa echelonform.

1 = = 0 * 0 *= = 0 2 * * * * * *
0 0 0 1 = 0 = = 0 0 4 % =% = = =
0 0 00 O 1 == = 000 0 5 % = =
0 0 00 O O0O0UOO 000 0 0 0 3 =«

Deres rang er henholdsvis 3 og 4, og de ledende indgange er markeret med blat. Vi
bemaerker, at i matricen, der er pa reduceret echelonform, er de ledende indgange alle
lig med 1, og at i de sgjler, der indeholder en ledende indgang, er alle gvrige indgange
lig med 0.
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1.2 Rakkeoperationer og Gauss-elimination

Matricer pa reduceret echelonform svarer til totalmatricer for ligningssystemer som
umiddelbart kan lgses. Det simpleste tilfelde er det tilfaelde, hvor totalmatricen har en
ledende indgang i alle sgjler undtaget konstantsgjlen som i fglgende eksempel.

Eksempel 1.2.11 Matricen

1 0 018
Alb)=({ 0 1 0|1
0 0 1|3

er pa reduceret echelonform af rang r = 3. Den er totalmatricen for ligningsystemet

X1 = 8
X9 =1
X3 = 3

som umiddelbart ses at have praecis den ene lgsning

8
x=|1].
3

Som allerede naevnt bestar Gauss-elimination i at anvende rakkeoperationer til at
omdanne totalmatricen hgrende til et linesert ligningssystem til en matrix pa reduce-
ret echelonform. Det tilhgrende linezere ligningssystemer har da ifglge seetning
samme lgsningsmaengde, men kan nu umiddelbart lgses. Den fglgende sa@tning viser, at
denne lgsningsmetode altid virker.

Seetning 1.2.12 Enhver matrix A kan omdannes til en matrix A’ pd reduceret eche-
lonform ved at udfgre et endeligt antal reekkeoperationer.

Vi viser i seetning at matricen A’ er entydigt bestemt af matricen A, hvilket
kraever lidt flere veerktgjer, end vi lige nu har til radighed. Beviset for saetning
bestar i at angive den algoritme, der omformer A til A’. Algoritmen er beskrevet ved
induktion pa antallet af sgjler i A, og for at forsta den generelle algoritme i beviset er
det en god idé sidelgbende at leese eksempel hvor algoritmen er anvendt
pa konkrete matricer.

Bevis Vi lader A veere en m x n-matrix og viser ved induktion pa antallet n = 1 af
sgjler, at A ved brug af reekkeoperationer kan omdannes til en matrix A’ pa reduceret
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1 Lineare ligningssystemer

echelonform. Vi betragter fgrst det basale tilfeelde n =1, hvor

ail
as1
A=] |

ami1

er en enkelt sgjle. Hvis a;1 =0 for alle i, s er A’ = A allerede pa reduceret echelonform
af rang r = 0, og i modsat fald findes 1 <i < m med a;; # 0. Vi anvender nu fgrst en
reekkeoperation af type M til at gange den i’te reekke med ai_ll, hvorefter vi anvender en
raekkeoperation af type T til at ombytte den i’te reekke med den fagrste reekke. Herved
far vi en matrix B pa formen

bml

Endelig anvender vi for alle 2 <i < m en raeekkeoperation af type S til at addere —b;;
gange den forste raekke til den i’te reekke, hvorved vi far matricen

1
0

A=
0
som er pa reduceret echelonform af rang r = 1. Dette viser pastanden for n = 1.

Sa vi antager induktivt, at pastanden er vist for n = p — 1 og beviser den for n = p.
Hyvis alle indgange i den fgrste sgjle er lig med 0, sa er

0
A=l | B |,
0

hvor B er en m x (p —1)-matrix. Den induktive antagelse viser, at der findes en fglge af
raeekkeoperationer, som omdanner B til en matrix B’ pa reduceret echelonform, og den
samme fglge af reekkeoperationer omdanner da matricen A til matricen

0
A= 1] B |
0

der som gnsket er pa reduceret echelonform. Hvis ikke alle indgange i den fgrste sgjle er
ligmed 0, sa findes 1 <i <m med a;; #0, og vi kan da som i tilfeeldet n = 1 fgrst anvende
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1.2 Rakkeoperationer og Gauss-elimination

en reekkeoperation af type M til at gange den i’te reekke med ai'll og derefter anvende en
raekkeoperation af type T til at ombytte den i’te reekke med den forste raekke. Endelig
anvender vi for alle 2 <i < m en raekkeoperation af type S til at addere —b;1 gange den

forste reekke til den i’te reekke, hvorved vi far matricen

1 ‘ big - blp

(e}

hvor C er en (m —1) x (p —1)-matrix. Den induktive antagelse viser nu, at der findes en
fplge af reekkeoperationer, der omdanner C til en matrix C’ pa reduceret echelonform,
og da alle indgange i den fgrste sgjle i B med undtagelse af 611 = 1 er lig med 0, sa
omdanner de tilsvarende raeekkeoperationer m x p-matricen B til matricen

1 ‘ big - blp

e}

C/

Endelig lader vi 1 < jo <--- < j, < p nummerere de sgjler i D, der indeholder de ledende
indgange i C’, og anvender for alle 2 < s < r reekkeoperationen af type S, der adderer
—b1, gange den s’te reekke i D til den fgrste raekke i D. Matricen A’, der fremkommer
herved, er da pa reduceret echelonform af rang r. Dette viser induktionsskridtet og
dermed satningen. O

I de fglgende eksempler anvender vi algoritmen, der er beskrevet i beviset for seet-
ning[1.2.12] pa totalmatricen (A | b) hgrende til et givet linezert ligningssystem. Herved
far vi en matrix (A’ | b’) pa reduceret echelonform, og vi kan da umiddelbart angive
lgsningsmaengden for det tilhgrende ligningssystem. Denne lgsningsmaengde er ifglge
setning [1.2.5|den samme som lgsningsmeaengden for det oprindelige ligningssystem.

Eksempel 1.2.13 (Entydig lgsning) Vi anvender Gauss-elimination til at bestemme
lgsningsmeengden til det linesere ligningssystem

2x1 —3x9 +x3 = -1
—X1 +X2 —x3 = 2
3x1 +2x9 +2x3 = 3.

Vi opskriver ligningssystemets totalmatrix (A | b) og anvender raekkeoperationer til at
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1 Lineare ligningssystemer

omdanne denne til en matrix (A’ | b’) pa reduceret echelonform.

2 -3 1]|-1
(Alb)=|-1 1 -1| 2 | Ri—Ry
3 2 2| 3
-1 1 -1 2
2 -3 1|-1| +2R;
3 2 2| 3) +3R;

-1 1 -1| 2\ +Ry
0 -1 -1| 3
0 5 -1| 9) +5Ry
-1 0 -2 5 (-1)-Ry
0 -1 -1| 3 | (-1)-Ry
0 0 —6|24) (-3)-Ry
1 0 2|-5) +(-2)R;3
0 1 1|-3| +(-1R3
0 0 1|-4
1 0 o 3

@A'lvh=({ o 1 0| 1
0 0 1|-4

Her har vi markeret de indgange, vi har gnsket at s&endre, med rgdt; og i den endelige
matrix (A’ | ') har vi markeret de tre ledende indgange med blét. Ligningssystemet,
der har (A’ | b’) som totalmatrix, er nu

X1 = 3
X9 1
X3 = —4.

Dette ligningssystem har tydeligvis preecis den ene lgsning

()

Ifplge saetning er denne lgsning ogsa den entydige lgsning til det oprindelige
ligningssystem.
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Eksempel 1.2.14 (Lgsningsmaengde med én parameter) Vi anvender Gauss-
elimination til at bestemme lgsningsmaengden til det lineaere ligningssystem

—X1 —2x2 —5x3 = -3
2x1 +3x9 +8x3 = 4
2x1 +6x9 +14x3 = 10.

Vi opskriver igen totalmatricen for ligningssystemet og omdanner den til en matrix pa
reduceret echelonform ved hjeelp af reekkeoperationer.

-1 -2 -5/|-3
Alb)=| 2 3 8| 4| +2R;
2 6 14|10 ) +2R;

-1 -2 -5|-3\ +(-2)R9

0 2 4| 4] +2R,

-1 0 -1 1)\ (-D-Ry
0 -1 -2|-2 | (-D-Ry
0O 0 0] O
10 1|-1
A'1ph=[{ 0o 1 2| 2
0O 0 0] O

Vi har igen markeret de ledende indgange med blat og de indgange, vi gnsker at aendre,
med rgdt. Ligningssystemet, der har (A’ | b’) som totalmatrix, er nu

X1 + x3 = -1
x9o+2x3 = 2
0o = 0.

Vi ser heraf, at der for hver veerdi ¢ af x3, findes preecis en veerdi af x1 og af x9, der
giver en lgsning til ligningssystemet, nemlig

X1 -1-¢
x=|x2|=]|2-2¢].
X3 t

Med andre ord er den feelles lgsningsmaengde for de to ligningssystemer

B-(He)

Lgsningsmaengden er altsa parametriseret ved parameteren ¢ € [F. Vi siger, at variablen
x3 er en fri variabel, da den kan tilordnes en vilkarlig veerdi, og bemeerker, at den
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1 Lineare ligningssystemer

svarer til den sgjlei A’, der ikke indeholder en ledende indgang. Vi siger endvidere, at
variablene x1 og xo, der svarer til de sgjler i A/, der indeholder en ledende indgang, er
ledende variable.

Generelt kan de ledende variable udtrykkes entydigt ved de frie variable.

Eksempel 1.2.15 (Tom lgsningsmaengde) Vi anvender igen Gauss-elimination til
at bestemme lgsningsmeaengden til det lineaere ligningssystem

—X1 —2x2 —5x3 = -3
2x1 +3x9 +8x3 = 4
2x1 +6x9 +14x3 = 5.

Dette ligningssystem har samme koefficientmatrix som ligningssystemet i eksempel
1.2.14, men konstantsgjlen er en anden. Vi opskriver totalmatricen for ligningssyste-
met og omdanner denne til en matrix pa reduceret echelonform.

-1 -2 -5/|-3
Alb)=( 2 3 8| 4| +2r;
2 6 14| 5 ) +2R;

-1 -2 -5|-3 )\ +(-2)Rg

0 2 4|-1) +2R,

-1 0 -1 1 (-1-R,
0 -1 -2|-2 ]| (-1)-Ro
0O 0 O0|-1/) (-1)-Rs3
1 0 1|-1)\ +Rs
0 1 2| 2| +(-2)Rs3
0O 0 0] 1
1 0 1| 0
A=l o 1 2| 0
0O 0 0] 1

Vi har igen markeret de indgange, vi gnsker at @&endre, med rgdt, og vi har markeret de
tre ledende indgange med blat. Ligningssystemet med (A’ | b') som totalmatrix er nu

X1 + x3 = 0
x9o+2x3 = 0
0 = 1.

Dette ligningssystem har ingen lgsninger, da den sidste ligning “0 = 1” ikke er opfyldt
uanset hvilke veerdier, vi tilskriver de variable. Ifglge seetning har det oprindelige
ligningssystem derfor hellere ingen lgsninger.
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1.2 Rakkeoperationer og Gauss-elimination

Generelt har et ligningssystem med totalmatrix (A | b) ingen lgsninger, hvis og kun
hvis konstantsgjlen i matricen (A’ | b’) pa reduceret echelonform, der fremkommer fra
(A | b) ved reekkeoperationer, indeholder en ledende indgang.

Eksempel 1.2.16 (Lgsningsmaengde med to parametre) Vi anvender Gauss-
elimination til at bestemme lgsningsmangden til det lineaere ligningssystem

2x3 —x4 +8x5 = -—-13
x1 —2x9 +3x3 +2x4 +x5 = 10
3x1 —6x9 +10x3 +6x4 +5x5 27

Sa vi opskriver totalmatricen for ligningssystemet og omdanner denne til en matrix
pa reduceret echelonform ved hjelp af reekkeoperationer.

0 0 2 -1 8|-13\ R1<Ry
A= 1 -2 3 2 1| 10
3 -6 10 6 5| 27
1 -2 3 2 1| 10
0o 0 2 -1 8|-13
3 -6 10 6 5| 27 ) +(-3)R;
1 -2 3 2 1| 10\ +(-3)Rs3
0O 0 2 -1 8|-13 | +(-2)R3
o 0 1 o0 2| -3
1 -2 0 2 -5| 19\ +2Ry
0o 0 o0 -1 4| -7
o 0 1 o0 2| -3
1 -2 0 0 3 5
0 0 0 -1 4| -7 | (-1)Rq
0o 0 1 o0 2| -3
1 -2 0 0 3 5
O 0 0 1 -4 7 | Ra—R3
0O 0 1 O -3
1 -2 0 0 5
A'18)=l 0o 0 1 0 2| -3
O 0 o0 1 -4 7

Vi har markeret de indgange, vi gnsker at @endre, med rgdt; og vi har markeret de tre
ledende indgange med blat. Ligningssystemet med (A’ | b’) som totalmatrix er nu

x1 —2x9 +3x5 = 5
X3 +2x5 = -3
x4 —4xs5 = 7.
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Sa for hver veerdi xg = 1 og x5 = to af de frie variable xo og x5 er

X1 5 +2t;1 -3t9
X9 t1
x=|x3|=| -3 —2t9
X4 7 +4t2
X5 to

en lgsning. Den felles lgsningsmaengde til de to ligningssystemer er parametriseret
ved de to parametre t1 €F og ¢t € F.

Saetning 1.2.17 (Lgsning af linezere ligningssystemer ved Gauss-elimination)
Lgsningsmeaengden for det linezere ligningssystem

ai11x1+a19x2 + -+ aipXy = bl

a21X1+Qag2x9+ - +aonxXy = b2

Am1X1+AmaXo+ -+ AmnXy =bm
bestaende af m ligninger i n ubekendte over [F bestemmes som fplger:

(1) Ligningssystemets totalmatrix

ail ailg ... A1n bl
as1 asg ... a9, | bo
(Ab)= ) . )
AQml Am2 ... Qmn | bm

omdannes ved en fplge af rekkeoperationer til en matrix (A' | ') pd reduceret
echelonform af rang 0 <r <min{m,n}.

(2) Huvis en af de ledende indgange i (A’ | b') er indeholdt i b', sd har ligningssystemet
ingen lgsninger.

(3) Huvis ingen af de ledende indgange i (A" | b') er indeholdt i b', og hvis r = n, sd har
ligningssystemet preecis én lgsning.

(4) Hvis ingen af de ledende indgange i (A’ | b') er indeholdt i b', og hvis r < n, sd
parametriseres lpsningsmangden ved at (i) opdele de n variable i de r ledende
variable xj,,...,x;, svarende til de sgjler i A', der indeholder en ledende indgang,
og de resterende p = n —r frie variable; (ii) tilordne de frie variable vilkarlige
verdier t1,...,t, €F; og (iii) lpse ligningssystemet med totalmatrix (A' | b) for at
bestemme veerdierne af de ledende variable.
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1.2 Rakkeoperationer og Gauss-elimination

Bevis Vi har allerede vist i seetning at der findes en fglge af reekkeoperationer,
der omdanner totalmatricen (A | b) til en matrix (A’ | b') pa reduceret echelonform.
Med andre ord kan skridtet (1) altid udfgres. Desuden har vi vist i saetning at
det givne ligningssystem og ligningssystemet med totalmatrix (A’ | ') har den samme
lgsningsmaengde. I resten af beviset vil vi derfor udelukkende betragte det sidstnsevnte
ligningssystem.

Vi viser nu (2), s vi antager, at b’ indeholder en af de ledende indgange i matricen
(A’ | b'). Da denne m x (n + 1)-matrix er pa reduceret echelonform med b’ som sidste
sejle, geelder det ngdvendigvis, at j. =n + 1, og derfor er a’r ;= 0 for alle 1 < j <n, mens
b!. =1. Den r’te ligning i det tilhgrende ligningssystem er derfor

O-x1+--+0-x, =1,

hvilket som gnsket viser, at ligningssystemet ingen lgsninger har.

Vi viser dernzest (3). Da m x (n + 1)-matricen (A’ | ') er pa reduceret echelonform og
har r = n ledende indgange, og da den sidste sgjle b’ ikke indeholder nogen ledende
indgang, ma alle sgjler i A’ ngdvendigvis indeholde en ledende indgang. De forste r =n
ligninger i det tilhgrende ligningssystem er da henholdsvis

X1 = bll

_ !
xn = b,

mens de sidste m —r ligninger alle er lig den trivielle ligning “0 = 0”. Dette viser som
gnsket, at ligningssystemet har en entydig lgsning.

Vi viser endelig (4). Da m x (n + 1)-matricen (A’ | b') er pa reduceret echelonform og
har r < n ledende indgange, og da den sidste sgjle b’ ikke indeholder nogen ledende
indgang, konkluderer vi derfor, at r af de n sgjler i A’ indeholder en ledende indgang,
mens de resterende p = n —r sgjler ikke indeholder en ledende indgang. Vi indicerer nu
medl<ji<---<jr.<nogls<ki<---<kp<ndesgjleriA’, der henholdsvis indeholder
og ikke indeholder en ledende indgang. De forste r ligninger i ligningssystemet giver da

. _ I _ !/ ... !/
xj, = b (al’klxk1+ +a1,kpxkp)

r

. _ I _ !/ . !
xj, = b, (ar’klxk1+ +ar,kpxkp),

idet vi flytter de led, der indeholder en af de fri variable xj,,...,xz,, til hgjre side af
lighedstegnet. De resterende m —r ligninger er igen alle lig den trivielle ligning “0 = 0”.
Dette viser som gnsket, at for hver veerdi x;, = t1,...,x3 , =1p af de frie variable, har
ligningssystemet przaecis én lgsning. O

Som allerede naevnt s viser vi i ssetning [2.5.11] at matricen (A’ | ') pa reduceret
echelonform og dens rang r er entydigt bestemt af matricen (A | b) og ikke atheenger af
valget af reekkeoperationer, der omdanner (A | b) til (A" | b").
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1 Lineare ligningssystemer

Eksempel 1.2.18 (Ligningssystem med komplekse tal) Vi anvender Gauss-
elimination til at lgse det linezre ligningssystem

ix1+(=1+1)xo —x3 = 4-1i
—-X1 —2ix9 +(2 — i)x3 =-2+7T1

med to ligninger i tre variable over de komplekse tal C. Vi opskriver ligningssystemets
totalmatrix (A | b) og omdanner den til en matrix (A’ | ') pa reduceret echelonform
ved hjalp af raekkeoperationer.

(i -1+i -1| 4-i ) +i-Ry
AId=\_y _9; 9_;i|-2+7
0 1+i 2 [-3-3i) ia-i) Ry
-1 -2 2-i|-2+7i
0 1 1+i| -3
-1 -2i 2-i|-2+47i] +2i-R;
0 1 1+i| -3
-1 0 i | -2+i ) (-1)-Ry
0 1 1+i| -3
1 0 _i | g-i | Br—he
e[ 1 0 —1I 2—1
@Ie=l o 1 1+i| -3

Vi har som tidligere markeret de indgange, vi gnsker at &endre, med rgdt og de ledende
indgange i matricen (A’ | b') med blat. Da b’ ikke indeholder ledende indgange, har
ligningssystemet lgsninger; og da rangen r = 2 af (A’ | ') er mindre end antallet n = 3
af variable, sa er lgsningsmaengden uendelig og parametriseret af p =n —r = 1 para-
meter. Endelig aflaeser vi umiddelbart fra matricen (A’ | &'), at for hver vaerdi ¢ € C af
den frie variabel x3 er der praecis den ene lgsning

X1 Q2-1)+i-t
x= (xg) = (—3—(1+i)-t)
X3 t

til ligningssystemet. Vi understreger, at ¢ € C er en kompleks parameter.
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1.3 Rang og Igsningsmangde

Vi har hovedsageligt anvendt raekkeoperationer pa totalmatricen (A | b) hgrende til
et linezert ligningssystem, men vi kan ogsa anvende raeekkeoperationer til at omdanne
ligningssystemets koefficientmatrix A til en matrix A’ pa reduceret echelonform. Vi
afslutter dette kapitel med den fglgende satning om betydningen af rangen af matricen
A’ for lgsningsmaengden. Sztningen siger blandt andet, at hvis A er en kvadratisk
matrix og A’ har maksimal rang, si har ligningssystemet med totalmatrix (A | b) altid
praecis én lgsning, uanset hvad konstantsgjlen b er. Seetningen far stor betydning for
vores forstaelse af lineaere afbildninger i kapitel

Seetning 1.3.1 Lad A vaere en m x n-matrix, der ved hjzlp af raeekkeoperationer kan
omdannes til en m x n-matrix A’ pd reduceret echelonform af rang 0 < r < min{m,n}.
Da gzelder:

(1) Ligningssystemet med totalmatrix (A | b) har mindst én lgsning for alle valg af
konstantsgjle b, hvis og kun hvis r = m.

(2) Ligningssystemet med totalmatrix (A | b) har hgjst én lgsning for alle valg af
konstantsgjle b, hvis og kun hvis r = n.

(3) Ligningssystemet med totalmatrix (A | b) har netop én lgsning for alle valg af
konstantsgjle b, hvis og kun hvis r =m = n.

Bevis Vi vaelger en gang for alle en fplge af reekkeoperationer, der omdanner A til A’.

Vi viser forst (1). Hvis r = m, da indeholder hver raekke i A’ en ledende indgang.
Derfor gzelder det for alle b, at matricen (A’ | b'), der fremkommer fra (A | b) ved at
anvende den valgte fglge af reekkeoperationer, er pa reduceret echelonform, og at de
ledende indgange i (A’ | b’) alle er indholdt i A’. Da b’ altsa ikke indeholder en ledende
indgang, viser ssetning (3)—(4), at ligningssystemet har en lgsning. Hvis r < m,
da er de sidste m —r raekker i A’ alle lig med nul-raekken. Lad nu b’ = (b!), hvor

b=

14

1 hvisi=r+1,
0 hvisi#r+1.

Da er matricen (A’ | ') pa reduceret echelonform af rang r + 1, og da b’ indeholder
en ledende indgang, viser satning (2), at det tilhgrende ligningssystem ingen
Igsninger har. Ifglge seetning er det samme derfor tilfaeldet for ligningssystemet,
hvis totalmatrix er den matrix (A | b), der fas fra (A’ | b’) ved i omvendt reekkefglge at
udfgre de inverse reekkeoperationer svarende til reekkeoperationerne i den valgte fglge
af reekkeoperationer. Dette viser (1).
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Vi viser derneest (2). Hvis r = n, indeholder hver sgjle i A’ en ledende indgang. Lad nu
b veere et valg af konstantsgjle. Den valgte folge af reekkeoperationer omdanner matri-
cen (A | b) til en matrix (A’ | ¢), og vi kan da omdanne (A’ | ¢) til en matrix (A’ | ) pa
reduceret echelonform ved om ngdvendigt at anvende yderligere reekkeoperationer. Da
hver sgjle i A’ indeholder en ledende indgang, er rangen r’ af (A’ | b’) er enten r' = r eller
r'=r+1. Hvis 7' =r+1, da indeholder & en ledende indgang, hvorfor setning[1.2.17/(2)
viser, at ligningssystemet med totalmatrix (A | b) ikke har nogen lgsninger. Og hvis
r' =r, da indeholder b’ ikke en ledende indgang, hvorfor saetning (3) viser, at lig-
ningssystemet med totalmatrix (A | b) praecis har én lgsning. Med andre ord geelder det
for alle valg af b, at ligningssystemet med totalmatrix (A | b) hgjst har én lgsning. Om-
vendt, hvis r < n, da geelder det for b = 0, at ligningssystemet med totalmatrix (A | b)
har uendeligt mange lgsninger. For dette fglger fra satning (4), idet den valg-
te folge af reekkeoperationer omdanner (A | 0) til matricen (A’ | 0), der er pa reduceret
echelonform af rang r < n og ikke har nogen ledende indgange i konstantsgjlen. Dette
viser (2), og endelig felger (3) ved at kombinere (1) og (2). O

Lad A veere en matrix, og lad A’ veere den matrix pa reduceret echelonform, der
fremkommer fra A ved hjelp af reekkeoperationer. Det fglgende resultat viser, at hvis
vi i stedet omdanner A til en matrix B pa echelonform, hvilket normalt krsever mindre
arbejde, da har A’ og B samme rang. Hvis vi kun gnsker at bestemme rangen af A’, sa
er det derfor nok at udregne B. Vi bemeerker, at modsat matricen A’ si er matricen B
ikke entydigt bestemt af A.

Lemma 1.3.2 Enhver matrix B pd echelonform af rang r kan ved endeligt mange raek-
keoperationer omdannes til en matrix B’ pd reduceret echelonform af samme rang r.

Bevis Lad B veere en m x n-matrix pa echelonform, oglad 1 <j; <-:-<j, <n indicere
de sgjler i B, der indeholder en ledende indgang. For alle 1 < s <r anvender vi farst en
raekkeoperation af type M til at gange den s’te reekke med b;jls. Herved opnar vi en ny
matrix C pa echelonform af rang r med ledende indgange

. —p1 .=
Csjs = bsjs “bsj, =1,

hvor 1 <s <r. Dernaest anvender vi for alle 2<s<r og 1<i<s-1 den rekkeoperation
af type S, der adderer —c;;, gange den s’te raekke i C til den i’te raekke i C. Herved
opnar vi en matrix B’ pa reduceret echelonform af rang r med ledende indgange

/ _ I
bsjs - CSJS - 1’
hvor 1 <s < r, hvilket viser lemmaet. O

Seetning [1.2.12| viser, at totalmatricen (A | b) for et givet linesert ligningssystem ved
raekkeoperationer kan omdannes til en matrix (A’ | b') pa reduceret echelonform, og
seetning [1.2.17| giver en fuldstendig beskrivelse af ligningssystemets lgsningmaengde
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udtrykt ved matricen (A’ | b'). Hvis vi imidlertid kun gnsker at bestemme kvalitative
egenskaber ved lgsningsmaengden sasom at bestemme, hvorvidt den er tom eller ej,
eller bestemme antallet p = n — r af parametre for lgsningsmaengden, sa kan vi ifglge
lemma ngjes med at omdanne (A | b) til en matrix (B | ¢) pa echelonform. Da
dette normalt kreever feerre reekkeoperationer end at omdanne (A | b) til en matrix pa
reduceret echelonform, sa kan man herved spare sig lidt arbejde.

Eksempel 1.3.3 (Echelon/reduceret echelonform) Betragt ligningssystemet

2x1+3x9 —4x3 —x4 = 12
—2x1 +10x3+3x4 = 4
2x1+6x9 +2x3 = 2.

Vi omdanner forst dets totalmatrix (A | b) til en matrix (B | ¢) pa echelonform.

2 3 -4 -1| 12
Alb)=|-2 0 10 3 4 | +R;
2 6 2 0 2 ) +(-1)-Rq
2 3 -4 -1 12
0 3 6 2| 16
0 3 6 1[-10) +(-1)-Ry
2 3 -4 -1| 12
Ble)= 0 3 6 2| 16
0O 0 0 -1|-26

Vi har her som tidligere markeret de ledende indgange med blat. Hvis vi yderligere
omdanner (B | ¢) til en matrix (A’ | b’) pa reduceret echelonform, s& vil positionen af de
ledende indgange ikke andres. Derfor kan lgsningsmangden parametriseres ved

p=n-r=4-3=1

parameter. Hvis vi gnsker at bestemme lgsningsmangden mere preecist, sa ma vi fgrst
bestemme matricen (A’ | b'), hvilket vi i dette tilfselde overlader til leeseren.

Eksempel 1.3.4 Vi betragter 3 x 3-matricen

-1 -2 -5
A=l 2 3 8
2 6 14

og undersgger forst om, der findes en konstantsgjle b sadan, at ligningssystemet med
totalmatrix (A | b) ikke har nogen lgsninger. Vi anvender derfor reekkeoperationer til
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1 Lineare ligningssystemer

at omdanne A til en matrix B pa echelonform.

-1 -2 -5
A=| 2 3 8| +2R;
2 6 14 ) +2R;
-1 -2 -5
0 -1 -2
0 2 4] +2R,
-1 -2 -5
B=| 0 -1 -2
0 0 0

Da B er pa echelonform af rang r = 2 < 3 = m, konkluderer vi fra satning (1), at
en sadan konstantsgjle b findes. Endvidere fortzeller beviset for seetningen os, hvordan
vi beerer os ad med at finde et sadant b:

-1 -2 -5| 0
Ble)= 0 -1 -2| 0
0 0 0] 1) +(-2)Ro
-1 -2 -5| 0
0 -1 -2 0 | +(-2)R;
0 2 4| 1) +(-2)R,
-1 -2 -5 0
Alb)=1 2 3 8| 0
2 6 14| 1

Ligningssystemet med totalmatrix (B | ¢) har tydeligvis ingen lgsninger, og det samme
er derfor tilfaeldet for ligningssystemet med totalmatrix (A | b). Her har vi udfert de
inverse af de raekkeoperationer, vi benyttede til at omdanne A til B.

1.4 Opgaver
1.1 Omform ved hjzlp af rekkeoperationer matricen
1 -2 3 2 1 10
A=12 -4 8 3 10 7
3 -6 10 6 5 27

til en matrix A’ pa reduceret echelonform.
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1.2

1.3

1.4

1.5

1.6

1.7

Omform ved hjelp af reekkeoperationer matricen

1 2 1 4
B=({3 8 7 20
2 7 9 23

til en matrix B’ pa reduceret echelonform.

Omform ved hjelp af reekkeoperationer matricen

2+1 0 -4-1
C= 5 1-3i -2+2:
0 3+1 3

til en matrix C’ pa reduceret echelonform.

Lgs folgende tre reelle lineaere ligningssystemer:

2x1—x9+x3=3

a) { —x1+2x9+4x3=6

x1+x9+5x3=9

2x1—x2+x3=4

b) { —x1+2x9+4x3=6
x1+x2+5x3=9

2x1—x2+2x3=4

c) { —x1+2x9+4x3=6

x1+x2+5x3=9

Lgs det reelle lineaxre ligningssystem
x+y+2z=3
2x—y+4z=0
x+3y—2z=3
-3x—-2y+z=0.

Lgs det reelle lineaere ligningssystem

2x1+4x9 —x3—2x4+2x5=6
x1+3x9+2x3—Txg+3x5=9
Bx1+8x9 —Txg +6x4+x5=4.

Lgs det komplekse ligningssystem

ix1+2x9=1
(1+21)x1 +(2+2i)xg = 3i.

1.4 Opgaver
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1 Lineare ligningssystemer

1.8 Lgs det komplekse ligningssystem
ix1+(—2+1i)x9g—2x3=1
2x1 + 6ix2 + (4 + Zi)X3 =2
3ix1+(=5+2i)x0 + (=7 +1)x3 =3.

1.9 Lgs det komplekse ligningssystem

A1-2)x1+ixeo+3x3=0
2ix9+2x3=0
2x1 +(1 - i)x2 +(1 + i)x3 =0.

1.10 Vis forst, at det reelle ligningssystem

x+y—z=2
2x+y+z=a
x+2z=3

ikke har nogen lgsning (x,y,z), hvis a # 5. Vis dernsest, at ligningssystemet har
uendeligt mange lgsninger, hvis a =5, og angiv disse.

1.11 Vis, at det komplekse ligningssystem

x—2y+@B+i)z=-2+3i
y+2z=a
ix+(1-20)y+(1+3i)z=-4—1

ikke har nogen lgsning (x,y,z), hvis a # —1+i. Vis dernaest, at ligningssystemet har
uendeligt mange lgsninger, hvis a = —1 + i, og angiv disse.

1.12 (%) Find alle reelle lgsninger til ligningen

Tx1+4x9 —13x3 + x4 + 6x5 — xg = 30.

1.13 (%) Vis, at (x,y) =(0,0) er den eneste lgsning til ligningssystemet

ax+by=0
cx+dy=0,

hvis og kun hvis ad — bc # 0.

1.14 Betragt et linezert ligningssystem med 5 ligninger i 6 ubekendte.

a. Er det muligt at ligningssystemet ingen lgsning har?
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1.4 Opgaver

b. Har ligningssystemet ngdvendigvis ingen lgsning?
c. Er det muligt at ligningssystemet har pracist én lgsning?
d. Er det muligt at ligningssystemet har uendeligt mange lgsninger?
e. Hvad bliver svarene til spgrgsmal a—d hvis vi i stedet betragter et linesert
ligningssystem med 6 ligninger i 5 ubekendte?
1.15 Afggr, hvilke af fglgende afbildninger der er linezere, og angiv i givet fald matricen,
der repraesenterer afbildningen med hensyn til standardbaserne.
a. Afbildningen f: R2 — R3 defineret ved

f(g):(xil).

X1+ X9

b. Afbildningen f: R? — R3 defineret ved

X1 X1+ X9
flx2|=| =x2
X3 X3 —X1

c. Afbildningen f: R? — R? defineret ved
f X1 _ x% +x1
xg) \sin(xg))

1.16 (a) Find samtlige lgsninger til ligningssystemet

x1+x9+x3 = 0
x1+6x3+x4 = 0
x1—x2+bxg+x4 = O
2x1+x9+Txg+x4 = 0.
(b) Bestem et reelt tal a sa at ligningsystemet
X1+x9+x3 =
xX1+6x3+x4 =
X1—x2+bxg+x4 =
2x1+xo+Tx3+x4 = 2a

har lgsninger, og finde disse lgsninger for den fundne veerdi af a.
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1 Lineare ligningssystemer

1.17 (%) Find et kubisk polynomium p(x) = ax® + bx? + cx +d, som opfylder, at p(0) = -1,
p'(0)=5, p(1)=3, p'(1)=1.

1.18 (%) Betragt afbildningen Rg: R?® — R3, som roterer omkring x—aksen med vinklen
0 €[0,2m).
a. Argumenter geometrisk for, at Ry er en lineeer afbildning.

b. Find en matrix Ag, som opfylder at Ry(x) = Agx for alle x € R3.

c. Ggr det samme for rotationen omkring y-aksen og z-aksen.
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2 Matricer og lineare afbildninger

I dette kapitel indfgrer vi matricer og deres algebra, som vi allerede har brugt i kapi-
tel |1l Vi indfgrer ogsa vektorrummene ™ af sgjlevektorer og endelig linezere afbildnin-
ger mellem disse. Disse begreber er alle taet forbundne: For mens en linezer afbildning
[ : F—F er givet ved venstre multiplikation med en skalar a, sa er en linezer afbildning
f:F* — ™ givet ved venstre multiplikation med en m x n-matrix A, som vi tenker
pa som “haldningskoefficienten” af den linesere afbildning f: F* — F™. Vi skal se, at
Gauss-elimination er det centrale veerktgj, hvad beregninger angar, samt fortolke nogle
af resultaterne fra kapitel |1 som sa&tning om linezere afbildninger. Vi vil arbejde over et
generelt legeme [, men leeseren er velkommen til at teenke pa, at F er enten R eller C.

2.1 Matricer

Vi har allerede brugt matricer, sa det er nu pa hgje tid, at vi definerer dem ordentligt.
Vi siger, at en afbildning x: I — X fra en mangde I til en meengde X er en familie af
elementer i X indiceret ved I, og vi skriver (x;);c1, hvor x; = x(1).

Definition 2.1.1 Lad m og n veere naturlige tal. En m x n-matrix med indgange i et
legeme [ er en familie A = (a;;) af elementer i F indiceret ved meengden af par (i, j) af
naturlige tal 1 <i <m og 1< j <n. Vi siger, at elementet a;; er den (i, j)’'te indgang i
A. Mangden bestdende af alle m x n-matricer med indgange i F betegnes M, ,,(F).

Om ngdvendigt skriver vi a; ; i stedet for a;;, og vi skriver endvidere

all a2 ... Qip

aai a9 aon
A=

aml am2 cee amn

for at anskueligggre matricen A = (a;;) € My, ,(F). Bemaerk, at der ikke er kommaer
mellem indgangene i matricen. Givet A =(a;;) € M}, ,,(F), kalder vi 1 x n-matricen

(air aiz ... ain)€My,(F)
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2 Matricer og linezre afbildninger

for den i’te reekke i A, mens vi kalder m x 1-matricen

aij
asgj
. €]‘4’m,1(|]:)

Amj
for den j’te sgjle i A. Hvis A er en m x n-matrix, sa siger vi ogsa, at A er en matrix af
dimensioner m x n, hvilket leeses “m gange n”. Vi bemarker, at m og n er antallet af
henholdsvis reekker og sgjler i A. Hvis m = n, sa siger vi, at matricen A er kvadratisk af
orden n, og og vi skriver M,(F) i stedet for M, ,(F) for meengden kvadratiske matricer
af orden n med indgange i [.

Eksempel 2.1.2 Matricerne

2 -1 0 3 _(Y2+i/2 12-i/2

A= € Mo 4(R) 0g B= 1/2—i/2 1/2+i/2

3 2 0 0 € M5(©)

er henholdsvis en 2 x 4-matrix med indgange i R og en kvadratisk matrix af orden 2
med indgange i C.

Eksempel 2.1.3 (1) Nulmatricen af dimensioner m x n er matricen

0O ... 0
Omn= EMm,n([F),
0o ... 0

hvis indgange alle er lig med 0. Vi benytter forkortelsen O = O, ,,, hvis m og n fremgar
fra sammenhaengen.

(2) Den modsatte af matricen A = (a;;) € M, »(F) er matricen —A = (-a;;) € My, »(F)
af samme dimensioner, hvis indgange er de modsatte elementer af indgangene i den
oprindelige matrix.

(3) Identitetsmatricen I, € M,(F) er den kvadratiske matrix af orden n, hvis (i, j)’te
indgang er Kroneckers §,;, som er enten 1 eller 0, eftersom i = j eller i # ;.

10 ..
- 1 00 01 .. 0
I;=(1), Iz=(0 1), I3={0 1 0}, ... I,={. . . -
00 1 ST

00 ... 1

Vi forkorter ofte I = I,,, hvis n fremgar fra sammenhangen.

40



2.1 Matricer

Vi indfgrer nu de fundamentale aritmetiske operationer pa matricer.

Definition 2.1.4 (1) Summen af to matricer

a1 @12 ... Qln bir bz ... bin

a1 age ... Qg bao1 b2z ... ba,
A=| . .. ) og B=| . . o |l

aml am2 oo amn bm]_ bm2 coo bmn

der begge har dimensioner m x n, er matricen

a11+b11 a12+b12 a1n+l‘)1n

agy + bzl ag + bzg ... Q9p +b2n
A+B= ) ) i : :

am1+bm1 am2+bm2 amn+bmn

der ligeledes har dimensioner m x n.
(2) Produktet af to matricer

ail] ai2 ... Qin b11 b12 blp

agy a2 ... Q9on b21 bzz 000 bzp
A= . .. . og B=| . .. .

Aml Am2 ... QAQmn bnl bnz bnp

af dimensioner henholdsvis m x n og n x p, er matricen

C11 €12 ... Cip

€21 C22 ... C2p
A-B= .

Cml Cm2 --- Cmp

hvis (i,k)’te indgang er defineret ved

n
cir= aijbjr = ajtbir+aiebor+--+ainbyp.
=

Produktmatricen A - B har dimensioner m x p.

Vi understreger, at summen af to matricer A og B kun er defineret, hvis A og B har
de samme dimensioner, og at produktet af to matricer A og B kun er defineret, hvis
antallet af sgjler i A er lig antallet af raekker i B. Det har saledes ikke mening at tale
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2 Matricer og linezre afbildninger

om A + B eller A -B, medmindre dimensionerne af A og B er som foreskrevet. Som for
multiplikation af skalarer, forkorter vi normalt og skriver AB i stedet for A - B.

Eksempel 2.1.5 Summen af matricerne

2 0 4 1 -7 4
A_(l -3 6) g B‘(1 2 o)

findes, da de to matricer har samme dimensioner 2 x 3, og er givet ved

A+B= 2 0 4) (1 =/ 4)

1 -3 6l1 2 o

_[2+1 0+(=7) 4+4
“l1+1 -3+2 640

(3 -7 8)

2 -1 6/

Her har vi markeret indgangene i A og B med henholdsvis blat og sort.

Matrixprodukt kraever nok lidt mere tilveenning end matrixsum, sa vi forklarer her,
hvordan det kan anskueligggres. Givet en 1 x n-matrix og en n x 1-matrix

b1
ba

)

Az(al as ... an) og B= .
b.n
da er matrixproduktet AB defineret, og det er lig med 1 x 1-matricen
AB=(a1bi+asba+---+a,b,).

Generelt, for en m x n-matrix A og en n x p-matrix B, kan vi betragte deres produkt som
vaerende den m x p-matricen AB = C, hvis indgange er alle de mulige produkter af en
raekke i A med en sgjle i B:

@il v @i o Qin ‘ bi1 bjk bip | =1 cin el cip
am1 *** @mj *°* QOmn bp1 o |bpk| bnp Cm1 **° Cmk " Cmp

Da der er m reekker i A og p sgjler i B, er der altsa m x p indgange i AB =C.
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2.1 Matricer

Nar man udregner et matrixprodukt AB, kan det hjelpe at tegne kasser omkring
raekkerne i A og sgjlerne i B, som vi har gjort ovenfor. Vi fortssetter denne praksis i de
felgende eksempler.

Eksempel 2.1.6 Produktet af matricerne

2 7 2 -1 0
A_(—l 3) 8 B‘(4 1 2)

er defineret, da antallet sgjler i A er lig med antallet af reekker i B, og er givet ved

apo[[2_T)\f2]-L]0)_( 2:2+7-4 2:(-D+71  2:047-2
-1 34| 1|2) \(-D-2+3-4 (-D-(-D+3-1 (-1)-0+3-2
(32 5 14
“|10 4 6

Her har vi markeret indgangene i den forste reekke i A med rgdt og indgangene i den
anden raeekke med blat. Vi bemaerker, at produktet B - A ikke er defineret, da antallet
af sgjler i B er forskelligt fra antallet af reekker i A.

Eksempel 2.1.7 Produktet af matricerne

. . 2i
1 i+1 2i1-1
A‘(4 3i 8 ) og  B= (_3)

er defineret, da antallet af sgjler i A er lig med antallet af raekker i B, og er givet ved

ap [tz 1) ([ 2 ) a2t D-n+@i-1-0
7 3 8 U a2iesi 4800
(20 4-3i-3+0|_(-3-i
=\ si—9ito )T\ =i

hvor vi igen brugt rgdt og blat for raeekkerne i A.

Eksempel 2.1.8 Produktmatricen

AB-()(

= o DN

) =(1-2+0-4+3-1)=(5)
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2 Matricer og linezre afbildninger

er en 1 x 1-matrix, da der er 1 rekke i A og 1 sgjle i B, mens produktmatricen

2-1 2.0 2:3) (2 0 6
BA = ((1]0]3])=[4-1 4.0 4-3|=|4 0 12
1-1 1.0 1:3) \1 0 3

er en 3 x 3-matrix, da der er 3 rekker i B og 3 sgjler i A. Vi bemeerker, at det ikke er
muligt at sammenligne matricerne AB og BA, da deres dimensioner er forskellige. Sa
sporgsmalet om, hvorvidt AB = BA, er meningslgst.

Eksempel 2.1.9 I kapitel (1| har vi betragtet linesere ligningssystemer

aiix1+ai12x2+ - +Qaipxy = bl
ag1x1+agexg + - +aguXy, = b2

Gm1%1 +@meXa+  +AmnXn = bp

med a;;,b; € F. Vi betragter nu matricerne

a1l a2 a1n x1 b1

a1 ag a2n x2 ba
A= o, x = og b= ,

Aml Om2 °°° Amn Xn bm

som har dimensioner henholdvis m xn, n x 1 og m x 1. Produktmatricen

aixz ai2 -°° Qin X1 a11X1 +Q12X2 + -+ Q1aXp

a1 Qg2 -°- Q2p X2 a21X1 + Q22X + -+ +A2,Xp
Ax = = .

Aml Am2 - Amnp Xn Am1X1 T Am2X2+ -+ AmnXn

er derfor en m x 1-matrix ligesom b. Det oprindelige linesere ligningssystem kan altsa
&kvivalent skrives som ligning af m x 1-matricer

Ax=0b,

og vi vil i det falgende hovedsageligt benytte denne korte skrivemade.
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2.1 Matricer

Saetning 2.1.10 For matricer af passende dimensioner med indgange i legeme [F gzelder
folgende identiteter:

(Al) A+B)+C=A+B+0)
(A2) A+O=A=0+A

(A3) A+(-A)=0=(-A)+A
(A4) A+B=B+A

(P1) (AB)C=A(BC)

P2) Al,=A=I1,A

(D1) AB+C)=AB+AC
(Db2) (A+B)C=AC+BC
(E1) AO0,,n=0nn=0nnA
(E2) A(-I,)=-A=(-1,)A

Bevis Ifglge definition [0.2.1] og seetning geelder disse identiteter for addition og
multiplikation af elementer i F, og vi benytter nu dette til at vise, at identiteterne ogsa
gaelder for addition og multiplikation af matricer med indgange i [F.

Identiteterne (A1)—-(A4) omhandler matricer af samme dimensioner og fglger umid-
delbart af de tilsvarende identiteter (A1)-(A4) for skalarer, idet addition for matricer
per definition er givet ved addition i F af de respektive indgange.

Identiteten (P1) omhandler matricer A, B og C af dimensioner m xn, n x p og p xq.
Produkt matricerne (AB)C og A(BC) er begge af dimensioner m x g, og vi gnsker at vise,
at deres (i,/)’te indgange er identiske. P4 den ene side er den (i,/)’te indgang i (AB)C
lig med ZZ:l e;pcrl, hvor e, = Z;‘:l a;;bj, er den (i,k)te indgang i AB; og pa den anden
side er den (i,/)’te indgang i A(BC) lig med Z;.‘:laijdﬂ, hvor d;; = Zzzl bjrcr: er den
(j,Dte indgang i BC. Vi skal derfor vise, at der geelder fglgende identitet af skalarer:

p n n p
> (2 aibjn)ens = 3 aij( ) bjrcn)-
k=1 j=1 j=1 k=1

For at veere helt preecis, sa definerer vi her de itererede summer til at vaere

n
Y aijbjr =(..(ai1b1r +aiobor) + aigbsp) + -+ ainbur),
j=1
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2 Matricer og linezre afbildninger

etc. Det folger dog fra (A1) for skalarer, at ethvert valg af summationsorden vil tilordne
den samme vaerdi til den itererede sum. Identiteten mellem de (i,/)’te indgange i (AB)C
og A(BC) fas nu som fglger:

n
Z Z a;; Jk)ckl al_] Jk)ckl Zzau(bjkckl)
k=1 j=1

1

Mﬁ i M;

p
n n p
=> Y aijbjrer) =) aij( Z jkChI)

=1 =1 k=t
Her fglger den forste identitet fra (D2) for skalarer; den anden identitet fra (P1) for
skalarer; og den tredie identitet fra (A1) og (A4) for skalarer; og den sidste identitet
fra (D1) for skalarer. Dette beviser, at (P1) gaelder for matricer.

Vi beviser dernaest identiteten AI,, = A i (P2); beviset for identiteten I,,A = A er
helt tilsvarende. Identiteten AI,, = A omhandler en matrix A af dimensioner m x n og
identitetsmatricen I,, af dimensioner n x n. Vi husker pa fra eksempel [2.1.3(3), at den
(j,k)teindgang 6, i I, er lig 1, hvis j =k, og lig med 0, hvis j # k. P4 (i,k)’te indgange
svarer identiteten A I,, = A nu til fglgende identitet af skalarer:

n
> aijbjr =air.
J=1

sa identiteten fglger fra (A2), (P2) og (E1) for skalarer. Vi har hermed bevist, at (P2)
geaelder for matricer.

Vi beviser dernaest identiteten (D1); identiteten (D2) bevises helt tilsvarende. Denne
identitet omhandler en m x n-matrix A og n x p-matricer B og C og svarer pa (i,k)te
indgange til felgende identitet af skalarer:

n n n
2 aijlbji+cip) =) aijbje+ ) aijcjh.
j=1 j=1 j=1
Denne identitet fglger umiddelbart fra (A1), (A4) og (D1) for skalarer, hvilket beviser,
at (D1) ogsa geelder for matricer.
Endelig fas identiteterne (E1) og (E2) fra de gvrige identiteter ved at repetere beviset
for seetning[0.2.3] Vi har hermed bevist setningen. O

J
k=1

Eksempel 2.1.11 Vi betragter 2 x 2-matricerne

1 1 1 0
a-fo 1)} -1 )
og udregner de to produkter AB og BA, der begge findes og er af dimensioner 2 x 2.
11 1/0 2 1 10 1(1 1 1
AB_(O 1)(1 1)_(1 1)’ BA_(l 1)(0 1)_(1 2)'

Da matricerne AB og BA er af samme dimensioner, har det mening at spgrge, om de
er ens. Men udregningen ovenfor viser, at AB # BA.

46



2.2 Vektorrummet F™

2.2 Vektorrummet ™

Vi lader igen F vaere et legeme, for eksempel F =R eller F = C, og definerer

|

til at veere meengden M, 1(F) af m x 1-matricer med indgange i F, som vi ogséa kalder for
meengden af sgjlevektorer i F af dimension m. Vi vil tilsvarende kalde maengden M1 ,,(F)
af 1 x n-matricer med indgange i [ for maengden af raekkevektorer i F af dimension n,
men vi vil ikke indfgre nogen speciel notation for denne maengde.

xl,...,me[F}

Xm

Eksempel 2.2.1 Vi kan visuallisere

X1

IRZ:{ 1 ‘xl,xzeR} og R% = X9
X9 X
3

X1,%X2,X3 ER}

som mangden af punkter i henholdsvis planen og rummet; se figur (2.1

X1
x3|.

x1 ¢ x3
X = :
XQ |- ° X9 3

: B

Figur 2.1: De reelle vektorrum R? og R3.

Vi har allerede defineret sum og produkt af matricer, og disse regneoperationer kan
specielt anvendes pa sgjlevektorer som fglger. Givet to sgjlevektorer
X1 Y1
x=|: og y=| :
Xm Ym
i F af samme dimension m, da er deres sum givet ved
X1+y1
xX+y= : )

XmtYm
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2 Matricer og linezre afbildninger

hvilken igen er en sgjlevektor i F af dimension m.

Vi husker dernaest pa, at hvis vi ganger en m x 1-matrix med en 1 x 1-matrix, sa far
viigen en m x 1-matrix. Vi kalder denne operation for skalarmultiplikation. Som det er
seedvane, vil vi ogsa misbruge notation og identificere en 1 x 1-matrix (a) € M1 1(F) med
dens indgang a € F. S& det skalare multiplum af en sgjlevektor

X1
x=|: |eF™
Xm
med en skalar a € F er sgjlevektoreren
x1a
x-a=| : |ef™
Xm @

Vi forkorter normalt og skriver xa i stedet for x-a. Vi understreger, at det omvendte
produkt a - x ikke har mening som et matrixprodukt, medmindre m = 1, da antallet af
sgjler i a ikke er lig med antallet af reekker i x. Endvidere er den modsatte vektor af x
og nulvektoren 0 givet ved henholdsvis

—-x= : og 0=

Vi henviser til figur [2.2) for en illustration af disse aritmetiske operationer.

Eksempel 2.2.2 Vi betragter vektorerne x,y € C3 givet ved

5 1+1
x=|1 og y=| 3
21 -1
For disse vektorer er
1+6 31+3 —-1—-1
x+y=|i+3], y-3=| 9 og -y=| -3
i -3i i

Seetning [2.1.10| ovenfor specialiserer nu til den fglgende seetning, der udtrykker, at
meengden F” sammen med operationerne vektorsum og skalarmultiplikation udggr,
hvad vi senere vil kalde et F-vektorrum; se definition|4.1.1
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2.2 Vektorrummet F™

X1+y1
X2+ Y2

=x+Yy

)=

Figur 2.2: Addition, skalarmultiplikation og modsat vektor i RZ.

Saetning 2.2.3 For sgjlevektorer x,y,z € F™ og skalarer a,b € [ gzelder fplgende:
(Al) (x+y)+z=x+(y+2)
(A2) x+0=x=0+x

(A3) x+(—x)=0=(—x)+x
(Ad) x+y=y+x

P1) (x-a)-b=x-(a-b)
P2) x1=x

D1) x-(a+b)=x-a+x-b
D2) (x+y)a=x-a+y-a
(E1) x-0=0

E2) x-(-1)=-x

Vi siger, at en familie af elementer i en maengde X indiceret ved I ={1,2,...,m} er en
m-tuple af elementer i X og skriver (x1,x9,...,%,,) 1 stedet for (x;);es.
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2 Matricer og linezre afbildninger

Definition 2.2.4 Hvis [ er et legeme, og hvis m et naturligt tal, da kaldes m-tuplen
(e1,...,ey) af vektorer i F*, hvor

1 0 0

0 1 0
e1: . ,e2: . 9 ©009 em: . ’

0 0 1

for standardbasen for F™.

Vektorerne ei,...,e,, kaldes for standardenhedsvektorerne i F™. Den fglgende figur
illustrerer disse vektorer for F = R.

es

e “e1

ez;xx“

Figur 2.3: Standardenhedsvektorerne i R? og R3.

Lad (u1,...,u,) vaere en r-tuple af vektorer i ™. Vi siger, at en vektor u € F” er en
linearkombination af (w1,...,u,), hvis der findes skalarer a1,...,a, €[, sddan at

u=-uijaoi1tugaz+---+ura,.

Specielt er nulvektoren 0 en linearkombination af O-tuplen ( ), idet vi vedtager, at en
tom sum er lig med 0.

Eksempel 2.2.5 Vi betragter de fglgende fire vektorer i R3:

) ) f) - -l

Vi ser da, at u er en linearkombination af familien (u1,u2), idet
2 2 0 1 0
u=|5|=(21+13|=11]-2+|1]|-3=u1-2+ugy-3.
3 0 3 0 1
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2.2 Vektorrummet F™

Pa den anden side kan v ikke skrives som linearkombination af w; og us. For antag,
at der findes a1,a9, sddan at w1a1+ ugsas =v. Da er

1 0 a1 1
1|-a1+|1]-ag=|ai+az2|=|1],
0 1 ag 1

hvilket ikke er muligt, idet ligningssystemet

ail =1
ai+ags=1
ag = 1.

ikke har nogen lgsning.
Lemma 2.2.6 Lad F vare et legeme og m et naturligt tal. Enhver vektor x € F™ kan pa
entydig vis udtrykkes som en linearkombination
x=eja;+exag+---t+enan
af standardbasen (eq,...,ey,) for F™,
Bevis Givet en vilkarlig vektor

X1

X2
x=| . |eF",

Xm

gnsker vi at undersgge, om der findes a1,a9,...,a,, €F, sadan at
xX=ei1a1t+ezag+---+euan.

Vi udregner derfor hgjresiden, som er lig med

1 0 0 a1 0 0 a1
0 1 0 0 as 0 as
al+ ag+---+ Am = . + + + = ,
0 0 1 0 0 am Am
hvorafviser,ata; =x1,a2 =x9,...,a, = x,, er den entydige lgsning til dette problem. O
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2 Matricer og linezre afbildninger

2.3 Lineare afbildninger

Vilader igen [ veere et legeme, for eksempel [ = R eller [ = C, og betragter vektorrummet
F" =M, 1(F).

Hvis A € M, ,(F) er en m x n-matrix med indgange i [, s& kan vi for alle x € " danne
produktet Ax € M,, 1(F) =F". P4 denne made giver m x n-matricen A € M, ,(F) dermed
anledning til en afbildning

f:F"—F"
defineret ved f(x) = Ax.

Eksempel 2.3.1 Matricen
3
9) € Mz’g(R).

giver anledning til afbildningen f: R® — R2 givet ved

f il _ 2 1 3 il _ 2x1 +x9 + 3x3
2 6 -1 9 2 6x1 — X9 + 923

X3 X3

En matrix A € M, ,(F) bestemmer afbildningen f: " — [ givet ved f(x) = Ax € ["".
Vi skal i dette afsnit vise, at de afbildninger, der fremkommer pa denne made, preecis
er de linezere afbildninger, som vi nu definerer.

Definition 2.3.2 Lad [ vaere et legeme. En afbildning f: F* — F” er lineger, hvis den
opfylder falgende betingelser (L1)—(L2) for alle x,y € F” og a € F.

(L) fx+y)=f®+f(y).
(L2) f(x-a)=f(x)-a.

Enhver linear afbildning f: F* — ™ afbilder ngdvendigvis 0 € F” til 0 € F™. For
f(0)=£(0-0)=f(0)-0=0,

hvor den fgrste og sidste identitet fas fra (E1) i seetning[2.2.3] mens den midterste iden-
titet er (L2). Ved at anvende (E2) i seetning samt (L2), ser vi tilsvarende, at

f(=x)=f(x-(-1)=f(x)-(-1) = —f(x).
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2.3 Lineare atbildninger

Eksempel 2.3.3 Afbildningen f: R — R givet ved f(x) =2:x er linezer, idet

Fla+y)=2-x+9) 2 2-x+2-y=Fx) + F(y),
flxra)=2-(x-a) 2 ©2-%)-a=Ffx)a.

Derimod er afbildningen g: R — R givet ved g(x) = x? er ikke linezr, da den hverken
opfylder (1) eller (L2). For eksempel er

g1+1)=(1+12%=22=4, mens g+g1)=12+12=2, og
g(1-2) =(1-22=2%=4, mens g(1)-2=1%2.2=2.

Afbildningen A2: R — R givet ved h(x) = 2-x + 3 er heller ikke linezer, da for eksempel
h(0) # 0. Vi siger, at en afbildning som denne, der er en sum af en lineaer afbildning
og en konstant afbildning, er en affin afbildning. Vi bemseerker, at i dele af literaturen
anvendes “lineaer” i betydningen “affin”.

Seetning 2.3.4 Hvis A € M, ,(F) er en m x n-matrix med indgange i et legeme F, da er
afbildningen f: F* — F™ defineret ved f(x) = Ax en linezr afbildning.
Bevis Det fglger fra seetning[2.1.10} at f: F* — F™ er lineeer. For (D1) viser, at
fx+y)=Ax+y)=Ax+Ay=fx)+f(y),
mens (P1) tilsvarende viser, at
f(xa)=A(xa)=(Ax)a = f(x)a,
sa afbildningen f: F* — [ opfylder bade (L1) og (L2). O

Eksempel 2.3.5 Multiplikation med Pauli matricen

0 -1
A:(i O)EMz(C)

giver anledning til afbildningen f: C2 — C2 defineret ved
f 21\ _ 0 —i 21 _ —i22
z9] \|i 0 zal) | iz1)’

som ifglge saetning er linezer.
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2 Matricer og linezre afbildninger

Eksempel 2.3.6 Vi viser direkte, at afbildningen f: R? — R? fra eksempel [2.3.1]

X
f (x;) _ (2x1 +x9 + 3x3

6x1 —x9 +9x3
X3

b

er linezer. Udregningen
X1+y1
B _ [2(x1 + y1) + (x2 + y2) + 3(x3 + y3)
Fat=f ("2 ”2) = (6(x1 +y1)— (g + y2) + 93 + y3)
X3+y3

_ (2x1 +x2 +3x3 N 2y1+y2+3y3
B 6x1—x2+9x3 6y1—y2+9y3

)= fx)+f(y)

viser, at (LL1) er opfyldt, og udregningen

xX1a
fx-a)=f (xza)

xX3a

2(x1a) + (x2a) + 3(x3a))
6(x1a) — (x9a)+ 9(x3a)

(2x1 + x9 +3x3)a
(6x1—x9 +9x3)a

)=f(x)-a

viser tilsvarende, at (L2) er opfyldt.

Eksempel 2.3.7 (Spejling) Vi definerer s: R2 — R? til at vaere afbildningen, der er
givet ved spejling i x-aksen i R?; se figur I koordinater er denne givet ved

o/

s = ,

X9 —X9

og den fglgende udregning viser, at den opfylder (LL1) og (L2).
x1+51 :( x1+y1)

xg+y2) \—(x2+y2)

_ ( x1+y1) _ ( x1) +( yl) = o))
—Y2

s(x+y):s(

—x2—y2) \—X2
(x-a)= (xl-a)_( xl-a)_( x1-Q )
YT s 0) T 2 0)) T D) (20 0)

:( r1-a :(_ )-a:s(x)-a

x1
((-1)-x2)-a X2
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2.3 Lineare atbildninger

s Z. - s(x)

) \:/s(x +y)=s(x)+s(y)

s(y-2):s(y)-2‘

Figur 2.4: Spejling s i x-aksen i R? er en lineser afbildning

Som forberedelse til at vise, at enhver linezr afbildning fremkommer ved multiplika-
tion med en matrix, viser vi nu, at linesere afbildninger bevarer linearkombinationer.

Lemma 2.3.8 Lad F veare et legeme, og lad f: F* — F™ vaere en linezer afbildning. Givet
vektorer x1,...,x, € F" og skalarer aq,...,a €F, da gelder det, at

fx1a1+x0a9+--+xpar) = f(x1)ar + f(x2)ag +- -+ f(xp)ag.

Bevis Vi beviser pastanden ved induktion pa & = 0. I tilfaeldet £ = 0, da er pastanden,
at f(0) =0, hvilket vi allerede har vist ovenfor. For den tomme sum er per definition lig
med nulvektoren. Sa vi antager, at pastanden allerede er bevist for £ = r — 1 og beviser
den for & =r. Hertil udregner vi

flxia1+--+x_10,-1+xr0,) = f(x101 +- +x,_10,-1) + f(xra,)

=fxia1+--+x10,-1) + fxp)ar, = fxdar +---+ flx,_1)ar-1 + f(x,)a,,

hvor de tre identiteter fas fra henholdsvis (L1) med x =x1a1+-:-+X,_1a,-1 0 ¥y = X,a,,
fra (L2) med x = x, og a = a,, og fra den induktive hypotese. Dette viser induktions-
skridtet og dermed lemmaet. ]

Vi har vist i seetning at multiplikation med en m x n-matrix med indgange i
et legeme [ definerer en linaer afbildning fra F” til F™. Vi viser nu omvendt, at enhver
linezer afbildning fra F” til F™ fremkommer ved multiplikation med en m x n-matrix med
indgange i F. Vi betragter denne matrix som den generaliserede haldningskoefficient af
den linezere afbildning.
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2 Matricer og linezre afbildninger

Saetning 2.3.9 Lad [ vaere et legeme, lad f: F* — ™ veere en linezr afbildning, og lad
A € My, ,(F) vaere matricen, hvis j'te sgjle er f(e;) € . Da gaelder det for alle x e F", at

f(x)=Ax,

og matricen A € My, ,(F) er entydigt bestemt med denne egenskab.

Bevis Entydighedsudsagnet i s@tning fglger umiddelbart af, at der for enhver matrix
A € M, ,(F) geelder, at dens j’te sgjle er lig med Ae;. S& vi lader nu

ail a2 - A1n
azi azo aap

A= . . . . €Mm,n([F)
Aml Qm2 ** Qmn

vaere matricen, hvis j’te sgjle er lig med f(e;), og viser, at f(x) = Ax for alle x € [". Ifglge
lemma kan vi skrive x € F” entydigt som

n
X =e1x1t+egxg+---+e,x, = Zejxj,
J=1

ogda f: F* — ™ er lineeer, sa viser lemma [2.3.8] at

J

f@)=F(_ ejx;)=
i1

f(ej)xj.
=1

Per definition af matricen A geelder det endvidere, at

alj
agj m
fle))=| " |=eiarj+esagj+ - +emamj=)_ eaij,
: i=1

hvilket vi substituerer i formlen for f(x) overfor. Herved far vi
n m n m m n m n
f)=) (Y eiaij)x;j=) ) (ejajx)=) ) (ejaijx;)=) e () a;jxj),
j=1i=1 j=1i=1 j=1li=1 i=1 =1

hvilket viser, at

a11X1 +@12x2 + - +Q1p%Xp aiz a2 -+ Qip )\ [*1
a21xX1 +a22%x2 +-+-+aapXp az1 Q22 -+ Q2p || X2
flx)= ) =| . . . . | =Ax
Am1X1 T Am2X2 + -+ AmnXn Aml Om2 *** QAmn/) \Xn
som gnsket. O
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2.3 Lineare atbildninger

Definition 2.3.10 Lad F vaere et legeme og lad f: F* — [ vaere en lineser afbildning.
Den entydigt bestemte matrix A € M, ,,(F), sddan at der for alle x € F"* gaelder det, at

f(x)=Ax,

kaldes for matricen, der repreesenterer f: F* — F™ med hensyn til standardbaserne for
domaenet F"* og codomaenet ™.

Vi skal senere definere og betragte andre baser for F* og F”* end standardbaserne, og
vi er derfor forsigtige med at sige, at det her er standardbaserne, vi benytter.

Eksempel 2.3.11 Vi si i eksempel [2.3.7] at afbildningen s: RZ — R2, der er givet ved
spejling i x-aksen, er lineser. Matricen, der repraesenter denne afbildning med hensyn
til standardbaserne for domanet og codomeenet, er

aeteer s -G} 1) 3

_ 1 0 xX1| xX1|
oy )0

hvilket udregningen

bekrafter.

Eksempel 2.3.12 Vi efterviste i eksempel [2.3.6] at afbildningen f: R? — R? givet ved

f zl _ 2x1 + x9 + 3x3
2= 6x1 —x9 +9x3
X3

er lineser. Matricen, der repaesenterer f: R? — R? med hensyn til standardbaserne for
domaenet og codomeenet, er

A=(fe flen flen)=(5 3 o

hvilket vi selvfglgelig allerede vidste fra eksempel
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2 Matricer og linezre afbildninger

ro(x-2)=ro(x)-2

~F ro(y)

Figur 2.5: Rotation ry med vinkel 8 omkring 0 i R? er en lineaer afbildning

Eksempel 2.3.13 Vi betragter den afbildning rg: RZ — R?, der er givet ved en rotation
pa 0 radianer imod urets retning omkring 0 € R2. Figur illustrerer, at denne afbild-
ning opfylder (L1)—(L2) og derfor er lineser. Matricen, der repreesenterer rg: R? — R2
med hensyn til standardbaserne for domanet og codomeaenet, er

B=(roler) roles))= (cos@ cos(0 + g)) _ (cosH —s1n6)’

sinf sin(@ + %) sin0 cos0

hvor vi har brugt, at

1) (cos0) (cos@ 0\ _  (cos(5)) _ (cos(@+3)
"0 =" sin0) T \sing) %8 TO{1) T sin(Z)) T \sin@@+ 5/

Eksempel 2.3.14 Identitetsafbildningen id: F* — F" er defineret ved
id(x) =x

er tydeligvis lineser. Matricen, der repreesenterer denne afbildning med hensyn til
standardbaserne for bdde domaenet og codomaenet, er identitetsmatricen

A =(id(ey) id(eg) --- id(ey))=(e1 ez - e,)=|. . . . [=I,.

I forbindelse med koordinatskift skal vi senere betragte matricen, der representerer
identitetsafbildningen med hensyn til forskellige baser for domanet og codomaenet, og
denne matrix er da ikke identitetsafbildningen.
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2.3 Lineare atbildninger

Vi viser nu, at sammesatning af linesere afbildninger svarer til multiplikation af de
matricer, der repraesenterer dem, i samme rakkefglge.

Saetning 2.3.15 Lad [F vare et legeme, lad [: F* — F"™ og g: FP — " vaere to linezere
afbildninger og lad A € M, ,(F) og B € M, ,(F) vaere de matricer, der reprzaesenterer
henholdsvis f: F* — ™ og g: F? — " med hensyn til de respektive standardbaser.
Den sammensatte afbildning fog: FP — " er da linezer, og matricen C € M, ,,(F), der
represzsenterer [ o g: FP — ™ med hensyn til de respektive standardbaser, er

C=AB.

Bevis For alle x € F? galder det, at
(f og)x) = f(g(x)) = A(Bx) = (AB)x.

Her er den fgrste lighed definitionen af den sammensatte afbildning, den anden lighed
er definitionen af matricerne, der reprasenterer de linezere afbildninger med hensyn til
de respektive standardbaser, mens den sidste lighed er saetning (P1). Det fplger
derfor fra seetning at afbildningen fog: FP — ™ er lineser, og da matricen C,
der repraesenterer denne afbildning med hensyn til standardbaserne for F” og ™, er
entydigt bestemt, konkluderer vi endvidere, at C = AB som pastaet. O

Eksempel 2.3.16 Lad s: R? — R? vare den linezre afbildning fra eksempel der
er givet ved spejling i x-aksen, og lad r = ru,: R2 — R? vaere den linesere afbildning
fra eksempel der er givet ved rotation gennem 7/2 radianer imod urets retning
omkring 0 € R2. Vi ved fra eksempel [2.3.11| 0g [2.3.13, at : R2 — R? og s: R2 — R? er
reprasenteret med hensyn til de respektive standardbaser ved henholdsvis

0 -1 1 0
A_(l 0) = B‘(o —1)'
Ifglge saetning [2.3.15|repraesenterer produktmatricerne BA og AB derfor henholdsvis

de sammensatte afbildninger sor: R — R? og ros: R — R?, hvoraf den fgrste er “forst
drej, sa spejl”, mens den anden er “farst spejl, sa drej”. Vi udregner

1 0 0|-1 0 -1
BA_(O —1)( 1 O)_(—l 0)’
0 -1 1[0 0 1
AB_(l 0)(0 —1)_(1 0)'
Vi bemeerker, at de to matricer er forskellige, og konkluderer derfor, at de sammensatte

afbildninger sor og ros ligeledes er forskellige. De to sammensatte afbildninger er
illustreret i figur
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2 Matricer og linezre afbildninger

Figur 2.6: Pa venstre side afbildes den sorte figur ved r i den rgde figur, som derefter
ved s afbildes i den bla figur. Pa hgjre side afbildes samme sorte figur ved s i
den rgde figur, som derefter ved r afbildes i den bla figur.

Lineeaere afbildninger optrader i mange sammenhaenge. Vi afslutter dette afsnit med
et eksempel fra operationsanalyse, der illustrerer en lineser sammenhseng mellem varer
og ravarer i en produktion. Hvis produktionsbegreensninger endvidere er udtrykt ved
linesere uligheder, da kan den optimale produktion bestemmes effektivt ved hjaelp af
Dantzig’s simpleksalgoritmeﬂ Dette omrade kaldes for lineaer programmering.

Eksempel 2.3.17 En fabrik fremstiller to varer X; og X5 og anvender dertil tre rava-
rer Y1, Yo og Y3. Hvis der dagligt fremstilles x; enheder af X; og x2 enheder af Xy, sa
siger vi, at fabrikkens produktion er
)
x= .
X2

Hvis fabrikken dagligt forbruger y; enheder af Y;, y2 enheder af Y, og ys enheder af
Y3, sa siger vi tilsvarende, at fabrikkens forbrug er

y1
y=1%2]|-
NE]

Til produktion af én enhed af X; kraeves tre enheder af Y7, to enheder af Yy og én
enhed af Y3; og til produktion én enhed af X9 kraeves fem enheder af Y7, fem enheder

1Se en.wikipedia.org/wiki/Simplex_algorithm
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2.4 Invertible matricer

af Yo og tre enheder af Y3. Sammenhsengen mellem forbrug og produktion er altsa

givet ved
y1 = 3x1 + 5x9

yo = 2x1 + 5x9
y3= x1+3x9.

S4 hvis vi lader f : R? — R3 vaere den afbildning, der til en gnsket produktion x af varer
tilordner det tilsvarende forbrug y af ravarer, da geelder det, at

x Y1 3x1 + 5xg 3 5 X
f (xl) =|y2|=]|2x1+5x2|=|2 5 (xl) o
2 y3 x1 + 3x9 1 3 2

Dermed er f: R? — R? altsa en lineser afbildning.

2.4 Invertible matricer

I dette afsnit undersgger vi de matricer A, for hvilke ligningssystemet Ax = b preecis
har én lgsning for alle b. Disse matricer, som vi kalder invertible, repraesenterer saledes
bijektive linesere afbildninger, og vi viser, at de ngdvendigvis er kvadratiske.

Lemma 2.4.1 Lad [ vare et legeme, lad f: " — F™ vare en linezer afbildning, og lad
A € M, ,(F) veere matricen, der repraesenterer f: F* — F™ med hensyn til de respektive
standardbaser. Da er fplgende udsagn sekvivalente:

(1) Afbildningen f: F* — F™ er bijektiv.
(2) For alle b e F™ har det linezere ligningssystem Ax = b praecis én lgsning x € F™.

Bevis At f: " — ™ er bijektiv, betyder per definition, at der for alle b € F™ praecis
findes ét x € F"*, sadan at f(x) =b. Da f(x) = Ax for alle x € F", fglger lemmaet. O

Eksempel 2.4.2 Vi undersgger, om den lineaere afbildning f: F2 — F2 givet ved

fa)=Ax= (; f) (xl) _ (x1 +2x2)

X9 2x1 + %9

er bijektiv, hvilket ifglge lemma |2.4.1| er sekvivalent til at undersgge, hvorvidt det for
alle b € F? geelder, at ligningssystemet Ax = b preecis har én lgsning. Vi anvender
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2 Matricer og linezre afbildninger

derfor raekkeoperationer til at omdanne ligningssystemets totalmatrix (A | b) til en
matrix pa (A’ | b’) pa reduceret echelonform.

(A418)= ; ? Z;) (2R,
1 2 b1
0 -3 —2b1+b2) -1 Ry
1 2 b1 ) +(-2)Ro
0 1 2b13—b2
e (1) (1) %) +(-2)R;

Vi ser, at for ethvert b € F2 har ligningssystemet Ax = b netop den ene lgsning

_(262-b1) 4
~|261-bs)

og derfor er f: F? — 2 altsa bijektiv.

Vi viser nu, at en lineser afbildning f: F” — [ ikke kan vare bijektiv, medmindre
matricen A € M,, ,(F), der reprzesenterer f: " — ™ med hensyn til standardbaserne,
er en kvadratisk matrix.

Saetning 2.4.3 Huis F er et legeme, og hvis f: F* — " er en bijektiv linezer afbildning,
sa geelder det ngdvendiguis, at m = n.

Bevis Lad A € M, ,(F) veere den matrix, der repraesenterer f: * — " med hensyn til
de respektive standardbaser, og lad A’ vaere matricen pa reduceret echelonform af rang
0 < r < min{m,n}, der fremkommer fra A ved at udfere en fglge af reekkeoperationer.
Ifplge lemma er f: " — ™ bijektiv, hvis og kun hvis det linesere ligningssystem
Ax = b pracis én lgsning for alle b € F™, og ifplge setning er dette tilfaeldet, hvis
og kun hvis r =m =n. Sa hvis f: F* — ™ er bijektiv, da er m = n som pastaet. O

Bemaerkning 2.4.4 Givet vilkarlige positive heltal m og n, sa kan man vise, at der
altid findes en bijektiv afbildning f: R* — R™. Setning viser imidlertid, at en
sadan bijektiv afbildning kun kan veere lineeer, hvis m = n.

Som beviset for satning afslgrer, er en lineeer afbildning f: F* — F" bijektiv,
hvis og kun hvis matricen A € M, (F), der repreesenterer f: " — " med hensyn til
standardbaserne, kan omdannes ved raekkeoperationer til identitetsmatricen.

62



2.4 Invertible matricer

Eksempel 2.4.5 Vi undersgger om den linezere afbildning g: C2 — C2 givet ved

_ (1 1\ (z1) _(21+1iz2
He)= k= (i —1) (22) B (izl —22)
er bijektiv. Sa vi omdanner totalmatricen (B | b) for ligningssystem Bz = b til en matrix
(B’ | b') pa reduceret echelonform.

(1 i]by
(Blb)_(i -1 bz) +(—1)R1
roan 1 I b1

& |b)_(0 0 —ibl+b2

Vi ser, at g: C2 — C? ikke er bijektiv.

Vi husker fra lemma|0.1.3] at en afbildning f: X — Y er bijektiv, hvis og kun hvis der
findes en afbildning g: Y — X, sddan at fog =idy og gof =idx. Afbildningen g: ¥ — X
er i givet fald entydigt bestemt og kaldes den inverse afbildningaf f: X — Y.

Saetning 2.4.6 Huis [ er et legeme, og hvis f: F* — " er en bijektiv linezer afbildning,
sa er den inverse afbildning g: F" — " ogsad lineeer.

Bevis Vi skal vise, at den inverse afbildning g: F* — " opfylder (L1) og (L2). Visa i
beviset for lemma at “u = g(v)” og “f(u) = v” er ®kvivalente udsagn. Specielt er
udsagnene “g(x) + g(y) = glx +y)” og “f(g(x)+ g(y)) = x + y” derfor eekvivalente, og det
sidste udsagn gelder, fordi f: F* — F" opfylder (L1):

fgx)+g(y)=f(gx)+f(gly)=x+y.

Dette viser, at g: F” — F" opfylder (L1). Tilsvarende er “g(x)a = g(xa)"og “f (g(x)a) = xa”
xkvivalente, og det sidste geelder, idet f: F* — " opfylder (L2):

flgx)a) = f(gx))a =xa.

Dette viser, at g: " — " ogsa opfylder (L2). Altsa er g: F* — F" lineeer. a

Eksempel 2.4.7 Den lineare afbildning f: R — R givet ved f(x) = cx, hvor c € R, er
bijektiv, hvis os kun hvis ¢ # 0. I givet fald er den inverse afbildning g: R — R givet ved
g(x) = ¢ 1x, og den er derfor ogsa linezer.
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2 Matricer og linezre afbildninger

Lad f: F* — " vaere en bijektiv lineser afbildning, og lad g: " — [" veere den inverse
afbildning, der ifglge saetning ogsa er lineaer. Lad A € M,(F) og B € M, (F) veere
de kvadratiske matricer, der reprasenterer henholdsvis f: F* — F" og g: F* — F"” med
hensyn til standardbaserne. Ifglge seetning og eksempel er identiteterne
fog=id = gof og matrixidentiteterne

AB=I=BA

da sekvivalente. Dette motiverer den fglgende definition.

Definition 2.4.8 En kvadratisk matrix A er invertibel, hvis der findes en kvadratisk
matrix B, sadan at AB =1 = BA, hvor I er identitetsmatricen.

Hvis A er en kvadratisk matrix, og hvis de to kvadratiske matricer B og B’ opfylder,
at AB=1=BA og AB'=1=B’A, da er B=B'. For ifglge seetning(2.1.10|er

B=BI=B(AB")=(BA)B'=1B'=B'.

Vi kalder matricen B for den inverse matrix af matricen A og betegner den A~1. Den
folgende seetning opsummerer ovenstaende.

Saetning 2.4.9 Lad [ vare et legeme, lad f: F"* — " vaere en linezer afbildning, og lad
A € M,(F) veere den kvadratiske matrix, der repreesenterer f: F" — F" med hensyn til
standardbaserne. Da er fplgende udsagn (1)—(4) &kvivalente.

(1) Afbildningen f:F"* — F" er bijektiv.
(2) Der findes en linezer afbildning g: F* — ", sadan at fog =idgp = gof.
(8) Den kvadratiske matrix A er invertibel.

(4) Det linezere ligningssystem Ax = b har preecis én lgsning for alle b € F".

Bevis Vi viste i lemma at (1) og (4) er akvivalente, og i saetning at (1)
og (2) er &kvivalente, og vi viser nu, at ogsa (2) og (3) er &ekvivalente. Hvis (2) holder, da
opfylder matricen B € M, (F), der repraesenterer g: F” — " med hensyn til standardba-
sen, ifplge setning og eksempel at AB =1 =BA, sa (3) holder. Omvendt,
hvis (3) holder, da lader vi B vaere den inverse matrix af A og definerer g: F* — [F" til

at vaere den linezere afbildning givet ved g(y) = By. Seetning [2.3.15|og eksempel [2.3.14
viser da, at fog =idp = go f, sa (2) holder. O
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2.4 Invertible matricer
Hvis en kvadratisk matrix A er invertibel, og hvis dens inverse matrix B er kendt, da
er den entydige lgsning til ligningssystemet Ax = b givet ved x = Bb. For
ABb)=(AB)b=1b=b.

Specielt er den j’te sgjle b; = Be; i den inverse matrix lig med den entydige lgsning
til ligningssystemet Ab; = e;. Vi kan derfor finde den inverse matrix B ved hjalp af
raekkeoperationer. Vi vender tilbage til dette i neseste afsnit.

Eksempel 2.4.10 Vi betragter matricerne
1 2 3/5 —2/5
A= (—1 3) og  B= (1/5 1/5)
og udregner

ap (1 2|\([35] 25|\ _( ¥s+2s ~s+2s)_(1 0)_,
-1 3 /5| 1/5|) \-3/5+3/5 2/5+3/5] -

3/5 —2/5 1| 2|} _( 38/5+2/5 6/5-6/5) (1 0
5 1s|J\|-1| 3| |\ Us=1/5 2/5+3/5)

BA:(

hvilket viser, at B=A"! er den inverse matrix af A.

Hvis en kvadratisk matrix med heltalsindgange er invertibel, da vil dens inverse
matrix som i ovenstaende eksempel typisk have indgange, der er brgker med samme
naevner. Forklaringen herpa finder vi i kapitel

Vi afslutter dette afsnit med at undersgge invertibilitet af diagonalmatricer, som vi
nu definerer.

Definition 2.4.11 En kvadratisk matrix pa formen

al O oo 0
0 ay - O
diag(ai,...,a,) = . .
0O O a,

kaldes for en diagonalmatrix.

Produktet af to diagonal matricer er igen en diagonalmatrix, idet

diag(ai,...,a,) -diag(bq,...,b,) =diag(a1b1,...,a,by,).
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2 Matricer og linezre afbildninger

=)o 1])-00" 5)=(0 o)

Vi bemeerker ogsa, at identitetsmatricen en diagonalmatrix.

For eksempel er

Saetning 2.4.12 Lad [F vare et legeme. Diagonalmatricen diag(a,...,a,) er invertibel,
hvis og kun hvis diagonalindgangene a1,...,a, € F alle er invertible, og i givet fald er

diag(as,...,a,) ! = diaglai?,...,a; ).

Bevis Hvis ai,...,a, alle er invertible i [, sa er

diag(asy,...,a,)diagla;’,...,a,)) = diag(1,...,1) =1,
diag(ail,...,a,diag(ay,...,a,) = diag(1,...,1) =1,

hvilket viser, at diag(ai,...,a,) er invertibel, og at dens inverse matrix er som angivet.
Omvendt, hvis A =diag(ai,...,a,) er invertibel med invers matrix B, sa viser

ai ... 0 b11 bln a1b11 albln
AB=|: .. T : : =1,
0 ... ap,)\bpy1 ... by, anbn1 ... apbun
bll bln a; ... 0 b11a1 blnan
BA=| : .. s = : : =1,
byi ... by \O0 ... a, bpiar ... bua,
at a; er invertibel med invers ozi_1 =b;; for alle 1 <i < n, som gnsket. O

Eksempel 2.4.13 Vi beskriver tre linezere afbildninger, der alle er reprasenteret med
hensyn til standardbaserne af diagonalmatricer. Matricen

A = diag(2,2) = (2 0)

0 2
repraesenterer den linezere afbildning f: R? — R?, der skalerer alle vektorer med en
faktor 2. Den er invertibel, og den inverse matrix A~! = diag(1/2,1/2) repraesenterer

den lineaere afbildning f~!: R? — R2, der skalerer alle vektorer med en faktor 1/2. Og
vi har allerede set i eksempel [2.3.7} at matricen

. (1 0
B_dlag(l,—l)—(o _1)
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2.4 Invertible matricer

repraesenterer den lineaere afbildning s: R2 — R?, der er givet ved spejling i x-aksen.
Den er invertibel og er sin egen inverse matrix. Endelig repreesenterer matricen

. (1 0
C—dlag(l,O)—(0 0)

den linezre afbildning p: R2 — R?, der projicerer pa x-aksen langs y-aksen. Den er
ikke invertibel, men opfylder i stedet at pop = p. Vi siger generelt, at en lineaer afbild-
ning p: F* — " er en projektion, hvis denne formel gzelder.

Saetning 2.4.14 Hvis A og B er invertible matricer af samme dimensioner, da er AB
0gsd en invertibel matrix, og dens inverse matrix er givet ved

(AB) '=B'A"1

Bevis Vi satter C =B 1A~! og udregner

(AB)C =(ABYB'A™H)=(AB B HA '=(ABB )NA1=(ADA 1 =4A1 =],

C(AB)=B'A™)AB)=B A ' (AB)=B'(A"'A)B) =B 'IB)=B 'B=1.
Per entydighed af den inverse matrix konkluderer vi derfor, at C =(AB)~ L. O
Bemszerkning 2.4.15 Hvis [ er et legeme, sa skriver vi

GL,(F)c M,(F)
for delmeengden bestaende af de invertible n x n-matricer. Det fglger fra seetning[2.4.14]
at matrixproduktet definerer en produktafbildning
GL,(F) x GL,(F) —— GL,(F),

der opfylder gruppeaksiomerne (G1)—(G3) nedenfor. Generelt defineres en gruppe til at
veere et par (G, -) af en maengde G og en afbildning - : G x G — G, der opfylder:

(G1) For alle g,h,keGer(g-h)-k=g-(h-k).
(G2) Der findes et element e € G, sadan at g-e=g=e-g for alle g€ G.

(G3) Foralle ge@G findes heG,sadanat g-h=e=h-g.

Elementet e € G, der opfylder (G2), er entydigt bestemt og kaldes for et-elementet i G.
Man skriver ofte “1” i stedet for “e” for dette element. Givet g € G er elementet h € G,
der opfylder (G3), ligeledes entydigt bestemt. Det kaldes for det inverse element af g € G
og betegnes g~! € G. Grupper optreeder mange steder i bade matematik og fysik, fordi
de beskriver symmetrier. Den generelle linesere gruppe GL,(F) er saledes den stgrste
gruppe af symmetrier af vektorrummet [”.
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2 Matricer og linezre afbildninger

Figur 2.7: Operationsmatricerne M;(c), S;;j(c) og T;; adskiller sig fra I,, som anfgrt.

2.5 Operationsmatricer

I dette afsnit introducerer vi operationsmatricer, som er matricer med den egenskab, at
de ved venstre multiplikation effektuerer de raekkeoperationer, vi definerede i kapitel
Vi beviser ogsa flere seetninger fra kapitel [I| i en mere preecis form. Specielt viser vi,
at hvis en matrix A ved raekkeoperationer omdannes til en matrix A’ pa reduceret
echelonform, da athaenger A’ kun af A og ikke af den valgte fglge af raekkeoperationer.
Vi anvender endvidere Gauss-elimination til at afggre, om en matrix er invertibel, og i
givet fald finde den inverse matrix.

Vi definerer nu operationsmatricerne, der er kvadratiske matricer og opdelt i tre typer
svarende til de respektive raeekkeoperationer i kapitel

Definition 2.5.1 Lad [ vaere et legeme. Operationsmatricerne i M,,(F) er de folgende
tre typer af matricer.

Type M: For alle 1<i<m og 0#c el er M;j(c) den matrix, der fas fra I,, ved at
multiplicere den i’te reekke med c fra venstre.

Type S: For alle 1 <i # j<m og c€F er S;j(c) den matrix, der fis fra I,, ved at addere
c gange den j’te raekke til den i’te reekke.

Type T: For alle 1 <i < j<m er T;; den matrix, der fas fra I,, ved ombytning af den
i’te reekke og den j’te reekke.

Figur[2.7]illustrerer disse matricer.

Eksempel 2.5.2 For m = 3 har vi de fglgende eksempler pa operationsmatricer

1 00 1 00 0 0 1
Mz(C):OC O, 823(0):0 1 cl, T13:0 10,

0 01 0 01 1 00

hvor vi har markeret de indgange, der adskiller sig fra de tilsvarende indgange i iden-
titetsmatricen I3, med blat.

68



2.5 Operationsmatricer

Vi viser nu som lovet, at operationsmatricerne effektuerer reekkeoperationerne fra
kapitel |1, Beviset forstas lettest ved sidelgbende at betragte eksempel nedenfor.

Seetning 2.5.3 Lad A € M, ,,(F) vaere en m x n-matrix med indgange i et legeme F.

(1) Forallel<i<mog 0#celF er M;(c)A den matrix, der fremkommer fra A ved at
multiplicere den i’te reekke med c fra venstre.

(2) Foralle1<i#j<mog ceF er S;j(c)A den matrix, der fremkommer fra A ved at
addere c gange den j’te raekke til den i’te reekke.

(3) For alle 1<i < j<mer T;;A den matrix, der fremkommer fra A ved at ombytte
den i’te reekke og den j’te reekke.

Bevis Lad 6, € M1 ,,(F) veere 1 x m-matricen med (6,)1; = 6,;. Matricen 8, er altsi den

r’te reekke i identitetsmatricen I,,, € M, ,,(F), og hvis B € M, ,(F) er en m x n-matrix, da

er 1 x n-matricen 6, -B € M ,(F) den r’te reekke i B. Dette bruger vi i resten af beviset.
Vi viser nu (1). Per definition af M;(c) er

c-6, hvisr=i,

6, -M;(c)=
rMi(c) {é} hvisr #1.

Den r’te reekke i M;(c)- A er derfor lig med henholdsvis

6, (Mi(c)-A)=(6,-M(c)-A=(c-6;)-A=c-(6,-A),

hvis r =1, og
6,-(M(c)-A)=(6,-M;(c))-A=6,-A,

hvis r # i, hvilket netop er pastanden (1).
Vi viser dernaest (2). Operationsmatricen S;;(c) er per definition givet ved

6,+c-6; hvisr=i,
6r'Sij(C):{ r+tc-0; hvisr=i

o, hvisr #1,
og den r’te reekke i S;; - A er derfor lig med henholdsvis

8,+(Sif(c)-A)=(8,-Sij(c)A=(8,+c-8))-A
=6,-A+(c-8;)A=8,-A+c-(5;-A),

hvis r =1, og
6,-(S;j(c)-A)=(6,-Sij(c))-A=6,-A,

hvis r #i. Dette viser pastanden (2).
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2 Matricer og linezre afbildninger

Endelig viser vi (3). Operationsmatricen T';; er defineret ved

6, hvisr=i,
6r-Tij= 6i hViSI”:j,
0, hvisr#iogr#j,

og derfor er den r’te reekke i T';; - A lig med

6;-A hvisr=i,
6, (T;;-A)=(6,-T;j)>6A=16,-A hvisr=j,
6,-A hvisr#iogr#j,

hvilket viser (3). O

Eksempel 2.5.4 Vi multiplicerer 3 x 4-matricen

13 20
A=(2 5 2 4
0121

med operationsmatricerne fra eksempel

1 00 1/3(2]0 1 3 2 0
Ms(c)A=]|0 ¢ O 21512|4||=|c:2 ¢-5 ¢c-2 c-4
0 0 1 0[1(2|1 0 1 2 1
1 00 1/3(2]0 1 3 2 0
Soz(c)A=1]0 1 ¢ 21512|14||=12+¢-0 5+c-1 2+¢c-2 4+c-1
0 0 1 0[/1/2|1 0 1 2 1
0 0 1 1/3(2]0 012 1
TisA=]|0 1 0 215|1214||=12 5 2 4
1 00 0[1/2|1 1 3 20

Vi ser, at My(c)A er matricen, der fremkommer fra A ved multiplikation af den anden
reekke med c fra venstre; at matricen So3(c)A er matricen, der fremkommer fra A ved
at addere c gange den tredje raekke til den anden reekke; og at T13A er den matrix, der
fremkommer fra A ved ombytning af den fgrste og tredje reekke.

I kapitel (1] indfgrte vi en invers raekkeoperation hgrende til hver raekkeoperation.
Oversat til operationsmatricer, giver det fglgende resultat.
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Seetning 2.5.5 Operationsmatricerne M;(c), S;j(c) og T;; er alle invertible, og deres
inverse matricer er givet ved henholdsvis

Mi(c) ™ =M;(c™), Sijle)'=8i(-¢c) o8 T =T

Bevis Hvis A er lig med M;(c), S;;(c) eller T;;, sa seetter vi B til at veere lig med
henholdsvis M;(c™1), S;j(=c) eller T}, og skal da vise, at AB=1=BA. Nuer

AB =(AB)I = A(BI),

og ifglge seetning[2.5.3|er A(BI) den matrix, der fremkommer fra identitetsmatricen ved
forst at anvende den raekkeoperation, der svarer til B, og derefter den rackkeoperation,
der svarer til A. I alle tre tilfaelde, er disse reekkeoperationer pracis hinandens inverse
raekkeoperationer. Dette viser, at AB =1, og BA =1 vises tilsvarende. Alternativt kan
s@tningen ogsa let bevises ved direkte udregning af de relevante matrixprodukter. O

10| 0 10 0
=] O ]_ —Cc+c :I,
00| 1 0 0 1

og ved at erstatte ¢ med —c ser vi, at ogsa S23(—c)Sas(c) = I, hvilket viser, at de to
matricer er hinandens inverse.

Eksempel 2.5.6 Vi udregner, at

So3(c)S23(—c) =

=)

=
I

o

OO =
ol O
oo

Definition 2.5.7 En &kvivalensrelation pa en maéengde X er en delmaengde R < X x X,
der opfylder de fglgende aksiomer (R1)-(R3).

(R1) Forallexe X er (x,x)eR.
(R2) For alle x,y € X geelder det, at (x,y) € R, hvis og kun hvis (y,x) € R.

(R3) For alle x,y,z € X gaelder det, at hvis (x,y) € R og (y,z) e R, da er (x,2) € R.

Vi teenker pa “(x,y) € R” som “x er R-sekvivalent med y”. En &kvivalensrelation R pa
en maengde X giver anledning til en opdeling af X i disjunkte aekvivalensklasser, hvor
to elementer x, y € X per definition tilhgrer den samme R-akvivalensklasse, hvis og kun
hvis (x,y) € R. Vi anvender raekkeoperationer til at definere en sekvivalensrelation pa
meengden M, ,(F) af m x n-matricer med indgange i et legeme F.
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2 Matricer og linezre afbildninger

Definition 2.5.8 Hvis A,B € M,, ,(F) er m x n-matricer med indgange i et legeme [,
da siges matricen A at veere raekkezkvivalent til matricen B, hvis der findes en endelig
folge af operationsmatricer P1,...,P; € M,,(F), sadan at B = Pp---PoPA.

Ifglge saetning er A altsa rekkeaekvivalent til B, hvis B fremkommer fra A ved
at anvende endeligt mange reekkeoperationer. Vi viser nu, at raekkeaekvivalens er en
sekvivalensrelation p4 mangden M, ,,(F) af m x n-matricer med indgange i IF.

Saetning 2.5.9 Lad [ vaere et legeme, og lad m og n vaere naturlige tal.
(1) For alle A € My, ,(F) gzelder det, at A er reekkezekvivalent til A.

(2) For alle A,B € M, ,,(F) geelder det, at A er raekkesekvivalent til B, hvis og kun huvis
B er raeekkezekvivalent til A.

(3) For alle A,B,C € M, ,,(F) geelder det, at hvis A er rekkezekuvivalent til B, og hvis B
er rekkezekvivalent til C, sa er A raekkesekvivalent til C.

Bevis En matrix A fremkommer fra sig selv ved at anvende & = 0 raekkeoperationer,
hvilket viser (1). Hvis B=P},---P1A,daer A = Pl_1 . -P,;lB, hvilket viser (2). Her har vi
anvendt, at operationsmatricer ifglge setning[2.5.3|er invertible. Hvis B = P}, ---P1A og
C=Q;---QB,daerC=Q;---Q1P;,---P1A, hvilket viser (3) og dermed saetningen. O

Vi viste 1 seetning [1.2.5] at hvis totalmatricen for et ligningssystem kan omdannes til
totalmatricen for et andet ligningssystem ved hjelp af raekkeoperationer, da har de to
ligningssystemer den samme lgsningsmaengde. Vi omformulerer nu denne sa@tning og
gentager beviset ved hjalp af operationsmatricer.

Saetning 2.5.10 Huvis totalmatricerne (A | b) og (B | ¢) for ligningssystemerne Ax = b
0og Bx = ¢ er rekkezkvivalente, sda har de to ligningssystemerne samme lgsningsmaeng-

de.

Bevis Hvis (B|e)=Pp---P1(A | b), da er specielt B=Pj---P1A og ¢ = Pp---P1b. Hvis
derfor Ax = b, da er ogsd Bx =Pp---P1Ax =P} ---P1b = ¢. Omvendt, hvis Bx = ¢, da er
ogséAx:Pl_l---P,;IBx:Pl_l---Plglc:b. O

Vi vender nu tilbage til Gauss-elimination og beviser som lovet den fslgende mere
preecise version af seetning|1.2.12] Denne sezetning er vores fgrste hovedsaetning.
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Saetning 2.5.11 Lad A veare en m x n-matrix med indgange i et legeme .

(1) Der findes en endelig fplge af operationsmatricer P1,...,Pp € M,,(F), sadan at
A'=P;...PyP 1A
er pa reduceret echelonform af rang 0 <r <min{m,n}.

(2) Matricen A’ og dens rang r er entydigt bestemte af matricen A og afhsenger ikke af
den anvendte fplge af operationsmatricer.

Bevis Udsagnet (1) er ifglge seetning[2.5.3aekvivalent til seetning[1.2.12] sa vi viser (2).
Seetning viser, at raeekkezekvivalens er en akvivalensrelation pa M, ,(F), og det
udsagn, vi skal vise, er, at hver reekkeakvivalensklasse preecis indeholder én matrix pa
reduceret echelonform. Med andre ord skal vi vise, at hvis A og B er reekkeakvivalente
m x n-matricer, der begge er pa reduceret echelonform, da er A = B, hvilket vi ggr ved
induktion pa n = 1. For n =1 er de eneste m x 1-matricer pa reduceret echelonform

0 1

0 0
0= og e = s

0 0

og for enhver operationsmatrix P € M,,(F) er PO = 0, hvilket viser, at 0 og e; ikke er
reekkeaekvivalente. Derfor er to reekkesekvivalente m x 1-matricer A og B ngdvendigvis
ens, hvilket viser pastanden for n = 1.

Vi antager induktivt, at pastanden er vist for n = p —1 og beviser den for n = p. Hertil
lader vi C og D veere de m x (p — 1)-matricer, der fremkommer fra henholdsvis A og B
ved at fjerne den sidste sgjle, sadan at

A=l ¢ 5 og B=| D
Amp bmp
Da A og B er pa reduceret echelonform, sa er ogsa C og D pa reduceret echelonform,
og de er endvidere reekkeaekvivalente. For hvis P1,...,P} er operationsmatricer, sddan

at B=Pj---P1A, da er ogsa C = Py ---P1D. Den induktive antagelse viser derfor, at
m x (p — 1)-matricerne C og D er ens, hvoraf vi konkluderer, at

alp—blp alp—blp
A-B=| (C-D : =l O :
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Vi gnsker at vise, at ogsa den sidste sgjle er lig med 0, sadan at A = B, og antager
derfor modsaetningsvist, at der findes et 1 < j < p, sddan at a;, # bj,. Da A og B er
reekkesekvivalente, sa har ligningssystemerne Ax = 0 og Bx = 0 ifglge satning
samme lgsningsmaengde. Hvis x er en lgsning til disse ligningssystemer, da er

(A-B)x=Ax-Bx=0-0=0,

og x er derfor ogsa en lgsning til ligningssystemet (A —B)x = 0. Den j’te ligning i dette
ligningssystem er “(aj, —bjp)xp, = 07, og da vi har antaget, at a;, —b;, # 0, falger det,
at x, = 0. S& enhver lgsning x til Ax = 0 og Bx = 0 har ngdvendigvis x, = 0, og derfor
er x, ikke en fri variabel i disse ligningssystemer. Da A og B er pi reduceret echolon
form medfgrer dette, at deres p’te sgjler begge indeholder en ledende indgang. Vi har
allerede set, at m x (p —1)-matricerne C og D, der er pa reduceret echelonform, er iden-
titiske, og derfor har de specielt samme rang r — 1. Da m x p-matricerne A og B er pa
reduceret echelonform, og da deres sidste sgjler indeholder en ledende indgang, er dis-
se sgjler derfor begge ngdvendigvis lig med e,. Dermed er A = B, hvilket strider mod
vores antagelse, at A # B, sa denne antagelse var altsa forkert. S A = B, hvilket viser
induktionsskridtet og dermed sezetningen. O

Bemsaerkning 2.5.12 Som naevnt i beviset, sa siger saetning[2.5.11|akvivalent, at hver
raekkeaekvivalensklasse af m x n-matricer preecis indeholder én m x n-matrix, der er pa
reduceret echelonform.

Vi har i definition defineret rangen af en matrix pa reduceret echelonform til at
veaere antallet af ikke-nul raekker eller sekvivalent antallet af ledende indgange. Ifglge
sa@etning [2.5.11|kan vi nu udvide denne definition til alle matricer, som fglger.

Definition 2.5.13 Lad A vare en m x n-matrix med indgange i et legeme F og lad A’
vaere den entydigt bestemte matrix pa reduceret echelonform, der er reekkesekvivalent
med A. Da er rangen af A defineret til at veere rangen af A’ og betegnes rank(A).

Vi bemeerker, at lemma |1.3.2| viser, at rangen af en matrix pa echelonform ogsa er lig
med antallet af ikke-nul raekker eller sekvivalent antallet af ledende indgange.

Eksempel 2.5.14 (1) Nul-matricen O, , har rang 0.

81 3 3
A=|0 2 4 O

0 0 0 5

(2) Matricen

er pa echelonform og har tre ledende indgange, som vi har markeret med blat. Sa
ifglge lemma har den rang 3.
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2.5 Operationsmatricer

(3) Vi bestemmer rangen af matricen

20 3 3
B=(0 1 4
2173

ved at omdanne denne til en reekkeaekvivalent matrix C pa echelonform.

S

2 0 3 3
B=|01 40
217 3) +(-DR;
2 0 3 3
0140
0 1 4 0/ (DR
20 3 3
C=|10 1 40
0 00O

Da B og C er rekkeaekvivalente, har de samme rang, og da C er pa echelonform,
er dens rang lig med antallet af ledende indgange. Sa B har rang 2.

Vi skal senere vise, at rangen af A € M, ,(F) er lig med dimensionen af billedet af den
linezere afbildning f: F* — ™ givet ved f(x) = Ax, men det ma vente til, vi har defineret
vektorrum og deres dimension i kapitel [4. Vi relaterer herunder rangen af matricen A
til injektivitet og surjektivitet af afbildningen f: F* — F™.

Saetning 2.5.15 Lad F vare et legeme, lad A veere en m x n-matrix med indgange i I,
lad 0 < r <min{m,n} vaere rangen af A og lad f: " — F"™ veere den linezre afbildning
defineret ved f(x) = Ax. Fplgende gaelder:

(1) Afbildningen f: F"* — F™ er surjektiv, hvis og kun hvis r = m.

(2) Afbildningen f: F" — F™ er injektiv, hvis og kun hvis r = n.

(3) Afbildningen f: F" — F™ er bijektiv, hvis og kun hvis r =m = n.

Bevis Per definition er f: F* — " injektiv (resp. surjektiv, resp. bijektiv), hvis og kun

hvis ligningssystemet Ax = b har hgjst én lgsning (resp. mindst én lgsning, resp. praecis
én lgsning) for alle b € F. Seetning fplger derfor fra seetning og definition[2.5.13| O

Da rangen r af en matrix ikke kan veere stgrre end antallet af raekker eller antallet
af sgjler, medfgrer saetning|2.5.15|umiddelbart felgende resultat.
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2 Matricer og linezre afbildninger

Korollar 2.5.16 Lad F veaere et legeme, og lad [ : F* — F™ veere en linezer afbildning.
(1) Huvis f: F* — ™ er surjektiv, da er n = m.
(2) Huis f: F* — ™ er injektiv, da er n < m.

(8) Huis f: F* — F™ er bijektiv, da er n = m.

Eksempel 2.5.17 Vi betragter 3 x 4-matricerne A og B fra eksempel Matricen
A har rang 3, sa afbildningen f: F* — F3 givet ved f(x) = Ax er surjektiv. Derimod har
matricen B kun rang 2, s& afbildningen g: F* — F2 givet ved g(x) = Bx er ikke surjektiv.
Det er da ogsa let at se, at ligningssystemet Bx = eg ikke har nogen lgsninger.

Blandt kvadratiske matricer af orden n er identitetsmatricen den eneste matrix, der
bade er pa reduceret echelonform og af rang r = n. Denne bemarkning har fglgende
nyttige konsekvens.

Saetning 2.5.18 Lad [ vare et legeme. En kvadratisk matrix A € M,(F) af orden n er
invertibel, hvis og kun hvis den har rang r = n. I givet fald findes en endelig folge af
operationsmatricer P1,...,P, € M,(F), sidan at  =A' = P ---P1A, og

Al =Py---P;.

Bevis Ifglge saetning er A er invertibel hvis og kun hvis den linezere afbildning
f: F* — F" givet ved f(x) = Ax er invertibel, og ifplge ssetning (3) geelder dette,
hvis og kun hvis matricen A har rang r = n. I givet fald findes der operationsmatricer
Pq,...,P,e M,(F),sddan at I = A’ = P}, ---P1A, og vi konkluderer derfor, at

A l'=JA ' =(P,---PLA)A ' =P} ---P1(AAY)=P,,---P{I =P, ---P;
som gnsket. O

Seetning2.5.11| giver fplgende effektive metode til at bestemme den inverse matrix af
en invertibel matrix.

Korollar 2.5.19 En n x n-matrix A € M,,(F) med indgange i et legeme [ er invertibel,
hvis og kun hvis n x2n-matricen (A | 1) € M,, 2,(F) ved raekkeoperationer kan omdannes
til en n x 2n-matrix pd formen (I | B) € M, 2,(F), og i givet fald er A1=B
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2.5 Operationsmatricer

Bevis Ifglge saetning[2.5.18|er A invertibel, hvis og kun hvis den ved rackkeoperationer
kan omdannes til identitetsmatricen, og dette er tilfaeldet, hvis og kun hvis (A | I) ved
raekkeoperationer kan omdannes til en n x 2n-matrix pa formen (I | B). I givet fald
lader vi Pq,...,P; € M, (F) vaere en folge af operationsmatricer, sddan at Py ---P1A = 1.

Seetning [2.5.18| viser da, at
Pp---Pi(A|I)=(Py---P1A| Py --P1I)=(1 |A™Y),

og derfor er B=A"! som gnsket. O
Eksempel 2.5.20 Vi anvender korollar|2.5.19|til at undersgge om 3 x 3-matricen

8 5 3
A=12 2 1
311

er invertibel og i givet fald finde dens inverse matrix. Vi omdanner derfor 3 x6-matricen
(A | I) til en matrix pa reduceret echelonform ved hjalp af reekkeoperationer:

8 5 3| 1 0 0)\ +(-3)R3
AlnH=f 2 2 1, 0 1 0| +(-DR3
3 1 1{ 0 0 1
-1 2 0 1 0 -3
-1 1 0 0 1 -1 /| +(-DR,
31 1, 0 0 1) +3Ry
-1 2 0| 1 0 -3\ +2Rs
0 -1 0(-1 1 2
0O 7 1| 3 0 -8 ) +7Ry
-1 0 o0/-1 2 1)\ R,
0 -1 0|-1 1 2| (DRe
0O 0 1(-4 7 6
10 0| 1 -2 -1
(Z[|1B)=f 0 1 0| 1 -1 -2
0O 0 1(-4 7 6

Her har vi som tidligere indikeret de indgange, vi gnsker at &endre med rgdt, og de
ledende indgange med blat. Vi konkluderer heraf, at A er invertibel, og at

1 -2 -1
Al=B=| 1 -1 -2
4 7 6

er den inverse matrix.
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2 Matricer og linezre afbildninger
Eksempel 2.5.21 Vi anvender korollar|2.5.19|til at undersgge om 3 x 3-matricen

2 3 1
A=(-1 0 -2
1 2 0

er invertibel og i givet fald finde dens inverse matrix. Vi omdanner derfor 3 x6-matricen
(A | I) til en matrix pa reduceret echelonform ved hjalp af raekkeoperationer:

2 3 1/ 1 0 0) +(-2)Rs3
(AlI)=|-1 0 -2 0 1 O | +Rs3

1 2 0] 0 0 1

0 -1 1, 1 0 -2

0 2 -2, 0 1 1| Ri1-Rs3

1 2 0] 0 0 1

1 0 1, 0 0 1

0 2 -2, 0 1 1| +2R3

0 -1 1/ 1 0 -2

1 0 1] 0 0 1

0 0 O0|-1 1 2| Ra—R3

0 -1 1{ 1 0 -2

10 1] 0 0 1

o -1 1{ 1 0 -2

O o o(-1 1 2

Her har vi som tidligere indikeret de indgange, vi gnsker at endre med rgdt, og de
ledende indgange med blat. Matricen er pa echelonform, og vi kan derfor aflaese, at A
har rang r =2 < 3 = n, og derfor er A ikke invertibel.

For en kvadratisk matrix A er de tre udsagn (1)—(3) i sa&tning identiske, da
antallet af reekker og sgjler er ens. Dette har fgplgende bemaerkelsesveerdige konsekvens.

Saetning 2.5.22 Hvis A og B er n x n-matricer med indgange i et legeme F, da er de
folgende udsagn aekvivalente:

(1) AB=1

(2) BA=1I

(3) AB=1I og BA=1.
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Bevis Det er klart, at (3) medfgrer bade (1) og (2), sa vi skal vise, at (1) medfgrer (3),
og at (2) medfgrer (3). Vi viser nu, at (1) medfarer (3), og ved at ombytte A og B viser
det samme argument, at ogsa (2) medfgrer (3). Ifglge seetning er (3) azkvivalent
til udsagnet, at r = n, sa det er nok at vise, at (1) medfgrer, at r = n. Men AB =1
medfgrer, at ligningssystemet Ax = b har mindst en lgsning, nemlig x = Bb, og derfor
viser seetning[1.3.1] at » = n som gnsket. Dette beviser saetningen. O

Bemaerkning 2.5.23 Satning(2.5.22| gelder kun for kvadratiske matricer, ogsa selvom
matrixprodukterne AB og BA begge findes. Eksemplet

1

AB=(1 0)(0):(1):11 og BA:((l))(l o):((l) 8);&12

viser, at udsagnene “AB =1” og “BA = I” generelt ikke er aekvivalente.

Pa samme made specialiserer saetning for m = n til felgende resultat, der kun
geelder for lineare afbildninger. For eksempel er exp: R — R injektiv men ikke surjektiv.

Korollar 2.5.24 Huis [ er et legeme og f: " — [" en linezr afbildning, da er de fol-
gende udsagn akvivalente:

(1) Afbildningen f:F* — F" er surjektiv.
(2) Afbildningen f: F* — F" er injektiv.

(3) Afbildningen f: F" — F" er bijektiv.

Bemsaerkning 2.5.25 Vi skal senere i kapitel [3| ogsa anvende sgjleoperationer til at
definere og udregne determinanten. Ligesom reekkeoperationer svarer til at gange med
operationsmatricer fra venstre, sa svarer sgjleoperationer til at gange med disse fra
hgjre. Hvis A € M, »,(F) er en m x n-matrix med indgange i et legeme [, da gaelder:

(1) For allen=j=10g 0#celF er AM;(c) den matrix, der fremkommer fra A ved at
gange den j’te sgjle med c fra hgjre.

(2) For allen=k # j=1o0g celF er ASj(c) den matrix, der fremkommer fra A ved at
adderer den k’te sgjle gange c til den j’te sgjle.

(3) Forallen =k > j=1er AT}, den matrix, der fremkommer fra A ved at ombytte den
J'te sgjle og den k’te sgjle.

Her er alle operationsmatricerne kvadratiske matricer af orden n. Vi understreger dog,
at sg¢jleoperationer ikke kan bruges til at lgse linezere ligningssystemer, da de modsat
raekkeoperationer seendrer lgsningsmeengden.
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2 Matricer og linezre afbildninger

2.6 Hermitiske former

Pa legemet af komplekse tal C findes der en meget interessant ekstra struktur, nemlig
kompleks konjugering, som er afbildningen (—)*: C — C der til z =a + ib € C tilordner

*

z"=2z =a-1b.
Kompleks konjugering opfylder aksiomerne, at for alle z,w € C er
C+w) ' =z"+w", (z-w)'=w"-2z" og (") =z

og den er vores hovedeksempel pa en skavinvolution, som defineret nedenfor.

Givet et (skeev)legeme F med en skaevinvolution (-)*: F — F sasom C med kompleks
konjugering (—)*: C — C, definerer vi dette afsnit den adjungerede matrix A* hgrende
til en matrix A med indgange i F og viser, at denne operation pa matricer opfylder
de samme aksiomer som kompleks konjugeringﬂ Det er i denne forbindelse vigtigt at
huske, at (—)* ombytter multiplikationsraekkefglgen.

Kvadratiske matricer A, som opfylder at A* = A, kaldes for hermitiske matricer. Hvis
F =C og (-)*: C — C er kompleks konjugering, da spiller de hermitiske matricer en
speciel rolle, blandt andet fordi de, som vi skal se i kapitel [6] har reelle egenvaerdier.
Hvis F =R og (-)*: R — R er identitetsafbildningen, da kaldes de hermitiske matricer
for symmetriske matricer og spiller ligeledes en seerlig rolle.

Generelt giver en hermitisk n x n-matrix A anledning til en hermitisk form pa ", som
er afbildningen (—,—): F” x F* — [ defineret ved (x,y) = x*Ay, og vores hovedformal i
dette afsnit er at studere hermitiske former. Disse anvendes til at beskrive geometriske
strukturer pa F” i bred forstand. For eksempel er Einstein-geometrien i speciel relativi-
tetsteori beskrevet af Minkowskiformen

* * *
(%,9) = —x1y1+xy2+ +X,¥n = —X1y1 t X2y2+** + XnYn,

der svarer til den symmetriske reelle matrix A = diag(-1,1,...,1).
Vi vil nedenfor arbejde over et generelt skaevlegeme F, hvor det ikke ngdvendigvis
gaelder, at ab = ba, selvom vi stadigvaek har F =R og F = C som hovedeksempler.

Definition 2.6.1 En skzvinvolution pa et skaevlegeme F er en afbildning (-)*: F — F,
sadan at fglgende geelder for alle a,b € F:

I1) (a+b)* =a*+b*
I2) (ab)* =b*a*
I3) 1*=1

(I4) (@*)* =a

2Fysiklitteraturen anvender betegnelsen A i stedet for A* for den adjungerede matrix
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Vi siger “skaev” og “involution” for at antyde henholdsvis (I12) og (14).

Eksempel 2.6.2 (1) Pa F = R er identitetsafbildningen en skeevinvolution, og man
kan vise, at der ikke findes andre.

(2) PAF =C er bade identitetsafbildningen og kompleks konjugering skavinvolutioner,
men vi vil udelukkende betragte kompleks konjugering.

(3) Pa kvaternionerne F = H fra eksempel er kvaternionisk konjugering, som er
afbildningen (-)*: H— H, der til ¢ =a +ib + jc + kd tilordner

qg"=q9=a-ib—jc—kd,

en skaevinvolution. Derimod er identitetsafbildningen ikke en skavinvolution,
da (I2) ikke er opfyldt.

Vi bemeerker, at det for z € C geelder, at z = z, hvis og kun hvis z € R. Dette er en af
grundene til, at vi altid anvender kompleks konjugering som skavinvolution pa C.

Definition 2.6.3 Lad F veere et skavlegeme med skaevinvolution (-)*: F — F. Da er
den adjungerede matrix af en m x n-matrix

ail aig ... A1n

ags1 a9y ... QA9p
A= | : )

aml am2 500 amn

med indgange i F den n x m-matrix med indgange i [, der er givet ved

* * *

all a21 aml
* * *

Af = Pl Cem ver Ugg
* k *

aj, ay, ... Qn,

En kvadratisk matrix A med indgange i F er hermitisk, hvis A* = A.

Vi bemeerker, at antallet af reekker i A* er lig med antallet af sgjler i A og vice versa.
Det giver altsa kun mening at spgrge om A* = A, hvis A er en kvadratisk matrix.
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2 Matricer og linezre afbildninger

Eksempel 2.6.4 Vi betragter de fglgende komplekse matricer og deres adjungerede
matricer, hvor vi anvender kompleks konjugering som skavinvolution.

1 0
a-fz 4l |
0 3
2 -1 -3+2i 2 0 0
B=|0o 1+i 2 |, B*=| -1 1-i 0.
o o0 -1 -3-2i 2 -1
-2 L (-2 i
o=l —1)’ ¢ _(—i —1)'

Matricerne B og C er kvadratiske, og det er de adjungerede matricer B* og C* dermed
ogsa. Matricen C er endvidere hermitisk.

Bemszerkning 2.6.5 Hvis F er et legeme, da er identitetsafbildningen (-)*: F — [F en
skaevinvolution. Den adjungerede matrix A* med hensyn til denne skavinvolution kal-
des for den transponerede matrix og betegnes A!, mens en kvadratisk matrix A, der
opfylder A! = A, kaldes for en symmetrisk matrix.

Eksempel 2.6.6 Vi betragter de folgende reelle matricer og deres transponerede ma-
tricer.

1 2 4 10 3

A=|0 7 4|, A*=A'=[2 7 0
3 0 4 4 4 4
1 2 4 1 2 4

B=|2 7 4], B*=B'=|2 7 4
4 4 4 4 4 4
6

c=| 2|, c*=C'=(6 2 -1)
=)

hvor B = B! er symmetrisk. Bemerk ogsa at den adjungerede matrix af en sgjlevektor
er en reekkevektor og vice versa.

Vi viser nu, at adjungering af matricer har przecis de samme egenskaber som en
skaevinvolution, hvilket er grunden til, at vi anvender den samme notation for begge.
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Saetning 2.6.7 Lad F veere et skaevlegeme og lad (-)* : F — [ veere en skaevinvolution.
For matricer af passende dimensioner med indgange i F gzalder folgende:

(I1) (A+B)*=A*+B*

(I2) (AB)*=B*A*

I3y 1=1I

(I4) (A" =A
Bevis For A =(a;;) € My, ,(F) skriver vi A* = (a’ij) € My, n(F), sadan at a’iJ. =(a;;)* per
definition af den adjungerede matrix. For at vise (I1) lader vi A,B € M,, ,,(F) og satter

C=A+BeM,,,(F). Udregningen

! _ * .. .. * k * ! !
cij—cji—(aﬂ+b]l) _aji+bji_aij+bij

viser da, at C* = (A + B)* som gnsket. For at vise (I2) lader vi tilsvarende A € M, ,(F)
og Be M, ,(F) og seetter C = AB € M,, ,,(F), hvorefter udregningen

n n n L
o w ) NE . LV * * ! !/
cip=cri= (Y anbi)" = Y (anbj)" = Y bhap; = Y. bjal,
i=1 J=1 Jj=1 J=1

viser, at C* = B*A*. Videre fglger (I3) fra 5;. =0j;=0;j,idet I =(6;;) og I"* = (5;), og for
at vise (I4) lader vi A € M,, ,(F) og betragter C = A* € M,, ,,(F). Udregningen

Ik I Nk _ * \k .
cij_cji_(aji) _(aij) =aij

viser da, at C* = A, hvilket beviser (I4) og dermed seetningen. O
Definition 2.6.8 Lad F vaere et skaevlegeme, lad (—)*: F — F veere en skaevinvolution,
og lad n veere et naturligt tal. En hermitisk form afbildning

(—,=):F*xF" —F,
for hvilken det geelder folgende: For alle x,y,2 € F* oga €F er
H1) (x,y+2)=<(x,y) +(x,2).
(H2) (x,y-a)=(x,y)a.
(H3) (x+y,2) =(x,2)+(y,2).
(H4) (x-a,y)=a-(x,y).

(H5) (y,x)=(x,3)".
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2 Matricer og linezre afbildninger

Hermitiske former er opkaldt efter Charles Hermite, der ogsa er kendt for at have
bevist, at grundtallet e for den naturlige logaritme er transcendentalt.

Eksempel 2.6.9 Standard-indreproduktet pa C*, som er givet ved

Y1
zn) =Xyt X,
Yn

(x,y)=x"y= (%1

er en hermitiske form pa C", hvor vi igen anvender kompleks konjugering som skaevin-
volution pa C. Ligeledes er standard-indreproduktet pa R”, som er givet ved

y1
x,py=a*y=x'y=(x1 ... x,)|: [=x1+ +209m,
Yn

en hermitiske form pa R”.

Vi skal nu vise, at der er en kanonisk 1-1 korrespondance mellem hermitiske former
pa [" og hermitiske matricer A € M,(F). Vi bemzerker hertil, at hvis x € " = M,, 1(F) er
en sgjlevektor af dimension n, sé er x* € M1 ,(F) en reekkevektor af dimension n.

Saetning 2.6.10 Lad [ vaere et skaevlegeme, lad (-)* : F — F vaere en skaevinvolution, og
lad n vaere et naturligt tal.

(1) Hvis A € M, (F) er en hermitisk matrix, sa er afbildningen (—,—): " xF"* — F givet
ved (x,y) =x* Ay en hermitisk form.

(2) Hvis (—,—): " x[F" — [ er en hermitisk form, sa er matricen A =(a;;) € M,(F) med
indgange a;j = (e;,e;) en hermitisk matrix, og (x,y) =x*Ay.

Bevis For at bevise pastanden (1), lader vi x,y,2z € F" og a € F og udregner
(x,y+2y=x"Aly+2)=x"Ay+x"Az=(x,y) + (x,2)
(x,y-a)=x"Aya = {x,y)-a
(x+y,2)=(x+y)'Az=x"Az+y Az =(x,2) +(y,2)
(x-a,y)=(x-a)'Ay=a"-x"Ay=a"-(x,y)
(y,2) =y Ax =y" A" (x")" = (x"Ay)" = (x, )",

hvilket viser pastanden. Her har vi anvendt saetning
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Den fgrste del af (2) fglger fra (H5), idet a;; = (e;,e;) =(e;,e;)" = a;i, og udregningen

n n n n
)= () eix;, ) ejy;)y = ) ) xi{ei,e;)y;
i=1 j=1 i=1j=1
n n n
= ) ). %jaijy; = ) xjAy = x"Ay
i=1j=1 i=1
viser den anden del af (2). O
Vi kalder matricen A = ({e;,e;)) i seetning (1) for matricen, der repraesenterer
den hermitiske form (—,—) med hensyn til standardbasen (e1,...,e,) for F", og omvendt
kalder vi den hermitiske form (—,—) i seetning (2) for den hermitiske form, der
hgrer til matricen A med hensyn til standardbasen (eq,...,e,) for .

Definition 2.6.11 Hvis F er et skaevlegeme, og (—)*: F — F er en skaevinvolution, sa
siges en hermitisk form (—,—) pa F" at vaere ikke-singulzer, hvis den matrix A € M, (F),
der repraesenter (—,—) med hensyn til standardbasen (ej,...,e,) er invertibel.

Eksempel 2.6.12 (1) Standard-indreprodukt pa F" er den hermitiske form
(X, y=x"Iy=x"y=x{y1+ - +%,Yn,

der hgrer til identitetsmatricen med hensyn til standardbasen; sammenlign med
eksempel Den er ikke-singuleer.

(2) Minkowskis hermitiske form pa F” er den hermitiske form
(x,yy =x" diag(-1,1,..., 1)y = —x]y1+x5¥2 + -+ X, Yn,

der hgrer til diagonalmatricen diag(—1,1,...,1) med hensyn til standardbasen. Den
er ikke-singuleer, selvom der findes ikke-nul vektorer x, sadan at (x,x) = 0.

(3) Den hyperbolske form pa F? er den hermitiske form

«(0 1 : *
(x,y)=x 10 y=x1y2+X9¥1,

der hgrer til den indikerede hermitiske matrix H € My(F). Den er ikke-singuleer,
selvom der igen findes ikke-nul vektorer x, sadan at (x,x) = 0.

Givet hermitiske former pa F”* og ", da gnsker vi at betragte lineaere afbildninger
f:F* - ™, der er kompatible med de givne hermitiske former. Sidanne afbildninger
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2 Matricer og linezre afbildninger

kaldes linezre isometrier, idet de bevarer de geometriske strukturer, som de hermitiske
former beskriver. Den formelle definition er som fglger.

Definition 2.6.13 Lad [F veere et skaevlegeme, lad (-)* : F — F vaere en skaevinvolution,
og lad (—,—) og (—,—) vaere hermitiske former p& henholdsvis " og F". En lineser
afbildning f: F* — F™ er en linezr isometri med hensyn til (—,—) og (—,—)’, hvis

(F@), f(y) = (x,5)

for alle x,y e F".

Eksempel 2.6.14 (1) En bijektiv lineaer isometri f: R* — R"” med hensyn til det stan-
dard indre produkt (—,—) kaldes for en euklidisk transformation. For eksempel er ro-
tationer og spejlinger i R? isometriske isomorfier.

(2) En bijektiv lineaer isometri f: R* — R"” med hensyn til Minkowskiformen (—, —) kal-
des for en Lorentz-transformation. De skyldes Hendrik Lorentz, som viste, at Maxwells
ligninger er invariante under disse transformationer. Hvis —1 <v < 1, da er afbildnin-
gen f: R? — R? repraesenteret ved matricen

_ 1/vV1i—v?2 —v/vV1-2

P=\_yyyi= yvie

en Lorentz-transformation. Hvis x# er rumtidskoordinaterne med hensyn til et givet
inertialsystem, da er f(x) rumtidskoordinaterne med hensyn til det inertialsystem, der
bevaeger i forhold til det forste med konstant hastighed v langs x9-aksen. Vi anvender
her de naturlige enheder, hvor lysets hastighed er ¢ = 1.

Saetning 2.6.15 Lad [ vaere et skaevlegeme og lad (—)* : F — [F vaere en skaevinvolution.
Lad (—,-) og (—,—) vaere hermitiske former pd F" og F™, og lad A € M,,(F) og A’ € M ,,(F)
vaere de matricer, der repraesenterer {(—,—) og {—,—) med hensyn til standardbaserne. En
linezer afbildning f: F* — F™ er en linezer isometri med hensyn til {(—,—) og {—,—)', hvis
og kun hvis den matrix P € M, ,,(F), der repraesenterer denne afbildning med hensyn til
de respektive standardbaser, tilfredstiller, at

P*A'P=A.

Bevis Hvis P*A'P = A, da viser udregningen

(fx),f(y) =(Px)*"A'Py=x"P*A'Py=x"Ay = (x,y),
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2.7 Opgaver

hvor x,y € F*, at f: F* — F™ er en lineaer isometri. Omvendt, hvis f: F* — F" er en
linezer isometri, da viser udregningen

e;P*A'Pe;=(Pe;)' A'Pe; = (f(e;),f(e)) = (e;,e;) = e} Aej,

at de (i, j)’te indgange i matricerne P*A’P og A er identiske for alle 1 < i, j < n, og derfor
geelder det, at P*A’'P = A som gnsket. O

Eksempel 2.6.16 Ifglge saetning|2.6.15|viser udregningen

P*AP:(l/m —v/m)(—1 0)(1/m —v/m)

—v/V1-2 1/vV1-02 0 1)\ —v/V1i-v2 1/v1-02

_ 1/vV1-v2 —v/V1-v2\ (=1/V1-2 v/V1-02 _ -1 0 —A
T\ =v/vise? 1/V1-22 —v/V1-02 1/\/1—v2)_ 0 1]

at afbildningen f: R? — R? i eksempel [2.6.14](2) er en Lorentz-transformation. Ligele-
des viser udregningen

I (S VY B VIV T B A WA VIV B VIV W S R\
QAQ_(l/\/é 1/@)(1 0)(1/\/5 1/@)‘(0 1)‘A’

at afbildningen g: R? — R? givet ved

woguo [ Y
EV=RT= e uvg)”®

er en bijektiv linezer isometri fra R? med Minkowskiformen til R? med den hyperbolske
form.

2.7 Opgaver

2.1 Udregn fglgende matrixprodukter

1 1
1 2 3)(2) og (2)(1 2 3).
3 3
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2 Matricer og linezre afbildninger

2.2 Afggr, ved at overveje dimensioner, hvilke af matricerne

2.3

24

88

2 5 .
Ar=|0 1) AQ:(‘ 0 0) As=(4 4 5)

4 _9 0 —i 2+1

2 100 1 0
0 01
4 00 1

det giver mening at multiplicere med hinanden, og bestem alle matrixprodukter,
der er meningsfulde. (Der skal vaere 111 alt.)

Denne gvelse viser, at multiplikation af skalarer har nogle egenskaber, som ikke
deles af matrixmultiplikation. Kommenter i hvert tilfeelde, hvilken egenskab ved
multiplikation af skalarer, der er tale om. (Sammenlign med definition )

a) Udregn AB og BA, hvor

b) Udregn AB, hvor

¢) Udregn A?, hvor

a=[; )
d) Udregn A2, hvor
/g 1
a=(i v
e) Udregn A2, hvor
A=(1 o

Afggr om folgende er rigtigt eller forkert:

a) Hvis matrixprodukterne AB og BA begge eksisterer, da er begge matricerne A
og B ngdvendigvis kvadratiske.

b) A(BC)=(AB)C.
¢) Hvis A og B er kvadratiske matricer af orden n, da er AB = BA.



2.7 Opgaver

d) Hvis AB=0,daer A=0 eller B=0.

2.5 Udregn fglgende to matrixprodukter, idet der redeggres for den anvendte strategi.
[Vink: Matrixproduktet er associativt.]

17 231 100 23 546 0) (0 0 O

a) 91 640 77) (—19 -34 1) (O 0 O).
-11 1003 1 22 1001 0/ \0 O 1
0 0 0) (670 546 45 17 231 100

b) 01 0) ( 1 0 O) ( 91 640 77\).
0 0O 22 1001 99) \-11 1003 1

2.6 Betragt matricerne

Udregn fglgende matrixprodukter:
a) A% A3 A%A3 AS.

b) B

c) C3.

2.7 Udregn matrixprodukterne AB, BA, AC, CA, hvor
_[a O (¢ O _|P q
a=(o o) =G a) o= 7)

2.8 Udregn matrixprodukterne AB, BA, CD,DC, AC og CA, hvor

1 a ¢ 1 d f 100 1 00
A=|0 1 b|, B=|0 1 e|], C=|r 1 0 og D=|u 1 0].
0 01 0 0 1 t s 1 w v 1

2.9 (%) Hvis F er et legeme, da kaldes afbildningen tr: M, (F) — F defineret ved

n
tr(A) = Z a;;
i=1
for sporet. Sporet af en matrix er saledes summen af matricens diagonalindgange.
a) Vis, at det for alle A,B € M, (F) geelder, at

tr(A+B)=tr(A)+tr(B).
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2.10

2.11

90

b) Vis, at det for A,B € M,,(F) generelt ikke geelder, at
tr(AB) = tr(A)tr(B).

[Vink: Find et modeksempel med 2 x 2-matricer.]

c¢) Vis imidlertid, at det for alle A € M, ,(F) og B € M, ,,(F) geelder, at

tr(AB) = tr(BA).

d) Vis endvidere, at hvis A € M, ,(F), Be M, ,(A) og C € M}, ;n(A), da er
tr(ABC) =tr(BCA).

Vi kalder denne egenskab ved sporet for invarians under cyklisk permutation.

e) Vis, at hvis A € M,(F), og hvis P € M, (F) er invertibel, da er
tr(P"1AP) =tr(A).

[Vink: Anvend invarians af sporet under cyklisk permutation.]

f) Vis, at hvis (-)*: F — F er skaevinvolution, da er
tr(A*) =tr(A)*

for alle A € M,,(F). Her er A* den adjungerede matrix.

Om en lineger afbildning f: R2 — R? vides, at
-2 -4
1 3 -1 -3
f (3) 14 g [ ( 3) 10
1 5

Bestem matricen A € M4 2(R), der reprzesenterer f: R? — R* med hensyn til stan-
dardbaserne.

Lad f,g: R3 — R3 vaere afbildningerne defineret ved

X1 X1+ x9 X1 x1+x9 +2x3
flxa|=|x2+x3 og glx|= X9 + X3 .
X3 x1+Xx3 X3 X1 +x3

Vi har tidligere i opgave 0 vist, at f: R® — R? er bijektiv, samt at g: R — R? ikke
er bijektiv.

a) Vis, at afbildningerne f,g: R? — R3 begge er lineere.



2.12

2.13

2.14

2.7 Opgaver

b) Bestem matricerne, der repraesenterer henholdsvis f: R3 — R3, f~1: R — R3 og
g: k% — R? med hensyn til standardbaserne.

Afggr, hvilke af fglgende afbildninger f,g,h: C2 — C2, der er linezre.

2 4 O ] Y A

For de af afbildningerne, der er lineare, bestem den matrix, der reprasenterer af-
bildningen med hensyn til standardbaserne.

En fabrik producerer to varer X; og Xs ud fra de tre ravarer Y7, Y2 og Y3. Vi beteg-
ner tilhgrende produktionssaet og forbrugsseset med henholdsvis (x1,x2) og (v1,y2, y3).
Om den pageldende produktion geelder det, at

2 enheder af Y
produktion af en enhed af X; kreever { 1 enhed af Yy

5 enheder af Y3,

og
1 enhed af Y;
produktion af en enhed af Xy kreever <{ 6 enheder af Yy

1 enhed af Y3.

a) Opskriv den afbildning f: R? — R3, der forteeller, hvad sammenhaengen er mel-
lem forbrugssaet og produktionssaet.

b) Vis, at afbildningen f: RZ — R? er lineser, og angiv matricen, der repraesenterer
denne med hensyn til standardbaserne.

I den virkelige verden, er der begransninger pa ravarerne, som typisk er reprae-
senteret af linesere uligheder. For eksempel kan antallet af enheder af ravarer ikke
veere negativt. Lineser programmering er det fagomrade inden for matematikken,
der anvendes til at optimere produktionen i sddan en situation. I praksis finder
Danzigs simpleksalgoritme hurtigt den optimale lgsning, selvom det er muligt at
konstruere problemer, hvor algoritmen ikke standser.

a) Vis, at matricen

0 -1
J=(1 O)EMz(IR),

er en lgsning til ligningen “x? + 1 =0, det vil sige, at J2+1 =O.
b) Findes der andre matricer A € Ms(R), der er lgsninger til denne ligning?

¢) (%) Find samtlige lgsninger A € M2(R) og B € M5(C) til ligningen “x“+1=0".
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2 Matricer og linezre afbildninger

2.15 a) Vis, at hvis f: F* — " og g: F*" — ™ er lineare afbildninger, da er ogsa afbild-
ningen f + g: " — ™ defineret ved (f + g)(x) = f(x) + g(x) lineeer.

b) Vis endvidere, at hvis afbildningerne f: F* — F™ og g: F* — F™ er repraesenteret
af henholdsvis A € M, ,,(F) og B € M, ,,(F) med hensyn til standardbaserne, da er
f+g: F" — ™ repreesenteret af A+B € M,, ,(F) med hensyn til standardbaserne.

c) Giv et eksempel, der viser at hvis f,g: F* — ™ er to afbildninger, sadan at
f+g:F*" — F"™ er linear, da er afbildningerne f: F* — F"™ og g: F* — ™ ikke
ngdvendigvis linezere.

2.16 Vi betragter de fglgende matricer:

2 1 2 1 1 1
A=, —1) Az2=_3 —2) A3:(—1 —2)
0 14 18 1 0 1 1 0 0
Ag=|0 -1/ 3/8) As=|3 -1 o) Ae—(3 -1 0)
1 —1/s —1/8 2 2 0 2 2 0
1 -1
L 1)
0 -1

For hvilke vaerdier af i og j geelder det, at A; = AJ_.1 ?

[Vink: Overvej dimensionen af matricerne, og undersgg om A;A;=1=A A;.]
2.17 Lad f: R? — R? veere afbildningen givet ved f(x) = Ax, hvor
0 0 1/4
A=10 -2 0
3 0 0

Gor rede for, at f: R? — R? er bijektiv, og find den inverse afbildning g: R? — R3.
Bestem herved den inverse matrix A1,

2.18 (%) Lad f: F3 — F2 vaere afbildningen givet ved f(x) = Ax, hvor

0 0 a
A=10 b 0.
c 0 0
Undersgg, for hvilke veerdier af a,b,c € F afbildningen f: F? — F2 er bijektiv, og

bestem i givet fald den inverse afbildning g: F? — F3. Bestem i disse tilfzelde den
inverse matrix A~ 1.
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2.19 Vis, gerne ved brug af Maple, at det for matricen
-1 -19 10
C=|(1 6 -2
1 11 -5
geelder, at C3 = 1. Vis, at dette medfgrer, at C er invertibel med C~1 = C2.

2.20 Giv et eksempel pa en linezer afbildning f: R? — R*, som er injektiv, og hvis billede
im(f) c R* indeholder vektorerne

b =

e
=

Er en sadan afbildning entydigt bestemt?

2.21 Vi betragter afbildningerne g: R? — R3 og 4 : R? — R? givet ved

l)-(mp) o of)6

u+2v z

a) Gor rede for, at afbildningerne g: R? — R3 og h: R? — R? er linesere, og bestem
matricerne B € M3 2(R) og C € M3 3(R), der reprzesenterer disse med hensyn til
standardbaserne.

b) Ger rede for, at g: R2 — R? er injektiv, men ikke surjektiv.
[Vink: Overvej rangen af matricen B.]
¢) Gor rede for, at & : R? — R? er surjektiv, men ikke injektiv.
[Vink: Overvej rangen af matricen C.]
d) Bestem matricerne, der repraesenterer goh: R? — R3 og hog: R2 — R2 med hen-

syn til standardbaserne.

2.22 a) Bestem rangen af matricerne
11 1 2
A= (1 1) og B= (3 4) .

b) Afger, om afbildningerne f,g: R? — R? givet ved f(x) = Ax og g(x) = Bx er injek-
tive, surjektive og/eller bijektive.
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2.23

2.24

2.25

2.26

2.27

94

Vis, at for alle a, b, c € F er matricen

1 a c
A=|0 1 b
0 01

invertibel, og bestem den inverse matrix A 1.

Bestem rangen af fglgende matricer og forklar, hvad rangen siger om antallet af
lgsninger til ligningssystemet med totalmatrix (A; | b), hvor b er en arbitreer kon-
stantsgjle.

-1 1
2 3 2 -2 4
Al—(4 5) A2— 0 2 AS_(—l 1 _2)
-3 1
1 2 -2
-1 2 i |
A4:( L2 ) A5:( ) Ag=|3 -1 0
21 4 1 0 1 9 _3 9
Bestem rangen af den komplekse matrix
1 0 0
A=|1 1 -if,
i 1-i 1
og afggr derved, om den er invertibel eller ej.
Afggr, om matricerne
13 4 0100
A=(2 5 7 og B=
01 0 2 010
0 301

er invertible eller ej, og bestem i givet fald deres inverse matricer.

Vis, at den lineaere afbildning f: R* — R* givet ved
X1 X1
f X2 | | x1tXx2
X3 B X1+x9+x3
X4 X1+X9+x3+x4

er bijektiv, og find matricen, der repreesenterer den inverse afbildning g: R* — R*
med hensyn til standardbaserne.
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2.28 Vis, at den linezere afbildning f: F* — F* givet ved

X1 4x1+2x3+ x4

f x2| | 3x1+tx2+3x3+x4
X3 X9 + 2x3
X4 3x1+2x9 +4x3+ x4

er bijektiv, og find matricen, der repraesenterer den inverse afbildning g: F* — F*
med hensyn til standardbaserne.

2.29 a) Vis, at identitetsafbildning id : R — R er en skavinvolution pa R.
b) Vis, at kompleks konjugering (—)*: C — C, som er defineret ved

(a+ib)* =a-ib,
er en skaevinvolution pa C.

c) (x) Vis, at kvaternionisk konjugering (—)*: H — H, som er defineret ved
(@+ib+jc+kd) =a—-ib—jc—kd,

er en skavinvolution pa H. Addition og multiplikation af kvaternioner er define-

ret i eksempel
2.30 Afggr, hvilke af de fglgende komplekse matricer, der er hermitiske:

1 2 7 1 21 7 1 9
A=|21 4 1+1i], B=|-21 4 1-i og C:(2 3).
7 1+1 l 7 1+1 1

Her betragter vi som altid de komplekse tal C med kompleks konjugering som
skaevinvolution.

2.31 Udregn matrixprodukterne AA? og A’A, hvor A er den reelle matrix

2 -1 0
A‘(—z 3 1)'

2.32 (%) Lad F veere et legeme med skeevinvolution (—)*: F — F. Vis, at afbildningen
(=, =) :F2xF? =F

defineret ved (x,y) = (x1 +x2)*(y1 + y2) er en hermitisk form. Angiv endvidere ma-
tricen A € My(F), der repreesenterer (—,—) med hensyn til standardbasen.

2.33 Lad A4,...,Ar € M,(F) veere invertible matricer. Bevis, at

(A1Ay-- A =A™ tap™h.
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3 Determinant

Givet n vektorer i R?, gnsker vi at definere og udregne det n-dimensionale volume af
det parallelepipedum, de n vektorer udspeender. Dette problem fgrer naturligt til de-
finitionen af determinanten af en n x n-matrix med indgange i R, og denne definition
viser sig da at vaere meningsfuld for en n x n-matrix med indgange i et vilkarligt legeme
F. Definitionen ngdvendigger, at multiplikation af skalarer opfylder den kommutative
lov, sa vi skal derfor i dette kapitel for farste gang bruge, at det for skalarer a,b €
gaelder, at ab = ba. En vigtig teoretisk anvendelse af determinanten er, at den afggr,
hvorvidt en kvadratisk matrix er invertibel eller ej, og deraf navnet determinant, som
skyldes Gauss. Determinanten udregnes lettest ved at benytte dens definerende egen-
skaber. Denne udregningsmetode kan minde om Gauss-elimination med den forskel,
at nogle operationer @&ndrer determinanten, omend pa en kontrolleret made. Man skal
dog passe pa med ikke at glemme denne forskel. Endelig findes der en lukket formel for
determinanten af en n x n-matrix, som skyldes Leibniz, men denne formel indeholder
n! summander og er derfor mest af teoretisk interesse.

3.1 Determinant af 2 x 2-matrix
Lad os farst betragte det 1-dimensionale tilfaelde. Det 1-dimensionale parallelepipedum
udspaendt af en vektor a = (a) € R! defineres som intervallet
P = {aceR'|0sc=<1} c R
Vi definerer det 1-dimensionale volume eller leengden af P til at veere absolutveerdien
vol(P) = |al.
Tilsvarende er det 2-dimensionale parallelepipedum udspaendt af de to vektorer
ar = (an)’ ay = (a12)
a21 a2g
defineret til at veere parallelogrammet
P={aici1+asce|0<cqi,co<1}c Rz;

se Figur for en illustration af denne delmaengde. Som vores notation antyder, vil vi
teenke pa de to vektorer a1,as € R2 som sgjlevektorerne i matricen

A=(a: az):(gi Z;z)eMz(R).
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3 Determinant

aAg91+QA92 |~

g~

Q1| A |

ai2 a11 Qa11+ai2

Figur 3.1: Parallelogrammet udspaendt af to vektorer

Vi forestiller os, at det 2-dimensionale volumen eller areal af parallelogrammet P
tilsvarende skal vaere givet som absolutvaerdien

vol(P) = |det(A)|

af en skalar det(A), der afhaenger af 2 x 2-matricen A. Vi diskuterer nu, hvordan vi vil
forvente, at afbildningen det: Ms(R?) — R skal opfere sig, hvilket figuren illusterer.

as —
a2 a]. - a2 e2
a a;

e

Figur 3.2: Determinanten opfylder (1) det(b1 + €1 a2) = det(b1 a2) +det(e1 az), (2)
det (a1 agc) = det(a; az)c, (3) det(a a)=0 (4) det(e1 ez) =1

Hvis vektoren a; = b1 + ¢1 er en sum af to vektorer, da forventer vi rimeligvis, at
arealet af parallelogrammet udspaendt af a; og a2 er lig med summen af arealerne af
parallelogrammerne udspaendt af henholdsvis b1 og a2 og af ¢1 og as. Tilsvarende, hvis
as = bs + c9 er en sum af to vektorer, da vil vi forvente, at arealet af parallologrammet
udspaendt af @; og as er lig med summen af arealerne af parallelogrammerne udspaendt
at henholdsvis a1 og by og af a; og co. Hvis vi erstatter @a; med a; - ¢, men bibeholder
aq, da vil vi forvente, at arealet af de tilsvarende parallelogrammer ganges med |c|;
tilsvarende, hvis vi erstatter as med as - ¢, men bibeholder a1, da vil vi igen forvente,
at arealet af de tilsvarende parallelogrammer ganges med |c|. Hvis @1 = a9, da forven-
ter vi, at arealet af det parallelogram, de udspeender, er lig med 0. Endelig, veelger vi
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3.1 Determinant af 2 x 2-matrix

at normere vores arealmal, sddan at enhedskvadratet har areal 1. Vi gnsker altsa, at
afbildningen det: M2(R) — R har de folgende egenskaber:

(D1) Hvis a1 = b1+ cq eller as = bs + ¢9, da gaelder det, at

det (bl ag) +det (01 az) =det (a1 a2) =det [a1 bz) +det (a1 02) .

(D2) Hvis a erstattes af a; - ¢ eller ag erstattes af as - ¢, da geelder det, at

det(ai-c ag)=det(a1 ag)-c=det(a; az-c).

(D3) Hvis a1 = ag, daer det(a1 a1)=0.
(D4) Hvis a = e1 og ag = ey er standardenhedsvektorerne, da er det(e; e2)=1.

Det viser sig, at der netop findes én sadan afbildning:

Saetning 3.1.1 Lad [ vare et legeme. Afbildningen det: Mo(F) — F defineret ved

a1 a2
det( ) = Q11022 —@12021
a1 a2

opfylder (D1)—(D4) og er entydigt bestemt herved.

Bemszerkning 3.1.2 (1) I mere leesevenlig form siger formlen i seetning|3.1.1] at

a b

det(c d

):ad—bc.

(2) Hvis man begynder med arealet (a11+a12)(a21 +a22) af det store rektangel i figur (3.1
og derfra traekker arealet af de rektangler, der tilsammen udggr omradet udenfor pa-
rallelogrammet, sa far man samme formel ai1a99 —a12a91.

Fgr vi beviser seetning|3.1.1} viser vi, at egenskaberne (D1)-(D3) medfgrer de fglgende
yderligere egenskaber:

(D5) Hvis vektorerne a; og as ombyttes, da geelder det, at

det (a1 az) = —det (az a1) .

(D6) Hvis et multiplum af en af vektorerne a; og as adderes til den anden, da gaelder
det, at

det(@1+az-c az)=det(a1 as)=(a1 ai-c+ay).
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Her fglger (D5) fra udregningen
det(a1 ag)+det(az ai) =det(a: az)+det(a; ai)+det(az ai)+det(as aq)
=det(a; ai1+az)+det(as a;+as)
=det(a;+as ai+as) =0,

hvor de fire identiteter folger fra henholdsvis (D3), (D1), (D1) og (D3). Pa lignende vis
fglger den fagrste identitet i (D6) fra udregningen

det(@1+az-c as) =det(a; ag)+det(az-c as)
=det(a; ag)+det(as a2)-c
=det(a1 a2),

hvor de tre identiteter fglger fra (D1), (D2), og (D3). Den anden identitet i (D6) vises
helt tilsvarende.

Bevis (for Szetning[3.1.1) Man viser let, at den givne afbildning opfylder (D1)—(D4),
sa vi ngjes med at vise, at disse egenskaber bestemmer afbildningen entydigt. Vi skriver
derfor forst a1 = e1a11 + esagq og far da fra (D1) og (D2), at

det(a@1 ag)=det(eia11 ag)+det(ezasr as)=det(er ag)aii+det(es as)as;.
Derngest skriver vi as = e1a12 + e2a99 og far fra henholdsvis (D6), (D2) og (D4), at
det(e1 ag)=det(e1 egag)=det(e1 e2)ass=ass,
mens henholdsvis (D6), (D2), (D5) og (D4) viser, at
det(e2 ag)=det(ex ejaiz)=det(es e1)aiz=—det(er ez)aiz=—ais.
Tilsammen viser disse udregninger altsa, at (D1)—(D4) medferer, at
det(a1 a2)=agai1—aizasn,

som gnsket. O

Eksempel 3.1.3 Vi illustrerer, hvordan (D1)-(D4) og de afledte egenskaber (D5)—(D6)
kan anvendes til at udregne determinanten.

5 3)|we -1 3\ we -1 0)we -1 0)\w» 1 0y oo
det(7 4) = det(_1 4) = det(_1 1) = det( 0 1) = det(O 1) (-1) = -1

I de forste tre ligheder bruger vi (D6) pa fglgende méade: i den forste erstatter vi den
forste sgjle med den forste sgjle plus den anden sgjle gange —2; i den anden erstatter
vi den anden sgjle med den anden sgjle plus den fgrste sgjle gange 3; og i den tredje
erstatter vi den fgrste sgjle med den fgrste sgjle plus den anden sgjle. Den fjerde lighed
benytter (D2) pa den farste sgjle, og den sidste lighed fglger fra (D4). Naturligvis giver
formlen “a11a22 —ai2a2:” fra setning [3.1.1I samme resultat.
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3.2 Determinant for n x n-matricer

3.2 Determinant for n x n-matricer

Vi definerer nu determinanten af en n x n-matrix med indgange i et legeme F ved at
generalisere den definition for 2 x 2-matricer, som vi gav i afsnit 3.1} For F = R definerer
vi endvidere det n-dimensionale volumen af det n-dimensionale parallelepipedum

P={aic1+---+a,c,|0=<cy,...,cp,<1}cR”
udspaendt af @q,...,a, € R" til at veere absolutvaerdien
vol(P) =|det(a1 aq ... a,)|
af determinanten af den reelle n x n-matrix, der har a1,...,a, som sgjler. Den fglgende

saetning er vores anden hovedssetning.

Seetning 3.2.1 Lad [F vare et legeme og lad n vare et naturligt tal. Der findes da en
entydigt bestemt afbildning det: M, (F) — F med folgende egenskaber:

(D1) Forallel<k<nogai,...,ap_1,bp,cp,ar.1,...,a, € F"* gaelder det, at

det(ay ... bp+ep ... ay)=det(ay ... by ... @a,)+det(ay ... c; ... a,).

(D2) Forallel<k<n, ai,...,a, €F"* og c € gzelder det, at

det(@i ... ap-c ... ap)=det(a; ... ai, ... ay)-c.

(D3) Forallel<k<l<nogai,...,a, cF"* med a;, = a;, gelder det, at

det(ai ... ap ... a; ... a@,)=0.

(D4) For standardenhedsvektorerne eq,es...,e, € F" gelder det, at

det(e1 ez ... e,)=1.

Bemaerkning 3.2.2 Vi kan betragte determinanten som en afbildning
det: F*" x--- xF* —F,

der til en n-tuple (a1,...,a,) af sgjlevektorer tilordner skalaren det(a; ... @), og da
udtrykker (D1)—(D2), at determinanten opfylder betingelserne (LL1)—(L2) for en lineser
afbildning i hver faktor F". Vi siger, at en sadan afbildning er multilinezr. Endvidere
siges en multilineaer afbildning, der ogsa opfylder (D3), at veere alternerende. Saledes
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3 Determinant

er determinanten den entydige alternerende multilinesere afbildning, der pa standard-
basen (eq,...,e,) tager veerdien 1. Denne sidste egenskab (D4) er naturligvis temmelig
arbitreer, og beviset for seetning[3.2.1] viser da ogsa mere generelt, at der for ethvert a € F
findes en entydig multilineser alternerende afbildning, der pa standardbasen (ej,...,e;,)
antager vaerdien a € F.

I beviset for ssetning anvender vi undervejs, at de definerede egenskaber ved
determinanten har fglgende konsekvenser.

Saetning 3.2.3 Lad [F vaere et legeme, og lad n vaere et naturligt tal. Huis en afbildning
det: M, (F) — [ tilfredsstiller (D1)—(D3), da gzelder endvidere fplgende udsagn:

(D5) Huis B er matricen, der fremkommer fra A ved ombytning af to sgjler, da er

det(B) = —det(A).

(D6) Huis B er matricen, der fremkommer fra A ved at addere et multiplum af en sgjle
i A til en anden sgjle i A, da er

det(B) = det(A).

Bevis Vi viser forst (D5). Sa lad A vaere en n x n-matrix og lad B vaere matricen, der
fremkommer fra A ved ombytning af den %’te og [’te sgjle, hvor 1<k <[ <n.

det(A) +det(B) = det(... ar ... a; ...)+det(... a; ... a; ...)

2 de t( . a] ...)+det(... a ... a; )

+det(... a, ... a, ...)+det(... a ... q )
2 de t( ...ap+a; ...)+det( a ... ap+aq )

D1) ( 0

D1 det ) (D3)

.apt+a; ... ap+a; ...

hvilket beviser (D5). Tilsvarende, lad B vaere matricen der fremkommer fra A ved at
addere multiplummet a; - ¢ af den [’te sgjle a; til den %’te sgjle @;,. Hvis k <, da er

det(B) = det(... ap+a;-c ... a; ...)
(D—Ddet[ a; ..)+det(... aj-c..a ..)
2 de t( a; )+det( ... a )c
2 get (... ...) = det(A),
hvilket beviser (D6) for k£ < [, og beviset for & > [ er ganske tilsvarende. O
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3.2 Determinant for n x n-matricer

For at vise at determinantafbildningen findes, giver vi i beviset for seetning en
rekursiv definition af determinanten, som bruger fglgende definition.

Definition 3.2.4 Lad A vaere en m x n-matrix. Givet 1 <i<m og 1 <j <n, er den
(i,7)te undermatrix af A den (m —1) x (n—1)-matrix A;;, der fremkommer fra A ved at
fjerne den i’te raekke og den j’te sgjle:

all ) a]_j ) aln
Ajj=|@ir——aj——Qin
Aml *°° Qmj " Omn

Hvis A er en kvadratisk matrix af orden n, da er den (7, j)’te undermatrix A;; specielt
en kvadratisk matrix af orden n — 1.

Eksempel 3.2.5 Vi betragter som eksempel 3 x 3-matricen

5 -1 1
A=10 2 -3f.
2 6 4

Den (1,1)'te undermatrix A1 og den (2,3)'te undermatrix Aoz er da henholdsvis
-1 1 5 -1
A11: 2 -3|= 2 og A23: 0 2 = o =l 5
6 4 9 6 2 6

6 4
som begge er 2 x 2-matricer.

Bevis (for setning [3.2.1) Vi gnsker at vise eksistens og entydighed af en afbildning
det: M, (F) — [, der opfylder (D1)—(D4), og vi begynder med eksistensen, som vi viser
ved induktion pa n = 0. For n = 0 har meengden M, (F) praecis ét element, nemlig den
tomme matrix ( ), og vi definerer da det: Mo(F) — F til at veere afbildningen givet ved

det( )=1.

Afbildningen opfylder trivielt (D1)—(D3), da der ikke findes 1<j<neller1<j<k <n,
mens (D4) er opfyldt per definition.
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3 Determinant

Vi antager derfor induktivt, at determinant afbildningen med de gnskede egenskaber
er defineret for n = p — 1, og definerer afbildningen det: M,(F) — R ved formlen

P .
det(A) = ) (-1)'*/ay;det(A1)) (3.2.6)
J=1

hvor Ay, er den (1, j)’'te undermatrix af A, som er kvadratisk af orden p —1. Vi skal vise

at denne afbildningen opfylder (D1)—(D4). For at vise (D1), betragter vi kvadratiske
matricer A,B,C € M,(F), sidan at

aij=bij=cyj
for alle 1 <i,j < p med j # %k, mens

air =bik +cip,
forallel<i<p.Saforallel<j<pmedj#k erden jte sgjlei A lig med den j’te sgjle
ibade B og C, mens den k’te sgjle i A er lig med summen af den £’te sgjle i B og den £’te

sgjle i C, og vi gnsker at vise, at det(A) = det(B) + det(C). Da (D1) per induktion gaelder
for kvadratiske matricer af orden p — 1, geelder det, at

det(A1;) = det(By;) +det(Cy; )
for alle 1 <j < p med j # &, mens
det(A1;) = det(B1) = det(C1z),
fordi A1z = By = Cqp. Derfor far vi nu ved at indseette i1 (3.2.6), at

P .
det(4) =) (-1)"*ay;det(A1))
j=1

Z (-D™ay;(det(B1) +det(C1))) + (=1 b1y + c11) det(A1z)

p .
+ Z (—1)1+Ja1j(det(Blj)+det(C1j))
J=k+1

p
(-1)'*/by;det(By)) + Z( 1)*/e1;det(C1)) = det(B) + det(C)
1 J=1

J=

som gnsket. Dette viser, at (D1) gaelder for n = p, og beviset for (D2) er tilsvarende.

For at vise (D3), betragter vi forst tilfaeldet, hvor 1 <% < p og den k’te og (k + 1)'te sgjle
i A erens. Hvis j#k og j# k+1, da har undermatricen Ay; igen to ens sgjler, sidan at
det(A1;) = 0 per induktion. Desuden er Ay, =Aj .1, sddan at

4 .
det(A) = ) (-1)'*ay;det(A1))

J=1
= (=D det(A1) + (D a4 det(A1241) =0,
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3.2 Determinant for n x n-matricer

hvilket viser, at (D3) gaelder i tilfeeldet, hvor to nabosgjler er ens. Dette medfgrer ved et
argument svarende til beviset for (D5) i seetning[3.2.3] at determinanten af en kvadra-
tisk matrix af orden p skifter fortegn, hvis to nabosgjler ombyttes, hvilket vi nu bruger
vi for at vise, at (D3) geelder i det generelle tilfelde. Sa antag, at den j’te og k’te sgjlei A
er ens, hvor 1 < j <k < p. Ved at lave £ —j—1 ombytninger af nabosgjler kan vi omdanne
A til en matrix B vis j’te og j + 1’st sgjler er ens, og ved at bruge (D5) gentagende gange
for nabosgijler, ser vi, at det(4) = (~1)*/~1det(B), og vi har lige vist at det(B) = 0 fordi
den har to ens nabosgjler. Sa det(A) = 0 og (D3) falger.
Endelig fplger det fra (3.2.6), at

det(e1 ez ... ep,)=1-det(e1 ... ey-1)+0+---+0=det(e1 ... en-1),

og per induktion er den feelles vaerdi lig med 1, hvilket viser at ogsa (D4) geelder. Vi har
nu vist induktionsskridtet, og vi har saledes for alle n = 0 defineret en afbildning

det: M, (F) — T,

der opfylder (D1)—(D4).

Vi mangler at vise, at afbildningen det: M, (F) — F defineret ovenfor er den eneste
afbildning, der opfylder (D1)-(D4), hvilket vi igen ggr ved induktion pa n = 0. Hvis
n=0,o0g D: My(F) — F opfylder (D1)-(D4), da er D( ) = 1 ifslge (D4), hvilket viser, at
D = det som gnsket. S& vi antager, at det: M,_1(F) — [ er den eneste afbildning, der
opfylder (D1)~(D4), og lader D: M,(F) — [F veare en afbildning, der opfylder (D1)-(D4),
og viser, at D =det. Hvis A = (a1 a2 ... a,) € M,(F), s& kan vi anvende lemmatil
at skrive den fgrste sgjle a1 som en linearkombination

a;=ejail +ezagr +--tepdpl
af standardbasen (ey, ey,...,e,) for F” og konkluderer da, at

D(A)=D (e1ai1 @2 ... ap)+D(e2as1 as ... ap)+---+D (epaps as ... ap)

=D(e1 a2 ... ap)ain+D(e2 as ... aplagi+---+D(ep as ... ap)ap,
hvor vi anvender henholdsvis (D1) og (D2) for afbildningen D. Vi pastar, at
D(e; as ... ap)=(-1)""'det(A;1)

for alle 1 <i < p. Vi konkluderer heraf, at
P .
D(A) =Y (-1 det(A;1)a1,
i=1
hvilket viser, at D = det, idet den samme formel ngdvendigvis geelder for det(A), da

ogséa det: M,(F) — [ opfylder (D1)-(D4). For at bevise pastanden, lader vi 1 <i < p vare
fastholdt og anvender (D6), som er en konsekvens af (D1)—(D3), til at skrive

D(e; az - ap)=D(e; az—eja;2 - ap—e;a;p).
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Vi bemeerker, at matricen til hgjre kun afthaenger af den kvadratiske matrix A;; af orden
p — 1. Mere przecist, hvis B € M,_1(F) er en vilkarlig kvadratisk matrix af orden p -1,
da definerer vi B € M,(F) til at veere matricen

0 b11 bip-1
0 bi—11 bi-1p-1
=11 0 0
0 b1 bip-1
0 bp-11 bp-1,p-1
der er kvadratisk af orden p, og vi har da, at
0 ai2 aip
0 aj-12 ai-1p|
(ei as—e;a;g - ap—eiaip): 1 0 0 :Ail

0 aij+12 Qi+l,p
0 ape Ap,p

Vi bemeerker dernzest, at afbildningen d: M,_1(F) — F defineret ved
d(B)=(-1)'""D(B)

opfylder (D1)-(D4). For egenskaberne (D1)-(D3) fglger fra de tilsvarende egenskaber
for D, mens (D4) fglger fra udregningen

d(e1 ep_l):(—l)i_lD(ei el ...e;_1 €41 ... ep):D(el

hvor den fgrste identitet er definitionen af d, den anden fglger fra (D5) for D, idet vi
for at eendre (e; e1 --- e;—1 €41 -+~ ep) til (eq - e,) skal bytte om
pa to raekker i — 1 gange, mens den tredje falger fra (D4) for D. Det folger derfor fra den
induktive hypotese, at d(B) = det(B) for alle B € M,,_1(F). Iszer er

e-1€ ey

(-1 'D(A7y) = d(A;1) = det(A;),
hvilket viser den gnskede pastand, at
D(e; az -+ a,)=D(A;1)=(-1)""1det(A;)).

Dette beviser induktionsskridtet og dermed entydigheden af determinanten. O
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3.2 Determinant for n x n-matricer

Eksempel 3.2.7 Vi anvender determinantens egenskaber til at udregne:

200 100 100 100
det(2 3 0) Pdet|{1 3 0 -2(D:2)det(1 1 0)-3-2(1):2)det(1 1 o)-4-3-2
2 3 4 13 4 11 4 111
100 100
Pdet|f0 1 0 -4-3-2“):6)det(0 1 0)-4-3-2‘%"1-4-3-2:24,
01 1 00 1

hvor de forste tre ligheder bruger (D2) pa den forste, anden, og tredje sgjler i matricen,
den fjerde erstatter den fgrste sgjle med den forste sgjle minus den anden sgjle, og den
femte lighed erstatter den anden sgjle med den anden sgjle minus den tredje sgjle.

Det fglger fra beviset for saetning |3.2.1, at der geelder falgende rekursive formler for
determinanten. Disse formler kaldes for Laplace-udvikling, da de skyldes Laplace.

Saetning 3.2.8 (Laplace) Lad A veare en n x n-matrix med indgange i et legeme F.

(D7) Determinanten af A kan udregnes ved udvikling langs i’te raeekke:

n

det(A) = ) (-1)'*a;;det(A;)).

Jj=1
(D8) Determinanten af A kan udregnes ved udvikling langs j’te sgjle:

det(A) = ) (-1)"*/ det(A;))a;;.
i=1

Bevis Vi beviser forst (D7). I eksistensdelen af beviset for satning beviste vi,
at det(A) definereret ved udvikling langs fgrste raeekke opfylder (D1)-(D4). Valget af
den fgrste raekke spillede dog ingen rolle, og en mindre modifikation af beviset viser
at udvikling af deteminanten langs en vilkarlig reekke ligeledes opfylder (D1)—(D4).
Resultatet fglger derfor fra entydigheden af determinanten.

Vi beviser dernast (D8). Ifglge beviset for entydighedsdelen af seetning[3.2.1]er

det(A) = > (-1 det(A;ai = 3 (-1 det(Aiasn,
1

n
=1 i=

hvilket viser (D8) for j = 1. Vi lader nu B vaere den matrix, der fremkommer fra A ved
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at ombytte den farste sgjle og den j’te sgjle, og har da identiteten

n .
det(B)= Y (-1)"*det(B;1) b1,
=1

som vi netop har bemserket. Det fglger da fra (D5) er det(B) = —det(A), og per definition
af matricen B er b;1 = a;;. Endvidere fremkommer B;; fra n x (n — 1)-matricen

Bi=(bz - bj_1 bj bjs1 - by)=(az -+ aj-1 a1 aji1 - ay)
ved at fjerne den i’te raekke, mens A;; fremkommer fra n x (n — 1)-matricen
AJ:(al as - aj—l aj+1 .o an)

ved at fjerne den i’te raekke. Vi bemeerker nu, at A ; kan omdannes til B; ved at foretage
J — 2 ombytninger to sgjler. Det fglger heraf, at A;; ligeledes kan omdannes til B;; ved
at foretage j — 2 ombytninger af to sgjler, og derfor viser (D5), at

det(B;1) = (-1)’ 2 det(A;).

Vi har saledes alt i alt vist, at

det(A) = —det(B) = — i(—l)iJrldet(Bil)bil

1=1
==Y (D" 2 det(A; )a;; = ) (-1 det(A; ) ai;
i=1 i=1
som gnsket. Dette viser (D8) og dermed saetningen. O

Eksempel 3.2.9 Vi udregner determinanten af matricen

5 -1 1
A=10 2 -3
2 6 4

fra eksempel Laplace-udvikling langs fgrste sgjle giver
det(A) =det(Aq11)-5—det(Ag1)-0+det(Asy)-2,

hvor

-1 1

-1—1
A11: 2 -3|= 2 -3 og A31= 2 -3 |= -1 L °
6 4 6 4 2 -3
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Vi behgver ikke at udregne As; og dens determinant, da as; = 0. Fra seetning har
vinu, at det(A11)=2-4—-(-3)-6 =26 og det(A31)=(-1)-(-3)-1-2=1, sa

det(A)=26-5+1-2=132.

Vi bemeerker, at det altid er en fordel at udvikle en determinant langs en raekke eller
sgjle, der indeholder mange nuller, jo flere desto bedre. For dermed behgver man ikke
udregne de tilsvarende summander i Laplace-udviklingen. I dette eksempel kunne vi
lige sa godt have valgt at udvikle determinanten langs den anden rakke.

Bemaerkning 3.2.10 Det er naturligvis vigtigt at huske fortegnene i udviklingen af
determinant efter en reekke eller en sgjle. De minder om et skakbraet

+ - + -

w2 3) () N

+ - +
- 4+ - 4+

hvor man begynder med “+” i det gverste venstre hjgrne.

Seetning 3.2.11 Lad [ veere et legeme og lad (-)* : F — F vaere en skaevinvolution. Huis
A er en n x n-matrix med indgange i F, og hvis A* er den adjungerede matrix, da er

det(A*) = det(A)".

Bevis Beviset er igen ved induktion pa n = 0. For n = 0 er s&tningen triviel, sa vi
antager, at s@tningen allerede er bevist for n = p — 1 og beviser den for n = p. Lad os
skrive a;j = a;‘.i for den (7, j)’'te indgang i A*. Da endvidere (A*);; = (A };)*, geelder det, at

p . p .
det(A™) = ) (=D det((A")iDaj; = ) (-1 det(A1))")a];
i=1 j=1

p . p .
= Z(—l)lﬂ det(A ;)" aL- = (Z(—1)1+Jalj det(A1;))" = det(A)",
j=1 j=1
hvor den fgrste lighed folger fra (D8); den anden fra vores indledende bemeerninger;
den tredje fra den induktive hypotese, at seetningen geelder for (p — 1) x (p — 1)-matricer;

den fjerde fra definitionen af en antiinvolution; og den femte fra (D7). Vi har nu vist
induktionsskridtet og dermed saetningen. O
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Korollar 3.2.12 Hvis A er en kvadratisk matrix med indgange i et legeme [, og hvis
Al er den transponerede matrix, da gzlder det, at det(A?) = det(A).

Bevis Dette er udsagnet i seetning(3.2.11]i det tilfaelde, hvor (-)* =id: F — F. O

Eksempel 3.2.13 Korollar (3.2.12|og eksempel viser, at

2 2 2 200
det|0 3 3|=det|2 3 0=24.
0 0 4 2 3 4

Desuden viser seetning|3.1.1} at

2 1

det(_i 4):2-4—1-(—i):8+i og det(z !

1 4)22'4—L-1:8—L.

Sa de to komplekse matricer, der er hinandens adjungerede matrix, har konjugerede
determinanter, som de skal have ifglge seetning|(3.2.11

Korollar 3.2.14 Huis A er en hermitisk kompleks matrix, da er det(A) et reelt tal.

Bevis Vilader F = C med kompleks konjugation som skavinvolution. Vi minder om, at
en kvadratisk matrix A med indgange i C per definition er hermitisk, hvis A = A*. Vi
konkluderer derfor fra seetning|3.2.11, at

det(A) = det(A™) = det(A)",

hvilket viser, at det(A) er et reelt tal. For z € C er reel, hvis og kun hvis z = z*. O

Eksempel 3.2.15 Ifglge seetning er

2 1

det(_i 4) =2-4-(-i)-i="T.

Determinanten af denne komplekse hermitiske matrix er altsa reel, hvilket den skal
veere ifglge korollar(3.2.14

Den fglgende seetning giver en version af (D1)-(D3) og (D5)—(D6) for reekkevektorer i
stedet for sgjlevektorer i matricen.
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Saetning 3.2.16 Lad [ vaere et legeme og n et naturligt tal. Fplgende udsagn geelder:
(DY) Foralle1<j<nogai,...,aj1,bj,¢c;,aj1,...,a, € M1 ,(F)er
ai a] a
det| bj+c; |=det| b, |+det| ¢;

(D2) Forallel<j<n, ay,...,a, € M1 ,(F)og c €F gzlder det, at

a] al
det| c-a; |=c-det| a;
an an

(D3’) Huis A € M, ,(F) har to ens reekker, da er det(A) = 0.
(D5’) Hvis B fremkommer ved ombytning af to reekker i A, da er det(B) = —det(A).

(D6’) Hvis B fremkommer fra A ved at addere et multiplum af en raekke i A til en
anden rekke i A, da er det(B) = det(A).

Bevis Hvis ay,...,a, € My ,(F) er rekkevektorer, da er a!,...,a, € M, 1(F) sgjlevekto-
rer, og ifglge korollar|3.2.14| har n x n-matricen

a;
A= |eM,[F)

an

den samme determinant som dens transponerede n x n-matrix

¢
ai

At=| | =(a - at)e M,

ap,

De gnskede identiteter (D1’)—(D3’) og (D5’)—(D6’) angaende raekkevektorer fglger nu fra
de tilsvarende identiteter (D1)—(D3) og (D5)—(D6) angaende sgjlevektorer. O
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3 Determinant

Vi illustrerer i detaljer i naeste afsnit, hvordan raekkeoperationer og sgjleoperationer
anvendes til at udregne determinanter. Men forst viser vi et par yderligere resultater
om determinanten.

Saetning 3.2.17 Hvis A og B er n x n-matricer med indgange i et legeme [, da er

det(AB) = det(A)det(B).

Bevis Givet a €[, betragter vi afbildningen det, : M, (F) — F defineret ved
det,(B) = a -det(B).

Ved en mindre modifikation af beviset for entydighedsdelen af satning kan man
vise, at denne afbildning er entydigt bestemt ved, at den opfylder (D1)—(D3) i seet-
ning [3.2.1]samt den nye betingelse (D4),, at det,(I,) = a. Det er derfor tilstreekkeligt at
vise, at afbildningen d : M, (F) — F defineret ved

d(B) =det(AB)
opfylder (D1)—(D3) samt (D4),, hvor a = det(A). For da giver entydighedsudsagnet, at

d(B) = det,(B), hvilket preecis giver det(AB) = det(A)det(B) som gnsket. Vi viser nu, at
afbildningen d : M,,(F) — F opfylder (D1). Hvis B= (b1 --- b, --- b,),daer

biil-1bisl---1b
a1l aiz2 - Qip b;i b;z b;n

AB= . _ Tl =(Aby - Aby --- Aby)
Anl Gn2 **+ Qnn bui | | bpp | -+ | bun

ifglge definitionen af matrix produktet. Hvis derfor by, = ¢ +dp, da er

d(bl - by - bn) :det(Ab1 - Alep +dyp) --- Abn)
:det(Ab1 -~ Aep+Ady --- Abn)
=det(Ab; --- Acp -+ Ab,)+det(Aby -+ Ady, --- Aby,)
:d(b1 e Cp e bn)+d(b1 ceedy bn),
hvilket viser, at d : M,,(F) — [ opfylder (D1). Her fglger den fgrste lighed og fjerde lighed
fra definitionen af matrix produktet, den anden lighed fglger fra den distributive lov for

matrixmultiplikation, mens den tredje lighed fglger fra (D1) for determinanten. Beviset
for (D2) og (D3) er tilsvarende, mens (D4), fas fra d(I) = det(AI) = det(A) =a. d
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3.2 Determinant for n x n-matricer

Korollar 3.2.18 Huvis en kvadratisk matrix A er invertibel, sa er det(A) invertibel, og
det(A™1) = det(A) L.

Iszer er det(A) # 0.

Bevis Da AA 1=1=A"1A, viser ssetning|3.2.17, at
det(A)-det(A 1) =det(AA ) =1 =det(A"1A) = det(A™ 1) - det(A),

idet det(I) = 1. Derfor er det(A) er invertibel med invers det(A1). O

Eksempel 3.2.19 Vi har set i eksempel [2.4.10, at matricerne

(1 2 (35 =2/5) 4
A_(—l 3) = B‘(l/s 1/5)‘A

er hinandens inverse, og ifglge saetning er deres determinanter
det(A)=1-3-(-1)-2=5 og detB)=—=--—-—": (—=)=—=

De er dermed hinanden inverse, som de skal veere ifglge korollar(3.2.18

Bemaerkning 3.2.20 Hvis A og B er n x n-matricer, da medfgrer den kommutative lov
for multiplikation af skalarer samt seetning|(3.2.17, at det altid geelder, at

det(AB) = det(A)det(B) = det(B)det(A) = det(BA),
ogsa selvom matricerne AB og BA sadvanligvis ikke er ens. Vi bemarker ogsa, at
det(A + B) # det(A) + det(B),

undtaget i trivielle tilfaelde.

Eksempel 3.2.21 Vi betragter 2 x 2-matricerne

1 0 1 1 1 1 1 -1
A—(O _1) og B—(O 1) med AB—(O _1) og BA—(O _1).

Selvom AB # BA, sa er det(AB) = -1 =det(BA).
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3 Determinant

Vi giver endelig en lukkeﬂ formel for determinanten af en n x n-matrix. En bijektiv
afbildning 0: {1,2,...,n} — {1,2,...,n} kaldes for en permutation af n bogstaver. Der er

nl=n-(n-1)-(n-2)- ... -1

forskellige permutationer af n bogstaver. En permutation o af n bogstaver kaldes for en
transposition, hvis der findes 1<k <[ <n, sadan at

[ hvisi=k,
o(i)=4k hvisi=|I,
1 ellers.

Man kan vise, at enhver permutation kan udtrykkes som en sammensatning af et antal
transpositioner. En sadan opskrivning er dog generelt ikke entydig.

Eksempel 3.2.22 De 2! = 2 permutationer af 2 bogstaver er identitetsafbildningen
id: {1,2} — {1,2} og transpositionen o : {1,2} — {1,2}, der ombytter 1 og 2.
Til en permutation af n bogstaver o: {1,2,...,n} —{1,2,...,n} tilordner vi matricen
P(0)=(es1) €s@ ‘- €om) € Mn(F),

som vi kalder for den tilhgrende permutationsmatrix. Hvis o og 7 er to permutationer
af n bogstaver, sa er deres sammensaetning o o1 igen en permutation af n bogstaver, og

P(ogot1)=P(0)-P(1).
Vi definerer fortegnet af en permutationen o af n bogstaver til at vaere determinanten

sign(o) = det(P(0)) = det (es(1) €s@2) - o)) €F.

Eksempel 3.2.23 For de to permutationer af to bogstaver i eksempel [3.2.22| er

. (10 (01
P(1d)—(0 1) og P((f)—(1 O)’

sa deres fortegn er henholdsvis sign(id) = 1 og sign(o) = —1.

I Dette betyder, at formlen i modseetning til Laplace-udvikling ikke er rekursiv.
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3.2 Determinant for n x n-matricer

Det folger fra saetning|3.2.17, at hvis o og 7 er to permutationer af n bogstaver, da er
sign(o o 1) = sign(o) sign(7),

og det fglger endvidere fra (D5) at fortegnet af en transposition er —1. Generelt gaelder
det altsa, at hvis o er en permutation af n bogstaver, og hvis ¢ er en sammensatning af
r tranpositioner, da er sign(o) =(-1)" € F.

Seetning 3.2.24 (Leibniz) Lad A = (a;;) vare en kvadratisk matrix af orden n med
indgange i et legeme [F. Da er

det(A) =) sign(0)ay1)180@)2"* Com)n,
g

hvor summen lpber over de n! mulige permutationer af n bogstaver.

Bevis For alle 1 < j <n skriver vi den j’'te sgjle @; i A som en linearkombination

n
a; = Z e;a;;
i=1
af standardbasen (e,...,e,) for F". Vi far da ved gentagen brug af (D1) og (D2), at
det(A)=det(a; a2 -+ a,)

=) det(es1) €o@ - €on) Ar1)1052)2 " Ton)ns
g
hvor summen lgber over de n” mulige afbildninger o: {1,2,...,n} — {1,2,...,n}. Hvis en
sddan afbildning o ikke er injektiv, da har matricen (es1) €52 ‘- €o(n)) to eller flere
sgjler, der er ens, og derfor viser (D3), at dens determinant lig med nul. Det er saledes

kun summander, der er indicerede af injektive, eller eekvivalent, bijektive afbildninger
o:{1,2,...,n} —{1,2,...,n}, som bidrager til summen. Dette viser ssetningen. O

Eksempel 3.2.25 For en 2 x 2-matrix specialiserer seetning (3.2.24|til den formel

det (%11 @12) _
et = a11a22 — 21012,
ag1 ag2

som vi gav i s&etning(3.1.1} og for en 3 x 3-matrix, far vi formlen

ail aiz2 ais
det|ag1 a2 ag3| = aiiaga33+ai2a23a31 +0a13a21a32
asy as2 ass — 13022031 —Q12021A33 — Q11223032

med 3! = 6 summander. For en 4 x 4-matrix har formlen 4! = 24 summander, mens den
for en 5 x 5-matrix giver den 5! = 120 summander.
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3 Determinant

3.3 Triangulaere matricer og beregning af
determinanter

Der er to hovedmetoder til beregning af determinanter: (1) at bruge Laplace-udvikling
langs en raekke eller en sgjle samt (2) at anvende raekkeoperationer og sgjleoperationer
til at omdanne matricen til en triangulaer matrix, som vi nu definerer. Man skal dog her
veere forsigtig med at huske pa, at en reekkeoperation af type M;(c) og en sgjleoperation
af type M;(c) begge sendrer determinantens veerdi med faktoren c.

Definition 3.3.1 En n xn-matrix B = (b;;) kaldes for nedre triangulzr, hvis b;; = 0 for
alle 1 <i < j<m;guvre triangulzer, hvis b;; = 0 for alle 1 < j <i < m; og trianguleer, hvis
den er enten nedre trianguleer eller gvre trianguleer.

Specielt er en diagonal matrix en trianguleaer matrix. Generelt er diagonalindgangene
i en trianguleer matrix af saerlig betydning.

Eksempel 3.3.2 Blandt 3 x 3-matricerne
200 2 6 3 2 00
A=|0 8 0], B=|0 4 -6 og C=]|0 8 0
8 7 2 0 0 12 0 0 1

er A nedre triangulaer og B gvre triangulaer, mens C er bade gvre og nedre triangueer
og derfor en diagonal matrix. Vi har markeret diagonalindgangene med blat.

Saetning 3.3.3 Determinanten af en triangulser n x n-matrix B er lig med produktet
det(B) = b11b22 - bnn

af diagonalindgangene.

Bevis Vi beviser udsagnet for B nedre trianguleer; beviset for B gvre trianguleer er
ganske tilsvarende. Beviset er ved induktion pa n = 0, og tilfeeldet n = 0 gaelder trivielt.
Vi antager derfor, at udsagnet er vist for n = p — 1 og viser det for n = p. Sa vi lader

bi1 O o - 0

bgl b22 0 0
B=|bs1 bsz bz -+ 0

bpl bp2 bp3 bpp
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3.3 Triangulaere matricer og beregning af determinanter

og far ved Laplace-udvikling langs fgrste raekke, at
det(B)=b11-det(B11)+0-det(B1g)+---+0- det(Blp) =b11-det(B11).

Endvidere er undermatricen B1; en nedre trianguleer (p — 1) x (p — 1)-matrix med diago-
nalindgange bgg,...,b,,, sa ifslge den induktive antagelse er

det(B11) =bgg -+ bpp.
Dette viser induktionsskridtet og dermed saetningen. O

Det er altsa let at bestemme determinanten af en trianguleer matrix. Generelt for
en kvadratisk matrix A bestar den mest effektive strategi til bestemmelse af det(A)
i at anvende raekke- og sgjleoperationer til at omdanne A til en triangulaer matrix B,
hvorved det(A) udtrykkes ved det(B) ved hjeelp af saetning [3.2.1] [3.2.3] og [3.2.16] Da
det(B) er givet ved seetning[3.3.3] bestemmer dette det(A).

Eksempel 3.3.4 Vi betragter 4 x 4-matricen

W H O
=N O -
Ot = DN W
© W W O

og anvender raekkeoperationer til at omdanne den til en trianguler matrix B, idet vi
er omhyggelige med at notere, hvorledes disse operationer pavirker determinanten.

1 1 3 5 1 1 3 5
5 1 2 1 3|lon_ 0 1 -2 -2
det(A) =" —det o o 2 s3l|- det 0o 0 2 3
3 1 5 9 0 -2 -4 -6
1 1 3 5 1 1 3 5
@1 0 1 -2 -2]ov o 1 -2 -21_
= detfy o 9 g T Tty o o g|T*
0 0 -8 —-10 0 0 0 2

Her har vi fgrst anvendt (D5’) til at ombytte den anden og tredje reekke, hvilket sendrer
determinantens fortegn. Derefter har vi anvendt (D1’) til at addere —1 gange 1. raekke
til 2. reekke og —3 gange 1. raekke til 4. rekke. Vi har sa igen anvendt (D1’) til at
addere 2 gange 2. reekke til 4. reekke, og endelig har vi anvendt (D1’) til at addere 4
gange 3. raekke til 4. reekke. Seetning at determinanten af den gvre trianguleere
matrix B er 4, og vi konkluderer derfor, at det(A) = —4.
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3 Determinant

Eksempel 3.3.5 Til sammenligning bestemmer vi determinanten af 4 x 4-matricen A
i eksempel ved Laplace-udvikling langs 2. raekke.

det =—04+0-2-det

Ot = b W

1
0
1
3

H N D
H N DR
TR N W

5
3
3
9

W O M
_ DN O

11 11 11
:—2-(det 1 2 3|-5-det|t 2 3|-3+det|[1 2 -9]
3 3 1 3 1

1
13 113 11
+3 (3 det|1 2 1|-1-]1 2 1|+5-det|1 2 )
15 315 31
1 2 11 1
=2 (det(3 1)-5—det(3 1) 3+det(1 2) 9)

+3-(3-det(; ‘3) 1. dt(i )+5-det(i ;))
3.

= —2-((—5).5—(—2)-3+1.9) + (3-(—5)— 1-(—2)+5.1)
=-2-(-10)+3-(-8)=20-24 =—4.
Vi har valgt at udvikle determinanten langs 2. reekke, fordi den har mange nuller.
Vi har derefter udviklet den fgrste og anden 3 x 3-matrix efter henholdsvis 3. sgjle og

2. rekke, markeret med rgdt. Og endelig har vi brugt formlen i seetning til at
udregne de seks 2 x 2-determinanter.

Laplace-udvikling er mest anvendelig til bestemmelse af determinanten af matricer,
hvor de fleste indgange er nulE] Det er dog lettere at lave fejl og sveerere at opdage dem
ved Laplace-udvikling end ved udregning ved hjelp af reekke- og sgjleoperationer.

Eksempel 3.3.6 Vi udregner determinanten af matricen

2 16 3
A=|4 8 -6

8 16 12

2En sadan matrix kaldes for en “sparse matrix” pa engelsk.
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3.3 Triangulaere matricer og beregning af determinanter

ved at anvende sgjleoperationer til at omdanne A til en triangulere matrix.

2 16 3 1 2 1 1 0 0
det(A)=det{4 8 -6|Pdet|2 1 -2]-2¢-3Pdet|2 -3 -4].2¢.3

8 16 12 4 2 4 4 -6 0

1 0 0 1 0 0
Pget|2 1 1]-26.32%Pdet|2 1 0f.20.32=-2"32=_1152.
4 2 0 4 2 -2

Vi har fgrst anvendt (D2) til at flytte den feelles faktor 2 fra 1. sgjle, den feelles faktor
8 fra 2. sgjle og den faelles faktor 3 fra 3. sgjle udenfor determinanten; dernaest har vi
anvendt (D6) og har adderet 1. sgjle gange —2 til 2. sgjle og 1. sgjle gange —1 til 3. sgjle;
vi har sa anvendt (D2) til at flytte den faelles faktor —3 i 2. sgjle og den feelles faktor —4
i 3. sgjle udenfor determinanten; og endelig har vi anvendt (D6) og har adderet 2. sgjle
gange —1 til 3. sgjle. Seetning[3.3.3| giver determinanten af den trianguleere matrix.

Eksempel 3.3.7 Man kan ofte med fordel anvende bade (D1)—(D6) og de tilsvarende
raekkevarianter (D1)—(D6’) til at udregne determinanter. Som eksempel udregner vi
felgende determinant ved at ombytte reekker og sgjler, idet vi husker, at en ombytning
af to raekker eller sgjler skifter fortegn pa determinanten.

0O 0 0 0 3 8 1 2 3 4
0 2 0 0 5 0 2 0 0 5
det|f0 3 -2 0 -4 @ -detl0 3 -2 0 -4
0 -6 1 2 2 0 -6 1 2 2
8 1 2 3 4 0O 0 0 0 3
8 1 2 3 4 8 3 2 1 4
06 1 2 2 0 2 1 -6 2
@ det|l0 3 -2 0 —4| 2 _getlo0 0 2 3 —4|=26.3=192.
0O 2 0 0 5 0 0 0 2 5
0 0 0 0 3 0 0 0 0 3

Her har vi markeret med rgdt de reekker og sgjler, vi ombytter, og i den gvre triangu-
leere matrix til sidst har vi markeret diagonalindgangene med blat. Til sidst har vi
benyttet seetning til at udregne determinanten af den triangulaere matrix.
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3 Determinant

3.4 Determinant og invers matrix

Vi har set i korollar at determinanten af en invertibel matrix er invertibel, og
vi skal nu vise det omvendte udsagn. Mere preecist giver vi en formel for den inverse
matrix udtrykt ved determinanten. Vi husker pa, at et element i et legeme er invertibelt,
hvis og kun hvis det er forskellig fra nul.

Saetning 3.4.1 Lad [ veaere et legeme, lad A € M,,(F), og antag, at det(A) € [ er inverti-
bel. Da er matricen A invertibel og matricen C € M, (F), hvis (i, j)’te indgang er

¢ij = (1) det(A ;;)det(A) ",

er den inverse matrix af A. Her er Aj; den (j,1)’te undermatrix af A.

Bevis Vi udregner den (i, k)te indgang i produkt matricen D = AC,

n .
dir =Y aijcjr= . (-1)"*a;;det(As,)det(A) !,
1

n
Jj=1 j=

og betragter i =k og i # k seerskilt. Hvis i =k, da er
n . .
dii = (Y (-1Y""a;;det(A;))) det(A) ™! = det(A)det(A) ' =1,
j=1

hvor den midderste identitet er Laplace-udvikling af det(A) langs i’te reekke. Hvis i # &,
da betragter vi matricen B, der fremkommer fra A ved at erstatte den k’te reekke med
den i’te reekke. Pa den ene side viser (D3’), at det(B) = 0, da den i’te og k’te reekke i B
er ens. Og pa den anden side giver Laplace-udvikling langs den k’te raekke, at

n

det(B) = Y (=" by, det(Br,) = ¥ (-1 a;; det(Ay)),

j=1 j=1
hvor den anden lighed falger fra definitionen af B. Derfor er
dir, = (=1)"** det(B)det(A) ! = 0.

Dermed har vi vist at AC =D =1. Vi ser ligeledes, at CA =1, ved enten at foretage en
lignende udregning eller ved at bruge saetning(2.5.22 sa C = AL O
Korollar 3.4.2 Lad F veere et legeme, lad A € M,,(F). Matricen A er invertibel i M,(F),
hvis og kun hvis det(A) er invertibel i F. I givet fald er det(A™1) = det(A)~L.

120
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Bevis Det fglger af korollar|3.2.18|og seetning O

Bemsaerkning 3.4.3 Vi lader A € M,(R) veere en invertibel matrix og antager, at alle
indgange i A er heltal. Da er det(A) og det(A ;) ogsa heltal, og szetning[3.4.1] viser derfor,
at indgangene i C = A~! er rationale tal med samme naevner det(A). Dette forklarer at
matricen A~ i eksempel[2.4.10|havde indgangene af form m/5 med m € Z, idet det(A) = 5
i dette eksempel.

Eksempel 3.4.4 For 2 x 2-matricer viser seetning|3.4.1, at

-1 -1 =1
(an a12) _( agzgd " —aid

= -1 -1
agl ag —ag1d annd )’

forudsat at determinanten d = a11a99 —ag1a12 er invertibel.

Bemaerkning 3.4.5 Hvis [ er et legeme, sa skriver vi
SL,(F)c GL,(F)

for delmaengden af de invertible n x n-matricer, der bestar af de n x n-matricer, der har
determinant lig med 1. At sddanne matricer er invertible fglger fra saetning idet
1 € F er invertibel. Det fglger endvidere fra korollar [3.2.17, at hvis A,B € SL,(F), da er
ogsd AB € SL,(F). Dermed er (SL,(F), -) en gruppe, som defineret i bemerkning[2.4.15]
Vi kalder denne gruppe for den specielle linesere gruppe. Gruppen (SL,(R), - ) bestar
saledes af de lineaxere isomorfier af R”?, der bevarer volumen.

Hvis A er invertibel, sa har ligningssystemet Ax = b den entydige lgsning x = A~1b.
Denne lgsning kan ogsa udtrykkes ganske elegant ved hjelp af determinanter.

Saetning 3.4.6 (Cramers regel) Lad A veere en invertibel n x n-matrix med indgange
i et legeme F, lad ag,...,a, € F" vare sgjlevektorerne i A og lad b € F" vaere en vilkdrlig
sgjlevektor. Da er den entydige lpsning x = A™'b til ligningen Ax = b givet ved

Al det(@i ... @1 b @aji1 ... ay)

x=|: med a5 = .
» det(al ... Qi1 Q; Ajy] ... an)
n

Bevis Formlen for A~1=C =(¢; ;) fra seetning viser, at

n m o
X = (Cil cio C,;n)b = Z Cijbj = Z(—l)HJ det(Aji)det(A)_lbj,
j=1 j=1
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3 Determinant
og vi skal derfor vise, at
m . .
Z(—l)Hij det(AJ-i) =det (a1 ...ai-1 b a1 ... an) .
j=1

Summen pa venstre side er preecis udviklingen langs i’te sgjle af determinanten pa
hgjre side, sd den gnskede identitet fglger fra satning O

Eksempel 3.4.7 Vi betragter det reelle ligningssystem Ax = b, hvor

B g

Da det(A) = 17 er invertibel, sa er A ifglge saetning ogsa invertibel, og vi kan
derfor anvende seetning til at finde den entydige lgsning x. Saetningen siger, at

2 1 5 2
- det(3 4) 5 det(3 3) 9
x:( ) med Xx]=—————— = — og xX9g= ————— = —.
X9 det 5 1 17 det 5 1 17
© (3 4 3 4

3.5 Polynomier

Vi har allerede bemeerket, at for at definere determinanten er det ngdvendigt, at den
kommutative lov (P3) gaelder for multiplikation af skalarer, men vi har ikke brugt, at
enhver skalar a € F med a # 0 er invertibel. Vi kan derfor mere generelt tillade skalarer
i en kommutativ ring, som vi nu definerer. Alle resultater i dette kapitel gaelder stadig,
hvis legemet F erstattes af den kommutativ ring Z af hele tal eller F[¢] af polynomier
med koefficienter i F. Vi definerer sidstnaevnte, som vi anvender i kapitel [5, nedenfor.

Definition 3.5.1 En kommutativ ring er en triple (R, +, - ) af en maengde R og to af-
bildninger +: RxR — R og - : R x R — R, sadan at:

(A1) For allea,b,ceRer(a+b)+c=a+(b+c).
(A2) Der findes et element 0 e R, sddan ata+0=a =0+a for alle a € R.
(A3) For alleaeR, findesbe R, sadanata+b=0=5+a.

(A4) For allea,beRera+b=>56+a.
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(P1) For allea,b,ceRer(a-b)-c=a-(b-c).

(P2) Der findes et element 1€ R, sddanata-1=a=1-aforalleaeR.
(P4) For allea,beRera-b=>5-a.

(D1) For allea,b,ce Rera-(b+c)=(a-b)+(a-c)

(D2) For alle a,b,ce Rer(a+b)-c=(a-c)+(b-c).

Vi misbruger ofte notation og skiver blot R for den kommutative ring (R,+, -). Vi
siger, at a € R er invertibel, hvis der findes be R, sddan ata - b=1=>5 - a. Et legeme er
saledes en kommutativ ring, hvor 0 # 1, og hvor ethvert a € R med a # 0 er invertibelt.

Eksempel 3.5.2 (1) Meengden Z af hele tal sammen med afbildningerne +: Zx7Z — Z
og - : Zx7Z— Z givet ved saedvanlig sum og produkt af hele tal udggr en kommutativ
ring. Denne kommutative ring er ikke et legeme, da +1 € Z er de eneste invertible
elementer. For eksempel findes der ikke et b€ Z, sddanat2-b=1=5 - 2.

(2) Mzengden C%(R) af kontinuerte funktioner f: R — R sammen med afbildningerne
+: COUR) x COUR) — COUR) og - : CUR) x CO(R) — C°R) defineret ved

(f+8)x)=fx)+gx) og  (f 8)x)=[(x) gx)

udggr en kommutativ ring. Elementerne “0” og “1” i denne kommutative ring er de
konstante funktioner med veerdi 0 og 1, mens de invertible elementer er de kontinuerte
funktioner f: R — R, sadan at f(x) # O for alle x € R. For eksempel er id: R — R ikke
invertibel, da 1d(0) = 0.

Vi definerer et polynomium med koefficienter i en kommutativ ring R til at veere
en folge (ag,a1,a9,...) af elementer i en kommutativ ring R, sadan at a; # 0 for hgjst
endeligt mange i. Vi vil dog altid indfgre en variabel “t” og skrive

Zaiti

=0

i stedet for (ag,a1,a9,...), og vi siger da, at a; er koefficienten til ¢. Vi definerer nu
henholdsvis summen og produktet af to polynomier ved

O aith+Q bt =Y (a; +b)t

i=0 =0 =0
(Zaiti) . (Z bjtj): Z ( Z ai'bj)tk.
=0 j=0 k=0 i+j=k
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3 Determinant

Vi bemaerker, at sum og produkt af polynomier er defineret ved, at vi lader som om, den
variable “t” var et element i R.

Eksempel 3.5.3 Normalt undlader vi at skrive de koefficienter a;, der er lig med 0.
Sa en typisk sum og et typisk produkt af to polynomier er for eksempel

Q-2 +3t+ 1)+ (2 +2t+1)=2t3 + 5t + 2,
@2 —2+38t+1) - (2 +2t+1)=2t° +3t* + 33 + 52 + 5t + 1.

Specielt skriver vi 0 for det polynomium, hvis koefficienter alle er 0, og vi skriver 1 for
det polynomium, hvis koefficient til ¢* er 1 for i =0 og 0 for i > 0.

Saetning 3.5.4 Hvis R er en kommutativ ring, da udger mengden R|[t] af polynomier
med koefficienter i R sammen med sum og produkt af polynomier en kommautativ ring.

Bevis Vi viser (P1) og (D1); (D2) vises ligesom (D1), mens de gvrige egenskaber fglger
umiddelbart fra de tilsvarende egenskaber for R. Ifglge definitionen af produktet af
polynomier samt henholdsvis (D2) og (D1) for skalarer geelder det, at

(Zaiti . ijtj)- Y cpth = Y (Y (aibj)Ck)tl,

1=0 Jj=0 k=0 120 i+j+k=l
Zait‘ . (Z bt - chtk)= Z ( Z ai(bjck))tl,
120 Jj=0 k=0 120 i+j+k=l

og dermed fglger (P1) for polynomier fra (P1) for skalarer.

YNoaitt - (X bl + Y cith=Y (Y aibj+en))tt,

=0 Jj=0 Jj=0 k=0 i+j=k
Nait' - Y bith+Qait' - Y cjth=Y (Y (@ibj+aicp))t,
120 j=0 =0 j=0 k=0 i+j=k
saledes at (D1) for polynomier fglger fra (D1) for skalarer. O

Hvis d er et helt tal, sa siger vi, at et polynomium

p=pt)=) a;t'€R[t]

120
har grad hgjst d og skriver deg(p) < d, hvis a; =0 for alle i > d. Vi skriver ogsa
Rltl<, ={p € RI[t]| deg(p) <d} < R[]

for delmaengden af polynomier af grad hgjst d = 0. Specielt er nulpolynomiet det eneste
polynomium, der har grad hgjst d for alle d, mens de konstante polynomier preecis er
de polynomier, der har grad hgjst 0.
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Lemma 3.5.5 Lad p,q € R[t] vaere polynomier med koeffcienter i en kommutativ ring
R. Da gzlder fplgende udsagn:

(1) Huvis deg(p) <d og deg(q) <e, da er deg(p + q) < max{d,e}.

(2) Huis deg(p) <d og deg(q)<e, da er deg(p - q)<d +e.

Bevis Bade (1) og (2) fglger direkte fra definitionerne. O

Hvis p(¢) = agt®+---+a1tt +aopt® med ag #0, da siger vi, at p(¢) har grad d, og vi
skriver da deg(p(t)) = d. Med andre ord er graden p(¢) det mindste hele tal d, sadan at
deg(p(?)) < d. Vi bemeerker, at graden af nulpolynomiet ikke er defineret.

Eksempel 3.5.6 Polynomierne p(¢) = t2+2¢t—1 og q(¢) = —t2+2 har begge grad 2. Deres
produkt p(¢)-q(¢) = —t*—2¢3 +3t? + 4¢ — 2 har grad 4, mens deres sum p(¢)+q(¢) = 2¢+1
har grad 1.

Generelt er udsagnene i lemma det bedste, man kan sige om graden af sum og
produkt af polynomier. For generelt kan R indeholde nuldivisorer, hvilke er elementer
a,beR,sadan at a #0 og b #0, men a-b =0. Men hvis R ikke indeholder nuldivisorer,
da gaelder det mere preecise udsagn, at deg(p - q) = deg(p) - det(q) for alle p,q € R[], der
begge er forskellige fra nulpolynomiet.

Vi betragter nu determinantafbildningen

det: M, (R[t]) — RI¢]

for n x n-matricer med indgange i R[¢]. Denne findes ifplge saetning|3.2.1, der som naevnt
geaelder for enhver kommutativ ring.

Saetning 3.5.7 Lad R[t] veere den kommutative ring af polynomier med koefficienter i
en kommutativ ring R, og lad P = (p;;) € M,(R[t]) vaere en matrix med indgange i R[t].
Hvis deg(p;;)<d foralle1<i,j<n, daer

deg(det(P)) < dn.
Bevis Beviset er ved induktion pa n =0, og tilfeeldet n = 0 er trivielt. (Det er tilfaeldet

n =1 naturligvis ogsa.) Sa vi antager, at s@tningen geelder for n = r — 1 og viser, at den
gaelder for n = r. Ved Laplace-udvikling langs forste reekke far vi, at

det(P)= Y (-1)"*/p1;det(Py;).
j=1
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3 Determinant

Her er deg(p1;) < d per antagelse, og deg(det(P1;)) < d(r — 1) per induktion, og derfor
viser lemma [3.5.5, at deg(det(P)) <d +d(r —1) = dr som gnsket. O

Eksempel 3.5.8 Ved hjxlp af setning udregner vi, at

5-t 2

det( 1 3_;

):(5—t)(3—t)—2:t2—8t+13.

Vi ser, at indgangene i matricen er polynomier af grad hgjst 1, mens determinanten er
et polynomium af grad hgjst 1-2 = 2.

Vi forklarer nu, hvordan den variable “¢” kan tilordnes en vaerdi, dvs. hvordan man
kan “evaluere” et polynomium pa et element. En afbildning

f:R—S
mellem to kommutative ringe siges at veere en ringhomomorfi, hvis den opfylder:
(R1) For allea,beR er f(a+b)=f(a)+f(b).
(R2) For allea,beR er f(a-b)=f(a)-f(b).
(R3) f(1r)=1s.
En ringhomomorfi f: R — S og et element s € S giver anledning til en ringhomomorfi
evrs: R[t]— S,

der er defineret ved formlen

evr,s(Y ait) =) f(ays'.
i=0 i=0
Bemeerk, at sum og produkt af polynomier netop er defineret, sadan at denne afbildning
er en ringhomomorfi. Hvis f: R — S er underforstaet, sa skriver vi ogsa p(s) i stedet for
evy s(p) og siger, at p(s) fremkommer fra p(¢) ved at substituere s € S for t.

Eksempel 3.5.9 (1) Lad /: R — S veere identitetsafbildningen id: R — R af de reelle
tal. Givet p(¢) € R[t], kan vi da substituere a € R for ¢, hvilket giver p(a) = ev,(p) € R.
Hyvis for eksempel p(¢) =32+t —4, 0g a =5, sd er p(5) =evs(p)=3-52+5-4 ="T6.
(2) Lad f: R — S vaere den kanoniske inklusion f: R — C af de reelle tal i de komplekse
tal. Givet p(¢) € R[¢], kan vi da substituere a € C for ¢, hvilket giver p(a) = ev,(p) € C.
Hvis p(t)=3t2+t—-4,0ga=1+i€eC,sder p(1+i)=31A+i)’+(1+i)—4=-3+7i.

126



3.5 Polynomier

(3) Lad R =R og lad S = C%(R) vaere den kommutative ring af kontinuerte funktioner
fra eksempel Vi lader f: R — C°%R) veere afbildningen, der til c € R tilordner den
konstante funktion f(c): R — R med veerdi c, og bemzerker, at identitetsafbildningen
id: R— R er et element i S = C%(R). Vi skriver “x” for dette element, hvilket giver

evs i Rlt] — COR),

der er en ringhomomorfi og afbilder p(¢) til den kontinuerte funktion p(x), der fas ved
at substituere x € S for ¢. Hvis p(¢) = 3t2+¢—4 e R[¢], s& er p(x) € C%R) den kontinuerte
funktion givet ved p(x) = 3x2 + x — 4.

Vi siger, at s € S er en rod i polynomiet p(¢) € R[¢], hvis p(s) = 0. For eksempel har
polynomiet p(t) = t2 + 1 € R[¢] ingen rgdder i R, mens +i er rgdder i C. Den fglgende
vigtige seetning kaldes for algebraens fundamentalsaetning. Der gik mere end 250 ar,
fra Cardano fgrst indferte komplekse tal i 1545, indtil Gauss i 1799 og Argand i 1806
beviste denne seetning. Undervejs var der mange forsgg pa bade at bevise og modbevise
setningen.

Saetning 3.5.10 (Gauss-Argand) Ethvert ikke-konstant polynomium med koefficien-
ter i C har mindst en rod i C.

Bevis Vi henviser til en af de felgende laerebgger for et bevis.

(1) David S. Dummit og Richard M. Foote. Abstract algebra. Third Edition. John Wiley
& Sons, Inc., Hoboken, NdJ, 2004.

(2) Serge Lang. Algebra. Revised third edition. Graduate Texts in Mathematics, 211.
Springer-Verlag, New York, 2002.

De to bgger preesenterer det samme bevis. I den fgrst bog, er beviset givet i Theorem 35
pa side 615-617; og i den anden bog, er beviset givet i Example 5 pa side 272-273. O

Man viser da ved polynomiumsdivision, at ethvert polynomium p(¢) € C[¢] af grad
praecis d = 0 har preecis d rgdder i C, talt med multiplicitet.

Saetning 3.5.11 Lad p(t) = adtd + ad_ltd_l +--+ait+ag € Clt] vaere et polynomium
med koefficienter i C, sadan at d =0 og aqg #0. Da findes z1,...,z4 € C, sadan at

pt)=ag(t—21)----- (t—zq).
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3 Determinant

Bevis Pastanden fglger fra seetning|3.5.10|ved brug af den euklidiske algoritme. Denne
er bevist i Theorem 1.1 i Lang’s bog (2) pa side 173-174. O

Eksempel 3.5.12 Vi anvender formlen for rgdderne i et andengradspolynomium til at
faktorisere polynomiet p(¢) = ¢? — 4t + 13. Diskriminanten er
A=(-4)?-4-1-13=(-4)-(-4+13) = —4-9 = (6i)?,
sa de to rgdder er £ = %(—(—4) +6i) =2+ 3i. Den euklidiske algoritme viser da, at
p()=(t—-(2+30)(t—(2-30)).

Vi bemaerker, at de to rgdder er konjugerede, fordi p(¢) har reelle koefficienter.

Eksempel 3.5.13 Vi illustrerer Euklids algoritme. Polynomiet
p(#) =3 —6t2+5t+12

har @ = —1 som rod, og den euklidiske algoritme viser da, at der findes et entydigt
bestemt polynomium ¢(%), sadan at p(¢) = (¢ + 1)q(¢). Vi gennemfgrer divisionen

=l 1)
t+1| B-612+5t+12
o
i
— T =T
12t
12t +12
0

og ser, at ¢+ 1 gar op i p(¢) med kvotient ¢(¢) = t2 —7t+12. Vi kan yderligere faktorisere
q(t) ved hjzlp af formlen for redderne i et andengradspolynomium og far derved, at

p®) =+ 1)(t—-3)(t—4).

Vi bemeerker, at beviset for algebraens fundamentalsatning ikke er konstruktivt, sa
saetningen siger altsa blot, at der en findes en rod, men den siger ikke noget om, hvordan
man baerer sig ad med at finde en rod. For et generelt polynomium p(¢) € C[¢], kan man
kun undtagelsesvis finde z € C, der opfylder p(z) = 0 eksakt. For ligegyldigt hvor mange
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cifre af p(z), man udregner, kan man generelt ikke vide, at der ikke vil dukke ikke-nul
cifre op i p(z), hvis man regner laengere. Man skal derfor ngje vurdere den fejl, man
begar ved at lade som om ligheden p(z) = 0 gaelder eksakt.

3.6 Opgaver

3.1 Udregn determinanten af fglgende matricer:

2 -2 3 1 2 1
(? _i) 4 3 1|, 5 n 5].
2 0 1 2 12 2

3.2 Bestem determinanterne af fglgende matricer:

cos(0) —sin(0)

’ (sin(@) cos(@)) ’

1+ 2
1 1-i)

T S
NN NN
L W w W
NN NN

3.3 Bestem determinanterne af fglgende matricer:

B W N
S W N O
S O N O
o~ N
R oo KR
NN DN DN
= o W w
w OO

3.4 Afggr om falgende udsagn er sande eller falske.

a)
8 8 8 111
det{2 3 2|=8-det|2 3 2
5 6 7 5 6 7
b)
0 0 ¢
det|0 b e|=-abc.
a d f
c)
a 0 0O
05 00
det 00 ¢ 0 =abcd.
0 0 0 d
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3 Determinant

d)
0 0 0 a
0 0b O
det 0 c o0 ol —abcd.
d 0 00
3.5 Udregn determinanten af den fglgende matrix:
a 0 0 01
0a 010
A=|0 0 b 0 O
01 0 a O
1 00 0 a
3.6 Udregn determinanter af de fslgende matricer:
2 10
2 1 ? ; (1) 1 21
1 2) 01 2 ’ 01 2
0 01

3.7 (%) Udregn determinanten af matricen

0 01
A=|1 0 Of.
010

Beskriv afbildningen f: R — R3, der er defineret ved f(x) =

3.8 Bestem determinanten af matricerne

. 2 3-4i
A:(2;.l 1%.) og B=|0 1+i
' ! 3i 3+4i

N = OO

Ax, geometrisk.

-2+4+1
0 .
1-:

3.9 (%) For alle n =0 betragter vi den linesere isomorfi f,, : R* — R" defineret ved

X1 Xn

X2 :

fn =1
X2
Xn X1

a) Angiv for alle n = 0 matricen A,, der representer f,: R* — R" med hensyn til

standardbasen for bade domanet og codomaenet.
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3.10

3.11

3.12

3.6 Opgaver

b) Beregn determinanten af A,, for alle 0 <n <9, gerne ved brug af Maple, og opstil
pa baggrund heraf en hypotese for vaerdien af det(A,) for alle n = 0.

¢) Bevis den hypotese, der blev opstillet i (b).

d) En lineser isomorfi f: R® — R” siges at veere orienteringsbevarende, hvis deter-
minanten af matricen A, der reprasenterer afbildningen med hensyn til stan-
dardbasen for bade domaenet og codomaenet, er positiv. For hvilke n = 0 er afbild-
ningen f,: R” — R” orienteringsbevarende?

De beregninger, der skal udfgres for at udregne determinanten af en matrix, kan
opdeles i tre typer, nemlig multiplikation; addition; og fortegnsskift. For at forsta
effektiviteten af beregning ved Laplace-udvikling, vil vi udelukkende se pa antallet
af multiplikationer.

a) Redeggr for, at der ved beregning af determinanten af en generel n x n-matrix
ved Laplace-udvikling (saetning(3.2.8) skal udfgres n! multiplikationer.

b) Udfer felgende kommandoer i Maple:

>with(LinearAlgebra):
>detTime:=[seq([n,time (Determinant (RandomMatrix(n,n)))],n=1..100)]:
>plot (detTime) ;

og forklar (eventuelt ved at sld& kommandoerne op med ?time osv.) hvilket eks-
periment, der herved er udfart.

¢) Redegor for, at (a) og (b) viser, at Maple ikke benytter Laplace-udvikling til be-
regning af determinanter.

Besvar fglgende spgrgsmal:

a) Hvad kan man sige om determinanten af en matrix, hvori to reekker er ens?

b) Hvordan &ndres vaerdien af determinanten, hvis man skifter fortegn pa alle
indgange i en raekke?

¢) Hvordan @&ndres veerdien af determinanten, hvis man skifter fortegn pa alle
indgange i matricen?

d) Er det rigtigt, at hvis indgange i en matrix er forskelige fra nul, da er ogsa
determinanten forskellig fra nul?

Vi lader t veaere et reelt tal og betragter matricen

1 ¢+ O
A=t 1 ¢t].
0 ¢t 1
a) Beregn det(A).

b) Gor rede for, at A er invertibel for ¢ # +v'1/2.
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3.13

3.14

3.15

3.16

132

c) Anvend for ¢ # +v/1/2 Cramers regel til at lgse ligningssystemet Ax = b, hvor

4

og B=

Vi betragter matricerne

S O O+
S O N =
S W kN
B~ Oy Ot W
0 O O
© 3 W o
SN OO
= o O O

a) Udregn det(A) og det(B).
b) Udregn det(AB).
¢) Udregn det(AB™1).

For ethvert reelt tal ¢ betragter vi matricen:
1 2 1
A=11 c¢+1 1 |[.
1 2 c+1

Afggr for hvilke veerdier af ¢, matricen A er invertibel, og bestem for disse vaerdier
af ¢ den inverse matrix AL

Omform ved hjelp af reekkeoperationer matricen
1 0 —-a O
0 1 0 2
A= -1 0 1 0
0 I+ O 1

til en gvre trianguleer matrix og afggr herved, for hvilke veerdier af a den givne
matrix er invertibel.

Afggr ved hjeelp af determinanten, om de fglgende ligningssystemer har en entydig
lgsning:

xX1+2x9—x3 = 5
a) 3x1+2x3 = -4
x1+3x9+x3 = 19
x1+2x9—x3 = 51
b) 3x1+x9+2x3 = 7

—2x1—4x9+2x3 = 25
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3.17 Vis, at hvis alle indgange i en kvadratisk matrix A er hele tal, og hvis det(A) = +1,
sa er alle indgange i A~! ligeledes hele tal. [Vink: brug ssetning 3.4.1.]

3.18 (%) Lad A veere en n x n-matrix og antag, at ligningssystemet Ax = 0 har 0 som
eneste lgsning. Vis, at ligningssystemet A*x = 0 ligeledes har 0 som eneste lgsning.

3.19 Den falgende opgave viser, at en ringhomomorfi mellem to legemer altid er injektiv.
Vi definerer kernen af en ringhomomorfi ¢: R — S til at vaere delmangden

ker(p)={reR | ¢(r)=0}.

a) Vis, at ker(¢) = {0}, hvis og kun hvis ¢ er injektiv.

b) Vis, at kernen ker(¢p) for en ringhomomorfi opfylder, at hvis u € ker(p) og r e R,
da er ogsa u - r € ker(¢p).

¢) Vis, at en ringhomomorfi ¢: F — ' mellem to legemer altid er injektiv.

[Vink: Antag, at ker(¢) # {0} og anvend (b) til at vise, at 1 € ker(¢p).]
3.20 Find to 2 x 2-matricer A og B sa at det(A + B) # det(A) + det(B).

3.21 (%) Lad F veere et legeme, og lad V = F”. Lad %k = 0, og lad V* veere mangden af
k-tupler af vektorer i V. Givet k lineare afbildninger

fl;-"yfk: V_>|]:’

betragter vi afbildningen w: V* — F defineret ved

filw1) fiwa) ... fi(vr)
fa(v1) fa(va) ... fa(vr)

w(vy,...,vp) =det

frwy) frlve) ... fr(vg)

Afbildningen er et eksempel pa en alternerende form, og opgaven gar ud pa at ef-
tervise de fglgende egenskaber.

(a) Vis, at afbildningen w: V* — F er antisymmetrisk i den forstand, at det for alle
1<i<j<k gelder, at

(..., 0;,...,0j,...) = —w(...,0j,...,0;,...).

(b) Vis, at hvis der findes 1 <i < j <k, sddan at f; = f;, da er w: VE S F lig med
nulafbildningen.

(c) Vis, at hvis v; =v) +v7,sder

w(v1,03,...,0r) = 0(V],0g,...,0;) + 0(V],v9,...,0p).
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4 \Vektorrum

Lad A veere en m x n-matrix med indgange i et legeme F. I kapitel [I] har vi beskrevet en
algoritme, der producerer en parametrisering af lgsningsmaengden

Np={xeF'|Ax=0}c[F"

til det homogene linesere ligningssystem Ax = 0; se seetning Denne algoritme
afthaenger dog af nogle temmeligt arbitreere valg sasom definitionen af en matrix pa
reduceret echelonform. I modsatning til det athaenger lgsningmaengden N4 selv ikke af
nogle valg, og vi gnsker derfor at udvikle vores begrebsverden, sddan at vi direkte kan
udtrykke, hvad denne lgsningsmaengde “er” for en stgrrelse. Hertil indfgrer vi begrebet
vektorrum, som vi allerede har stiftet bekendtskab med i afsnit

4.1 Vektorrum

Vi lader F veere et legeme, og som for teenker vi pa F = R eller F = C. Hele dette kapitel
virker dog ligesa godt for skaevlegemer, sa F = H er ogsa tilladt. Et (abstrakt) vektorrum
bestar af en maengde, hvis elementer vi kalder vektorer, udstyret med to operationer
“+” og “-”, som vi kalder vektorsum og skalarmultiplikation.

Definition 4.1.1 Lad [ veere et legeme. Et hgjre F-vektorrum er en triple (V,+, -), der
bestar af en maengde V og to afbildninger +: VxV -V og - : V xF —V, sadan at:
(A1) Forallex,y,zeVer(x+y)+z=x+(y+2).

(A2) Der findes et element 0 €V, sddanat x +0=x=0+x for alle x € V.

(A3) ForallexeV,findes yeV,sadanatx+y=0=y+x.

(A4) Forallex,yeVerx+y=y+x.

(V1) ForallexeV oga,beFer(x-a)-b=x-(ab).

(V2) For allex,yeVogacFer(x+y)-a=(x-a)+(y-a).

(V3) ForallexeVoga,beFerx-(a+b)=(x-a)+(x-b).

(V4) For allexeV erx-1=x.

135



4 Vektorrum

Man definerer venstre F-vektorrum tilsvarende; den eneste forskel er, at vektorerne
kan multipliceres med skalarer fra venstre i stedet for fra hgjre.

Bemaerkning 4.1.2 Lad F veere et legeme og lad (V,+, - ) veere et F-vektorrum.

(1) Vektoren 0 € V i (A2) er entydigt bestemt. For hvis 0 og 0’ begge opfylder (A2), da
viser (A2) for henholdsvis 0 og 0’, at 0' =0+ 0' = 0. Vi kalder 0 € V for nulvektoren.

(2) Givet x € V, da er vektoren y € V i (A3) entydigt bestemt. For hvis y og y' begge
opfylder (A3), s viser (A3) for henholdsvis y og ' samt (A1) og (A2), at

y=y+0=y+(x+y)=(y+x)+y' =0+y =y

Vi skriver —x for vektoren y og kalder den for den modsatte vektor af x.
(3) Vi definerer differencen af to vektorer x og ¥ til at veere vektoren x — y =x+(—1y).
(4) Man viser som i seetning|0.2.3, at x-0=0o0g x-(-1) = —x.

Der findes rigtig mange vektorrum inden for matematik. Vi giver nogle eksempler.

Eksempel 4.1.3 (1) Mangden M,, 1(F) af m x 1-matricer med indgange i [ sammen
med afbildningerne +: My, 1(F) x My, 1(F) — My, 1(F) og - : M, 1(F) x M1 1(F) — M, 1(F),
der er givet ved matrixsum og matrixprodukt, udger et hgjre F-vektorrum. Her har vi
identificeret M ;1(F) med F. Vi skriver (F™,+, - ) for dette hgjre F-vektorrum og kalder
det for F-vektorrummet af sgjlevektorer af dimension m. Vi har allerede betragtet dette
vektorrum i afsnit 2.2l

(2) Mangden M1 ,,(F) af 1 x n-matricer med indgange i F sammen med afbildningerne
+: M1,(F) x M1, (F) = M1 ,(F) og - : M1 1(F) x My ,(F) — My ,(F) givet ved matrixsum
og matrixprodukt udggr et venstre F-vektorrum, hvor vi identificerer M ;(F) med . Vi
indfgrer ikke anden notation for dette vektorrum.

(3) Maengden M,, ,(F) af m x n-matricer med indgange i F sammen med afbildninger-
ne +: Mpy, n(F) x My, ,(F) — My, n(F) og - : My, n(F) x F — My, ,(F), hvor den fgrste er
matrixsum, og hvor den anden afbilder (A,a) med A =(a;;) € M, »(F) og a €T til

A-a=(ajj-a)€ My (),

er et hgjre vektorrum. Vi bemaerker, at skalarmultiplikationen i dette vektorrum er
ikke givet ved matrixmultiplikation.

(4) Hvis triplen (F, +, - ) er et legeme, da er den samme triple bade et hgjre og et venstre
vektorrum. For aksiomerne for et legeme i Definition medfgrer aksiomerne for et
vektorrum i Definition

(5) Vi har i (4) givet maengden C af komplekse tal en struktur af hgjre C-vektorrum.
Vi kan ogsa give denne en struktur af hgjre R-vektorrum med vektorsum +: CxC — C
og skalarmultiplikation - : C x R — C defineret ved

(21 +ix9) +(y1 +iy2) = (x1+y1) + ilx2 + y2),
(x1+ix9)-a =x1a+1ix9a.
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(6) Maengden C af komplekse tal kan ligeledes gives en struktur af hgjre Q-vektorrum
med vektorrum +: C x C — C og skalarmultiplikation - : C x ) — C defineret ved

(21 +ix9) +(y1+iy2) = (x1+y1) +i(x2 + y2),
(x1+ix9)-a =x1a0 +ix20.

(7) Maengden V ={|1)z1 +1|]) 22| 21,22 € C} af formelle komplekse linearkombinationer
af symbolerne |1) og |]), som laeses “spin op” og “spin ned”, sammen med afbildningerne
+:VxV —>Vog . :VxC—V defineret ved

(D z1+1Dz)+ (D w1+ DHw)=I1)(z1 +w1) +|]) (22 + w2)
(D z1+Dz2) w=IDziw+||)zow

er et hgjre C-vektorrum. Vektorerne i dette vektorrum repraesenterer spintilstandene
af en enkelt partikel.

(8) Maengden F[t]-4 af polynomier med koefficienter i F og af grad hgjst d sammen
med afbildningerne +: F[t]l<g x Flt]l<q — Fltl<qg og - : Fltl<q x Fltl<o — Flt]l<q defineret
til at veere henholdsvis sum og produkt af polynomier udggr et hgjre F-vektorrum, idet
vi identificerer F[¢]<o med F.

(9) Maengden C%R) af kontinuerte funktioner f: R — R sammen med afbildningerne
+: COUR) x CO(R) — COUR) og - : CUR) x R — CO(R) defineret ved

(Ff+o)@)=f)+glx) og (f-a)x)=f(x)-a
udger et hgjre R-vektorrum.
Vi vil i denne bog altid betragte hgjre F-vektorrum, og vi vil derfor forkorte og sige
F-vektorrum i stedet for hgjre F-vektorrum. Hvis F = R eller F = C, sa siger vi ogsa, at
et F-vektorrum er henholdsvis et reelt vektorrum og et komplekst vektorrum. Hvis [ er

underforstaet, sa vil vi sommetider sige vektorrum i stedet for F-vektorrum. Desuden
vil vi, som det er ssedvane, misbruge notation og skrive V for vektorrummet (V,+, - ).

Definition 4.1.4 Lad F vare et legeme, og lad (V, +, -) veere et F-vektorrum. En del-
mangde U c V siges at veere stabil med hensyn til vektorrumsstrukturen pa V, hvis
felgende er opfyldt:

(1) Nulvektoren 0 €V tilhgrer U c V.
(2) Hvisx,yeUcV,daerogsax+yeUcCV.

(38) HvisxeUcV ogaclF,daerogsax-acUcV.
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Vi bemeerker, at (1) medfarer, at U c V er ikke er den tomme delmaengde. Omvendt,
hvis U c V ikke er den tomme delmaengde og opfylder (3), da opfylder U c V ogsa (1).
For vi kan da vaelge u € U, og (3) viser dermed, at 0=u-0€U.

Eksempel 4.1.5 (1) Vi pastar, at delmaengden
_ (%1 2 _ _ o2
U—{x— (x2)€IR |x1—x2}cV—|R

er stabil med hensyn til vektorrumsstrukturen pa R2. For 0 € U, da 0 = 0, sa (1) geelder;
hvisx,ye U, sdaerogsa x+ye U, fordi “x1 = x9” og “y1 = yo” medforer “x1+y1 = x9+y2”,
sa (2) geelder; og hvisx e U oga e R, daer x-a € U, idet “x1 = x2” medfgrer “x1a = x2a”,
sa (3) geelder ogsa.

(2) Vi pastar modsat, at delmaengden
_ A [*1 2 _ w2
S—{x—(xz)eR |22=1}cV =R

ikke er stabil med hensyn til vektorrumsstrukturen pa R2. Vi pastar faktisk, at ingen
af betingelserne (1)—(3) i definition 4.1.4] er opfyldt af S c V. For 0 ¢ S, da 0 # 1; hvis
x,yeS,daerx+y¢S,daxes+ys=1+1#1;0g hvis endeligx S og 1 #a€R, da er
x-a¢S,idetxg-a=1-a#1.

Figur 4.1: U c R? er stabil under vektorrumsstrukturen pa B2, mens S c R? ikke er det.

Lad U c V vaere en delmangde af et F-vektorrum (V,+, -), der er stabil med hensyn
til vektorrumsstrukturen pa V. Da giver vektorsummen og skalarmultiplikationen pa
V anledning til afbildningerne +': U xU — U og -’ : U xF — U givet ved

x+ y=x+y og x'a=x-a,

hvor x,y € U og a € F. For (2) sikrer netop, at x + y € U, mens (3) sikrer, at x-a € U. Vi
siger, at afbildningerne +': U xU — U og -/ : U xF — U fremkommer ved restriktion af
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afbildningerne +: VxV —V og -: V xF — V. Vi vil ofte misbruge notation og ligeledes
skrive +: U xU — U og -: U x[F — U for de restringerede afbildninger.

Saetning 4.1.6 Lad F veare et legeme, lad (V,+, - ) veere et F-vektorrum, lad U c V
veere en delmaengde, der er stabil med hensyn til vektorrumsstrukturen pa V, og lad
+":UxU —U og -': UxF — U vere afbildningerne, der fremkommer ved restriktion af
afbildningerne +: VxV —V og -: VxF— V. Da er ogsd (U,+', ') et F-vektorrum.

Bevis Vi gnsker at vise, at de restringerede afbildninger +' og -’ opfylder (A1)—(A4)
og (V1)—(V4) i definition Da + og - opfylder (A1)—(A4) og (V1)~(V4), fglger det
umiddelbart, at +’ og - opfylder (A1), (A4) og (V1)—(V4), og vi viser nu, at (A2) og (A3)
er opfyldt. Sa lad 0 € V vaere nulvektoren. Ifglge (1) er 0 € U, og for alle x € U gaelder
det, at

x+'0=x+0=x=0+x=0+"x,

idet (A2) geelder i V. Dette viser, at ogsa (U,+', -) opfylder (A2). Hvis endelig x € U, sa
viser (3), at ogsa x-(—1) € U, og udregningen

x+' (x-)=x+x-(-1)=x+(-2)=0=(-x)+x=(x- (-D))+x=(x-(-1)+'x

viser derfor, at (U,+’, -') opfylder (A3). O

Definition 4.1.7 Lad F vare et legeme. Et F-vektorrum (U, +', -') siges at veere et un-
derrum af et F-vektorrum (V,+, -), hvis U er en delmangde af V, der er stabil med
hensyn til vektorrumsstrukturen pa V, og hvis +': U xU — U og -': U xF — U netop
er afbildningerne, der fremkommer ved restriktion af +: VxV -V og -: VxF—-V.

Vi vil herefter misbruge notation og blot skrive, at U c V er et underrum i stedet for
at skrive, at U c V er stabil under vektorrumsstrukteren pa V, og at (U,+’,-') er et
underrum af (V,+, -). Vi siger saledes, at i eksempel er U c R? et underrum, mens

S c R? ikke er det.
Lemma 4.1.8 Lad A veere en m x n-matrix med indgange i et legeme F. Delmangden
Np={xelF"|Ax=0}cF",

der bestar af lpsninger til det homogene ligningssystem “Ax =0, er et underrum af F".
Tilsvarende er delmangden

Ry={AxeF"|xeF*}c™,

der bestar af de vektorer b € ™, for hvilke ligningen “Ax = b” har mindst én lgsning, et
underrum af F™.
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Bevis Vi viser, at Ny < F" opfylder (1)—(3) i definition Da A0 =0, er (1) opfyldt;
hvis Ax=00g Ay=0,daer A(x+y)=Ax+Ay=0+0=0, sa (2) er opfyldt; og hvis
Ax =0, da er ogsa A(xa) = (Ax)a = 0a =0, sa (3) er opfyldt. Dermed er N4 c F” stabil
med hensyn til vektorrumsstrukturen pa F” og definerer derfor ifgplge seetning et
underrum af [".

Tilsvarende viser vi, at R4 < F™ opfylder (1)—(3) i definition Da A0 =0er (1)
opfyldt; hvis Ax=bogAy=c,daer A(x+y)=Ax+Ay=>b+c, sa (2) er opfyldt; og hvis
Ax =0b,sa er A(xa) = (Ax)a = ba, sa ogsa (3) er opfyldt. O

Definition 4.1.9 Lad A vaere en m x n-matrix med indgange i et legeme [F. Da kaldes
underrummene Ny c " og R4 <™ for nulrummet og sgjlerummet af matricen A.

Vi bemeerker, at maengden af lgsninger til den inhomogene ligning “Ax = b” ikke er
et underrum af vektorrummet F”?, hvis b # 0. For da er A0 # b, sa (1) i definition [4.1.4
ikke opfyldt. Vi skal dog se i korollar at lgsningsmaengden til Ax = b altid er et
affint underrum.

Eksempel 4.1.10 Underrummet U c R? fra eksempel er netop nulrummet

NA={x€[R22|Ax:O}:{(i;)€[R22| (1 —1)(2):0}CR2

for A=(1 -1)€ M;2(R). Og givet et vilkarligt b € R, da opfylder

x= (g) E[RZ,

at Ax = b, hvilket viser, at sgjlerummet R4 c R er hele R.

Eksempel 4.1.11 Per definition bestar sgjlerummet af matricen

1
A=(_1 ;)EMz,z(C)

af de vektorer b € C2, for hvilke der findes z € C2, sddan at Az = b. Da
e AN
-1 1) \z9 —z1+129

konkluderer vi, at

= (_i) (21-iz2)€C?,

RA:{(_i)-z|z€C}CC2.
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4.2 Linezre afbildninger

Vi har allerede defineret og studeret linezere afbildninger f: F* — F™ i sektion [2.3] og vi
udvider nu dette begreb til afbildninger mellem generelle vektorrum.

Definition 4.2.1 Lad F vaere et legeme oglad V og W vaere F-vektorrum. En afbildning
f:V — W er linezr, hvis den opfylder fglgende betingelser:

(L1) For alle x,y € V geelder det, at f(x+y) = f(x)+ f(y).

(L2) For alle x€V og a €F geelder det, at f(x-a)=f(x)-a.

Vi understreger, at en lineser afbildning /: V — W mellem to vektorrum altid afbilder
nulvektoren i V til nulvektoren i W. Det fglger nemlig fra (L1), at

)+ £(0)=f(0+0)=Ff(0),

hvorfra udsagnet fglger ved at traekke f(0) fra pa begge sider af lighedstegnet. Vi vil
ogsa sige, at en afbildning g: V — W er afﬁnEL hvis afbildningen f: V — W defineret
ved f(x) = g(x)—g(0) er lineaer. For eksempel er identitetsafbildningen id: V — V og nu-
lafbildningen 0: V — W begge lineaere. Den konstante afbildning b: V — W med veerdi
b € W er altid affin, og den er linezer hvis og kun hvis b =0.

Eksempel 4.2.2 (1) Lad F vaere et legeme og lad F[¢] veere F-vektorrummet af polyno-
mier med koefficienter i F. Da er afbildningen D : F[¢] — F[¢], der til et polynomium

p@®) =) a,t"

n=0

tilordner det formelt afledte polynomium

p®)=> na,t" 1,

n=1

en lineeger afbildning.

(2) Hvis V er et F-vektorrum, og hvis U c V er et underrum, da er den kanoniske
inklusion i: U — V, som er defineret ved i(u) = u, en linezer afbildning. Lad ogsa W
veaere et F-vektorrum. Da geelder det endvidere, at en afbildning f: W — U er lineeer,
hvis og kun hvis den sammensatte afbildning iof: W — V er lineeer.

(3) Lad C°(R) vaere R-vektorrummet af kontinuerte afbildninger f: R — R fra eksem-
pel (9). Da er afbildningen i : R — C°(R), der er defineret ved i(a)(x) = ax, lineser.

1T fysikliteraturen anvendes “lineger” ofte i betydningen “affin”.
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Vi viser nu, at linesere afbildninger A: F* — V fra F-vektorrummet F” til et vilkarligt
F-vektorrum V er i 1-1 korrespondance med n-tupler (vq,...,v,) af vektoreri V.

Lemma 4.2.3 Lad [ vaere et legeme, lad V veere et F-vektorrum, og lad (v4,...,v,) vaere
en n-tuple af vektorer i V. Da findes der preecis én linezr afbildning h: F* —V, sadan
at h(e;) =v; for alle 1 <i < n, nemlig afbildningen givet ved

h(x) =v1x1 +voxo + -+ U, %x,.

Bevis Hvis h: F* — V er linear og opfylder, at A(e;)=v; foralle 1<i<n,daer
h(x)=h(e1x1+:--+epxy)=h(e)x1+: -+ h(ey)x, =v1x1+ -+ Vpxp,

hvilket viser entydighedsudsagnet. Omvendt opfylder afbildningen A : F* — V defineret

ved denne formel, at h(e;) = v; for alle 1 <i <n, og vi viser nu, at den er linezr. For at

vise, at h: " — V opfylder (L1), lader vi x,y € F"* og udregner, at

h(x+y)=v1(x1+y1) +--- +vp(x, +y5)
=(U1x1+ -+ Upx,) +(O1y1 + -+ ULYR) = h(x)+ A(y),

som gnsket. Her fglger den anden lighed ved gentagen anvendelse af (V3). For at vise,
at h: F* — V opfylder (L2), lader vi x € F” og a € F og udregner, at

h(xa)=vi(x1a)+ -+ v,(x,a)=(V1x1+ - +V,x,)a = h(x)a

som gnsket. Her fglger den anden lighed ved gentagen anvendelse af (V1) og (V2). O

Eksempel 4.2.4 Lad V = C°([0,27]) veere vektorrummet af kontinuerte afbildninger
f:10,27] — R fra eksempel (9). Da er afbildningen A : R2 — C°([0,27]) givet ved

h (al) =cos(x)ai +sin(x)as
as

den entydigt bestemte linesere afbildning, sadan at h(e1) = cos(x) og h(es) = sin(x).

Lemma 4.2.5 Lad [ vere et legeme, og lad U, V og W vare F-vektorrum. Givet to
linezere afbildninger f:V - Wogg: U —V,daer fog: U — W igen linezr.
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Bevis Vi viser, at fog: U — W opfylder (LL1) og (L2). For alle x,y € U, geelder det, at

(fog)x+y)=[f(glx+y)=[(gx)+g(y)=[f(gx)+[(g(y)=(f cg)x)+(f o &)y,

hvilket viser, at fog: U — W opfylder (L1). Ligeledes geelder det for alle x € U og a €T,
at

(fog)x-a)=f(glx-a))=f(gx)a)=f(gx))-a,
hvilket viser, at fog: U — W opfylder (L2). O
Mens lighed giver god mening for tal, sa er det ikke noget godt begreb for vektorrum.
Vi kan teenke pa to vektorrum V og W som vaerende to sprog og gnsker da i stedet at
spogrge, om der findes en made at oversaette fra et sprog til et andet. Endvidere er det

vigtigt at kende den preaecise oversattelse og ikke blot vide, om en oversaettelse findes
eller ej. Dette formaliseres i det generelle begreb isomorfi, som vi nu indfgrer.

Definition 4.2.6 Lad F vare et legeme. En linezer afbildning f: V — W mellem to
F-vektorrum er en isomorfi, hvis der findes en linezer afbildning g: W — V, sadan at

fog=idw og gof =idy.
Vi viser, at en lineser afbildning er en isomorfi, hvis og kun hvis den er bijektiv.

Saetning 4.2.7 Lad [ veaere et legeme og lad f: V — W vere en linezer afbildning mel-
lem to F-vektorrum. Da er fplgende udsagn sekvivalente:

(1) Afbildningen f:V — W er en bijektion.

(2) Afbildningen f:V — W er en isomorfi.

Bevis Vi antager fgrst (1) og viser (2). Da f er bijektiv, findes der ifglge lemma|0.1.3|en
afbildning g: W — V, som opfylder, at fog =idw og gof =idy. Vi skal vise,at g: W -V
er lineeer. Da f: V — W opfylder (L1), geelder det for alle y,z e W, at

y+z=Ff(gy)+f(g2)=Ff(gly) +g(2),

hvilket netop viser, at g(y+2)=g(y)+g(z). Ogda f: V — W ogsa opfylder (L2), geelder
det endvidere for alle y e W og a € F, at

y-a=f(gy)a=[f(gly-a),

hvilket viser, g(y-a) = gf(g(y)-a) = g(y)-a. Altsa er g linezer, hvilket viser (2).

Vi antager dernzest (2) og viser (1). Da f er en isomorfi, findes der per definition en
linezer afbildning g: W — V, sadan at f og =idw og gof =idy. Specielt folger det fra
lemma at f: V — W er en bijektion. O
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Eksempel 4.2.8 (1) Lad os betragte M5 3(F) som et F-vektorrum med vektorsum og
skalarmultiplikation defineret som i eksempel (3). Da er afbildningen

h:FS — Mo 3(F)

defineret ved

h(x)= (

X1 X2 X3
X4 X5 X6
en linezer bijektion. Ifglge seetning er den dermed en isomorfi.

(2)Lad V ={|1)z1+1l)22]21,22 € C} veere det komplekse vektorrum af formelle linear-
kombinationer af symbolerne |{) og ||) fra eksempel (7). Da er afbildningen

h:C2-V

defineret ved A(2) = |1) z1+]]) 22 en lineaer bijektion. Ifglge seetning er den dermed
en isomorfi.

Vi viser nu, at det for linesere afbildninger er saerligt let at afggre, hvorvidt de er
injektive eller ej.

Lemma 4.2.9 Huvis [ er et legeme, og hvis f: V — W er en linezer afbildning mellem to
F-vektorrum, da er de folgende udsagn sekvivalente:

(1) Afbildningen f:V — W er injektiv.

(2) HvisveV og f(v)=0, saerv=0.

Bevis Vi minder om, at f: V — W er injektiv, hvis der for alle w € W, hgjst findes ét
v eV, sadan at f(v) = w. Sa (1) medfgrer per definition (2). Vi antager derfor, at (2)
geelder, og viser (1). Vi skal vise, at hvis v{,v2 € V og f(v1) = f(ve), da er v; = vg. Vi
lader derfor v = v; — v2 og udregner, at

(L1)

f()=f(v1—v2)=f(v1+v2-(-1)) = f(v1)+ f(v2-(-1))

(L2)

= f(v1)+f(ve)-(-1) = f(v1) - f(v2) =0.

Ifslge vores antagelse, at f: V — W opfylder (2), medfgrer dette, at v = 0. Men da er
v1 = vg, hvilket viser, at f: V — W opfylder (1) som gnsket. O
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Eksempel 4.2.10 Vi anvender lemma til at vise, at den linesere afbildning
h: R* — C°([0,27])

fra eksempel som er defineret ved A(a) = cos(x)a; + sin(x)as, er injektiv. Vi skal
vise, at hvis a € R? og h(a) = 0, da gaelder det ngdvendigvis, at @ = 0. Vi husker p4, at
nulvektoren 0 € C°([0,27]) er nulafbildningen 0: [0,27] — R, som er givet ved 0(x) = 0
for alle x € [0,27]. Vi skal derfor vise, at hvis

cos(x)aq +sin(x)ags =0

for alle x € [0,27], sa er bade a1 =0 og a9 = 0. Vi kan taenke pa denne ligning som et
linesert ligningssystem i de to variable a; og a2 og med uendeligt mange ligninger, der
er indicerede ved x € [0,27]. For x = 0 har vi ligningen

a1 =cos(0)aq+sin(0)as =0,
som viser, at a1 = 0. Og for x = § har vi ligningen
ag = cos(z)ay +sin(z)az =0,

som viser, at ag = 0. Dette viser, at & : RZ — C°([0,27]) er injektiv.

4.3 Basis for et vektorrum

Vi indfgrer nu tre helt centrale egenskaber. Disse begreber knytter sig ikke til enkelte
vektorer i et vektorrum, men derimod til familier af vektorer, og de kraever derfor nogen
tilveenning. De tre centrale egenskaber af en familie af vektorer i et vektorrum V er, at
den kan veere linezrt uafhaengig, at den kan frembringe V, eller at den kan veaere en
basis for V. For letheds skyld vil vi for det meste kun betragte endelige familier; vi
betragter uendelige familier sidst i afsnittet.

Lad (x;);cr veere en familie af elementer i en maengde X indiceret ved en mangde 1.
Hvis I er endelig, sa siger vi, at familien (x;);c; er endelig, og hvis I ={1,2,...,n}, sa
skriver vi ogsa (x1,x9,...,X,) 1 stedet for (x;);c; og siger, at denne familie er en n-tuple
af elementer i X. Standardbasen (ey,...,e,) fra definition[2.2.4] en saledes en n-tuple af
vektorer i ", og for enhver maengde X er den tomme familie ( ) den entydigt bestemte
0-tuple af elementer i X. Vi understreger, at en familie af elementer ikke er det samme
som en maengde af elementer. For eksempel er 1-tuplen (1) og 2-tuplen (1, 1) forskellige,
mens mangderne {1} og {1,1} er ens. Vi betegner altid familier med runde paranteser,
mens vi betegner maengder med Tuborgparanteser.
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4 Vektorrum

Definition 4.3.1 Lad F vaere et legeme, og lad V vaere et F-vektorrum. En vektor v eV
siges at veere en linearkombination af en endelig familie (v;);c; af vektorer i V, hvis
der findes en familie af skalarer (a;);c; med samme index mangde, sadan at

U= Zviai.

el

Vi bemaerker, at hvis v er en linearkombination af (v;);c;, da vil der generelt veere
flere familier af skalarer (a;);c7, sddan at v =3} ;c;v;a;.

Eksempel 4.3.2 (1) I ethvert vektorrum V er nulvektoren 0 en linearkombination af
den tomme familie ( ). For den tomme sum i V er per definition lig med 0.

(2) Vi viste i lemma [2.2.6 at enhver vektor x € " pa entydig vis kan skrives som en
linearkombination af standardbasen (e,...,e,), nemlig,

xXxX=e1x1+--t+euxy,.

(3) Enhver vektor x € R? er en linearkombination af familien

=

idet det for familien af skalarer (a1,a92) = (x1 — x9,—x1 + 2x9) geelder, at

2 1
e[l

Endvidere er familien af skalarer (a1,a2) med denne egenskab entydigt bestemt af x.

(—x1+2x9) = v1a7 + V2a9.

(4) Enhver vektor x € R? er en linearkombination af familien

==

idet x, som vi netop har set, kan skrives som en linearkombination af familien (v, v9).
Imidlertid er familien af skalarer (ai,a9,a3), sddan at x = viai + x2a9 + v3ag3, ikke
entydigt bestemt af x. For eksempel er bade

1 2 1 0 1 2 1 0

o) =) 2+ oo s fo]=(i)0+(i) 1+

Faktisk er der uendeligt mange mader at skrive x € R? som en linearkombination af
familien (v1,v9,v3).

«(=D).
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4.3 Basis for et vektorrum

(5) Lad A € M,, ,(F), og lad (ay,...,a,) veere den familie af vektorer i ™, der bestar af
sgjlerne i A. En vektor b € ™ er da en linearkombination

b:a1x1+a2x2+---+anxn

af denne familie, hvis og kun hvis ligningssystemet Ax = b har mindst én lgsning
x € F". I givet fald er familien af skalarer (x1,...,x,) entydigt bestemt af b, hvis og kun
hvis ligningssystemet Ax = b har netop én lgsning x € [".

(6) Lad [F[t]l<4 veere vektorrummet af polynomier med koeffcienter i F af grad hgjst d
fra eksempel (8). Enhver vektor p(¢) i dette vektorrum er en linearkombination
af familien af vektorer (£°,¢1,...,¢%). For hvis p(t) =Y o<n<ga@nt™, daer

p@®)= ) t"-an,.

0<n=<d

Vi bemaerker, at familien af skalarer (ag,a1,...,a4) er entydigt bestemt af p(¢).
(4) Lad C°([0,27],C) vaere C-vektorrummet af kontinuerte funktioner £ : [0,27] — C.
Vektoren exp(ix) i dette vektorrum er en linearkombination

exp(ix) = cos(x)-1+sin(x)-i

af familien af vektorer (cos(x),sin(x)). Familien af skalarer (1,7) er igen entydig.

Delmangden af et vektorrum V, der bestar af alle linearkombinationer af en endelig
familie af vektorer (v;);c; kaldes for spannet af (v;);c; og betegnes span((v;);cr). Vi viser
nu, at denne delmangde udger et underrum U <V, og vi kalder dette for underrummet

frembragt af familien (v;)ieg.
Lemma 4.3.3 Lad [ veere et legeme, lad V vaere et F-vektorum, og lad (v;);c vaere en
endelig familie af vektorer i V. Da udger delmeaengden
U =span((v;)ier) C V,

der bestadr af alle linearkombinationer af familien (v;);ej, et underrum af' V.

Bevis Vi skal vise, at delmeengden U < V opfylder (1)—(3) i definition Vi kan
udtrykke nulvektoren som 0=} ;.;v; -0. Derfor er 0 € U, sa (1) er opfyldt. Og hvis bade
X=2icr0ia; 08 y =Y erVibjerilU,daerx+y=3;c50,a; +3;c10;b; =¥ ;c1vi(a; +b;)
ogsd i U, sa (2) er ogsa opfyldt. Hvis endelig x = } ;c;via; er i U og a € F, sa er ogsa
xa=0Q jcrvia;)a=Y ;c1vi(a;a)i U, hvilket viser, at (3) er opfyldt. O
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4 Vektorrum

Definition 4.3.4 Lad F veere et legeme, lad V vare et F-vektorrum og lad (v;);c; veere
en endelig familie af vektoreri V.

(1) Familien af vektorer (v;);c; siges at vaere linezert uafhengig, hvis den eneste
familie af skalarer (a;);cs, for hvilken det gaelder, at

Z v;a; = 0,
el
er nulfamilien (a;);c7, hvor a; = 0 for alle i € I. Ellers siges familien (v;);c; at

veere linezert afhaengig.

(2) Familien af vektorer (v;);cs siges at frembringe eller udspaende V, hvis enhver
vektor v € V er en linearkombination

U= Zviai
el
af familien (v;);er.

(3) Familien af vektorer (v;);cs siges at veere en basis for V, hvis den bade er linezert
uafthaengig og frembringer V.

Det er ofte lettest at bruge definitionen ovenfor til at afggre om en given familie af
vektorer i et vektorrum er en basis eller ej. Det fglgende lemma giver en alternativ
karakterisering af baser, og antyder samtidigt, hvorfor dette begreb er sa nyttigt.

Lemma 4.3.5 Lad F vare et legeme, lad V vere et F-vektorrum, og lad (v;);cr vaere en
endelig familie af vektorer i V. Da er fplgende kvivalent:

(i) Familien (v;);cy er en basis for V.

(i1) Enhver vektor v € V kan skrives som en linearkombination af familien (v;);cs, 0g
denne opskrivning er entydig.

Bevis Vi antager forst (i) og viser (ii). Da (v;);ec; frembringer V, kan enhver vektor
v € V per definition skrives som en linearkombination v = Y ;c;v;a; af familien (v;);e;.
Vi skal derfor vise, at hvis ogsa v=) ;,c;v;b;,daera; =b; for allei € I. Men

Zvi(ai—bi):Zviai—Zvibi:v—v:(),

el el el
og da (v;);es er linesert uafthaengig, konkluderer vi, at a; —b; =0 for alle i € I. Dette viser
som gnsket, at (ii) gaelder.
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4.3 Basis for et vektorrum

Vi antager dernaest (ii) og viser (i). Da enhver vektor v € V kan skrives som en li-
nearkombination af familien (v;);c;, sa frembringer denne familie V. Endvidere kan
nulvektoren 0 € V altid skrives som linearkombinationen 0 =) ;c; v; -0, og per antagelse
er denne opskrivning entydig. Derfor er (v;);c; ogsa linesert uathaengig, hvilket viser,
at (i) geelder. O

U3

Figur 4.2: Familierne (e, es) og (v1,v2) er baser for R2, mens familierne (vy,v9,v3) og

(v1) ikke er der; se eksempel

Eksempel 4.3.6 (1) Vi betragter de fglgende tre vektorer i R?:

acl) el ol

Familien (v1) er linesert uathengig, da via; = 0 medfgrer, at a1 = 0. Den frembringer
imidlertid ikke R?, da vektoren vy for eksempel ikke er en linearkombination af (v1).
Familien (v1,v2) er ogsa lineaert uathaengig, da via; + veag = 0, hvis og kun hvis

2a41+a9=0
ai+ag =0,

og da dette ligningssystem har kun den ene lgsning, hvor bade a1 = 0 og ag = 0. Vi
sa eksempel at (v1,v9) frembringer R2, s& dermed er (v1,vs) en basis for R2.
Familien (v1,v9,v3) frembringer ogsa R?, fordi delfamilien (v1,vs) gor det, men den er
ikke linesert uathaengig. For ligningssystemet via;+veas+vsas = 0 har lgsninger, hvor
ai, ag og as ikke alle er nul, for eksempel a1 =4, ag =—-7 ogag=1.

(2) I ethvert vektorrum V er den tomme familie ( ) lineaert uafhengig, da betingelsen
i definition (1) trivielt er opfyldt. Den tomme familie er dermed en basis for V,
hvis og kun hvis V = {0}. For den tomme sum er per definition lig med 0.

(3) Ifplge lemma er standardbasen (eq,...,e;,) i definition en basis for ™.

(4) En endelig familie af vektorer (v;);cs, hvor der findes et j € I, sddan at v; =0, er
linezert afhaengig. For lad (a;);c; veere familien af skalarer, hvor a; =1 og a; = 0 for
i #j.Daer) c;via; =0, selvom (a;);c; ikke er nulfamilien.

149



4 Vektorrum

Ifslge lemma |4.1.8| er nulrummet N4 c F” af en m x n-matrix A et underrum, og vi
finder nu i et eksempel en basis herfor. Vi giver en generel algoritme i seetning(4.5.11

Eksempel 4.3.7 (Basis for nulrum) Vi har tidligere i eksempel |1.2.16|betragtet den
fglgende matrix A og udregnet den entydigt bestemte matrix A’, der er pa reduceret
echelonform og raekkesekvivalent med A.

O 0 2 -1 8
A=|1 -2 3 2 1 A=

3 -6 10 6 5

0O 0 1 o0 2
0O 0 o0 1 -4

1 -2 0 0 3)

Vi aflaeser heraf, at den fzlles lgsningsmaengde til “Ax = 0” og “A’x = 0” er givet ved

2t1 —3tg
t1
NAZNArZ{ —2t9 ‘tl,t2€|}:}.
4t9
t2
Med andre ord har vi vist, at familien

2 -3
1 0
v1=|0]|,ve=|-2
0 4
0 1

udggr en basis for nulrummet Ny = Ny c 5.

Lemma [4.1.8| viser tilsvarende, at sgjlerummet R4 < F” af en m x n-matrix A er et
underrum. Vi viser nu, at familien af sgjler i A frembringer dette underrum, hvilket
forklarer navnet.

Eksempel 4.3.8 (Frembringere for sgjlerummet) Hvis A € M,, ,(F) er en matrix,
da frembringer familien (a1,...,a,), der bestar af sgjlerne i matricen A, sgjlerummet
Rp={Ax|x€F*}cF™ For hvisx=e1x1+---+e,x,, daer

Ax=A(e1x1+---+epx,)=(Ae1)x1+---+(Aey)x, =aixi1+---+a,x,.

Familien (ai,...,a,) er generelt ikke linesert uathaengig og er derfor i almindelighed
ikke en basis for R4 < [F™*. Vi angiver senere i saetning en generel algoritme, der
viser, hvordan denne familie udtyndes til en basis.
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4.3 Basis for et vektorrum

Lemma 4.3.9 Lad (a4,...,a,) vere den n-tuple af vektorer i F™, der bestar af sgjlerne
i en m x n-matrix A € M, ,,(F).

(1) Familien (aq,...,a,) er linezert uafhaengig, hvis og kun x = 0 er den eneste lgsning
til “Ax = 0.” Dette geelder endvidere, hvis og kun hvis “Ax = b” hgjst har én lpsning
for alle b e F™.

(2) Familien (aq,...,a,) frembringer F™, hvis og kun “Ax = b” har mindst én lpsning
for alle b e F™.

(3) Familien (aq,...,a;) er en basis for F™, hvis og kun hvis “Ax = b” har precis én
lgsning for alle b € F™. Dette geelder endvidere, hvis og kun hvis A er invertibel.

Bevis En lgsning x € " til ligningssystemet “Ax = b” udtrykker netop b € F”* som en
linearkombination Ax = a1x1+---+a,x, af familien (a4,...,a,). Den forste pastand i (1)
samt pastanden (2) folger derfor fra definition [4.3.4] Den sidste del af (1) fas igen ved at
bemaerke, at hvis bade Ay =b og Az =b, sd er x =y —z en lgsning til “Ax =0.” Endelig
udtrykker den forste pastand i (3) netop @kvivalensen af de to udsagn i lemma |4.3.5]
mens den sidste péstand fglger fra seetning[2.4.9 O

Eksempel 4.3.10 Vi udregnede i eksempel [3.2.9| at matricen
5 -1 1
A=|0 2 -3|eMsR)
2 6 4

har determinant det(A) = 132 # 0. Da det(A) er invertibel i R, er A derfor invertibel
ifglge s@etning Derfor viser lemma altsa, at familien

(3L

Ifglge lemma[4.2.3|bestemmer en n-tuple (vy,...,v,) af vektorer i et F-vektorrum V en
entydig lineeer afbildning A: F* — V, sddan at h(e;) = v; for alle 1 <i <n. Vi viser nu, at
denne afbildning preecis er injektiv, surjektiv eller bijektiv eftersom n-tuplen (vq,...,v,)
er linezert uathaengig, frembringer V eller er en basis for V.

er en basis for R3.
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4 Vektorrum

Saetning 4.3.11 Lad [ veere et legeme, og lad V vaere et F-vektorrum. Lad (v4,...,0,)
veere en n-tuple af vektorer i V, og lad h: F"* — V vare den entydigt bestemte linesere
afbildning, sadan at h(e;) = v; for alle 1 <i < n. Da galder fplgende udsagn:

(1) Familien (vq,...,v,) er linezert uafhaengig, hvis og kun hvis h: F* — 'V er injektiv.
(2) Familien (vq,...,v,) frembringer V, hvis og kun hvis h: F* — 'V er surjektiv.

(3) Familien (v1,...,v,) er en basis for V, hvis og kun hvis h: F* — V er bijektiv.

Bevis Per definition er familien (vq,...,v,) linesert uathengig, hvis og kun hvis det for
alle x € " geelder, at hvis A(x) =0, sa er x = 0. Og ifplge lemma er dette tilfzeldet,
hvis og kun hvis A: F* — V er injektiv. Dette viser (1).

Familien (v1,...,v,) frembringer per definition V, hvis og kun hvis enhver vektor
v eV er en linearkombination v = v1x1 +--- + v,x, af (vy,...,v,). Dette betyder preecist,
at h: F* — V er surjektiv, hvorfor (2) falger.

Endelig er (vq,...,v,) en basis, hvis og kun hvis den bade er lineaert uathaengig og
frembringer V', og vi har netop vist, at dette er tilfaeldet, hvis og kun hvis afbildningen
h:F* —V bade er injektiv og surjektiv. Dette viser (3). O

Hvis (v4,...,v,) er en basis for V, si viser saetning at den entydige lineaere
afbildning A : F* — V, sadan at h(e;) = v; for alle 1 <i <n, er en isomorfi. Vi skal i naeste
afsnit se, at dette tillader os at oversatte alle spgrgsmal i lineser algebra, der angar
V, til tilsvarende spgrgsmal, der angar F”. Det er dog vigtigt at huske pa, at denne
oversaettelse afhaenger af valget af basis for V.

Korollar 4.3.12 Lad A vare en m x n-matrix af rang 0 <r <min{m,n} med indgange
i et legeme T, og lad (aq,...,a,) vere familien af sgjlevektorer i A.

(1) Familien (aq,...,a;) er linezert uafhangig, hvis og kun hvis r = n.
(2) Familien (ai,...,a;) frembringer F™, hvis og kun hvis r = m.
(3) Familien (aq,...,a;) er en basis for F™, hvis og kun hvisr =m =n.

Seerligt er familien (aq,...,a,) en basis hvis og kun hvis A er invertibel.

Bevis Da den entydigt bestemte lineaere afbildning A: F* — ™, sadan at h(e;) = a; for
1<i<n,ergivet ved h(x) = ai1x1+ -+ a,x, = Ax, fglger pastanden umiddelbart fra

setning 4.3.11|og seetning 2.5.15 O
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Eksempel 4.3.13 Vi betragter igen matricen

o o 2 -1 8
A=|1 -2 3 2 1
3 -6 10 6 5

fra eksempel Den entydigt bestemte matrix A’, der er reekkeaevivalent til A og
pa reduceret echelonform, udregnes til at veere

1 -2 0 0 3
A'=10 0 1 0 2.
O o0 o0 1 -4

Matricen A’ har 3 ledende indgange, og derfor er rank(A) = 3. Da A er en 3 x 5-matrix,
sadan at m =3 og n =5, og da r =rank(A) = 3 = m, sa viser korollar{4.3.12| at sgjlerne
i A frembringer R3.

Korollar 4.3.14 Lad A veare en n x n-matrix med indgange i et legeme F, og lad
(ai,...,a,) vaere familien af sgjlevektorer i A. Familien (a4,...,a,) er en basis for F",
hvis og kun hvis det(A) # 0.

Bevis Dette er en direkte konsekvens af korollar[3.4.2] and korollar[4.3.12 0

Vi skal nu vise, at et vektorrum, der er frembragt af en endelig familie af vektorer,
har en basis. Vi viser et mere praecist resultat, som er mere anvendeligt. Generelt, hvis
(xi)ier er en familie af elementer i en mangde X, og hvis J c I er en delmaengde, sa
siger vi, at familien (x;);cg er en delfamilie af familien (x;);c7. Seerligt er alle delfamilier
af en n-tuple (x1,...,x,) af formen (xil,...,xip), hvorO<sp<=nogl=<ii<--<ip=<n.
For eksempel er den tomme familie ( ) og familierne (v1,v3) og (v2) alle delfamilier af
familien (v1,v2,v3). Den falgende seetning er den lineaere algebras hovedsaetning.

Saetning 4.3.15 Lad [ veaere et legeme og lad V vaere et F-vektorrum. Huis (v;)ict er en
endelig familie af vektorer i V, som frembringer V, og hvis (v;);ck er en linezert uaf-
heengig delfamilie deraf, da findes en maengde J med K c J c I, sddan at delfamilien
(v;)ieg er en basis for V.

Bevis Vi gnsker at finde K c J < I, sadan at (v;);cj er en basis for V. Vi ved, at der
findes K < J c I, sadan at (v;);cg er lineart uathaengig, for det er rigtigt for J = K.
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4 Vektorrum

Vi veelger derfor et K c JJ c I, sddan at (v;);es er lineaert uathaengig, og sadan at J er
maksimal i den forstand, at hvis J € S c I og (v;);cs er lineaert uathaengig, daer S =J.
Vi vil nu vise, at familien (v;);cg ogsa frembringer V.

Sa vi antager modsaetningsvis, at dette ikke er tilfaeldet og viser, at det strider mod
maksimaliteten af J. Ifglge vores antagelse findes der en vektor v € V, som ikke er
en linearkombination af (v;);c.s, og da familien (v;);c; frembringer V, kan vi yderligere
antage, at v=vy, hvor hel og h ¢ J. Vilader S =J U{h} c I og viser, at familien (v;);cs
er linezert uathaengig. Sa lad

Z v;a; = 0

ieS
veaere en linearkombination, der er lig med nulvektoren. Hvis a;, #0, da er
vy =) vi-(-aa;’)
ied
en linearkombination af (v;);c;. Men da vi netop har antaget, at v, ikke er en line-
arkombination af (v;);cs, konkluderer vi, at aj = 0. Deraf fglger, at
Z v;a; = Z v;a; = 0,
ied ieS
og da (v;);c er lineaert uathengig, folger det, at a; = 0 for alle i € J. Vi har altsa hermed
vist, at a; =0 for alle i € S, hvilket viser, at (v;);cs er lineart uathaengig. Men S # </, sa
dette strider mod maksimaliteten af J, og vi konkluderer derfor, at vores antagelse, at
familien (v;);cg ikke frembringer V er forkert. Sa familien (v;);c; frembringer V og er
samtidigt linesert uatheengig og derfor en basis for V. Dette viser saetningen. O

Definition 4.3.16 Et vektorrum V er endeligt frembragt, hvis der findes en endelig
familie (v;);c; af vektorer i V, der frembringer V.

Satning viser seerligt, at et endeligt frembragt vektorrum V har en endelig
basis. Lad nemlig (v;);c; veere en endelig familie af vektorer i V, der frembringer V.
Da den tomme delfamile ( ) er linesert uathengig, viser seetning at der findes
@ cJ cl, sadan at (v;);es er en basis for V.

Eksempel 4.3.17 Vi betragter igen familien (v1,vs,v3) af vektorer i R2, hvor

N

Som vi bemzerkede i eksempel (1), sa frembringer denne familie R%, men den er
ikke linesert uafhengig. De tre delfamilier (v1,vs), (v1,v3) og (vg,v3) er alle linesert
uafheengige og frembringer R?, og de udggr dermed alle baser for R?. De fgrste to af
disse indeholder den linesert uathsengige familie (v1) som en delfamilie, mens dette
ikke er tilfaeldet for den tredje.
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Satning siger specielt, at enhver endelig familie af vektorer, der frembringer
et vektorrum, har en delfamilie, der er en basis for dette vektorrum. Szetningen siger
dog ikke, at en saddan basis er entydig, og eksempel [4.3.17| viser da ogs4, at dette ikke er
tilfeldet. Seetningen og dens bevis siger heller ikke noget om, Avordan man beerer sig
ad med at finde en sddan basis. Dette vender vi tilbage til i afsnit

Saetning 4.3.18 Lad [ vare et legeme, og lad V vere et F-vektorrum, der er frembragt
afen familie (vy,...,v,) af m vektorer. Hvis (w1,...,w,) er en linezert uafhaengig familie
af n vektoreri'V, sd er n <m.

Bevis Ifglge ssetning(4.3.15|findes der en delfamilie (v;,,...,v;,) af (vy,...,v,), som er
en basis for V. Ifglge seetning|4.3.11]er den linezere afbildning 4 : F¥ — V defineret ved

hix)= U, X1+ +0V;, X
derfor bijektiv. Samme saetning viser, at den lineaere afbildning g: F* — V defineret ved

gy)=wiy1+---+wpyn

er injektiv. Dermed er den sammensatte afbildning 2 log: F* — F* linear og injektiv, og
korollar [2.5.16| viser derfor, at n < k. Da ogsa k < m, fglger det, at n <m som gnsket. O

Eksempel 4.3.19 (1) I eksempel (1) viste vi, at familien (v1,ve,v3) af vektorer i
R? ikke er lineaert uathengig. Men dette folger ogsa fra saetning som viser, at
en linesert uatheengig familie af vektorer R? aldrig kan besta af mere end 2 vektorer.
For familien (e, e2) bestar af 2 vektorer og frembringer R?.

(2) Familien (1,¢,¢2,¢2,...) i vektorrummet F[¢] af alle polynomier er linezert uathaengig.
Fordi denne familie er uendelig, viser seetning at vektorrummet F[¢] ikke er
endeligt frembragt.

Saetning 4.3.20 Lad [ veaere et legeme og V et endeligt frembragt F-vektorrum. Hvis
bade (v1,...,v,) og (w1,...,w,) er baser for V, sd er m = n.

Bevis Da familien (vi,...,v,,) frembringer V, og da familien (w1,...,w,) er lineaert

uafhaengig, viser seetning|4.3.18, at m = n, og uligheden m < n vises tilsvarende. O

Seaetning [4.3.20| viser, at det fglgende dimensionsbegreb er veldefineret.
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4 Vektorrum

Definition 4.3.21 Lad V veere et endeligt frembragt vektorrum over et legeme [, og
lad (v1,...,v4) veere en basis for V. Da kaldes det naturlige tal

dimp(V)=d

for dimensionen af V.

Hvis F er underforstéet, sa skriver vi dim(V) i stedet for dimg(V).

Eksempel 4.3.22 (1) For ethvert legeme [ har vektorrummet F”* dimension
dimg(F™) = m.

For standardbasen (eq,...,e;,;) er en basis for .
(2) Underrummet N4 c F5, som vi betragtede i eksempel |4.3.7, har dimension

dimp(Ny) = 2.

For familien (v1,v2) fra eksempel er en basis.
(3) Det reelle vektorrum C, som vi betragtede i eksempel (5), har dimension

dimg(C) = 2.

For (1,1) er en basis, da ethvert z € C kan skrives entydigt som z =1-a+i-b med a,b € R.

(4) Lad Fl[tl<g veere F-vektorrummet af polynomier med koefficienter i F og af grad
hgjst d, som vi betragtede i eksempel (8). Det har dimension

dimp(Fltl<q) =d + 1.
For familien (£°,¢1,...,t%) er en basis, da ethvert polynomium p(¢) af grad hgjst d kan

skrives entydigt som en linearkombination p(¢) = t®-ag+t' a1 +---+t? a4, og indeks-
mengden {0,1,...,d}, som har d + 1 elementer.

Vi gnsker nu at vise, at hvis V er et endeligt frembragt vektorrum, og hvis U cV er
et underrum, sa er dim(U) < dim(V'). Det er dog ikke trivielt at vise, at vektorrummet
U er endeligt frembragt, sa vi viser farst, at dette faktisk er tilfzeldet.

Saetning 4.3.23 Lad F vaere et legeme, lad V vere et endeligt frembragt F-vektorrum,
og lad U c 'V vare et underrum. Da er U endeligt frembragt, og dim(U) < dim(V).
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4.3 Basis for et vektorrum

Bevis Vi viser fgrst, at U er endeligt frembragt. Sa vi lader (vq,...,v,,) vaere en familie
af vektorer, der frembringer V, og antager, at U ikke er endeligt frembragt. Vi viser
da, at der for alle n = 0 findes en lineaert uathangig familie (w1,...,u,) af vektorer i U,
hvilket er i modstrid med saetning Beviset for denne pastand er ved induktion
pa n = 0, og tilfeldet n = 0 geelder, da den tomme familie er lineaert uathengig. Sa
vi antager, at pastanden er bevist for n = p — 1 og viser den for n = p. Per induktion
findes der en lineaert uafhsengig familie (u1,...,u,_1) af p — 1 vektorer i U, og da U
per antagelse ikke er endeligt frembragt, er underrummet U’ ¢ U frembragt af denne
familie ikke hele U. Vi kan derfor veelge en vektor u, € U~U’, og vi viser nu, at familien
(w1,...,up_1,up) af p vektorer i U er linezert uathaengig. Sa vi lader

ujalt---t+tup-_1ap-1t+tuUpap = 0
veere en linearkombination af (u1,...,u,), som er lig med nulvektoren, og skal da vise,
ata;=0foralle1<i<p.Hvisa, #0, da erﬂ
up,=—(u1a1+---+ up_lap_l)agl,
hvilket strider mod, at u, ¢ U'. S& a, =0, og derfor er
ujart--t+tup-_1ap-1= 0,

hvoraf det fglger, at a; =0 for 1 <i < p -1, idet (u1,...,u,_1) er lineaert uafhsengig.
Dette viser induktionsskridtet og dermed pastanden, at der for alle n = 0 findes en
lineaert uathaengig familie (#1,...,u,) af vektorer i U. Men denne familie er da ogsa en
linegert uathaengig familie af vektorer i V, hvilket er i modstrid med setning Vi
slutter derfor, at vores antagelse, at U ikke er endeligt frembragt var forkert, hvilket
viser, at U er endeligt frembragt som gnsket. Vi anvender endelig seetning [4.3.15til at
veelge baser (#1,...,u,) for U og (v1,...,v,) for V. Familien (u1,...,u,) er da specielt
en linezer uathaengig familie af vektorer i V, mens familien (vq,...,v,,) af vektorer i V
frembringer V. Derfor viser seetning[4.3.18| at

dim(U) =n <m =dim(V)

som gnsket. O

Saetning 4.3.24 Lad [ veere et legeme, lad V vaere et endeligt frembragt F-vektorrum,
og lad d = dimg(V'). Da galder fplgende udsagn:

(1) Enhver linesert uafhengig familie (v1,...,v,) af vektorer i V er en delfamilie af
en basis (v1,...,Um,Umi1,...,0q) for V.

(2) Enhver familie (v1,...,v,) af vektorer i V, der frembringer V, har en delfamilie
(v;,,...,0i,), der er en basis for V.

2 Bemeerk, at vi anvender, at F er et legeme, sadan at det for alle elementer a € F geelder, at hvis a # 0,
da er a invertibel.
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4 Vektorrum

Bevis For at bevise (1) lader vi (v, +1,...,Vp) vaere en endelig familie af vektoreriV, der
frembringer V. Da frembringer familien (v1,...,0,0m+1,...,0;p) ligeledes V, og den in-
deholder den linesert uafhaengige familie (vy,...,v,,) som en delfamilie. Seetning [4.3.15|
viser derfor, at der findes en delmaengde

{1,2,....m}cJ c{1,2,....m,m+1,...,p},
sadan at delfamilien (v;);cs er en basis for V, og ved om ngdvendigt at reindicere, kan
vi antage, at J ={1,2,...,m,m+1,...,d}. Dette viser (1).
Endelig falger (2) umiddelbart fra ssetning[4.3.15] som viser, at der findes
ociit,...,igt<{1,2,...,n},
sadan at delfamilien (v;,,...,v;,) er en basis for V. O

Vi illustrerer de sidste to seetninger med fplgende simple eksempel.

Eksempel 4.3.25 Vi betragter igen underrummet fra eksempel 4.1.5]
X1 2 2
U:{x:(xz)elR |x1:x2}CV:IR .

Da V er endeligt frembragt af dimension 2, s& viser saetning 4.3.23| at U er endeligt
frembragt af dimension hgjst 2, og det er da heller ikke sveert at se, at familien

(=)

er en basis for U. Sa U har dimension 1. Hvis vi betragter (v;) som en familie af
vektorer iV, da er denne familie derfor linesert uathengig. Ifglge seetning[4.3.24findes
der derfor en basis for V', som indeholder (v1) som en delfamilie. Standardbasen (eq, e2)
for V har ikke denne egenskab, da v{ hverken er lig med e; eller es. Derimod er

1 1
(o= [g) 2= o)
en basis for V, som indeholder (v1) som en delfamilie. For eksempel er
11
det(v1 wvg) = det(l 0) =-1#0,

og lemma [4.3.9] viser derfor, at (v1,v2) er en basis for V. Se ogsa figur 4.3]
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4.3 Basis for et vektorrum

Figur 4.3: Underrum U c V = R? og basis for V som indholder en basis for U.

Bemsaerkning 4.3.26 Vi skitserer her, hvordan begreber og seetninger i dette afsnit
udvides til vektorrum, der ikke antages at veere endeligt frembragte.

Vi definerer en linearkombination af en familie af vektorer i et vektorrum som fglger.
Hvis a = (a;);es er en familie af skalarer, da definerer vi dens support til at veere

supp(a)={i€l|a; #0} =1,

og vi siger, at a = (a;);cr har endelig support, hvis supp(a) c I er en endelig delmangde.
Vi lader nu V vaere et vektorrum og lader (v;);c; veere en familie af vektorer i V. Hvis
(a;i)icr er en familie af skalarer, der er indiceret ved den samme mangde I og som har
endelig support, da definerer vi

Y viai= ), va;

iel iesupp(a)

og kalder denne sum for en linearkombination af familien (v;);c7. Vi bemeerker, at mens
hgjresiden er en endelig sum og derfor meningsfuld, er venstresiden blot et symbol,
der ved denne ligning defineres til at veere lig med hgjresiden. Med denne definition
af en linearkombination kan definition nu udvides til vilkarlige familier mutatis
mutandis.

Den linezere algebras hovedsaetning geelder generelt og siger, at hvis (v;);c; er en
familie af vektorer i V, der frembringer V, og hvis (v;);cx er en lineart uathaengig
delfamilie, da findes K c J c I, sadan at delfamilien (v;);cs er en basis for V. Man kan
dog ikke bevise denne satning uden at anvende Zorns lemmaﬁ Et vektorrum V har
altid en familie af vektorer, der frembringer V, nemlig identitetsfamilien (v)ycy, og den
tomme familie er en lineaert uathaengig delfamilie heraf. Dermed har V en basis, som
kan veere (vilkarligt) uendelig.

3 A. Blass. Existence of bases implies the axiom of choice. Axiomatic Set Theory (Boulder, CO, 1983),
31-33, Contemp. Math., 31, Amer. Math. Soc., Providence, RI, 1984.
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4 Vektorrum

Man kan ogsa vise, at to baser for det samme vektorrum ngdvendigvis bestar af det
samme “antal” vektorer. Mere preecist, hvis (v;);c; og (w;);cs er to baser for V, da har
mangderne I og J samme kardinalitetﬁ a, og man definerer da dimensionen af V til
at vaere dimp(V) = a. For eksempel har [F[#] dimension Xy, hvilket er kardinaliteten af
de naturlige tal, mens vektorrummet, der bestar af alle falger (a;);en af skalarer a; € F,
har dimension 2%, hvilket er kardinaliteten af de reelle tal.

4.4 Matrixrepraesentation af lineare afbildninger

Som Descartes har laert os, er det lettest at lave udregninger ved at bruge koordinater.
Vi indfgrer nu koordinater for endeligt frembragte vektorrum og matrixreprasentation
for linezere afbildninger mellem endeligt frembragte vektorrum. Det er dog vigtigt at
huske, at begge begreber athanger af valg af baser.

Vi viste i lemma [4.2.3], at en n-tuple (v1,...,v,) af vektorer i et vektorrum V entydigt
bestemmer en lineser afbildning A: F* — V, sadan at h(e;) =v; foralle 1<i <n, ogvi
viste i seetning[4.3.11] at denne afbildning er en isomorfi, hvis og kun hvis (vy,...,v,) er
en basis for V.

Definition 4.4.1 Lad V vere et endeligt frembragt vektorrum over et legeme F. Lad
(v1,...,v,) veere en basis for V, og lad A: F* — V vaere den lineaere isomorfi givet ved

h(x)=v1x1 +Vox2 + -+ U, X,.

Givet en vektor v € V, da kaldes den entydigt bestemte sgjlevektor x € [, sadan at
h(x) = v for koordinaterne af v € V med hensyn til basen (v1,...,v,).

Eksempel 4.4.2 (1) Vi betragter igen basen

[r= (1) ===(3)

for V = R? fra eksempel (1). Den entydigt bestemte linesere isomorfi 2: R? — V,
som opfylder, at h(e1) = v1 og h(ez) = vg, er da givet ved
_ _ 2 1)\(x1 _ 2x1 + x9
h(x) =v1x1 + vax9 = 1 1) (x2) = ( 1 +x2)'

Vi gnsker at bestemme koordinaterne x € R? af vektoren

v= 5)€V

3

4 Kenneth Kunen. Set Theory. Studies in Logic (London), 34. College Publications, London, 2011. Kar-
dinaliteten af en mangde er defineret i Definition 1.10.11.
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4.4 Matrixrepraesentation af linesere atbildninger

med hensyn til basen (v1,v9). Per definition er x € R? den entydigt bestemte sgjlevektor,
sadan at A(x) = v. Denne sgjlevektor er altsa lgsningen til ligningssystemet

 )E)-6)
()6 ) @[ 266

Vi har dermed udregnet, at v=v1-2+vgy-1.

som er

(2) Vi betragter vektorrummet V = [F[¢t]<4 af polynomier med koefficienter i F og af grad
hgjst d fra eksempel 4.1.3L Familien (¢%,¢1,...,t%) er en basis for V, og den entydige
linesere isomorfi 4 : F¢*1 — V, sadan at h(e;) =t~ for alle 1<i<d +1, er givet ved

ha) =10 xy+ 2 xg -+ 2% g1 =X+ ot + oo+ xg 4127

Vi afleeser heraf, at koordinaterne af vektoren p(¢) = ag+a1t+---+ay t4 €V med hensyn
til basen (¢%,¢1,...,¢t%) for V er lig med sgjlevektoren

ag
x= Sl

aq

Vi bemaerker det forvirrende indeksskift, som skyldes, at vi i dette afsnit kun tillader
baser at vaere indiceret ved I ={1,2,...,n} og ikke ved for eksempel I ={0,1,...,d}.

(B)Vilader V ={|1)z1+|l)z2| 21,22 € C} vaere C-vektorrummet fra eksempel 7)
og betragter basen (v1 = |1)1/V2+|])1/V2, vy = |1)1/V2—]]|)1/v2) herfor. Den entydige
linezere afbildning 4 : C2 — V, sadan at h(e2) = v og h(ey) = vs, er da givet ved

h(w) = v1w: +vaws = (1) -5 +11) = w1+ (1D 5 ~ 1)) 75 we
= 1N (w1 + swa) + 1) (Fsw1 — Fws).

Koordinaterne w € C? af vektoren v = |1) 1/v/2+ ||} i/v2 med hensyn til basen (vy,vs) er
dermed den entydige lgsning til ligningssystemet

WE NG| (wr) _ (W2
s —13) \we) ~ (N3]’

som er 1
w1\ (WE INE\ (MR (V2+il
W= we) “\ive —1va) \ine) " \ve—in)
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4 Vektorrum

Vi skal nu vise, at givet to endeligt frembragte vektorrum samt baser for disse, da kan
enhver lineaer afbildning mellem disse vektorrum péa entydig vis repraesenteres ved en
matrix. Det er vigtigt at huske denne sesetning helt praecist, da den danner grundlaget
for alle beregninger, der har med linesere afbildninger at ggre.

Seetning 4.4.3 Lad [F vaere et legeme, og lad [ : V — W vare en linezr afbildning fra
et n-dimensionalt F-vektorrum til et m-dimensionalt F-vektorrum. Lad (v1,...,0,) og
(w1i,...,wy) vere baser for henholdsvis V og W, og lad

A= (aij) € Mm,n(n:)

vaere matricen, hvis j’te sgjle er koordinaterne for f(v;) € W med hensyn til (w1,...,wy).
HvisveV og w=f()eW, og hvis x e " og y € F* er koordinaterne for v € V med
hensyn til (v1,...,v,) og for w e W med hensyn til (w1,...,wy,), da er

y=Ax.

Matricen A € M, ,,(F) er endvidere entydigt bestemt ved denne egenskab.

Bevis Ifglge definition kan vi skrive v € V entydigt som

n
v=>) v,
J=1
hvor x € F"* er koordinaterne af v med hensyn til basen (v1,...,v,). Vi anvender f pa

denne ligning og udnytter henholdsvis (L1) og (L2) til at omskrive hgjresiden:
f)=f(} vjxp =) flvjx) =) fv))x;.
j=1 j=1 j=1
Ifglge definition kan vi ligeledes skrive vektoren f(v;) € W entydigt som
m
fwj) =) wia;j,
i=1

hvor
al Jj

a;j=| ' |€ F™
Amj
er koordinaterne af f(v;) med hensyn til basen (w1,...,w;,). Vi substituerer disse sidste
ligninger i udtrykket for w = f(v) overfor, hvilket giver

w:Z(
j=1

m n
wiaij)xj = Zwl(z aijxj).
=1 =1 j=1

1™z
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Da koordinaterne y € ™ af vektoren w med hensyn til basen (w1,...,w,,) er entydigt
bestemt, afleeser vi af denne ligning, at

n
Yi= ) aij%;
=1

for alle 1 <i < m. Dermed har vi vist, at y = Ax som gnsket, hvor A = (a;;). Endelig
er matricen A entydigt bestemt, idet koordinaterne a; € " for vektoren f(v;) € W med
hensyn til basen (w1,...,w;,) er entydigt bestemte. a

Seetning giver en 1-1-korrespondance mellem linezere afbildninger f: V — W og
matricer A € M, ,(F). Denne 1-1-korrespondance afhenger af valget af baser (vy,...,v,)
for V og (w1,...,w,,) for W, og vi indfgrer derfor fglgende terminologi.

Definition 4.4.4 Lad F veere et legeme, og lad f: V — W veaere en lineaer afbildning
fra et n-dimensionalt F-vektorrum til et m-dimensionalt F-vektorrum. Lad (v1,...,v;)
og (w1,...,wy,) vere baser for henholdsvis V og W. Da kaldes matricen

A= (aij) € Mm,n(":),

hvis j’te sgjle er koordinaterne for f(v;) € W med hensyn til basen (w1,...,wy,,) for W,
for matricen, der repraesenterer f: V — W med hensyn til baserne (v1,...,v,) for V og
(w1,...,wy) for W.

Bemarkning 4.4.5 Vi kan reformulere definitionen af den matrix A € My, ,(F), der
reprasenterer den linezere afbildning f: V — W med hensyn til basen (v,...,v,) for V
og basen (w1,...,w,,) for W som fglger. Lad h: F* — V og k: F"* — W vaere de entydigt
bestemte linezere isomorfier, sidan at h(e;) = v; for alle 1 < j < n og k(e;) = w; for alle
1 <i < m. Der findes netop én lineeer afbildning g: F* — ", sddan at diagrammet

V%W

P, b

kommuterer, nemlig, g =k Lo foh, og vi pastar, at A € M m.n(F) ogsé repraesenterer
afbildningen g: F* — " med hensyn til standardbaserne. For da foh =kog, sa geelder
det for alle 1 <j<n, at

glej)=eia1j+egxagj+---+epnamj,

hvis og kun hvis
f(vj)=wiaij+twaagj+- -+ Wnamj,

hvilket viser pastanden.
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4 Vektorrum

Eksempel 4.4.6 (1) Lad F veere et legeme, og betragt vektorerne vy, vy € F2, hvor

o el

Familien (v1,v2) er en basis for F2, og matricen P € My(F), der repraesenterer identitets-
afbildningen id: F2 — F? med hensyn til basen (v1,vs) for domaenet og standardbasen
(e1,e2) for codomeenet, er per definition givet ved

)

Sgjlene i P er nemlig koordinaterne af vektorerne v; = id(v1) og ve =id(v2) med hensyn
til standardbasen (e1, es) for F2. Denne matrix er altsa ikke identitetsmatricen, hvilket
skyldes, at vi ikke anvender den samme basis for domanet og codomzaenet.

(2) Matricen A € M, (F), der repraesenterer identitetsafbildning id : V — V med hensyn
til den samme basis (vq,...,v,) for bade domaenet og codomaenet, er identitetsmatricen
A =1I,. Per definition er den j’te sgjle i A nemlig koordinaterne af id(v;) = v; med
hensyn til basen (vy,...,v,), og udregningen

vj:Zvi-0+vj-1+Zvi-0

i<j i>j
viser, at koordinaterne af v; med hensyn til denne basis er lig med e; € F".
(3) Vi betragter den linesere afbildning D : F[¢]<g — F[t]<1, der til et polynomium

p@)=ayp +a1t+a2t2
tilordner det formelt afledte polynomium
D(p(t)=p'(t) =a1 +2ast.
Vi afleeser da fra udregningen
D% =0=¢-0+¢1-0
DtH=1=¢-1+¢0
D) =2t=¢"-0+¢'-2,

at den matrix A € My 3(F), der repreesenterer D med hensyn til basen %, ¢1,£2) for
domeenet og (¢°,¢1) for codomaenet, er givet ved

010
A‘(o 0 2)'

164



4.4 Matrixrepraesentation af linesere atbildninger
Bemaerkning 4.4.7 Vi vil symbolisere, at f: V — W er reprasenteret af A € M, ,(F)
med hensyn til baserne (vq,...,v,) for V og (w1,...,w,,) for W med figuren

1% A W

A
(V1. .., 0y) sy (W1, -« ., Wiy).

Denne notation er ikke standard, men som vi skal se nedenfor, ggr den det lettere at
overskue, hvordan sammensatning af linesere afbildninger oversattes til matrixsprog.
Vi understreger, at den prikkede pil ikke betegner en afbildning.

Eksempel 4.4.8 Med notationen fra bemaerkning udtrykker vi den situation, vi
betragtede i eksempel |4.4.6, som fglger.

P2 < P Flt]<g ——— Fltl<
(v1,vg) P> (e1,e2) (to,tl’tz) .......... A vy (tO,tl)

Saetning 4.4.9 Lad F veaere et legeme, lad U, V og W vaere F-vektorrum af dimension
henholdsvis p, n og m, og lad (u1,...,up), (vy,...,v,) og (w1,...,wy,) vere baser for
henholdsvis U, V og W. Lad f:V — W og g: U — V vere linezre afbildninger, og lad
AeMp,,(F), Be M, ,(F)og C € Mp,,(F) vere matricerne, der repraesenterer henholdsuvis
f: VoW, g:U—>Vog[fog:U— W med hensyn til de givne baser. Da er

C=AB.

Bevis For u € U lader vi x € F?, y € " og z € ™" vaere koordinaterne for henholdsvis
u € U med hensyn til basen (u1,...,u,), v = g(u) € V med hensyn til basen (vy,...,v,),
og w = f(g(u)) € W med hensyn til basen (w1,...,w,,). Ifsglge setning er

z2=Ay=A(Bx)=(AB)x,

og da matricen C, der repraesenterer f og: U — W med hensyn til baserne (u1,...,u,)
for U og (w1,...,w,,) for W, er entydigt bestemt, konkluderer vi, at C = AB som gnsket.
Vi bemaerker, at vi i udregningen ovenfor har anvendt det ikke-trivielle faktum, at den
associative lov gaelder for matrixmultiplikation, hvilket vi viste i ssetning 0
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4 Vektorrum

Bemszerkning 4.4.10 Med notationen fra bemarkning kan vi udtrykke udsagnet
i seetning ved fglgende diagram.

fog
U K;\ W
T
AB .

Vi bemeerker, at den raekkefglge, hvori de to afbildninger f og g sammenseettes, er den
samme som den raekkefglge, hvori de to matricer A og B, der representerer dem med
hensyn til de valgte baser, multipliceres.

Korollar 4.4.11 Lad [F vaere et legeme, og lad f: V — W veere en linezer afbildning fra et
n-dimensionalt F-vektorrum V til et m-dimensionalt F-vektorrum W. Hvis A € M, ,(F)
er matricen, der repraesenterer f:V — W med hensyn til baser (vi,...,v,) for V og
(w1,...,wy) for W, da er de fplgende udsagn xkvivalente:

(1) Der findes en linezer afbildning g: W —V, sadan at f og =idw og go f =idy.
(2) Der findes en matrix B € M, ,(F), sadan at AB=1,, og BA=1,.

I givet fald repraesenterer matricen B € M, ,(F) afbildningen g: W —V med hensyn til
basen (wq,...,wy) for W og (v1,...,v,) for V.

Bevis Vi antager forst (1), og for at vise (2) betragter vi felgende figur.

fog =idw
W g 1% ! W
@1, 0) P @1 00) A Qo1 w0)
e AB=I, .. )

Lad B € M,, ,(F) vaere matricen, der repraesenterer g: W — V med hensyn til baserne
(wi,...,wn) for W og (vy,...,v,) for V. Ifglge seetning[4.4.9 er AB € M,,(F) da matricen,
der reprasenterer f o g =idw: W — W med hensyn til den samme basis (w1,...,w,,) for
bade domaenet og codomaenet, og denne matrix er derfor lig med identitetsmatricen I,,.
Vi ser tilsvarende, at go f =idy medferer, at BA =1, sa (2) gelder.
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4.4 Matrixrepraesentation af linesere atbildninger

Omvendt, hvis (2) geelder, sa lader vi g: W — V veere den linere afbildning, der er
repraesenteret af B € M, ,(F) med hensyn til baserne (wjq,...,wp) for W og (vy,...,v,)
for V. Ifplge seetning[d.4.9)er fog: W — W den lineere afbildning, der er repreesenteret
af AB = I,, med hensyn til den samme basis (w1,...,w,,) for domaenet og codomzaenet,
og denne linezere afbildning er derfor lig med identitetsafbildningen idw. Beviset for at
BA =1, medfgrer, at go f =idy, er tilsvarende, sa (1) fglger. O

Hvis de &kvivalente udsagn (1) og (2) i korollar |4.4.11| geelder, da er m = n, idet en
invertibel matrix altid er kvadratisk. Vi viser nu fglgende mere praecise resultat.

Saetning 4.4.12 Lad F veere et legeme, og lad f:V — W veare en linezer afbildning
mellem [F-vektorrum. Da er [ en isomorfi hvis og kun hvis det for enhver basis (v;);e1
for V geelder, at familien (f(v;))icr er en basis for W. I givet fald har V og W samme
dimension.

Bevis Vi antager fgrst, at f er en isomorfi. Vi lader (v;);c; veere en basis for V og skal
da vise, at (f(v;));es er en basis for W. Sa lad g: W — V vaere den inverse afbildning af
f:V —W. Givet en vektor w € W, da kan vi skrive v = g(w) € V som en linearkombina-
tion v =) ;7 v;a;. Det fglger derfor, at

w=f)=[f(Q via;)=) f)ai,
el el
hvilket viser, at familien (f(v;));c; frembringer W. Og hvis en linearkombination
Y fwa;
el
er lig med nulvektoren, da er ogsa
Y viai=) g(fw)a; =g fvia;)
iel iel iel

lig med nulvektoren, og da (v;);c; er lineaert uathaengig, er alle a; derfor lig med nul.
Dette viser, at familien (f(v;));cs ogséa er lineaert uathengig og dermed en basis for W.
Specielt har V og W derfor samme dimension. Omvendt, hvis (v;);c; er en basis for V
og (f(v;))icr en basis for W, da giver formlen g} ;c; f(vi)a;) =Y ;c;v;ia; en veldefineret
og lineaer afbildning g: W — V. Per definition er f o g =idw og go f =idy, hvilket som
gnsket viser, at f: V — W er en isomorfi. O

Eksempel 4.4.13 Vi har i eksempel bestemt matricen P € Mo(F), der repraesen-
terer identitetsafbildningen id: F2 — F2 med hensyn til basen (v1,v2) for domaenet og
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4 Vektorrum

standardbasen (e1, e2) for codomaenet. Eftersom identitetsafbildningen er sin egen in-
verse afbildning, viser korollar |4.4.11 at matricen, der repreesenterer id: F? — F2 med
hensyn til standardbasen (e1, e2) for domaenet og basen (v,vs) for codomaenet er

. (1 -3
P _(_2 3).

Her har vi brugt eksempel til at udregne den inverse matrix.

Vi skal nu se, hvordan matricen, der reprasenterer en lineaer afbildning med hensyn
til ét valg af baser, bestemmer matricen, der reprasenterer den samme afbildning med
hensyn til et andet valg af baser. Vi opfordrer leeseren til at huske det simple bevis for
den fglgende saetning i stedet for det komplicerede udsagn.

Saetning 4.4.14 Lad F vaere et legeme, og lad f: V — W veaere en linezer afbildning fra et
n-dimensionalt F-vektorrum V til et m-dimensionalt F-vektorrum W. Lad A € M, ,(F)
vaere matricen, der repraesenterer f: V — W med hensyn til baser (v’l,...,v;l) for V og
(w’l, ...,wh,) for W, og lad B € M, »(F) vaere matricen, der repreesenterer f: V — W med
hensyn til baser (v1,...,v,) for V og (w1,...,w,,) for W. Da er

B=Q AP,

hvor P € M, (F) repraesenterer idy : V — V med hensyn til basen (v1,...,v,) for domaenet
og basen (v',...,v;) for codomzenet, og hvor @ € M, (F) repreaesenterer idy: W — W med
hensyn til basen (w1,...,w,,) for domaenet og basen (w'l, ...,w.) for codomeenet.

Bevis Den fglgende figur illustrerer den information, vi har til radighed.

(v),...,v)) (w,...,w),)
=

P ldV ic‘lW Q
\%4 % w

(vl,;..,vn) (wl,...;wm)
5 4
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Ifglge seetning er matricen C, der reprasenterer idwof = foidy: V — W med
hensyn til baserne (v},...,v;) for V og (w1, ...,wy,) for W, lig med

C=QB=AP,

og da identitetsafbildningen idw: W — W er en isomorfi, fglger det fra korollar [4.4.11]
at matricen @ er invertibel. Derfor er B =@ AP som gnsket. 0O

Bemszerkning 4.4.15 Vi afleser udsagnet i ssetning [4.4.14| fra figuren i beviset som
falger. Vi gnsker at skrive den prikkede pil “B” som en sammensaetning af de gvrige

prikkede pile og bemaerker, at dette kraever, at pilen “Q” vendes om. Pilen i den modsatte
retning er da “Q 1", og den findes, fordi @ er invertibel.

Eksempel 4.4.16 Vibetragter den linesere afbildning f: F? — F2, der er repraesenteret
med hensyn til standardbaserne (e, es, e3) for F2 og (e1, es) for F2 af matricen

2 4 1

og vi gnsker at bestemme matricen B € Mg 3(F), der repreesenterer f: F? — F2 med
hensyn til de nye baser

2 0 1 1 3
(vlz O0l,vo=|1|,v3=1]0 ) og (wlz(l),wzz(z))
3 1 1
for henholdsvis F3 og F2. Vi betragter derfor den fglgende figur.

(e1,ez,e3) (e1,e2)
”:3 ;) [F2
P i3 id2 Q
I]:3 N [F2

(v1,v2,v3) (w1, wz)
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Vi ser direkte fra definitionen af de nye basisvektorer, at

1 3

2 01
P:(O 1 0)€M3([F) og Q:(l 9

)EMz([F),
3 11

og vi konkluderer derfor fra saetning({4.4.14} at
2 01
-2 3\(2 4 1 -8 -13 -3
—Nn-1 — —
B=¢ AP_( 1 —1)(1 -1 0)(2 i (1))_( 5 6 2)'

Her har vi anvendt eksempel til at udregne @ L.

Korollar 4.4.17 Lad [ veere et legeme, og lad V veere et n-dimensionalt F-vektorrum.
Lad (v4,...,v,) og (wq,...,w,) vere baser for V, og lad P € M,(F) vaere matricen,
der repraesenterer idy : V — V med hensyn til basen (v1,...,v,) for domanet og basen
(w1,...,wy) for codomeaenet. Huis x € F" og y € " er koordinaterne af en vektor v eV
med hensyn til henholdsvis (v1,...,v,) og (w1,...,w,), da er

y=Px.

Bevis Pastanden fglger umiddelbart af seetning anvendt paidy:V — V. O

Eksempel 4.4.18 Vi betragter en vektor

y=e1y; +ezys+esyz >

og gnsker at bestemme koordinaterne x € F? af denne vektor med hensyn til den nye
basis (v1,v9,v3) for F? fra eksempel [4.4.16] Ifglge korollar|4.4.17 gaelder det da, at

y =Px,

hvor P er matricen, der repreesenterer id: F? — F3 med hensyn til basen (v,vov3) for
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domeenet og basen (e1, es, e3) for codomeenet. Vi bestemmer derfor P71,

2 0 1] 1 0 o
®@/D=lo 1 0] 0 1 0
3 1 1| 0 0 1) +-1DR;
2 0 1| 1 0 0\ +(-2)R;3
0 1 o/l 0 1 o0
1 1 0|-1 o0 1
0 -2 1| 3 0 -2\ +2Ry
0 1 0| 0 1 o0
1 1 0|-1 0 1) +(-DRy
0o 0 1| 3 2 -2
0 1 0| 0 1 0| Ri—R;3
1 0 0/-1 -1 1
1 0 O0]-1 -1 1
aiphHh=(o 1 ol 0o 1 o0,
0 0 1| 3 2 -2

og konkluderer, at

1 -1 1\(»n —y1—Y2+Y3

0 1 O0f]y]= y2 .
3 2 -2/)\ys 3y1+2y2—2y3

Bemaerkning 4.4.19 For at kunne skifte koordinater og lave lignende udregninger er
det kun ngdvendigt at huske felgende:

(a) Definitionen af matricen, der repraesenterer en linezer afbildning med hensyn til
givne baser for dens domane og codomeane.

(b) Hvis to linesere afbildning sammensaettes, sa multiplicereres de matricer, der
repraesenterer dem, i samme rakkefglge.

Koordinatskift svarer til at anvende disse principper pa identitetsafbildningen. Det er
en god idé at tegne figurer, som vi har gjort ovenfor, for ikke at blive forvirret over,
hvilken vej afbildningerne gar, og hvilken raekkefglge, de sammensattes i.

Bemaerkning 4.4.20 Linezere afbildninger mellem uendeligt dimensionale vektorrum
forekommer naturligt i mange sammenhaenge. For eksempel har maengden C%([a, b]) af
kontinuerte reelle funktioner f: [a,b] — R en reel vektorrumsstruktur med vektorsum
og skalarmultiplikation defineret ved (f + g)(x) = f(x) + g(x) og (f -a)(x) = f(x)-a, og
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afbildningen I: C°([a,b]) — R defineret ved
b
I(f) :f f(x)dx
a

er da en lineser afbildning. Dimensionen af C°([a,b]) er imidlertid 22NO, sa det er ikke
muligt at studere dette vektorrum med de algebraiske metoder, vi har udviklet her. I
stedet betragter vi C%([a,b]) som et topologisk vektorrum, hvilket gor det muligt at tale
om (visse) uendelige summer, og som sadan udggr den taellelige familie (x™),cn ifolge
Weierstrass’ approksimationssaetning en slags basis.

4.5 Kerne og billede

Vi definerer kernen og billedet af en lineaer afbildning og viser, hvordan disse begreber
giver anledning til en bedre forstaelse af linesere ligningssystemer.

Definition 4.5.1 Lad[F veere et legeme. Hvis f: V — W er en linezer afbildning mellem
to F-vektorrum, da kaldes

ker(f)={veV|f(w)=0cV og im(f)={fw)eW|veV}cW

henholdsvis kernen af f: V — W og billedet af f: V — W.

Lemma 4.5.2 Lad f:V — W vare en linezr afbildning mellem to F-vektorrum. Da er
ker(f) cV underrum af V og im(f) c W underrum af W.

Bevis Vi skal vise, at ker(f) c V og im(f) € W opfylder (1)—(3) i definition [4.1.4] og
begynder med ker(f) c V. Da f(0) =0, er 0 € ker(f), sa (1) gaelder. Hvis f(u) = 0 og
f(v)=0,daerogsa f(u+v)=f(u)+f(v)=0+0=0, sa (2) geelder. Endelig, hvis f(v) =0,
daer f(v-a)=f(v)-a=0-a =0, sa ogsa (3) geelder.

Vi betragter dernaest im(f) c W. Da 0 = f(0), er 0 € im(f), sa (1) gaelder. Hvis w = f(u)
ogz=f(v),daerw+z=f(u)+f(v)=Ff(u+v), sa (2) gelder. Og hvis w = f(v), da er er
w-a=f()-a=f(v-a), sad ogsa (3) gelder. Vi har nu bevist lemmaet. O

Eksempel 4.5.3 (1) For nulafbildningen 0: V — W er ker(0) =V og im(0) = {0}, og for
identitetsafbildningen idy : V — V er ker(idy) = {0} og im(idy) =V'.

(2) Hvis f: " — ™ er reprzesenteret af matricen A € M,, ,(F) med hensyn til de
respektive standardbaser, da er ker(f) = N lig med nulrummet for A, og im(f)=R4
er lig med sgjlerummet af A.
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Vi ser af eksempel at det for bade nulafbildningen og identitetsafbildningen
gaelder, at summen af dimensionerne af kernen og billedet er lig med dimensionen af
domaenet. Vi skal nu vise, at denne identitet, der kaldes Grassmanns dimensionsformel,
geaelder helt generelt.

Saetning 4.5.4 Lad F veere et legeme. Huis f: V — W er en linezr afbildning mellem
endeligt dimensionale F-vektorrum, da er

dim(ker(f)) + dim(im(f)) = dim(V).

Bevis Vivelger baser (vy,...,v,) og (w1,...,w;) for henholdsvis ker(f) og im(f), hvilket
er muligt ifglge setning og vaelger yderligere en familie (vp41,...,0p+,) af vek-
torer i V, sddan at f(v,4;) = w;, for alle 1 <i <r. Vi pastar, at (vy,...,0p,0p41,...,0p4r)
er en basis for V, hvorfra seetningen umiddelbart fglger. For at vise pastanden, viser vi
forst, at familien (v1,...,vp,0p41,...,Vp+,) er lineaert uatheengig. Sa vi lader

Va1t VA, +Vp 1011+ + VpyrQpyr =0

veere en linearkombination, der er lig med 0, og skal vise at a; =0 foralle 1<i<p+r.
Vi anvender den lineaere afbildning f: V — W pa begge sider af ligningen og far

wiaps1t ot wrap, =0,

idet f(v;) =0 for 1 <i <p, og f(vp4;) =w; for 1 <i <r. Da familien (wq,...,w;) er
linezert uatheengig, konkluderer vi, at a,,; =0 for 1 <i <r. Den oprindelige ligning er
altsa

viai;+---+tvpap =0,

og da ogsi (v1,...,V)) er linezert uathaengig, falger det, at a; =0 for 1 <i < p. Dette viser,
at familien (v1,...,0p,0p41,...,Up+,) er linesert uafthseengig som gnsket. Vi mangler at
vise, at denne familie ogsa frembringer V. Sa lad v € V veere en vilkarlig vektor, og lad
w=f(v)eW.Da (wi,...,w,) frembringer W, kan vi skrive w =w1b1+---+w,b, som en
linearkombination heraf. Da er

FO—@pi1b1+- 4 0pyrb) =0~ W1by +-- +w,b,) =0,

hvilket viser, at v —(v,11b1 + -+ vp4,b,) € ker(f), og vi kan derfor skrive denne vektor
som en linearkombination

V—(Up41b1+ -+ Upy b)) =v1a1 +- -+ VR0,
af familien (vy,...,v,), der per antagelse frembringer ker(f). Men dermed er
V=via1+ -+ 0pap +Vp101+ -+ Vb,

en linearkombination af (v1,...,vp,0p41,...,0p+,) som gnsket. Dette viser pastanden og
dermed satningen. O
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Bemaerkning 4.5.5 Grassmanns dimensionsformel giver et kvantitativt udtryk for, at
desto mindre billedet af en lineser afbildning /: V — W er, desto stgrre ma dens kerne
veere og vice versa. Vi bemaerker ogsa, at dimensionen af codomaenet W ikke spiller no-
gen rolle i seetningen, udover at det ngdvendigvis altid geelder, at dim(im(f)) < dim(W).

Eksempel 4.5.6 (1) For nulafbildningen 0: V — W har kernen samme dimension som
V, mens billedet har dimension 0. For identitetsafbildningen idy: V — V har kernen
dimension 0, mens billedet har samme dimension som V.

(2) For den linezere afbildning f: F* — F? defineret ved

1000
f(x)= (O 10 O)x
0 00O

er ker(f) = {x € F* | x1 = 0 og x9 = 0}, mens im(f) = {y € F? | y3 = 0}. S& ker(f) har basis
(e3,e4) og dimension 2, mens im(f) har basis (e, e2) og dimension 2. Dermed er

dim(ker(f)) + dim(im(f)) = 2 + 2 = 4 = dim(F),

som saetning viser.

Definition 4.5.7 Lad F veere et legeme, og lad f: V — W veaere en lineaer afbildning
mellem endeligt frembragte F-vektorrum. Da kaldes dimensionen

rank(f) = dim@im(f))

af billedet af f: V — W for rangen af f: V — W.

Vi vil nu relatere rang af lineaere afbildninger til rang af matricer fra definition[2.5.13
Hvis A er en m x n-matrix med indgange i et legeme [, og hvis f: F* — F" er den lineaere
afbildning defineret ved f(x) = Ax, da er

ker(f)=Nap={xeF"|Ax=0}cF"
lig med nulrummet for A, mens
im(f)=Rg ={AxeF" |xeF"}cF™

er lig med sgjlerummet for A. Vi har set, at Gauss-elimination giver en algoritme til at
bestemme en basis for nulrummet, og vi skal nu se, at Gauss-elimination ligeledes giver
en algoritme til at bestemme en basis for sgjlerummet.
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Szetning 4.5.8 Lad A veere en m x n-matrix med indgange i et legeme [ og lad A’ vaere
den entydigt bestemte matrix pa reduceret echelonform, der er rekkezekvivalent med A.
Hvis 1< ji1 <---<j,<nindicerer de sgjler i A’, der indeholder en ledende indgang, da
er familien (a;,,...,a; ) bestdende af de tilsvarende sgjler i A en basis for R4 <™.

Bevis Vi valger en invertibel matrix P € M,,,(F), sddan at A’ = PA, hvilket er muligt
ifglge seetning Hvis y = Ax, da er Py = PAx = A’x, hvilket viser, at afbildnin-
gen f: Ry — R4 defineret ved f(y) = Py er veldefineret. Vi lader @ € M,,(F) vaere den
inverse matrix til P og g: R4 — R4 den lineaere afbildning defineret ved g(2) =Qz. Vi
bemseerker, at f og g er hinandens inverse.

Vi minder om, at for en vilkirlig m x n-matrix C er dens j’te sgjle givet ved ¢; = Ce;.
Specielt geelder det for sgjlerne @i A og a} 1A' at

f(aj):Paj:PAej:A’ej:a} og g(a}):Qa}:QA'ej:Aej:aj.

Vi minder ligeledes om, at vi fra eksempel ved, at familien (a,...,a),) frembringer
R 4. Vi pastar, at familien (eq,...,e,) er en basis for R 4/. Denne familie er en familie af
vektoreri R 4/, idet det ifglge definitionen af en matrix pa reduceret echelonform geelder,
at a;.s =e; for alle 1 <s <r. Familien er endvidere linesert uathengig, da den er lineaert
uafheaengig som en familie af vektorer i F”*. Endelig frembringer den R 4/, idet det ifglge
definitionen af en matrix pa reduceret echelonform geelder, at a’ij =0foraller<i<m
og 1 <j <n. Dette viser pastanden, og seetning |4.4.12| viser da, at familien
(g(er),...,g(e,) = (gla)),....g(@) ) = (a;,,...,a;,)
er en basis for R4 som gnsket. O

Seetningen giver specielt en algoritme, der til en given n-tuple af vektorer i ™, der
frembringer ™, giver en delfamilie, der er en basis for F”. Vi illustrerer nu dette.

Eksempel 4.5.9 Vi betragter 5-tuplen af vektorer i F? givet ved

o )

og vi anvender da eksempel og saetning til at finde en delfamilie heraf, der
en basis for F2, hvis dette er muligt. Vi omdanner derfor matricen

12132
A=(3 4 9 0 7],
2 35 1

W B~ N
o0
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hvis j’te sgjle er a;, til en matrix A’ pa reduceret echelonform, hvilket giver
10 7 0 -39
A'=|l0 1 -3 0 31].
o 0o o 1 -7

De ledende indgange i A’ findes i sgjlerne 1, 2 og 4, s4 ifglge saetning[4.5.8 er delfamili-
en (a1,as,a4) derfor en basis F3. Vi bemaerker, at grunden til at en sadan basis findes
1 dette tilfeelde er, at rank(A) = 3 = m. Hvis dette ikke havde veeret tilfaeldet, sa ville
den oprindelige tuple ikke frembringe hele F3, men et underrum deraf, og vi ville da i
stedet have fundet en basis for dette underrum.

Korollar 4.5.10 Lad F veere et legeme, lad A vere en m x n-matrix med indgange i T,
og lad f: F" — ™ veere den linezre afbildning defineret ved f(x) = Ax. Da er

rank(f) =rank(A).

Bevis Satning viser, at dimensionen af sgjlerummet R4 er lig med antallet r af
ledende indgange i den entydigt bestemte matrix A’, der er pa reduceret echelonform

og raekkeaekvivalent med A. Det geelder altsa, at

rank(f) = dim@im(f)) = dim(R 4) = r =rank(A)

som gnsket.

Seetning 4.5.11 Lad A vaere en m x n-matrix med indgange i et legeme [ og lad A’ vaere
den entydigt bestemte matrix pa reduceret echelonform, der er rekkezekvivalent med A.
Lad 1<sj1<--<jr<noglski<--<kp<nindicere de spjler i A, der henholdsvis
indeholder og ikke indeholder ledende indgange, og for 1 <i < p lad

r
_ _ . /
C; =€, Zle.]sas,ki'
S:

Da udggr familien (ec1,...,¢p) en basis for nulrummet Ng = Ny c[F".

Bevis Vi viser forst, at (e1,...,¢,) er en familie af vektorer i N. Vi pastar nemlig, at

r r "
Y, 3 o _ ro — 4 ! —
A'c; = A'(ey, Zleras,ki) = Qay, Zlajsas,ki = ay, Z,lesas,ki =0.
s= §= 5=
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Her fglger den forste identitet fra definitionen af ¢;, mens den anden skyldes identiteten

Ale; = a;.s. Den tredje or fjerde identitet fglger af, at for 1 <s <r er den j,'te sgjlei A’

lig med ey, og at for aller <s<m er a’s,ki = 0. Dette viser, at ¢; e N4 for alle 1 <i < p.
Vi viser derneest, at familien (¢1,...,¢,) er linesert uathaengig. Sa lad

ciai+coag+---+cpa,=0
pb*¥Dp

veere en linearkombination, der er lig med nulvektoren. For 1 < i < p udtrykker den
k;’te ligning i dette ligningssystem, at a; =0, da e, kun optrzeder i vektoren cy;. Dette
viser som gnsket, at (¢1,...,¢p) er linezert uafhsengig.

Vi mangler at vise, at (¢1,...,¢,) frembringer N/. Seetning og korollar 4.5.10
viser, at dim(Na/) =n—r = p. Dermed er (cy,...,¢,) altsd en lineaert uafthaengig p-tuple

af vektorer i det p-dimensionale vektorrum N4/, og seetning 4.3.24] viser derfor som
gnsket, at denne p-tuple er en basis for N4/. O

Vi illustrerer endelig algoritmerne i seetning [4.5.11] og saetning |4.5.8] der producerer
baser for henholdsvis kernen og billedet af en lineeer afbildning f: F* — F™.

Eksempel 4.5.12 Vi betragter afbildningen f: F* — F? givet ved f(x) = Ax, hvor
2 4 3 7
A=10 0 1 1
1 2 1 3

og gnsker at bestemme en basis for ker(f) og im(f). Vi omdanner derfor forst A til en
matrix A’ pa reduceret echelonform ved hjzlp af raekkeoperationer.

2 4 3 7\ +(-2)R3
A=[0 o0 11
1213
00 1 1)\ +(-1Ry
0011
1 2 1 3] +(-1)Ry
000 0
00 11| Ri<R;
120 2
120 2
A=l 0o o0 11
0000

Her har vi igen markeret de indgange, vi gnsker at a&endre med rgdt, og vi har mar-
keret de r = 2 ledende indgange i A’ = B med blat. S& im(f) har dimension r = 2, og
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4 Vektorrum

Grassmanns dimensionsformel viser, at ker(f) har dimension n —r =4 -2 = 2. Da de
ledende indgange i A’ findes i sgjle 1 og 3, viser satning[4.5.8| at

i)

er en basis for im(f). Og ifslge seetning|4.5.11/er (€1, c2) en basis for ker(f), hvor
-2

c1 = eg—(e; bia+ej,bo) =

S O = O
S O O+
SO H O O
S O =

0g

co = egs—(ej bigtej,bay) =

= O O O

(= e e

SO = O O
(e}

4.6 Affine underrum og kvotientrum

Lad V veere et vektorrum over et legeme [, og lad U c V veere et underrum. I dette
afsnit vil vi sige, at U c V er et linesert underrum for at huske pa, at det altid gaelder,

at 0 e U. Givet et vilkarligt v € V er delmangden
v+U={v+u|luelU}cV

ikke et linesert underrum, medmindre v € U. Vi viser nedenfor, at lgsningsmaengden til
et inhomogent ligningssystem “Ax = b” enten er tom eller pa formen v+ N c F”?, hvor
N cF” er det linesere underrum af lgsninger til det homogene ligningssystem “Ax = 0”.
Vi indfgrer falgende begreb.

Definition 4.6.1 Lad F veere et legeme, lad V veere et F-vektorrum, oglad U c V veere
et linezrt underrum. En delmaengde T' c V er et affint underrum parallelt med U cV,
hvis der findes v € T, sadan at

T=v+U={v+u|luecU}cV.
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Eksempel 4.6.2 Den fglgende figur illustrerer det linezere underrum U < R? og det
affine underrum 7T c R? parallelt med U, hvor

U:{(g)tlte[ﬂi} og T:(_8)+U.

Lemma 4.6.3 Lad V vare et vektorrum, lad U c V vare et linezert underrum, og lad
T c V veere et affint underrum parallet med U c V. Da gelder det for alle v e T, at
T =v+U. Desuden er T cV et linezert underrum, hvis og kun hvis T =U.

Bevis Hvis T er et affint underrum, da er T =v + U for en vektor v e V. Idet 0 € U, ved
vi,atveT. Hvisogsd v' € T =v+U, sé findes der u € U, siddan at v/ = v + u. Derfor er

V+U=w+uw)+U=v+w+U)cv+U.

Ved at ombytte v og v’ i argumentet, ser vi ligeledes, at v+ U < v’ + U, hvilket viser
den fgrste pastand i lemmaet. For at vise den anden pastand antager vi, at T cV er et
lineaert underrum parallelt med U < V. Da er 0 € T per definition, sa ifglge den forste
pastander T=0+U =U. O

Eksempel 4.6.4 Det affine underrum 7' i eksempel kan ogsa skrives som

0
T_(2)+U,

O+ « [

idet
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Lemma 4.6.5 Lad [ vare et legeme, lad f:V — W vare en linezer afbildning mellem
to F-vektorrum, og lad U =ker(f)cV vaere kernen af f: V — W. Lad we W, og lad

T=flw=weV|f)=w)

veere det inverse billede ved f:V — W. Da er T c'V enten den tomme delmaengde eller
et affint underrum parallelt med U cV.

Bevis Hvis T cV er tom, er der ikke noget at vise, sa vi antager, at T'cV ikke er tom.
Vi kan da vaelge v € T og skal vise,at TT=v+U. Hvisu €U, da er

f+uw)=fW)+f(u)=w+0=w,
hvilket viser, at v + U < T. Omvendt geelder det for alle v’ € T, at
f@-v)=fW)-f@)=w-w=0,

hvilket viser, at u =v'—veU.Sav' =v+ucv+U, ogderforerogsa Tcv+U. O

Korollar 4.6.6 Lad A € M, ,(F) vaere en m x n-matrix med indgange i et legeme F.
Lgsningsmaengden til det linezere ligningssystem Ax = b er et affint underrum parallelt
med lpsningsmaengden til det homogene ligningssystem Ax = 0.

Bevis Lgsningsmaengden til det homogene ligningssystem Ax = 0 er netop nulrummet
Ny c F*, som ifglge lemma [4.1.8| er et linesert underrum. Lad endvidere f: F* — F™
veere den linezere afbildning defineret ved f(x) = Ax. Lgsningsmangden til det lineaere
ligningssystem Ax = b er netop delmaengden f~1(b) c F?, mens N4 = ker(f). Pastanden
fglger derfor fra lemma |4.6.5 ]

Eksempel 4.6.7 Vi betragter det linezere ligningssystem “Ax = b,” hvor

Y e el

og for at lgse det omdanner vi totalmatricen (A | b) til matricen

1 2|3
0 0/0)

der er pa reduceret echelonform. Vi afleeser heraf, at den feelles lgsningsmaengde til
ligningssystemerne “Ax = b” og “A’x = b"” er lig med det affine underrum

- G)+(‘f)t|tem}:(})+{ (_i)t|te[F}:G)+NAcF2

parallelt med lgsningsmaengden N4 c F2 til det homogene ligningssystem “Ax =0.”

(A']b') = (
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Givet et lineaert underrum U c V af et vektorrum V', danner vi nu et vektorrum V/U,
hvis vektorer er de affine underrum 7' cV, der er parallelle med U c V.

Definition 4.6.8 Lad [F vaere et legeme, lad V vaere et F-vektorrum, oglad U c V veere
et linesert underrum. Kvotientrummet af V med hensyn til U c V er vektorrummet

V/U,+,-),

hvor V/U er maengden af affine underrum 7' c V, der er parallelle med U c V, og hvor
vektorsum og skalarmultiplikation er givet ved henholdsvis

@+)+@ +U)=(w+v)+U og @+U)-a=(@-a)+U.

Et affint underrum T c V, der er parallelt med det linesere underrum U c V', udggr
altsa en enkelt vektor i kvotientvektorrummet V/U. Specielt er U ¢ V nulvektoren i
dette vektorrum. Vi definerer den kanoniskeE] projektion til at veere afbildningen

p:V-V/U

givet ved p(v) = v+U og bemarker, at vektorsum og skalarmultiplikation pa V/U netop
er defineret, sidan at denne afbildning er linezer.

Saetning 4.6.9 Lad [F veere et legeme, lad V veere et endeligt frembragt F-vektorrum, og
lad U c 'V vere et linezert underrum. Da er

dim(V/U) = dim(V) — dim(U).

Bevis Den kanoniske projektion p: V — V/U er surjektiv og ker(p) = U. Udsagnet
folger derfor af Grassmanns dimensionsformel (saetning [4.5.4). O

Hvis U c V er et linexert underrum af et vektorrum V', sa kalder vi dimensionen af
kvotientrummet V/U for codimensionen af det lineseere underrum UcV.Daer U =V,
hvis og kun hvis codimensionen af U c V er lig med nul. Vi siger endvidere, at U cV er
en hyperplan, hvis codimensionen af U cV er lig med 1. Vi bemaerker endelig, at det er
muligt for codimensionen af et linezert underrum U c V at vaere endelig, selvom U og V
begge er uendeligdimensionale vektorrum.

5Med “kanonisk” udtrykker vi blot, at vi foretreekker projektionsafbildningen p(v) = v+U fremfor andre
projektionsafbildninger, sasom q(v) = —v + U. Ordet har ikke noget matematisk indhold.
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4 Vektorrum

Eksempel 4.6.10 Hvis X cR"” er en aben delmangde, da udggr maengden C°(X,R™)
af de vilkarligt ofte kontinuert differentiable afbildninger f: X — R™ med vektorsum
og skalarmultiplikation defineret ved

(f +8)x)=f(x)+gx) og (f-a)x)=f(x)-a

et reelt vektorrum. Hvis m = n, sa siger vi, at g € C*°(X,R") er et vektorfelt pa X. Vi
lader n = 2 og definerer gradienten og rotationen til at vaere de lineaere afbildninger

(X, R) 224, 0oo(x R2) oL 0o(X R),

der er givet ved

af/axl)

grad(f) = (af/ax2

0 0
og rot (gl) _ o

82 a axg 6x1 '

Et vektorfelt g € im(grad) siges at vaere konservativt, mens et vektorfelt g € ker(rot)
siges at vaere rotationsfrit. Ethvert konservativt vektorfelt er rotationsfrit, idet

0%*f o*f

tograd)(f) = - =
(I‘O ogra )(f) 6x20x1 6x16x2 ’

men det omvendte er generelt ikke tilfeeldet. Sa
im(grad) c ker(rot)
er et underrum, men det er i almindelighed ikke hele rummet. Kvotientrummet
H(X) = ker(rot)/im(grad)

kaldes for de Rham-cohomologien af X i grad 1. Skgnt vektorrummene ker(rot) og
im(grad) begge er uendeligdimensionale (medmindre X er den tomme mangde), sa er
kvotientrummet H(X) typisk endeligdimensionalt. Dimensionen af dette vektorrum
er lig med antallet af “huller” i X. For eksempel er

dim(H'(R?)) =0,

hvilket er det (méaske) velkendte resultat, at ethvert rotationsfrit vektorfelt defineret
pa hele R? er konservativt, mens man kan vise, at

dim(H(R?~{0})) = 1.

Lad os vise, at vektorfeltet g: R% < {0} — R? defineret ved

2 2
X7 +Xx
glx) = 1x12

2 2
x1+x2
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er rotationsfrit, men at det ikke er konservativt. Dette medferer, at elementet
g +im(grad) € H'(R? ~ {0})

ikke er nul. Vi antager, at g = grad(f) er konservativt, og viser, at denne antagelse
forer til en modstrid. Antagelsen viser, at

2 d (cost cos(27) cos(0) 1 1
fo af (sint) dt=f (sin(Zﬂ)) -f (sin(O)) =f (o) -f (o) =0,
mens en direkte udregning ved brug af keedereglen viser, at

2.d . (cost 2n . (cost| (—sint 21
j(; Ef(sint)dt_/o <g(sint)’( Cost)>dt— | dt=om,

hvilket giver den gnskede modstrid. At rot(g) = 0 eftervises ved direkte udregning.

Vi betragter igen de lineaere afbildninger
U—v-L.viU

defineret ved i(w) = u og p(v) =v+U, som vi kalder for den kanoniske inklusion og den
kanoniske projektion. Den sammensatte afbildning p oi er da lig med nulafbildningen,
idet U € V/U er nulvektoren i kvotientrummet.

Saetning 4.6.11 Lad F veere et legeme, lad V veere et F-vektorrum, og lad U c 'V vare
et linezert underrum. Hvis f: V — W er en linezer afbildning, sidan at foi: U — W er
lig med nulafbildningen, da findes der praecis én linezer afbildning

vivu—L-w,

sddan at f =fop.

Bevis Da vi gnsker, at f = f o p, er vi tvunget til at definere f: V/U — W ved
fw+U)=f(v),

og vi skal derfor vise, at denne definition er meningsfuld. Hvis v+ U = v/ + U, si findes
der u € U, sidan at v = v’ + u, og derfor er

fO)=f@'+u)=f@)+fm)=f@)+0=Ff",

hvilket viser, at afbildningen f: V/U — W er veldefineret. Endelig er denne afbildning
lineeer, fordi f: V — W er lineeer. O
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4.7 Opgaver

4.1 Beskriv underrummet U c R3 frembragt af familien (v, v9), hvor

0 1
vi=|1 og v2=]|1].
0 0

4.2 Undersgg for de fglgende familier af vektorer i R? om de er lineaert uafheengige, om
de frembringer R3, og om de udggr en basis for R3. Hvis familien er linezert afhan-
gig, angiv da ogsa en linearkombination af familien, som er lig med nulvektoren

0.
a) Familien (u1,us), hvor
1 1
ui=|1 og us=|1].
0 1
b) Familien (v1,v9,v3), hvor
1 -1 0
v1=|0], vo=| 1 og wvg=|-1
0 0 0

¢) Familien (w1,ws,ws), hvor

1 1 1
wi=(0], wo=]1 og w3z=|1].
0 0 1

d) Familien (a1,a2,a3,a4), hvor

0 0 0 -1
ai=|0], as=|(1], a3=|1 og as=\|1].
1 1 -1 0

4.3 Undersgg i hvert af de fglgende tilfeelde, om den givne familie af vektorer i R* er
linezert uafhsengig, om den frembringer R*, og om den er en basis for R*. Hvis fa-
milien er linezert athaengig, angiv da ogsa en linearkombination af familien, som er
lig med nulvektoren 0.

a) Familien (v{,v9,v3,v4), hvor
1
U1 =

U9 = U3 =

l—*l\'jl—‘

l\')ovor—n
Sy 00 O
r—am.wo
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4.5

4.6

4.7 Opgaver

b) Familien (v1,v9,v3), hvor

1 1 0
|1 10 |1
vl - 1 5 v2 - 0 ’ v3 - 0 .
1 2 2
¢) Familien (vq,v9,v3,v4), hvor
1 2 3 2
|1 13 1 |1
vl - 1 ’ v2 - 1 ’ v3 - 2 ’ v4 - 1 .
1 2 1 1
d) Familien (vq,v9,v3), hvor
4 6 2
2 5 -1
vl - _1 ’ v2 - _5 ’ v3 - 3 .
3 1 5

Vis, at delmaengden
RI,={xeR"|x; =0 foralle1<i<n}cR"
ikke er stabil med hensyn til vektorrumsstrukturen pa R”.

Lad (C", +, %) veere triplen, hvor +: C* x C* — C" er den sadvanlige vektorsum, og
hvor * : C* x C — C" er defineret ved

x*xz=x-|z|.
Herer |z| = VZz € R absolutveerdien af z € C. Vis, at (C", +, *) ikke er et C-vektorrum.

(%) Lad (M4(R), +, *) veere triplen, hvor +: M4(R) x M4(R) — M4(R) er matrixsum, og
hvor * : M4(R) x H — M4(R) er defineret ved

a -b -c -d

) ) b a —-d c
Ax(a+bi+cj+dk)=A- c d a —b
d -c b a

Vis at (M4(R),+,-) er et (hgjre) H-vektorrum.

[Vink: Vi ved allerede, at matrixsum opfylder (A1)-(A4) i definition [4.1.1] sa det er
tilstraekkeligt at vise, at ogsa (V1)—(V4) er opfyldt.]
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4.7 Lad V = My(F) veere maengden af 2 x 2-matricer med indgange i et legeme [, og
betragt triplen (V,+, %), hvor +: V xV — V er matrixsum, mens * : V xF—V er
defineret ved

(xn x1z)*a_(x11a x12a)
X21 X22 X210 X22Qa

Vi bemaerker, at “*” ikke er matrixprodukt.
a. Eftervis, at (V,+, %) er et F-vektorrum.

b. Givet vektorerne

(1 -1 2 1 (4 5
Y=l2 o) Y7lo -1] °® *7(-4 -3

iV, find alle skalarer a,b € F, sadan at
xxa+yxb=2z.
4.8 Afggrihvert af de fslgende tilfelde, om den angivne delmaengde af R* er stabil med
hensyn til den seedvanlige vektorrumsstruktur pa R* eller ej.
a) Delmaengden af alle vektorer x, hvis fgrstekoordinat x; er et helt tal.
b) Delmangden af alle vektorer x, hvis farstekoordinat x; er lig med 0.

¢) Delmaengden bestaende af alle vektorer x, hvis fgrstekoordinat x; eller anden-
koordinat xo eller begge er lig med 0.

d) Delmangden bestdende af alle vektorer x, hvis fgrstekoordinat x; og andenko-
ordinat xo tilfredsstiller ligningen x1 + 2x9 = 0.

e) Delmangden bestaende af alle vektorer, hvis fgrstekoordinat x; og andenkoor-
dinat xo tilfredsstiller ligningen x1 + 2x9 = 1.
4.9 Lad U vere et vektorrum, og lad V,W c U vaere to underrum.

a) Vis, at
VaW={uecU|lueVogueWicU

er et underrum. [Vink: Eftervis (1)—(3) i definition ]

b) Vis, at
V+iW={v+weU|veVogweW}cU
er et underrum.
4.10 Undersgg, om familien (v1,v9,v3,v4), hvor
1
v =

U3 = 08 V4=

O
[

—_ O
O o

er en basis for R%.
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4.11 Lad U c R® veere underrummet frembragt af (v1,v9,v3,v4), hvor

1 1 3 2
1 4 2 -2
vi=|-5]|, wve=|-5]|, wv3=|5]|, wv4=|10].
0 1 2 1
5 3 2 -1

Angiv en delfamilie af (v1,v9,v3,v4), der er en basis for U, og skriv de af vektorer-
ne v1,v2,03,04, der ikke tilhgrer den angivne basis, som en linearkombination af
denne.

4.12 Betragt de folgende vektorer i R®:

1 0 4 -3

0 1 -5 2

1 1 -1 -1
v].: 0 ’ v2: 1 ’ wl_ _5 ’ w2_ 2 .

1 1 -1 -1

0 -1 5 -2

Undersgg, om de to familier (v1,v2) og (w1,w2) frembringer det samme underrum
af RS eller ej.

4.13 Lad U c R? veere underrummet frembragt af (v1,vs), hvor

1 2
vi=| 4 og wvi=|-5].
-7 4

Bestem alle a € R, sddan at vektoren

tilhgrer underrummet U.

4.14 Vis, at familien (v1,v9,v3,v4), hvor

V1= U2 = U3 =

HkoiL\DH
[\')UIP—AOD
(SRS )
N O O N
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4.15

4.16

4.17

188

er en basis for R*, og skriv vektoren

W = DN

som en linearkombination af denne basis.

Lad U c R* veere underrummet frembragt af (v1,vs,v3, v4,vs5), hvor
1 0 2 1 3
1 0 |11 |1 |1 12
vl_ _1 ’ v2_ 2 ’ v3_ 0 ’ v4_ 1 ’ v5_ 1 .
1 -1 1 0 1

a) Find en delfamilie af familien (v1,v9,v3,v4,5), der indeholder v; og vs og er en
basis for U.

b) Find en delfamilie af familien (v1,v9,v3,v4,v5), der indeholder v3 og vy, og er en
basis for U.

Denne opgave viser, at en linear afbildning f: V — W mellem F-vektorrum kan
defineres ved at angive dens veerdi pa vektorerne i en basis for V. Dette kan ses
som en generalisering af lemma |4.2.3

a) Hvis (v;);cs er en basis for V, og hvis (w;);c7 er en familie af vektorer i W, der er
indiceret ved den samme indeksmangde I, da definerer formlen

fQ_ via) =) wia;
iel el
en veldefineret afbildning f: V — W. Vis, at denne afbildning er linezer.

b) Lad g: V — W vare en linear afbildning, og lad (v;);c; veere en basis for V.
Vis, at den linesere afbildning f: V — W, der fremkommer som i a) fra familien
(g(vi))ier af vektoreri W, er ligmed g: V — W.

(%) Lad (C, +, -) veere det reelle vektorrum, hvor C er maengden af komplekse tal,
hvor +: C x C — C er sum af komplekse tal, og hvor - : C xR — C er defineret ved

(x+iy)-a=xa+iya.

Lad (V,+, -) veere det reelle vektorrum af reelle 2 x 2-matricer fra opgave 4[7
a) Vis, at afbildningen f: C — V defineret ved

_[(x ~y
pwrin=(; )

X

er lineeer.



4.18

4.19

4.20

4.7 Opgaver

b) Find en basis for det reelle vektorrum C og bestem dets dimension.

c) Find ligeledes en basis for det reelle vektorrum V og bestem dets dimension.
(%) Lad F veere et legeme. Vis, at vektorummet af polynomier [F[#] ikke er endeligt
frembragt.

[Vink: Vis, at (¢°,¢1,¢2,...) er en linesert uafthaengig familie i F[¢], hvor man skal

bruge bemeerkning 4.3.26|]

Lad V vaere et vektorrum af dimension n, og lad (vq,v9,...,v;) vaere en linesert
uafheengig familie af vektorer i V. Afggr om fglgende udsagn er korrekte eller ej.

a) Det gezelder ngdvendigvis, at £ < n.
b) Hvis £ =n,daer (vy,vs,...,v;) en basis for V.
¢) Hvis (v1,v9,...,v;) er en basis for V, daer & =n.

d) Familien (v1,...,v) er en delfamilie af en basis
(vl,"-yvk’vk+1"",vn)

for vektorrummet V.

e) Familien (vy,...,v;) er en delfamilie af preecis én basis
(Ul,...,vk,vk+1,...,vn)
for vektorrummet V.

Vi betragter familien

(=) =)

a) Vis, at (v1,v9) er en basis for F2.

af vektorer i F2.

b) Angiv matricen P, der repraesenterer id: F2 — F2 med hensyn til basen (v1,vs)
for domaenet og standardbasen (e, es) for codomaenet.

¢) Bestem matricen, der repreesenterer id: F? — F2 med hensyn til basen (e, es) for
domaenet og basen (v1,v2) for codomaenet.

d) Find koordinaterne y € F2 for vektoren

x= (xl) € 2
X2

med hensyn til basen (v1,vs9).
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4.21 Vi betragter familien
1 -1 1
U1 = 0 , U9 = 1 , U= -1
0 0 1

a) Vis, at (v1,v9,v3) er en basis for F3.

af vektorer i [F5.

b) Angiv matricen P, der repreesenterer id: F? — F2 med hensyn til basen (v,v2,v3)
for domanet og standardbasen (e1, ez, e3) for codomeenet.

¢) Bestem matricen, der repreesenterer id: F? — F2 med hensyn til baserne (e, e2, e3)
for domaenet og (v1,vs,v3) for codomanet.

d) Find koordinaterne y € F? af vektoren
X1

xX=|x2 =
X3

med hensyn til basen (v1,v9,v3).

4.22 Vi betragter den linesere afbildning f: F? — F2, der er repraesenteret af matricen

el

1 14 6

med hensyn til de respektive standardbaser. Vi betragter ogsa basen

1 1 0
u= 0 , U= 2 , Ug= 1
1 2 1

for F3 og basen

for F2.

a) Find matricen P, der reprsesenterer identitetsafbildningen id: F? — F? med hen-
syn til basen (u1,u9,u3) for domanet og standardbasen (e1, e, e3) for codomee-
net.

b) Find ligeledes matricen @, der repraesenterer id: F2 — F2 med hensyn til basen
(v1,v2) for domaenet og standardbasen (e, e2) for codomeenet.

¢) Angiv sammenhangen mellem matricerne A, P og @, og den matrix B, der re-
praesenterer [ : F2 — F2 med hensyn til basen (#1,us, us) for domaenet og basen
(v1,v9) for codomaenet.
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d) Bestem matricen B.
e) Tegn en figur som i eksempel |4.4.16

Vi betragter den linesere endomorfi f: F? — F3, der er repreesenteret af matricen

-4 -3 3
A=|-2 3 0
-7 -1 4

med hensyn til standardbasen for bade domaenet og codomaenet. Vi betragter end-

videre den nye basis
0 1 1
=i e[ -Lo)
1 2 3

a) Angiv matricen P, der repraesenterer id: F2 — F2 med hensyn til basen (v1,v2,v3)
for domanet og standardbasen (eq,eq, e3) for codomeenet.

for 3.

b) Udtryk matricen B, der repraesenterer f: F? — F2 med hensyn til basen (v1,vs,v3)
for bade domaenet og codomaenet, ved hjeelp af matricerne A og P.

c¢) Bestem matricen B.
d) Tegn en figur som i eksempel |4.4.16

Lad (v1,v2,v3) veere familien af vektorer i F2, hvor

(3 L) -l

a) Vis, at (v1,v9,v3) er en basis for F3.

b) Angiv matricen P, der repraesenterer id: F3 — F3 med hensyn til basen (v1,v2,v3)
for domanet og standardbasen (eq, ez, e3) for codomaenet.

¢) Om en lineser endomorfi f: F2 — F3 vides det, at matricen B, der repreesenter
endomorfien med hensyn til basen (v1,ve,v3) for bade domaenet og codomeenet,

er givet ved
1 0 1
B= ( 1 1 O).
-1 2 1

Udtryk matricen A, der repraesenterer f: F3 — F2 med hensyn til standardbasen
(e1,e2,e3) for bade domaenet og codomaenet ved hjeelp af matricerne B og P.

d) Bestem matricen A.
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e) Tegn en figur som i eksempel [4.4.16

Vi betragter den linesere endomorfi f: F? — F3, f(x) = Ax, hvor

-1 5 -5
A= 1 3 -1,
4 4 -2

samt basen (v1,vs,vs) for F3, hvor

) f) -l

a) Angiv matricen P, der repreesenterer id: F? — F3 med hensyn til basen (v,v2,v3)
for domanet og standardbasen (eq, ez, es) for codomeenet.

b) Udtryk matricen B, der repraesenterer f : F3 — F3 med hensyn til basen (v1,v2,v3)
for bade domaenet og codomaenet, ved hjeelp af matricerne A og P.

¢) Bestem matricen B.

d) Afggr om f: F? — 2 er isomorfi eller ej.
e) Tegn en figur som i eksempel [4.4.16

Lad f: F* — F3 veere afbildningen givet ved f(x) = Ax, hvor
2 1 8 -1
A=|(2 0 4 -2].
o 1 4 1

a) Bestem dimensionerne af ker(f) og im(f).
b) Angiv baser for ker(f) og im(f).

Lad f: F? — 3 veere afbildningen givet ved f(x) = Ax, hvor
2 -4 -1 5 -4
A=(1 -2 0 2 -1}.
1 -2 1 1 1

a) Bestem dimensionerne af ker(f) og im(f).
b) Angiv baser for ker(f) og im(f).

Vis, at hvis A € M, ,(F) og B€ M, ,(F), da er
rank(AB) <rank(A).

[Vink: Overseet til et spgrgsmal om lineaere afbildninger.]
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Den direkte sum af to F-vektorrum (U, +, -) og (V,+, -) er F-vektorrummet
(U7+7 ')@(V,+, .):(U XV)+7 .)7

hvor U xV ={(u,v) |u e U,v € V} er meengden af ordnede par af en vektor i U og en
vektoriV, og hvor (u,v)+(u',v')=(u+u',v+v') og (u,v)-a = (u-a,v-a). Vi forkorter
normalt og skriver U @ V i stedet for (U,+, )& (V,+, ).

a) Vis, at hvis familierne («1,...,u,,) og (v1,...,v,) er baser for henholdsvis U og
V, da er familien

((w1,0),...,(u;,,0),(0,v1),...,(0,v,))

en basis for U V. Bemaerk, at da geelder det, at dim(U V) = dim(U)+dim(V).
Vi antager nu, at U og V begge er underrum af et F-vektorrum W.

b) Vis, at afbildningen
f:UsV->W

defineret ved f(u,v) = u + v er linecer.

¢) Vis, at afbildningen
g:UnV-UeV

defineret ved g(w) = (w, —w) er lineaer og injektiv.
d) Vis, at ker(f) =im(g).
e) Konkluder, at hvis U og V er endeligt frembragte, da er

dim(U +V) +dim(U NnV) = dim(U) + dim(V),
hvorU+V ={u+veW|ucU,veV}cW. [Vink: Bemaerk, at U +V =1im(f).]
Vi betragter vektorrummet F[¢]-3 af polynomier
pt)= aoto taitt +agt? + a3t3

af grad hgjst 3 med koefficienter i F samt basen (£°,¢1,¢2,¢3) for dette vektorrum; se
eksempel |4.3.22

a) Angiv matricen A for den lineaere afbildning
f:Fltlss — Fltl<s

givet ved f(p(#)) = p(¢ + 1) med hensyn til basen (£°,¢!,2,¢3) for bade domeenet
og codomaenet.
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b) Angiv matricen B for den lineare afbildning
g: Fltles — Fltl<s

givet ved g(p(¢)) = p(¢ — 1) med hensyn til basen (¢°,¢1,¢2,¢3) for bade domenet
og codomaenet.

¢) Hvad er sammenha&ngen mellem matricerne A og B?

4.31 Lad C°%(R) veere vektorrummet af kontinuerte funktioner f: R — R fra eksempel 9),
og lad C1(R) veere underrummet af de funktioner ¢: R — R, der er differentiable, og
hvis afledte funktion ¢’: R — R er kontinuert. Lad a € R vaere et reelt tal.

a) Vis, at afbildningen D : C1(R) — C°(R) defineret ved
D(p)(x) = ¢'(x)

er lineeer.
b) Vis, at afbildningen I, : C°(R) — C1(R) defineret ved

Lu(F)x) = f ot

er lineeer.

c) Bestem de sammensatte afbildninger

Dol,:C'R)—C%R) og I,oD:CLR)— CR).

d) (%) Konkluder heraf, at C1(R) ikke er endeligt frembragt.
[Vink: Anvend szetning [4.3.18}]

4.32 Lad R[¢t]<4 veere vektorrummet af polynomier af grad hgjst d med reelle koefficien-
ter fra eksempel (8). Givet d + 1 forskellige reelle tal xg,x1,...,x4, definerer vi
afbildningen f: R[t]<g — R?*1 ved

p(xo)
(x1)
oy =" .

p(xq)
a) Vis, at afbildningen f: R[¢t]<q — R%*! er linezer.

b) Vis, at afbildningen f: R[t]l<g — R*1 er injektiv. [Vink: Hvor mange rgdder kan
et polynomium af grad < d have?]

¢) Konkluder, at afbildningen f: R[¢]<g — R?*! er en isomorfi.
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d) (%) Er det samme tilfzeldet, hvis R erstattes af et vilkarlig legeme [F?

(%) Betragt vektorrummet V af alle C*°-afbildninger fra R til R med vektorsum og
skalarmultiplikation defineret ved

(f +8)x)=f(x)+ g(x) og (f-a)x)=f(x)-a,

hvor f,geV oga€eR.

a) Givet a1,...,a, €V, vis at delmeengden af V, der bestar af alle lgsninger f € V
til den homogene differentialligning

dar d
an(x)wf(xﬂ-~+a1(x)af(x) =0
er et underrum af V.

b) Vis, at det samme gaelder for delmsengden af V, der bestar af alle lgsninger til
ligningen
an(X)Lp(f)+ - +a1(x)L1(f) =0,

hvor a4,...,a,€V ogL1,...,L,:V —V er lineere afbildninger.

¢) Vis, at underrumet i (b) kan beskrives som kernen for en linezer afbildning
L:V-YV.

d) Forklar, at (a) er et specialtilfaelde af (b).

(%) Fibonacci-fqz)lgerﬁ (f1,f2,f3,...) er den fglge af naturlige tal , der er defineret
rekursivt ved at saette f1 = fo = 1 og kraeve, at det for alle n = 1 geelder, at

fn+2:fn+1+fn-

De farste fa led i fglgen er saledes

fi=1,fa=1,f3=2,f4=3,f5=5,f6=8,f7=13,fs=21,....

Vi betragter denne fglge som en fglge af reelle tal og vil nu anvende lineaer algebra
til at udlede fglgende lukkede formel for det n’te led i Fibonacci-fglgen:

1 (1+v5)" 1 (1-v5)"
VB 2 vBl 2

Hertil definerer vi V til at vaere mangden af alle de folger af reelle tal

fn:

x=(x1,x9,%3,...),

6 Fglgen optraeder i Fibonaccis bog Liber Abaci fra 1202, der som den fgrste indfgrte det hindu-arabiske
talsystem i vesten. Formalet med bogen var at demonstrere fordelene ved dette talsystem fremfor det
romerske talsystem.
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for hvilke x, 9 = x,+1 + x, for alle n = 1. Sa Fibonacci-felgen f = (f1, fo,f3,...) er et
element i V. Vi definerer +: VxV -V og -: VxR—V ved

x+y=(x1+y1,%2+y2,x3+y3,...),
x-a=(x1a,x20a,x30,...).
a) Vis, at (V, +, -) er et reelt vektorrum.

b) Lad x = (x1,x92,x3,...) og ¥y = (y1,¥92,%3,...) tilhgre V. Vis, at x = y, hvis og kun
hvis x1 = y1 og x9 = yo.

c) Vi betragter de to elementer u,v € V defineret ved

u=(1,0,1,1,2,3,5,...),
v=(0,1,1,2,3,5,8,...).

Vis, at familien (u,v) er en basis for V og konkluder, at V har dimension 2.

d) For alle ¢t € R betragter vi fglgen
()=, 2,63, ")
af reelle tal. Vis, at der foruden ¢ = 0 netop findes to reelle tal ¢ = u og t = v, sddan
at x(t) € V, og bestem disse to tal.

e) Vis, at familien (x(u),x(v)) er en basis for V.

f) Find endelig de entydigt bestemte reelle tal a og b, sadan at
f=xw)-a+x()-b,
og konkluder herfra, at den lukkede formel for Fibonacci-tallene geelder.

Lad C°(R) vaere R-vektorrummet af kontinuerte funktioner f: R — R. For alle N =0,
definerer vi
Trigy(R) c CO(R)

til af veere underrummet, der er frembragt af familien
(1, cos(x), sin(x), cos(2x),sin(2x), ..., cos(N x), sin(N x)).

Her betegner “1” den konstante funktion med veerdi 1, mens “cos(nx)” og “sin(nx)”
betegner de trigonometriske funktioner x — cos(nx) og x — sin(nx). Med andre ord
bestar Trigy(R) CO(R) af alle kontinuerte funktioner f: R — R, der kan skrives pa

formen
N

f(x)=ao+ Y (cos(nx)-a, +sin(nx)-b,)

n=1

med a;,b; €R.



4.7 Opgaver

a. Vis, at familien (1, cos(x),sin(x)) er linesert uathaengig, og bestem dimensionen
af Trig;(R).

[Vink: Man kan teenke pa ag+ cos(x)ai + sin(x)b1 = 0 som et lineaert liningssy-
stem i variable ag, a1 og b1 med uendeligt mange ligninger, der er parametri-
seret ved x € R. Det, der skal vises, er, at dette ligningssystem kun har den ene
l¢sning apg=ai1= bl =0.]

I det neeste sporgsmal kan det anvendes uden bevis, at familien
(1, cos(x), sin(x), cos(2x), sin(2x))

er linezert uathengig og dermed en basis for Trigy(R).

b. Vis, at de kontinuerte funktioner cos?(x) og sin?(x) tilhgrer Trigy(R) og bestem
deres koordinater med hensyn til basen ovenfor.

Trigonometriske polynomier har et veeld af anvendelser, for i digital reprasentation
af lyd. Hvis et signal repraesenteres af et trigonometrisk polynomium, da angiver
koefficienterne a, og b, en alternativ og komprimeret reprasentation af signalet.
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5 Egenvaerdier og egenrum

Vi skal nu betragte lineszre endomorfier, som er linesere afbildninger f: V — V, der
har samme domeene og codomaene. For disse introducerer vi begreberne egenvardi og
egenrum, som i sidste ende fagrer til den sakaldte Iwasawa-dekomposition af lineaere
endomorfier. Den simpleste del er de linesere endomorfier, der er diagonaliserbare i den
forstand, at der findes en basis, hvori de er repreesenteret af en diagonalmatrix. De nye
begreber egenvaerdi og egenrum er ogsa vigtige begreber i sig selv. Saledes er observable
i kvantemekanik reprasenteret af linesere endomorfier, mens de mulige veerdier, som
disse observable kan antage ved maling, er disse linezre endomorfiers egenvardier.

Vi antager igen i dette kapitel, at den kommutative lov gaelder for multiplikation af
skalarer.

5.1 Egenvardier og egenrum for kvadratiske matricer

Vi definerer fgrst begreberne egenvaerdi og egenrum for kvadratiske matricer. Givet to
kvadratiske matricer A = (a;;) € M,(F) og B = (b;j) € M,(F) med indgange i et legeme
F, definerer vi A + Bt € M, (F[¢t]) til at vaere den kvadratiske matrix med indgange i
polynomiumsringen [F[¢], der er givet ved

A +Bt= (aij + bijt) € M, (F[¢]).
Vi kan da betragte dens determinant
det(A + B¢) € F[¢],

som ifglge seetning er et polynomium af grad hgjst n. Vi skal her kun betragte
tilfaeldet, hvor B = —I er den modsatte matrix af identitetsmatricen.

Definition 5.1.1 Hvis F er et legeme og A € M,,(F), da kaldes polynomiet

ail1—t ai12 a1n
asi agsge—t ... as
xa(®)=det(A—It)=det| | "
an]_ an2 aoo ann_t

for det karakteristiske polynomium af A.
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For eksempel er det karakteristiske polynomium af en 2 x 2-matrix givet ved

ail—t aie

t)=det
xa®) e(a21 agg —

t) =(a11—t)ag —1t) — ai2az1
=12 — (@11 +age)t + (11022 — a12a91),

hvilket vi kan skrive mere kompakt som y(¢) = t2 —tr(A)t +det(A), hvor tr(A) er sporet
af A, som er defineret til at veere summen af diagonalindgangene.

Eksempel 5.1.2 (1) For den komplekse matrix

3-i 1-2i
A‘(1+2i 3+i)

giver ovenstaende formel for det karakteristiske polynomium, at
ra®) =12 —tr(A)t+det(A) =2 -6t +5=(1-8)(5—1).

(2) Vi udregner det karakteristiske polynomium af den reelle matrix

1 20
A=|0 3 1
0 2 2

ved Laplace-udvikling af determinanten efter forste sgjle.

1-¢t 2 0
xa(t)=det(A—-It)=det| 0 3-¢ 1 :(1—t)det(
0 2 2-t

=(1-D(B-1)2-1)-2) =1 -1)4—5t+t2) =(1-1)*(4—1)

3—-t 1
2 2-t

Bemszerkning 5.1.3 Lad f: V — V vare en lineser endomorfi af et endeligt frembragt
F-vektorrum, og lad A € M, (F) veere matricen, der reprasenterer f: V — V med hensyn
til den samme basis (v1,...,v,) for bade domaenet og codomeenet. Vi skal nu vise, at
det karakteristiske polynomium y4(¢) kun athenger af f: V — V. Hvis ogsa B € M, (F)
reprasenterer f: V — V med hensyn til den samme basis (w1,...,w,) for bade domanet
og codomaenet, da gaelder det ifplge setning[4.4.14] at

B=P7lAP,

hvor P € M,(F) er matricen, der repreesenterer identitetsafbildningen idy: V — V med
hensyn til baserne (w1,...,w,) for domeenet og (v4,...,v,) for codomanet. Den fglgende
figur illustrerer koordinatskiftet mellem de to baser.
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wy,...,wy) (Ww1,...,w,)

Vi viser nu, at de karakteristiske polynomier y(¢) og yp(¢) er ens, hvorfor det feelles
polynomium kun afhaenger af den lineaere endomorfi f: V — V.

Saetning 5.1.4 Lad A € M,,(F) vaere en kvadratisk matrix med indgange i et legeme .
For enhver invertibel matrix P € M, (F) gelder det, at

xp-1ap(®) = xa®).

Bevis Vi pastar, at det for alle @ € M,,(F[¢]) gaelder, at
QU =UI1)Q.
Denne pastand viser, at
P YA-InP =P 'AP-P'Ut)P=P'AP-P'P(It)=P AP -It,
og det fplger derfor fra setning[3.2.17] at
xa(t) = det(A — I't) = det(P) ' det(A — I't)det(P) = det(P (A - It)P)
=det(PLAP —It) = yp-14p(t)
som gnsket. Vi mangler at vise pastanden. Den (i,%k)’te indgang i @(I¢) lig med
i qij-0jrt =qik ¢,
j=1
mens den (i,k)'te indgang i (It)- @ er lig med
i 0ijt-qjr=1t"qir-.
j=1

Men q;; -t =t-q;r, da den kommutative lov geelder for multiplikation af polynomier. Vi
har nu vist pastanden og dermed satningen. O
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Lad A € M,,(F) veere en kvadratisk matrix. Ved at substituere skalaren A € [ for ¢ i det
karakteristiske polynomium y4(¢) € F[¢] fa vi skalaren

all—ﬂ a9 QAin
a1 age—A1 ... as
1a) =det(A—IA) =det| | o " |eF
anl Am2 ann—/l

Vi skriver derfor ogsa I A for diagonalmatricen diag(A,...,A).

Lemma 5.1.5 Huvis [ er et legeme, og hvis A € M, (F) er en kvadratisk matrix, da er

Na_np={veF"|Av=vA}cF".

Bevis Per definition er v € N4o_j,, hvis og kun hvis (A —I1)v =0, og dette geelder, hvis
og kun hvis Av = (I1)v. Vi bemaerker nu, at det for alle v € F"* galder, at

Avy vid
UNMv=| : |=| ¢ |=0vA,
Avy, UpA
idet vi har antaget, at den kommutative lov geelder for multiplikation af skalarer. O

Vi udtrykker lemma ved at sige, at pa underrummet N4_73 < F” er den venstre
multiplikation med A givet ved hgjre skalering med vaegt A.

Eksempel 5.1.6 Vi udregner nulrummet N4_;7 for matricen
5 8
a=(7 3

ved at anvende raekkeoperationer til at omdanne matricen B = A —I7 til en matrix B’
pa reduceret echelonform.

g2 8) R

+(=1DR,

B =

R =
|
N

Vi afleeser, at nulrummet N4 _;7 < F? er det en-dimensionale underrum med basis

(o1=(1)):

202



5.1 Egenveerdier og egenrum for kvadratiske matricer

Figur 5.1: Pa nulrummet N4 _;7 fra eksempel er venstre multiplikation med A lig
med hgjre skalering med 7.

Definition 5.1.7 Lad A vaere en n x n-matrix med indgange i et legeme [.
(1) En skalar A €F er en egenveerdi for A, hvis N4_g, # {0}.

(2) Hvis A € F er en egenveaerdi for A, sa kaldes nulrummet N4 _j; for egenrummet
hgrende til egenvaerdien A € F.

(3) Hvis A € er en egenveerdi for A, sa kaldes enhver vektor v € N4y _j,, der ikke er
nulvektoren, for en egenvektor for A hgrende til egenvaerdien A € [F.

Ifslge lemma [5.1.5| er en vektor v en egenvektor for A hgrende til egenvaerdien A,
hvis og kun hvis den ikke er nulvektoren og opfylder Av = vA. Vi bemarker, at mens
egenrummet N4 1) hgrende til egenveerdi A € F er entydigt bestemt, sa er der mange
egenvektorer v hgrende til egenveerdi A. Hvis nemlig v er en egenvektor hgrende til
egenveerdi A, og a € [ er forskellig fra nul, da er va ogsa en egenvektor hgrende til A.

Saetning 5.1.8 Egenveardierne af en kvadratisk matrix A € M, (F) med indgange i et
legeme [ er praecis rgdderne i F af det karakteristiske polynomium y 4(t) € F[¢].

Bevis Per definition er 1 € F en egenveerdi for A, hvis den homogene ligning
A-INx=0

har en ikke-triviel lgsning x = v # 0, og da matricen A —IA er kvadratisk, er dette
tilfeeldet, hvis og kun hvis matricen A — I A ikke er invertibel. Ifglge seetning er
matricen A — I invertibel, hvis og kun hvis dens determinant y4(1) = det(A —I7) er
invertibel, og da F er et legeme, er y4(A) invertibel, hvis og kun hvis y4(1) # 0. Vi har
hermed vist, at A € F er en egenvaerdi for A, hvis og kun hvis y4(1) = 0 som gnsket. O
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Definition 5.1.9 Lad A € F vaere en egenveerdi for en kvadratisk matrix A € M, (F).
Den geometriske multiplicitet af A er dimensionen af egenrummet N4 _;) hgrende til
A, mens den algebraiske multiplicitet af A er det stgrste hele tal k£ = 1, for hvilket der
findes q(¢) € F[¢], sadan at

1a@=A-tk-q@).

Vi beviser senere i satning [5.3.7, at den algebraiske multiplicitet af en egenveerdi
altid er stgrre end eller lig med den geometriske multiplicitet.

Eksempel 5.1.10 (1) Identitetsmatricen I € M,,(F) har karakteristisk polynomium
x1(®) =det( —It)=(1-)".

Seetning [5.1.8| viser derfor, at A =1 er eneste egenveerdi. Den algebraiske multiplicitet
er lig med n, og da Ny_j1 = Npo =", er ogsa den geometriske multiplicitet lig med n.
Bemeerk nemlig, at Ix =x =x-1 for alle x € F".

(2) Nulmatricen O € M, (F) har karakteristisk polynomium

1o(t) =det(O — It) =det(—1It)=(-¢)".

Sa A =0 er eneste egenvaerdi med algebraisk multiplicitet n, og da No_79 = No =",
er den geometriske multiplicitet ogsa lig med n. For Ox =0 =x-0 for alle x € F".

(3) Det karakteristiske polynomium af matricen

A1 3

fra eksempel er

5-t 8

)(A(t):det( 1 3_¢

):t2—8t+7:(t—1)(t—7).
Sa A har egenvaerdier A; =1 og A9 = 7, der begge har algebraisk multiplicitet 1. Vi

udregnede egenrummet hgrende til egenveerdien 12 = 7 i eksempel Da det er
en-dimensionalt, har 19 = 1 geometrisk multiplicitet 1. Vi udregner tilsvarende, at

Na_1p, =NA_]:{(_?)-t‘t€IF}C[F2,

hvilket viser, at ogsa 1; = 1 har geometrisk multiplicitet 1.
(4) Det karakteristiske polynomium af matricen

A= (0 _(1)) € Mo(F)
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5.1 Egenveerdier og egenrum for kvadratiske matricer

udregnes til at veere
-t -1

XA(t):det( 1 ¢

) =2 +1.
Hvis F = R, sa har matricen A altsa ingen egenverdier, men hvis F =C, da er
1a@ =@ —-1)t+1),

sa A har egenvaerdierne 11 = +i og 1o = —i, begge med algebraisk multiplicitet 1. For
at bestemme egenrummet hgrende til 1; = +i omdanner vi matricen B = A —Ii ved
hjelp af reekkeoperationer til en matrix B’ pa reduceret echelonform.

(-i -1\ i-R;
=y i)

1 —i

1 —i) +(-1R;
N
B = o o)

Egenrummet for A € M5(C) hgrende til A1 = +i er altsa givet ved

i

NA_IiZ{(l)-t|t€C}CC2.

For Ay = —1, omdanner vi tilsvarende C = A — I(—i) ved hjelp af reekkeoperationer til
en matrix C’' pa reduceret echelonform.

(i -1} (=D)-Ry
c=(; )
1

1 i) +(-DR;
L (1 i
“=lo 0)

Vi afleser egenrummet for A € M5(C) hgrende til egenvaerdien Ag = —i til at veere

NA+]i={(_;)'t’t€C}CC2.

Egenvardierne A1 = +i og A9 = —i har dermed ogsa begge geometrisk multiplicitet 1.

(5) Det karakteristiske polynomium af matricen

11
A= (0 1) EMg(ﬂ:)

205



5 Egenverdier og egenrum

er ya(t)=(1- £)2, hvilket viser, at A har A = 1 som eneste egenveerdi med algebraisk
multiplicitet 2. Det tilhgrende egenrum

s [} o] {3 e

har imidlertid dimension 1, sa egenveerdien A = 1 har altsa geometrisk multiplicitet 1,
hvilket er mindre end den algebraiske multiplicitet 2.

Vi viser nu, at en familie af egenvektorer hgrende til parvis forskellige egenvaerdier
ngdvendigvis er lineaert uathaengig.

Saetning 5.1.11 Lad [ vaere et legeme, og lad A veere en n x n-matrix med indgange i [F.
Lad (A1,...,Ap,) vare en familie af parvis forskellige egenveerdier for A, og lad (v1,...,vp)
veere en familie af vektorer i F™, sadan at v; er en egenvektor hgrende til A; for alle
1<i<p. Da er familien (v1,...,vp) linezert uafhaengig. Specielt er p <n.

Bevis Vi beviser udsagnet ved induktion pa p = 0. Hvis p = 0, sa geelder udsagnet, da
den tomme familie altid er linesert uathaengig. Vi antager derfor, at udsagnet allerede
er bevist for p =r —1 og beviser, at det geelder for p = r. Sa vi lader

vici+:-+vc,=0

veere en linearkombination af (vq,...,v,), som er lig med nulvektoren, og skal vise, at
c; =0 for alle 1 <i <r. Hertil bemaerker vi, at

(A-IL)wj)=v;-(A;-A;),
idet Av; =v;A; og (I1;)v; =v;A;. Dette viser, at
(A-1I11)...(A=IA_1)vic1+--+vrc) =vpcr(Ap — A1) (A — A1)
Da venstresiden per antagelse er lig med 0, konkluderer vi, at ¢, = 0. Dermed er

vic1+--+v,_1¢,_1=0,

og den induktive hypotese viser derfor, at ¢c; =---=c¢,_1 =0. Altsa er (vy,...,v,) lineaert
uafhaengig, hvilket viser induktionsskridtet. Endelig fglger den sidste pastand, at det
ifglge seetning|4.3.18 ngdvendigvis gaelder, at p < n. O
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5.2 Diagonaliserbare matricer

Korollar 5.1.12 Lad F vare et legeme, og lad A € M, (F) vaere en kvadratisk matrix
med indgange i F. Hvis (A1,...,A,) er en familie af n parvis forskellige egenvaerdier for
A, da er enhver familie (v4,...,v,) af tilhgrende egenvektorer en basis for ™.

Bevis Familien af egenvektorer (vy,...,v,) er linesert uathaengig ifslge saetning [5.1.11}
og da den bestar af n = dimg(F") vektorer, viser saetning 4.3.24} at den er en basis. O

Eksempel 5.1.13 Vi sa i eksempel [5.1.10} at matricen

0 -1
A= (1 O) € My(C)

har egenveerdier A; = +i og A9 = —i, og at vektorerne

arli) el

er egenvektorer for henholdsvis 11 og A2. Dermed er (v1,v2) en familie af egenvektorer
hgrende til n = 2 forskellige egenvaerdier for A. Ifglge korollar|[5.1.12(er (v1,vs) dermed
en basis for C2. (Dette falger ogsa af, at det(v1 v2)=2i #0.)

5.2 Diagonaliserbare matricer

I dette afsnit studerer vi de diagonaliserbare matricer, som vi vil definere.

Definition 5.2.1 En kvadratisk matrix A € M, (F) kaldes diagonaliserbar, hvis der
findes en invertibel matrix P € M,,(F), sadan at P"'AP er en diagonalmatrix D.

Lad A € M, (F) veere en diagonaliserbar matrix, og lad P € M,,(F) veere en invertibel
matrix, sidan at D = P"1AP er en diagonalmatrix. Da matricen P er invertibel, udggr
den familie (vy,...,v,), der bestar af sgjler i P, en basis for F”. Den linesere endomorfi
f: F* — " defineret ved f(x) = Ax er da reprasenteret af matricen A med hensyn til
standardbasen (ey,...,e,) for badde domaenet og codomaenet. Bemerkning[5.1.3| viser, at
f: F* — F" er repreesenteret af D = P"1AP med hensyn til basen (vy,...,v,) for bade
domanet og codomaenet. At A er diagonaliserbar udtrykker altsa, at der findes en basis
(vy,...,v,) for F*, sddan at matricen, der repraesenterer f : F” — F” med hensyn til denne
basis for bade domaenet og codomaenet, er en diagonalmatrix.
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5 Egenverdier og egenrum

Saetning 5.2.2 Lad [ vaere et legeme, lad A,P € M, (F) veere kvadratiske matricer, og
lad (vy,...,v,) vere familien af sgjlevektorer i P. Da er fplgende udsagn akvivalente:

(1) Matricen P er invertibel og P"YAP er en diagonalmatrix.
(2) Familien (vq,...,v,) er en basis for " og bestar af egenvektorer for A.

Huis dette er tilfeldet og hvis P"IAP = diag(A1,...,A,), sd gelder det endvidere, at v;
er en egenvektor for A hgrende til egenveerdien A; for alle 1 <i <n.

Bevis Ifslge lemmal4.3.9 er P € M,(F) invertibel, hvis og kun hvis hvis familien
(v1,...,v,)=(Peq,...,Pe;,)

af sgjlevektorer i P er en basis for F?. Endvidere er P"'AP = diag(11,...,A,), hvis og kun
hvis P"1APe; = e;]; for alle 1 <i < n, hvilket gaelder, hvis og kun hvis APe; = Pe;A; for
alle 1 <i <n. Idet Pe; = v;, geelder dette, hvis og kun hvis Av; =v;A; foralle 1<i <n,
hvilket netop betyder, at basen (v1,...,v,) bestar af egenvektorer for A. O

Korollar 5.2.3 En kvadratisk matrix A € M, (F) er diagonaliserbar, hvis og kun huvis
der findes en basis for F"* bestdende af egenvektorer for A.

Bevis Dette fglger umiddelbart fra definition og setning O

Eksempel 5.2.4 Vi undersgger om matricen

-4 -6
1 1

er diagonaliserbar. Dette er ifglge seetning tilfeeldet, hvis og kun hvis der findes
en basis (v1,vs) for F2, der bestar af egenvektorer for A. Vi udregner

xral®) =12 —tr(A)t +det(A) = 2 + 3t +2 = (-2 - t)(—1—1¢).

.

Altsa har A to forskellige egenveaerdier 11 = —2 og A9 = —1 og er derfor diagonaliserbar
ifglge korollar [5.1.12] Vi bestemmer egenrummet hgrende til 1; = —2 og omdanner
derfor matricen B = A — I(—2) til en matrix B’ pa reduceret echelonform.

(-2 -6) (-3)-Ry
B=l1 3

1 3

1 3] +(-DR;
N
B=l0o o
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5.2 Diagonaliserbare matricer

-3
NA_I(_2):{( 1)'t’t€ﬂ:},

—2
NA—I(—l):{( 1)-t)t€ﬂ:}.

Seetning viser derfor, at

Heraf ser vi, at

og tilsvarende ses, at

P=(vy vg):(_? _?)

er invertibel, og at
-2

-1 _
P AP—( 0

_(1)) =diag(-2,-1),

hvilket let eftervises.
Eksempel 5.2.5 Vi undersgger om matricen

-1 0 -2
A= 3 2 2
1 -1 3

er diagonaliserbar. Vi begynder med at udregne det karakteristiske polynomium.

“1-¢ 0 —2 2-¢t 2-t 0
ya®)=det| 3 2-t 2D qet| 3 2-t 2

1 -1 3—t 1 -1 3-t
11 0 1 1 0
29 _p)det|3 2-+¢ @ (g _ t)det —l—t 2
1 -1 3—t 23—t
1 0 0 1 0
2 -p)det|0 -1-¢ 22— t)det|0 1—t 2
0 -2 3—t 0 1-t 3—¢
10 0
P 2_nHA-t)det|0 1 22— )(1—t)det 0 1 o
0 1 3—t 01 1-¢
=(2-1)1-1)>.

Vi ser herfra, at 11 =1 og A2 =2 er de eneste egenvaerdier af A, og at deres algebraiske
multipliciteter er henholdsvis 2 og 1.
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5 Egenverdier og egenrum

For at udregne egenrummet N _; hgrende til 1; = 1 anvender vi raekkeoperationer
til at omdanne B = A — I til en matrix B’ pa reduceret echelonform.

—2 0 -2\ +2-Rjg
B=| 3 1 2| +(-3):Rs
1 -1
0 -2
0 4 -4| Ri—Rs
1 -1
1 -1
0 4 -4| iI.Ry
0 -2
1 -1 2\ +Ry
0 1 -1
0 -2 2) +3Ry
1 0 1
B=|0 1 -1
0 0 0

Vi ser heraf, at egenrummet hgrende til A; =1 er givet ved

-1

NA]:{( l)t)tE[F}ClFS,

1
og vi ser tilsvarende, at egenrummet N4_jo hgrende til 19 = 2 er givet ved

-2

NAIZZ{( 1)t‘t€[F}C[F3.

3

Den geometriske multiplicitet af bade 1 =1 og A =2 er altsa lig med 1. De to egenrum
udspzender et underrum af F? af dimension 2, og derfor har F? ikke nogen basis, der
bestar af egenvektorer for A. Sa A er ikke diagonaliserbar.

Bemaerkning 5.2.6 Ved udregning af det karakteristiske polynomium er der altid ri-
siko for at lave fejl, hvilket vil ggre alle fglgende udregninger forkerte. En sddan fejl er
dog let at opdage. For hvis A ikke er en egenveerdi for A, sa er B=A — I en invertibel
matrix, og Gauss-elimination vil da bestemme den tilhgrende reekkeskvivalente ma-
trix pa reduceret echelonform til at vaere B’ = I. S& hvis Gauss-elimination af B=A -1
giver B’ = I, sa ved vi altsd, at A ikke er en egenvaerdi.
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5.2 Diagonaliserbare matricer

Vi viser nu, at hvis A,B € M, (F) er samtidigt diagonaliserbare i den forstand, at der
findes en basis for ", der bestar af egenvektorer for dem begge, da kommuterer A og B
ngdvendigvis med hinanden.

Saetning 5.2.7 Lad A og B vare to n x n-matricer med indgange i et legeme [F. Huis der
findes en basis (v1,...,v,) for " bestdende af vektorer, der bade er egenvektorer for A
og B, sd galder det ngdvendiguis, at AB = BA.

Bevis Ifslge setning er matricen P = (v1 vn) invertibel, og matricerne
P7lAP =diag(My,..., As)

og
P7'BP =diag(u1,...,pn)

er diagonalmatricer. Vi konkluderer derfor, at
AB =Pdiag(A1,...,A,)P 1P diag(uy,. .., u)P L = Pdiag(A 11, ..., Appin)P !

og
BA = Pdiag(u1,..., )P 1P diag(A1,...,A)P 7L = Pdiag(uils,. .., unAn)P L.

Heraf folger som gnsket, at AB = BA, idet vi har antaget, at den kommutative lov
gaelder for multiplikation af skalarer. O

Bemaerkning 5.2.8 Til trods for, at ssetning er ganske let at vise, sa har den
enorme konsekvenser, idet den er grundlaget for Heisenbergs ubestemthedsrelationer.
I kvantemekanik svarer observable og tilstande til henholdsvis matricer og vektorer,
og en observabel A har en veldefineret veerdi A i tilstanden v, hvis og kun hvis v er en
egenvektor for A med egenveerdi A. Seetning siger derfor, at hvis AB # BA, sa er
vaerdierne af de observable A og B ikke samtidigt veldefinerede.

Hvis matricen A er diagonaliserbar, og hvis P"1AP = diag(14,...,,), da felger det fra
setning|5.1.4] at det karakteristiske polynomium faktoriserer som et produkt

xA(@®) = xp-14p(t) = det(diag(l1 — ¢,..., A, — 1))
=(A1—-8)-...-A, 1)

af forstegradspolynomier. Det omvendte udsagn geelder imidlertid ikke, medmindre
egenvaerdierne A1,...,1, er parvis forskellige. Vi har i stedet falgende resultat.
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5 Egenverdier og egenrum

Saetning 5.2.9 Lad A € M,,(F) vaere en kvadratisk matrix med indgange i et legeme .
Da er folgende udsagn sekvivalente:

(1) Det karakteristiske polynomium er et produkt af forstegradspolynomier,

xa@®)=A1-10)-...-(Ap = 0).

(2) Der findes en invertibel matrix P € M,(F), sidan at matricen P~1AP er en guvre
triangulaer matrix.

Bevis Vi antager forst (1) og beviser (2). Beviset er ved induktion pa n = 0. Tilfaldet

n =0 gaelder, da den tomme matrix bade er invertibel og gvre trianguleer. Sa vi antager,

at (1) medfarer (2) for n =r — 1 og viser, at (1) medfarer (2) for n = r. Vi vaelger en egen-

vektor v1 hgrende til A og supplerer ved hjalp af saetnin til en basis (vy,...,v,)
4.3

for F*. Matricen @ = (v1 ... v,) er da invertibel (lemma [4.3.9), og
M|biz -+ by
B=Q 'AQ = 0
: B11 ’
0

fordi Q 1AQe; =Q 1Avi =Q v = e1 ;. Ifglge saetning er yp(t) = ya(?), og ved
Laplace-udvikling af determinanten efter forste sgjle far vi endvidere, at

xB(t) = det(B—1I,t)= (A1 —t)det(B11 — I,_1t) = (A1 — ) xB, (2).
Per entydighed af polynomiumsdivisionE] felger derfor, at
XBll(t) = (/12 - t) et (/lr - t)

Den induktive antagelse, at (1) medferer (2) for n = r — 1, viser nu, at der findes en
invertibel matrix R1; € M,_1(F), sddan at matricen C11 = Rl_llBllRll € M,_1(F) er gvre
trianguleer. Vi lader da

1/0 - 0

R = e M,(F)
R11

I Dette fplger fra Euklids algoritme. Et bevis kan findes pa side 173-174 i Serge Lang, Algebra. Revised
third edition. Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002.
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5.2 Diagonaliserbare matricer

og P=QR € M,(F). Da er matricen

Mlei -+ e

_p-1 _p-1n-1 _p-1 _ 0
C=P'AP=R'Q 'AQR=R™'BR=| | . € M,(F)
: 11

0
gvre trianguler, hvilket viser induktionsskridtet og derfor (2). Endelig fglger den om-
vendte implikation, at (2) medfgrer (1), fra saetning og seetning O

Vi bemaerker, at algebraens fundamentalseetning (satning |3.5.10) medfarer, at den
farste betingelse (1) i s@tning altid er opfyldt for F = C. Dette geelder dog ikke
ngdvendigs for F = R. Forskellen er afspejlet i det folgende resultat.

Saetning 5.2.10 (1) Hvis A € M,(R) er en symmetrisk reel kvadratisk matrix, sd findes
der en invertibel reel matrix P € M,(R), sidan at P"YAP € M, (R) er gvre trianguleer.
(2) Hvis A € M ,,(C) er en vilkdarlig kompleks kvadratisk matrix, sa findes der en inver-
tibel komplex matrix P € M,,(C), sidan at P"YAP € M,,(C) er gure triangulzer.

Bevis Vi begynder med at vise (2). Ifglge korollar [3.5.11| er ethvert polynomium med
komplekse koefficienter et produkt af farstegradspolynomier. Dette geelder specielt for
det karakteristiske polynomium y4(¢), og udsagnet (2) folger derfor fra saetning[5.2.9

Vi viser dernaest (1). Vi lader B € M,,(C) vaere matricen A € M,,(R) betragtet som en
kompleks matrix. Det fglger som fgr fra korollar|3.5.11] at

x(@)=A1-1)-...- (A, — ) e C[],

hvor 14,...,1, € C er egenvaerdierne af B. Vi pastar, at disse egenvardier alle er reelle
tal. Da den reelle matrix A er symmetrisk, er den komplekse matrix B hermitisk. Lad
nu A € C vaere en egenveerdi for B, og lad 0 # z € C" veere en dertil hgrende egenvektor.
Da er Bz = zA, og derfor er z*B* = A*2z*, hvilket medfgrer, at

AM2z*2=2"B*z=2"Bz=2"2A2,

idet B* = B. Men z # 0, sa 2"z # 0, og vi konkluderer derfor, at A* = A, hvilket viser
pastanden. Polynomiumsidentiteten ovenfor viser derfor, at

1A =QA1=8)-...-(A, — ) e RI[£]

med Aq,...,4, € R, og derfor fglger (1) ved at anvende saetning som fgr. O
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5 Egenverdier og egenrum

Eksempel 5.2.11 Vi undersgger, om den komplekse matrix

1 0 -1
A=|i 1 -2+2
0 O 1

er diagonaliserbar. Vi udregner det karakteristiske polynomium ved Laplace-udvikling
langs sidste reekke.
1-t O = -t 0
xra@®)=det| i 1-t -2+2i :(1—t)det( . ):(1—1,‘)3
i 1-t
0 0 1-¢

Sa A =1 er den eneste egenveerdi, og vi anvender Gauss-elimination pa B = A — I for
at bestemme det tilhgrende egenrum N4 _;.

0

S

—i
-2+21
0
~2+2i\ Ry-(-i)
—i Ry-i

0
2+2i) +Ry-(—Z2)
1
0

0
1
0

Heraf aflaeser vi, at N4 _; er det en-dimensionale underrum

B Ri Ry

O ~.

B'=

OO -H OO M- OO =
S OO OO O OO o oo

0

NA[_{(I\)t‘tEC}CC3.

0

Der findes altsa ikke en basis af egenvektorer for A, og derfor er A ifglge korollar([5.2.3
ikke diagonaliserbar. Seetning viser imidlertid, at der findes en invertibel matrix
P, sadan at P"1AP er gvre triangulaer. For vi har med

010 1 i -2+2i
P=|1 0 o, at PlapP=(0 1 -i |.

0 01 0 O 1

214



5.2 Diagonaliserbare matricer

Bemaerkning 5.2.12 Det er let at udregne potenser af diagonaliserbare matricer. Hvis
nemlig D =diag(11,...,A,), da er D* = diag(A%, ... ,Aﬁ), oghvis D =P 'AP, daer

DF =(P71APY =P 'APP7IAP...PT'AP =P 1A*P,
idet vi fjerner de k& — 1 forekomster af PP~1 = I. Heraf fglger, at
A* =pDFp1,

sa op til et koordinatskift er det ligesa let at udregne potenser af en diagonaliserbar
matrix som af en diagonalmatrix. Vi bemeerker ogs4, at A® igen er diagonaliserbar.

Eksempel 5.2.13 Vi anvender bemarkning |5.2.12| pa den diagonaliserbare matrix A
i eksempel og far, at

b paie o onk ( 1ykvp-l_ [~3 —2)((=2F 0 (-1 -2
C(3(=2)F —2(-1)F  6(-2)F —6(-1)F

—3(-2)% —2(—1)k)(—1 —2) ( )
T (=2 + (-1)F —2(-2)F +3(-1)*)

(-2  (-1*) 1 3

Her har vi anvendt eksempel til at udregne P!,

Diagonalisering kan bruges til at forsta lineaere processer, der gentager sig. Dette vil
vi nu illustrere med felgende simple eksempel.

Eksempel 5.2.14 I et land L bor der x personer pa landet og y personer i byerne.
Man har observeret, at hvert ar flytter 15% af befolkningen fra landet til byerne, mens
10% af befolkningen i byerne flytter pa landet. Vi gnsker at bestemme, hvor mange
personer der vil vaere pa landet og i byerne efter 20 ar, hvis denne udvikling forseetter.
Vi observerer fgrst, at i denne model er zendringen i befolkningssammenszaetning fra
ar til ar givet ved en lineaer afbildning: efter et ar er der x — 15%x + 10% y personer pa
landet og ¥y — 10% y + 15% x personer i byerne. Sa de nye antal personer efter et ar er

(85/100 x +10/100 y) 3 (17/20 1/10) (x)

15/100 x +90/100 y| | 3/20 9/10

Efter 20 ar vil befolkningssammensatningen i vores model derfor veere

20 % _(Y7/20 1/10
A (y)’ hvor A—( 3/90 9/10]"

Vi udregner nu, at
xa@®=t2-Tr+3=1-0E -1,
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5 Egenverdier og egenrum

hvilket viser, at A har egenveerdier 11 =1 og A3 = 3/4. Korollar 5.1.12|og korollar|5.2.3
viser da, at A er diagonaliserbar. Vi udregner endvidere, at

NA_I:{(g)t‘tER}CRZ og NA_I%Z{(_i)t‘tER}CRQ.

A_(2 LA 0)[2 ~1)"
“8 1)l0 31438 1) °
og derfor viser bemaerkning at
(2 ) 0\ (2 -117"
3 1flo 34 |3 1

(2 -1\(1* o /5 1/s
138 1)l0 GF(-35 2/s
(2/5+3/5(3/a)F  2/5—2/5(3/a)F
3/5—3/5(3/4)f 3/5+2/5(3/4)%)

Det folger, at

For £ = 20, kan vi helt ignorere de led, der indeholder (3/4)%, idet (3/4)2° ~ 0,003, hvilket
er ubetydeligt sammenlignet med 2/5 = 0,4 og 3/5 = 0,6. Denne simple model viser altsa,
at efter 20 ar er befolkningssammensatningen i landet L stabiliseret med omkring
40% x +40% y pa landet og 60% x + 60% y i byerne.

5.3 Egenvaerdier og egenrum for linezere endomorfier

Vi overfgrer nu de begreber, vi har indfaert i de sidste to afsnit, til linesere endomorfier
af endeligt frembragte abstrakte vektorrum, og vi begynder med det karakteristiske
polynomium.

Definition 5.3.1 Lad F veere et legeme, og lad V veere et F-vektorrum V af endelig
dimension n. Det karakteristiske polynomium af en lineaer endomorfi f: V — V er da
det karakteristiske polynomium

xr(t) = xa(t) = det(A — I't) e F¢]

af den kvadratiske matrix A € M, ([F), der reprasenterer f: V — V med hensyn til en
feelles basis (v1,...,v,) for domanet og codomeenet.

Vi viser nu, at denne definition er meningsfuld i den forstand, at y () ikke athsenger
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af valget af basis (vy,...,v,) for V. Sa lad ogsa (w1,...,w,) vaere en basis for V, og lad
B € M, (F) veere matricen, der reprasenterer f: V — V med hensyn til denne basis for
bade domanet og codomaenet. Som vi forklarede i bemeerkning geelder det da, at

B=pPlAp,

hvor P € M,(F) er matricen, der repraesenterer identitetsafbildningen idy : V — V med
hensyn til basen (w1q,...,w,) for domeenet og basen (vi,...,v,) for codomanet. Derfor
viser saetning at ya(t) = xg(t), og dermed er y,(¢) uatheengig af valget af basis.
Det er dog afggrende, at vi anvender den samme basis (vq,...,v,) for bade domeenet og
codomanet af f: V - V.

Lad nu V vaere et vilkarligt F-vektorrum. Hvis A € F, da definerer formlen

(idy V) (v) =vA
en linezer endomorfiidy A: V — V. For hvisv,weV og pefF, da er

(dy Vv+w)=@w+w)l =vAl+wA =Gdy 1)(v)+ (1dy 1) (w)
(idy M(wp) = (v = v(pd) = v(Ap) = (vA)p = (dy V)(v)u,

hvor vi har brugt den kommutative lov for multiplikation af skalarer. Seerligt geelder
det for enhver lineser endomorfi f: V —V og 1€, at

Vi={weV|f(v)=vA}=ker(f —idy 1)V

er et underrum af vektorrummet V.

Definition 5.3.2 Lad V veere et vektorrum over et legeme [, lad f: V — V vaere en
lineser endomorfi, oglad V) ={v e V | f(v) = vA}.

(1) En skalar A € F er en egenveerdi for f: V —V, hvis V) #{0}.

(2) Hvis A € F er en egenveerdi for f: V — V, sa kaldes underrummet V) c V for
egenrummet for f: V — V hgrende til egenveerdien A € F.

(3) Hvis A € F er en egenveerdi for f: V — V, sa kaldes enhver vektor v € V), der ikke
er nulvektoren, for en egenvektor for f: V — V hgrende til egenvaerdien A € F.

En vektor v € V, der ikke er nulvektoren, er altsa en egenvektor for f: V — V hgrende
til egenveerdien A, hvis og kun hvis f(v) = vA.
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5 Egenverdier og egenrum

Eksempel 5.3.3 (1) Nulafbildningen 0: V — V har 1 =0 som eneste egenveerdi, og
Vo =ker(0—idy 0) =ker(0)=V.
(2) Identitetsafbildningen idy : V — V har 1 = 1 som eneste egenveerdi, og
V1 =ker(idy —idy 1) =ker(0) =V.

(3) Ma&ngden V = C*°(R) af funktioner f: R — R, der er vilkarligt ofte differentiable,
har en reel vektorrumsstruktur, hvor vektorsum og skalarmultiplikation er givet ved
henholdsvis (f + g)(x) = f(x) + g(x) og (f - A)(x) = f(x)- A, og aftbildningen D: V — V,
der til f € V tilordner den afledte f’' € V, er en lineser endomorfi. Ethvert 1 € R er en
egenveerdi for D: V — V, og det tilhgrende egenrum er det en-dimensionale underrum

Vi={e™®-clceRicV,

da funktionerne f(x) = e’ - ¢ udggr alle lgsninger til differentialligningen Df = fA.
Sa endomorfien D: V — V har specielt uendeligt mange egenveerdier. Seetning [5.1.11
viser, at dette kun er muligt, fordi vektorrummet V er uendeligdimensionalt.

Vi viser i seetning|5.3.6}, at for et endeligt frembragt F-vektorrum V, er egenveerdierne
af en lineser endomorfi f: V — V netop rgdderne i F af dets karakteristiske polynomium
xr (). Vi begynder med fglgende resultat.

Lemma 5.3.4 Lad [F veare et legeme, lad V vare et endeligt frembragt F-vektorrum,
og lad g: V — V vare en linezer endomorfi. Lad (v1,...,v,) vaere en basis for V, lad
h:F* —V veere den entydigt bestemte linezere isomorfi, saidan at h(e;)=v; for 1 <i <n,
og lad B € M, (F) veere matricen, der reprasenterer g: V —V med hensyn til denne basis
for bade domaenet og codomaenet. Da galder det, at h(Npg) = ker(g).

Bevis Vi husker fra bemerkning 4.4.5, at den linesere endomorfi &: F* — ", der er
givet ved k(x) = Bx, gor det folgende diagram kommutativt.

Vi pastar, at dette medfarer, at A(Ng) = ker(g). For hvis x € Ng = ker(k), sa er

g(h(x)) = h(k(x)) = h(Bx) = h(0) =0,
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5.3 Egenveerdier og egenrum for lineaere endomorfier

sa h(x) € ker(f). Omvendt, hvis v € ker(g), da findes der x € ", sadan at x = h(x), idet
h:F*—V er surjektiv. Og da h: " — V ogsa er injektiv, sa viser udregningen

h(k(x)) = g(h(x)) = g(v) =0,

at x e ker(k) = Ng. Dermed er v = h(x) € h(Np), hvilket viser pastanden. O

Korollar 5.3.5 Lad [ vere et legeme, lad V veere et endeligt frembragt F-vektorrum,
og lad f:V — V vere en linezer endomorfi. Lad (vq,...,v,) vaere en basis for V, lad
h:F* —V veere den entydigt bestemte linezere isomorfi, sadan at h(e;) =v; for 1 <i <n,
og lad A € M,,(F) veere matricen, der repreaesenterer f: V —V med hensyn til denne basis
for bade domaenet og codomaenet. Da geelder det for alle A € F, at

h(Na-12)=V).

Seerligt er A en egenveerdi for f: V —V, hvis og kun hvis A er en egenveerdi for A.

Bevis Identiteten A(N4_13) = V) folger fra lemma med g=f—-idy A: V — V. For
matricen B, der repraesenterer g: V — V med hensyn til den feelles basis (vy,...,v,) for
domaenet og codomaenet, er B=A —1A, sa Ng=Na_j,, og ker(g) =ker(f —idy 1) =V).
Endelig er A per definition en egenvaerdi for f: V — V, hvis og kun hvis V) # {0}, og
da A: F* — V er en isomorfi, sa viser identiteten ovenfor, at dette er tilfeeldet, hvis og
kun hvis N _j; # {0}, hvilket er definitionen pa, at A er en egenveerdi for A. O

Saetning 5.3.6 Lad [F veere et legeme, og lad V veere et endeligt frembragt F-vektorrum.
Da er egenveerdierne af en lineser endomorfi f: V — V preecis redderne i F af det karak-
teristiske polynomium yr(t) € F[¢].

Bevis Lad A € M, (F) vaere matricen, der repraesenterer f: V — V med hensyn til en
feelles basis (v1,...,v,) for domaenet og codomaenet. Ifslge korollar er A € en egen-
veerdi for f: V — V, hvis og kun hvis A € F er en egenveerdi for A, og ifplge seetning[5.1.8]
er dette tilfeeldet, hvis og kun hvis A€ F er enrod i ya(¢) = 7 (). O

Hvis A € F er en egenvaerdi for den linezre endomorfi f: V — V, sa definerer vi igen
den geometriske multiplicitet til at vaere dimensionen af egenrummet V) hgrende til A;
og vi definerer den algebraiske multiplicitet til at vaere det maksimale hele tal £ > 1, for
hvilket der findes q(¢) € F[¢], sddan at y(¢) = (1 - ) - q(t) € F[2].
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5 Egenverdier og egenrum

Saetning 5.3.7 Lad [ veere et legeme og V et endeligt frembragt F-vektorrum. Givet en
egenveerdi A € F for en lineser endomorfi f: V — V, da er den algebraiske multiplicitet
af A stgrre end eller lig med den geometriske multiplicitet af A.

Bevis Vi vaelger forst en basis (vy,...,v,) for egenrummet V), og supplerer dernaest
denne til en basis (vy,...,v,,w1,...,w)p) for V. Da vektorerne vy,...,v, er egenvektorer
for f: V —V hgrende til A, er matricen A € M, ,(F), der repraesenterer f: V — V med
hensyn til basen (v1,...,v,,w1,...,w;) for bAde domaenet og codomsenet, pa formen

I,A | B
A=[g)
(Op,n C

hvor I, € M, ,(F) er identitetsmatricen og O, , € M, ,(F) er nulmatricen, og hvor de
to matricer B € M, ,(F) og C € M, ,(F) kan vare vilkarlige. Ved at foretage Laplace-
udvikling af determinanten efter fgrste sgjle n gange far vi da, at

I.A-I,t| B
Opn | C—Ipt

)(f(t):det(A—In+pt)=( )Z(/l—t)ndet(C—Ipt).

Dette viser, at den algebraiske multiplicitet af A er stgrre end eller lig med den geome-
triske multiplicitet n som gnsket. O

Bemszerkning 5.3.8 Lad os definere, at en lineser endomorfi f: V — V af et endeligt
frembragt F-vektorrum er diagonaliserbar, hvis der findes en basis for V, der bestar
af egenvektorer for f: V — V. Bemaerkning viser, at dette er tilfaldet, hvis og
kun hvis matricen A, der repraesenterer f: V — V med hensyn til en vilkarlig, men
feelles, basis for domaenet og codomeenet, er diagonaliserbar. Vi har i saetning
vist, at egenvektorer hgrende til forskellige egenveerdier er linesert uatheengige. Derfor
er f: V —V diagonaliserbar, hvis og kun hvis det geelder, at

Z dim(V)) = dim(V),
A
hvor summen til venstre lgber over de endeligt mange egenvaerdier af f: V — V. Vi har
netop vist i seetning|5.3.7, at det gaelder falgende ulighed:
Z dimV) = Z geometrisk multiplicitet (1) < Z algebraisk multiplicitet (1).
A A A
Og da et polynomium af grad hgjst d med koefficienter i et legeme F hgjst kan have d
rgdder i [, far vi endvidere faolgende ulighed:
Zalgebraisk multiplicitet (1) < deg(y(¢)) = dim(V).
A

Vi konkluderer altsa, at f: V — V er diagonaliserbar, hvis og kun hvis de fglgende
betingelser begge er opfyldt:
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5.4 Opgaver

(1) Den fglgende identitet geelder:

Z algebraisk multiplicitet (1) = dim(V).
A

(2) For enhver egenvaerdi A af f: V —V er

geometrisk multiplicitet (1) = algebraisk multiplicitet (1).

Endelig viser algebraens fundamentalsatning (seetning|3.5.10), at betingelsen (1) altid
er opfyldt, hvis F =C.

5.4 Opgaver

5.1 Vi betragter polynomiet

3—t -5 4
p®)=det| 1 -t 1].
1 1 -t

a) Bestem p(%).
b) Udtryk p(¢) som et produkt af fgrstegradspolynomier.

5.2 For hver af de nedenstaende reelle matricer A € Mo(R), definerer vi B € M(C) til at
veere matricen A betragtet som en kompleks matrix. Find i hvert af de tre tilfselde
eventuelle egenvardier og tilhgrende egenrum for henholdsvis A og B. Undersgg
endvidere, om matricen A (resp. B) er diagonaliserbar, og find i givet fald en basis
for R? (resp. C2), der bestér af egenvektorer for A (resp. B) samt en invertibel matrix
P € M5(R) (resp. Q € Mo(C)), sddan at P"LAP (resp. @ 'BQ) er en diagonalmatrix.

a)
2 4
A_(5 1).
b)
0 2
A_(2 O).
c)
0 2
4=y of
5.3 Betragt matricen
3 01
A=|-1 4 1.
1 0 3
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5 Egenverdier og egenrum

5.4

5.5

5.6

5.7

5.8

222

a) Find egenvardierne for matricen A.
b) Find baser for de tilhgrende egenrum.

¢) Find en invertibel reel matrix P, sadan at P"1AP er en diagonalmatrix.

Betragt matricen

a) Find egenvaerdierne for matricen A.
b) Find baser for de tilhgrende egenrum.

¢) Redeggr for, at der ikke findes en invertibel reel matrix P, sadan at P"1AP er en
diagonalmatrix.

Vi betragter den linezere endomorfi f: R* — R*, der er reprsesenteret af matricen
1 0 0 -3
2 3 0 3
A= -2 -1 2 -3
0 0 0 4

med hensyn til standardbasen for bade domenet og codomeanet.
a) Bestem egenveaerdier og egenvektorer for A.

b) Angiv en basis (v1,vs,v3,v4) for R*, sadan at matricen D, der repraesenterer
f: R* - R* med hensyn til denne basis for bade domeenet og codomeenet, er en
diagonalmatrix.

¢) Angiv en invertibel matrix P, sddan at D = P"1AP.

Betragt matricen
2 1+2i
asfz 1)
a) Bestem egenveaerdier og egenvektorer for A

b) Angiv en invertibel matrix P, saidan at P"1AP er en diagonalmatrix.

Betragt matricen
3+3i 0
-1+2i 6-3i)°
a) Bestem egenveerdier og egenvektorer for A.
b) Angiv en invertibel matrix P, sadan at P 1AP er en diagonalmatrix.

Bevis at egenvaerdierne for en (gvre eller nedre) trianguleer matrix A netop er dia-
gonalindgangene.



5.9

5.10

5.11

5.12

5.4 Opgaver

Lad F veere et legeme.

(a) Vis, at hvis A€, daer
B-IAN=IA-B

for alle B € M,,(F). [Vink: Udregn begge matrixprodukter.]

(b) Lad A € M, (F) veere en diagonaliserbar matrix med en enkelt egenvaerdi A.
Bevis,atdaer A=1A.

Vi har i opgave 2[9] defineret sporet tr(A) af en kvadratisk matrix A som summen
af diagonalindgangene og vist, at tr(AB) =tr(BA).

a) Lad f: V — V vare en lineser endomorfi, og lad A og B vaere matricerne, der
repraesenterer f: V — V med hensyn til baser (vy,...,v,) og (w1,...,w,) for V.
Vis, at tr(A) = tr(B).

b) Lad A € M,(C), og lad Aq,...,A; veere egenvaerdierne af A. Vis, at hvis A er
diagonaliserbar, da er

k
tr(A) = Z d;A;
i=1

hvor d; er den algebraiske multiplicitet af A;.

Vis, at det for enhver kompleks matrix A € M,,(C) galder, at

k
det(A) = [[ A%
i=1

hvor A4,...,A; er egenvaerdierne af A, og hvor d; er den algebraiske multiplicitet af
egenvaerdien A;.

[Vink: Anvend satning|5.2.10]]

I vektorrummet R? er der givet den linesert uafhaengige familie af vektorer

el

En linezer endomorfi f : R? — R? er fastlagt ved
flo)=ve, f(va)=v1 og  f(v3)=0.

a) Opskriv den matrix, der repraesenterer f: R3 — R? i basen (v1,v9,v3).

b) Gor rede for, at f: R — R? er diagonaliserbar.
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5.13 Vi betragter de linesere endomorfier f,g: R® — R?, der er repreaesenteret af

5.14

224

-1 11 0 01
A= 010 og B=10 0 1
0 01 0 01

med hensyn til standardbasen for bade domanet og codomeenet.

a) Find en basis (v1,v9,v3) for R3, som bestar af vektorer, der er egenvektorer for
bade A og B.

b) Find en invertibel matrix P, sadan at P"'AP og P~1BP begge er diagonalmatri-
cer.

(%) En blind mus befinder sig i et rum pa tegningen herunder og leder efter en ost.
Den gar hvert minut til et nyt rum i et tilfeeldigt mgnster, indtil den finder osten.
Musen bevaeger sig med lige stor sandsynlighed ind i hvert af de tilstgdende lokaler.
(F.eks. er sandsynligheden for at musen gar fra rum 2 til 1 og fra rum 2 til 3, begge
lig med 1/2.) Og sadan fortsaetter musen med at vandre indtil den finder osten,
hvorefter den forbliver i rum 5 og tilbringer resten af sine dage med at spise den
store ost. Til at beskrive musens bevagelse kan vi opskrive en overgangsmatrix P,
hvis elementer P;; er sandsynlighederne for at musen gér til rum i fra rum ;. (Sa
for eksempel er P19 = % = P39, mens Pog = P49 = P59 =0.)

1 4
|
-
o ! |
2 3 5

a) Opskriv matricen P ud fra musens mulige bevaegelser. Ggr herunder rede for,
hvorfor P55 =1, mens P;5 =0 fori =1,2,3,4.

b) Vi kan repraesentere startrummet for musen ved en standard enhedsvektor e},
Jj=1,...,5, da musen starter i netop ét af rummene 1-5. Hvis musen befinder sig
i rum J, vil sandsynligheden for at traeffe musen i nseste minut i de forskellige
rum altsé veere givet ved vektoren Pe;, som er den j’te sgjle i matricen P. Her
er den i’te indgang i vektoren P e; lig med sandsynligheden for, at musen er i
det i’te rum efter et minut. Tjek, at matricen P fundet i a) har den egenskab.



5.4 Opgaver

Mere generelt vil sandsynligheden for at treeffe musen i de forskellige rum ef-
ter & minutter, hvis den starter i det j’te rum, veere givet ved vektoren P*e e
For hver j =1,2,3,4, bestem (gerne ved brug af Maple) sandsynligheden for, at
musen finder osten pa hgjst 10 minutter, givet at den starter i det j’te rum. Hvil-
ken af de 4 sandsynligheder er stgrst, og hvilken er mindst? Svarer det til dine
forventninger?

c¢) Musen starter i rum 1. Efter at have vandret i noget tid og stadig ikke have
fundet osten, kommer musen til at taeenke, at den maske aldrig vil finde osten.
Vis, at sandsynligheden for at musen finder osten, dvs. befinder sig i rum 5 efter
k minutter, gar mod 1 nar £ gar mod uendelig.

[Hint: Diagonalisering].
(Til denne del af opgaven ma der gerne bruges Maple til at finde egenvaerdier,

egenvektorer og inverse matricer.)

5.15 (x) Vi definerer en reel matrix A € M,(R) til at vaere skavsymmetrisk, hvis den
opfylder, at A’ = —A. Vis, at det for en sddan matrix gzelder, at

xa@® =(=1)"ya(-1).

5.16 Betragt matricen

a. Udregn A2 AS3.
b. Udregn det(A).

c. Udregn egenveerdierne og egenrummerne for matricen A. Er A diagonaliser-
bar?

Lad F veere et legeme. En matrix N € M, (F) kaldes nilpotent, hvis der findes et
naturligt tal £ sddan at, hvis man ganger matricen N med sig selv £ gange, sa far
man nulmatricen, dvs. hvis
Nt =0,,.
d. Vis, at hvis N er en nilpotent matrix, sa er det(N) = 0.

e. Vis, at hvis N er en diagonaliserbar nilpotent matrix i M, (F), sa er matricen
N = On,n-

f. Hvad er det karakteristiske polynomium for N?
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6 Vektorrum med indre produkt

Dette kapitel omhandler geometriske strukturer pa reelle og komplekse vektorrum.
Disse strukturer er ikke linesere, men derimod kvadratiske, af natur, og de atheenger
af et valg af en yderligere struktur, der kaldes for et indre produkt. Et indre produkt
giver saledes anledning til en norm eller leengdemal af vektorer, samt til begrebet, at
to vektorer er ortogonale eller vinkelrette. I det reelle tilfzelde er det ogsa muligt at
definere vinklen mellem to vektorer. Vi viser den meget anvendelige Cauchy-Schwarz-
ulighed, hvorfra de fleste egenskaber for indre produkt og norm fglger. Vi definerer og
studerer ogsa linezre isometrier, som er de linezere afbildninger mellem vektorrum med
indre produkt, der bevarer denne ekstra geometriske struktur.

Vi siger, at en basis for et vektorrum med indre produkt er ortonormal med hensyn til
det indre produkt, hvis vektorerne i basen er parvis ortogonale og har norm 1. En stor
fordel ved en ortonormal basis er, at koordinaterne af en vektor med hensyn til denne
basis er givet ved indre produkt med basisvektorerne. Vi angiver endvidere en algorit-
me, der kaldes for Gram-Schmidt-ortogonalisering, der erstatter en vilkarlig basis med
en basis, der er ortonormal med hensyn til det indre produkt.

Endelig viser vi de sakaldte spektralsatninger for henholdsvis selvadjungerede linege-
re endomorfier af reelle vektorrum med indre produkt og normale linesere endomorfier
af komplekse vektorrum. I begge tilfaelde udtaler setningen, at der findes en basis af
egenvektorer for den lineare endomorfi, der endvidere er ortonormal med hensyn til
det indre produkt. Vi anvender til sidst spektralsaetningerne til at bevise Sylvesters
klassifikation af hermitiske former pa reelle og komplekse vektorrum.

I dette kapitel antager vi, at F =R eller F = C, men 1 de tre fgrste afsnit gaelder alle
udsagn og definitioner ogsa for F = H med kvaternionisk konjugation.

6.1 Indre produkt

Vi betragter vektorrum over F =R eller F = C, og for a € F definerer vi

a =

. a, hvisF=R,
a, hvisF=C.

For reelle tal giver det mening at spgrge, om et tal er positivt eller negativt, hvorimod
dette spgrgsmal ikke giver mening for komplekse tal generelt. Vi bemaerker imidlertid,
at hvis a € F opfylder, at a =a*, sa er a € R, uanset om F =R eller F = C. I dette tilfaelde
er udsagnet “a > 0” derfor meningsfuldt, hvilket vi anvender i fglgende definition.
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6 Vektorrum med indre produkt

Definition 6.1.1 Lad enten F =R eller F = C. Et indre produkt pa et F-vektorrum V er
en afbildning (—,—): V xV — F, der opfylder folgende: For alle u,v,w eV oga €l er

(H1) (u,v+w)=(u,v)+(u,w).
(H2) (u,va) = (u,v)a.

H3) (u+v,w)=(u,w)+ {(v,w).
(H4) (ua,v)=a"(u,v).
(H5) (v,u) = (u,v)".

(P) Foralle0O£ucV er(u,u)>0.

Et F-vektorrum med indre produkt er et par (V,(—,—)) bestdende af et F-vektorrum V
og et indre produkt (—,—): V xV — F.

Vi minder om, at vi i afsnit definerede en hermitisk form pa V til at vaere en
afbildning (—,—): V xV — F, der opfylder (H1)-(H5), idet vi dog kun betragtede V =[".
Mens hermitiske former er defineret generelt for et skaevlegeme F med skaevinvolution
(—)*, sa giver positivitetsbetingelsen (P) i definitionen af et indre produkt kun mening,
hvis F er R, C eller H og (—)* de respektive konjugeringsafbildninger.

Eksempel 6.1.2 (1) Standard-indreproduktet (—,—): F" x[F* — [ defineret ved
(X, ) =x"y=x]y1+ - +2,¥n

er et indre produkt pa F". Vi efterviser, at positivitetsbetingelsen (P) er opfyldt. Hvis
F=R, daer (x,x) = x% 4+ +x% = 0 med lighed, hvis og kun hvis x = 0. Og hvis F =C, da
er (x,x) = |x1/2+--- +|x,|2 =0, og der gaelder igen lighed, hvis og kun hvis x = 0.

(2) Vilader A = A* € M, (F) veere en hermitisk matrix og husker fra saetning|2.6.10| at
afbildningen (—,—): F"* x " — F defineret ved

(x,y)=x"Ay

er en hermitisk form, hvilket vil sige, at den opfylder (H1)-(H5). Hvis denne afbildning
ogsa opfylder (P), sa siger vi, at den hermitiske matrix A € M,,(F) er positiv definit. En
diagonalmatrix A = diag(1y,...,1,) er saledes hermitisk, hvis og kun hvis 14,...,1,
alle er reelle tal, og den er hermitisk og positiv definit, hvis og kun hvis 14,...,1,, alle
er positive reelle tal. For eksempel er A = diag(-1,1,...,1), der svarer til Minkowskis
hermitiske form, ikke positiv definit, sa Minkowski-formen er ikke et indre produkt.
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6.1 Indre produkt

(3) Lad V = C%([a, b]) vaere det uendeligdimensionale reelle vektorrum af kontinuerte
funktioner f: [a,b] — R fra bemerkning (4.4.20, Da definerer formlen

b
f\g) = f f@g®)dx

et indre produkt (—,-): V xV —R.

Definition 6.1.3 Lad enten F =R eller F = C, og lad V veaere et F-vektorrum. Givet et
indre produkt (—,—): V xV — [, da kaldes afbildningen [|—||: V — R defineret ved

loll = v{v,v)

for normen hgrende til (—,—).

Vi kalder ogsa |v| for lengden af v med hensyn til (—,—). Vi bemarker, at normen
af v er veldefineret, fordi (v, v) er et ikke-negativt reelt tal, og at normen af v selv er et
ikke-negativt reelt tal. Det gaelder endvidere, at

lvall = vlllal

for alleveV ogael. Her er |a| = Va*a € R absolutvaerdien af a € [F.

Vi viser nu, at absolutveerdien af det indre produkt af to vektorer altid er mindre
eller lig med produktet af deres norm. Denne ulighed, der kendes som Cauchy-Schwarz’
ulighed og skyldes Cauchy, Schwarz og Bunyakovsky, geelder i ethvert vektorrum med
indre produkt. Det er en enormt anvendelig ulighed, hvilket vi illustrerer med beviset
for trekantsuligheden nedenfor.

Saetning 6.1.4 (Cauchy-Schwarz) Lad enten F =R eller F =C, og lad (V,{—,—)) vaere
et F-vektorrum med indre produkt. For alle v,w €V er

Ko, w)| < |vllw].

Bevis Hvis v =0, er pastanden triviel, sa vi antager, at v # 0. Beviset i dette tilfaelde
beror pa felgende snedige trick: Vi betragter vektoren

(v, w)

(v,v)’

z=pr,(w)=v-
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6 Vektorrum med indre produkt

som vi kalder for projektionen af w pa v. (Se ogsa definition ) For udregningen

3 (v,w) (v,w)

(z,w—2z)= <v.—(v,v) , W—10- w.0) >
_({v,w)\* _ ({vwi\x {v,w)
_(<v,v>) w,w) (<v,v>) ) (v,v) =0

viser, at 2z og w — 2z er ortogonale; se definition [6.2.1| nedenfor. Vi skriver nu w som
2z +(w - 2) og udregner

(w,w) = <z+(w—z),z+(w—z)> =(2,2)+0+0+{w—-2z,w—2)={2,2),

hvor uligheden til hgjre gaelder fordi (w —z,w — z) = 0. Vi bemaerker, at uligheden giver
mening, fordi begge sider af uligheden er reelle tal. Vi udregner endelig, at
_ v, w)]?

(v, w) =

(v,v)  (v,v) (v,0)

(v,w) (v,w) (v,w)\* (v,w) (v,w)*
(o) | )y (@ )
(v,v) (v,v) (v,v)

idet (v,v)* = (v,v). Sa uligheden ovenfor er derfor a&kvivalent med uligheden

(z,2) = <v

K

(v,0) - (w,w) = [(v,w)?,
fordi (v,v) > 0. Saetningen fglger nu ved at uddrage kvadratroden pa begge sider. O

Lad V vere et F-vektorrum med indre produkt (—, —) og tilhgrende norm ||—||. Givet to
vektorer v og w iV, kan vi danne trekanten med hjgrner 0, v og v+w, og vi kan betragte
lvll, lwll og lv+w| som leengderne af de tre sider i denne trekant. Trekantsuligheden,
som vi nu viser, siger altsa, at leengden af én side i en trekant altid er mindre end eller
lig med summen af l&engderne af de to resterende sider.

Seetning 6.1.5 (Trekantsuligheden) Lad enten F =R eller F = C, og lad (V,{—,—))
veere et F-vektorrum med indre produkt. Da geelder det for alle v,w eV, at

lv +wll < vl + [[wll.

Bevis Vi bemarker forst, at det for alle a = x + iy € C geelder, at

a+a’ =(x+iy)+(x—iy)=2x<2\/x2+y2 =2|al,

og at samme ulighed gaelder trivielt ogsa for alle a € R. Vi udregner nu
||v+w||2 =(v+w,v+w)=(v,v)+{v,w) + (w,v) + {(Ww,w)
= vl + (v, w) + (v, w)* + [w]? < [v]|* + 2/<v,w)| + |w|?
< vl +2[lvllllwl + llwl? = (vl + lwl)?,

hvor den fgrste af de to uligheder fglger af den ulighed, vi viste i begyndelsen af beviset,
og den anden er Cauchy-Schwarz’ ulighed. Den gnskede ulighed folger ved at uddrage
kvadratroden. O
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6.1 Indre produkt

For reelle vektorrum med indre produkt er Cauchy-Schwarz’ ulighed sekvivalent med
udsagnet, at det for alle vektorer v og w i vektorrummet geelder, at

—lvlllwll < (v,w) < llv||wl].

Hvis v #0 og w # 0, sa kan vi eekvivalent skrive denne ulighed som

(v,w)
<

)

~olllwll

fordi ||v|| > 0 og ||lw| > 0. Vi definerer nu vinklen mellem v og w til at vaere det entydigt
bestemte reelle tal 0 <0 < 7, sadan at

_ (v,w)
lollllw|
Se eksempel for relation til trigonometri og en definition af sin6.

cos B

Eksempel 6.1.6 (1) Vi betragter R? med standard-indreproduktet og udregner vink-

len mellem de to vektorer
1 1
x=|1 og y=11].
0 1

Per definition er denne det entydigt bestemte reelle tal 0 <6 <, sadan at

(x,y) _ 2 :ﬁ
Vo /(y,y V2v3 27

hvilket approksimativt er 6 = 35,26°.
(2) Vi lader (C°([0, 11), (—, —)) vaere det reelle vektorrum med indre produkt fra eksem-

pel (3), og lader f,g: [0,1] — R vaere de to vektorer heri defineret ved henholdsvis
f(x) = x og g(x) = x2. For at bestemme vinklen 6 mellem f og g udregner vi:

cosf =

1

1
o) = fo = fo P =

w
QU
33

Il

1 1
<f,g)=f0 f(x)g(x)dx:fo x

1 1
g,8) = fo = fo =

Ol = Wl

Det gaelder altsa, at

9: <f7g> :\/g'\/gz\/ﬁ
V <f,f> V <g7g> 4 4

og dermed, at 6 = 14,48°.
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6 Vektorrum med indre produkt

6.2 Ortogonalitet

Mens vinkelbegrebet kun giver mening for reelle vektorrum med indre produkt, sa giver
begrebet ortogonalitet mening for vilkarlige F-vektorrum med indre produkt.

Definition 6.2.1 Lad enten F =R eller F = C, og lad (V,(—,-)) vaere et F-vektorrum
med indre produkt.

(1) En vektor u € V er en enhedsvektor med hensyn til (—,—), hvis |lu| = 1.
(2) To vektorer v,w €V er ortogonale med hensyn til (—,—), hvis (v,w) =0

(3) En familie (v;);e; af vektorer i V er ortogonal med hensyn til (—,—), hvis den
bestar af vektorer, der er parvis ortogonale med hensyn til (—,—).

(4) En familie (u;);c; af vektorer i V er ortonormal med hensyn til (—,—), hvis den
bade er ortogonal med hensyn til (—,—) og bestar af enhedsvektorer med hensyn
til (—,-).

Vi bemaerker, at ||u| =1, hvis og kun hvis (u,u) =

Eksempel 6.2.2 (1) Standardbasen (eq,...,e;,) for F”* er ortonormal med hensyn til
standard-indreproduktet, fordi (e;,e;) = §;

(2) Den fglgende familie (v1,vs) af vektorer i F? er ortogonal, men ikke ortonormal,
med hensyn til standard-indreproduktet.

o ()

For selvom (vq,v9) =0, sa er (v1,v1) =2# 1 og (vo,v2) =2 #1.
(3) Ved en udregning af integraler ses, at i vektorrummet C°([0,27]) af kontinuerte
funktioner f: [0,27] — R er familien

1 1 1 1 1
— cos(x), — sin(x), — cos(2x), — sin(2x), — cos(3x), — sin(3x), ...
(\/_ \/_ Vi Vn vr Vn vn )
ortonormal med hensyn til det indre produkt, som vi definerede i eksempel (3).
Underrummet af C°([0,27]), der er frembragt af denne familie af funktioner, kaldes
for vektorrummet af trigonometriske polynomielle funktioner. Disse anvendes blandt
andet til at modelere signaler.
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6.2 Ortogonalitet

A |
TN T U

—2

Figur 6.1: Den trigonometriske polynomielle funktion sin(x)+ %sin(3x) + %sin(5x).

Lemma 6.2.3 Lad enten F =R eller F =C, og lad (V,{—,-)) veere et F-vektorrum med
indre produkt. Enhver ortonormal familie af vektorer i V er linezert uafhaengig.

Bevis Lad (v;);c; veere en ortonormal familie af vektorer i V', og lad
Z v;a; = 0
el

veere en linearkombination af (v;);¢s, der er lig med nulvektoren. (Hvis familien ikke er
endelig, sa anvendes definitionen givet i bemaerkning |4.3.26l) Vi skal da vise, at a; =0
for alle i € I. Ligningen ovenfor viser, at

<vi’zvjaj> = Z(vi,vj>aj = Z5ijaj =a;
Jel Jel jeI
er lig med (v;,0) =0 for alle i € I som gnsket. O

For at bestemme koordinaterne x € " af en vektor w i et F-vektorrum V med hensyn
til en basis (vy,...,v,), er det generelt ngdvendigt at bestemme den entydige lgsning
til ligningen vix1 +--- + v,x, = w blandt vektorer i V. Vi skal nu se, at i modsaetning
hertil, sa kan koordinaterne a € " af w € V med hensyn til en basis (u1,...,u,), der er
ortonormal med hensyn til et indre produkt (—,—) pa V, umiddelbart angives ved hj=lp
af det indre produkt.

Seetning 6.2.4 Lad enten F =R eller F = C, lad (V,{(—,-)) veere et F-vektorrum med
indre produkt, og lad (u;);cy veere en ortonormal basis for V. Da er

w=) u; (u;,w)

el

foralleweV.
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6 Vektorrum med indre produkt

Bevis Da enhver vektor w € V kan skrives entydigt som en linearkombination

w:Zuj-aj
jel

af basen (u )1, folger saetningen af udregningen

(wi,w) =(w;, ) wj-a;)=) (@i,uj-a;)=y (W;u;)-a;=a;.

jel jel jel
Her fglger den anden og tredje identitet af henholdsvis (H1) og (H2), mens den sidste
identitet fglger af (u;,u;) = 0;;. O

Eksempel 6.2.5 Ved at normere vektorerne i basen

o ()

fra eksempel [6.2.2] far vi den nye basis

(va _(-1va
(1={15)> 22=| vyg))

der er ortonormal med hensyn til standard-indreproduktet. Saetning viser da for
eksempel, at koordinaterne a € F? af vektoren

w:(g)(;‘[F2

med hensyn til basen (u1,us) er givet ved

_ [(w,w)) _ (8/v2) _ (4)
‘7 (<uz,w>) ) (M) ) (1) Ve

Vi viser nu omvendyt, at hvis koordinaterne af to vektorer med hensyn til en basis, der
er ortonormal med hensyn til et indre produkt, er kendte, da er det indre produkt af de
to vektorer lig med standard-indreproduktet af deres koordinatvektorer.

Saetning 6.2.6 Lad enten F =R eller F =C, lad (V,{—,—)) vaere et endeligt frembragt [-
vektorrum med indre produkt, og lad (u1,...,u,) vere en basis for V, der er ortonormal
med hensyn til (—,—). Lad v,w €V, og lad x,y € F" vaere koordinaterne for henholdsvis
v og w med hensyn til basen (u1,...,u,). Da er

(v,w) = x*y = x{y1+-+%x,Yn.
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6.2 Ortogonalitet

Bevis Den gnskede formel fglger fra udregningen

@w)=O wixi, Y wiy) =) (wixi, Y wiy) =YY (wi X, w0y

el Jjed el jed 1€l jel
=) D x - wp iy =) ) ) (wi,up) -y =) % yi,
i€l jel 1€l jel 1el

hvor anden, tredje, fjerde og femte identitet fas fra egenskaberne ved et indre produkt,
mens den sidste identitet fas fra (u;,u;) =6,;. O

Definition 6.2.7 Lad enten F =R eller F = C, og lad (V,(—,-)) vaere et F-vektorrum
med indre produkt. Givet vektorer v,w € V, kaldes vektoren

{v,w)

Pro(to) =v (v,v)

for den ortogonale projektion af w pa v med hensyn til (—,—).

Vi bemeerker, at w — pr,(w) er ortogonal pa v, idet

<v,w>>_ B {v,w)
vy

samt at w = pr,(w) + (w — pr,(w)), hvilket er trivielt, men ofte ganske brugbart.

(v,w —pr,(w)) = (v,w-v-

pr,(w)

Figur 6.2: Ortogonal projektion pr,(w) af vektoren w pa vektoren v

Eksempel 6.2.8 Figur illustrerer det folgende eksempel pa ortogonal projektion i
k2 med hensyn til standard-indreproduktet:

() w=(l) w=[3) i)
Tl PTle) %8 PRIELL) 951 (1) s
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6 Vektorrum med indre produkt

Eksempel 6.2.9 Givet to vektorer v,w € R”, der begge er forskellige fra nulvektoren,
definerede vi i afsnit vinklen 6 mellem v og w til at vaere det entydigt bestemte
reelle tal 0 <6 < 7, for hvilket det geelder, at

(v,w)

lollllzell

Vi bemaerker nu, at cosf ogsa kan skrives som

(v,w) |vl{v,w) |pr,(W)]
cos(0) = = =
lvlllwl  <v,v)|wl| lwl|

Hvis vektorerne v og w ikke er parallelle, da udspeender de en plan i R”, og figuren ne-
denfor illustrerer, at cosf som forventet er lig med leengden af den hosliggende katete
pr, w divideret med leengden af hypotenusen w i den retvinklede trekant, som dannes
af vektorerne pr,(w), w — pr,(w) og w.

Endvidere er sin(f), op til et fortegn, lig med leengden af den modstaende katete divi-
deret med laengden af hypotenusen i denne trekant,

lw —pr,(w)ll

sin(@) = +
lwll

b

mens bestemmelsen af, om fortegnet er +1 eller —1, kraever en orientering af planen
udspaendt af v og w. Ved hjelp af trekantsuligheden konkluderer vi, at

_w-pr,@li _,
]

og vi bemarker endvidere, at

Ipr,)l\2  (llw—pr,(w)ll\2
(e
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6.2 Ortogonalitet

Vi skal nu vise, at ethvert endeligt frembragt vektorrum med indre produkt har en
ortonormal basis. Mere praecist angiver vi en algoritme, der til en given basis tilordner
en ny basis, der er ortonormal med hensyn til det indre produkt. Algoritmen kaldes for
Gram-Schmidt-ortogonalisering.

Saetning 6.2.10 Lad enten F =R eller F = C, lad (V,{—,—)) vaere et F-vektorrum med
indre produkt, og lad (w1,...,w,) vaere en linezert uafhaengig familie af vektorer i V.
Lad (v4,...,v,) vaere familien af vektorer i V, hvori v; er defineret rekursivt ved

vi=w;— ) pr, W)
1=F<j

for alle 1 < j <n; og lad endvidere (u1,...,u,) vere familien af vektorer i V, hvor
uj=v; v
for alle 1 < j <n. Da geelder folgende udsagn:

(1) Familierne (uq,...,u,), (v1,...,0,) og (w1,...,wy) frembringer alle det samme
underrum af'V.

(2) Familien (v1,...,v,) er ortogonal med hensyn til (—,—).
(3) Familien (u1,...,u,) er ortonormal med hensyn til (—,—).

Huis (w1,...,w,) er en basis for V, da er (vy,...,v,) og (u1,...,u,) dermed baser for V,
som er henholdvis ortogonale og ortonormale med hensyn til (—,—).

Vi bemaerker specielt, at v{ =w; og w1 =wq - lwqllL.

Bevis Vi beviser pastanden ved induktion pa n = 0. Tilfeeldet n = 0 er trivielt, sa vi
antager, at pastanden er vist for n = r — 1, og viser den for n = r. Ifglge den induktive
antagelse frembringer (r — 1)-tuplerne (vq,...,v,_1) og (w1,...,w,_1) samme underrum
af V, og derfor frembringer r-tuplerne (v4,...,v,_1,w;) og (w1,...,Ww,_1,W,) 0gsa samme
underrum W af V. Fra definitionen af v, ved vi endvidere, at

(Vp,Wwr)
wr:vr+ Z vk',—r,
1<k<r Uk, UR)

hvilket viser, at r-tuplerne (vy,...,v,-1,v;) og (v1,...,v,_1,w,) begge frembringer W,
og vi har dermed vist, at (vq,...,v,) og (w1,...,w,) begge frembringer W. Da r-tuplen
(w1,...,w,) er linezert uathaengig, udggr denne en basis for W, og satning viser
da, at r-tuplen (v1,...,v,) ligeledes er en basis for W. Vektorerne vq,...,v, er derfor
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6 Vektorrum med indre produkt

alle forskellige fra 0, hvilket viser, at skalarerne ||v{],...,|v.| alle er forskellige fra 0,
saledes at vektorerne u1,...,u, er veldefinerede. Endvidere viser

virar+--+vcar=ur-(lvill-a) + -+ u-(lol -ar),

at ogsa (u1,...,u,) frembringer W. Dette viser induktionsskridtet for (1).

Ifslge den induktive antagelse er (vq,...,v,—1) endvidere ortogonal med hensyn til
(—,—). For at vise, at ogsa (vq,...,v,) er ortogonal med hensyn til (—,—), skal vi derfor
blot vise, at (v;,v,) =0 for alle 1 <i <r—1. Sa vi lader 1 <i <r -1 veere fastholdt og
udregner, at

<vk,wr>
(i, o) =(vj,w, — Y v} )
1<k<r (UR, V)

(H2) (Vp,Wwr)
= (v;,w;) — (vj,vp)  ————
v 15« L (UR, UR)
(viawr>
=(v;,w;) —(v;,0;) - =0,
(vi,v;)

hvor den sidste lighed falger af, at (v;,v;) =0 for alle 1 <k <r med i # k. Dermed er
(vq,...,v,) ortogonal med hensyn til (—,—), hvilket viser induktionsskridet for (2).
Endelig viser udregningen

1 hvisi=J,

(wiwi)= ;oI Lo o ™Y = o7t (i, 0) ol 7t = s 1=y
[2Red} 2 2 J J 12 i»Uj j 0 hVISl;é‘],

at (uq,...,u,) er ortonormal med hensyn til (—,—). Dette viser induktionssskridtet for (3)
og dermed satningen. Den sidste bemaerkning fglger af (1)—(3) og saetning |4.3.24 O

Korollar 6.2.11 Lad enten F =R eller F = C. Ethvert endeligt frembragt F-vektorrum
med indre produkt (V,{(—,—)) har en basis, der er ortonormal med hensyn til {(—,—).

Bevis Ifslge ssetning|4.3.15/findes der en endelig basis for V. Vi vaelger derfor en sadan
basis (w1,...,w,) og anvender Gram-Schmidt-ortogonalisering til at omdanne denne til
en basis (#1,...,u,), der er ortonormal med hensyn til (—, —). O

Eksempel 6.2.12 Vi anvender Gram-Schmidt-ortogonalisering til at omdanne basen
1 1 0
(wl =1, we=|0]|, wg=|1 )
1 2 1
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6.2 Ortogonalitet

for F2 til en basis (v1,v2v3), der er ortogonal med hensyn til standard-indreproduktet
(—,—), og til en basis (u1,us,u3), der er ortonormal med hensyn til (—,-).

1
V1 =W1= 1
1

(v1,w39) 1 1 1+0+2 L
Vo =W9—071" =|0]-]1 -1 1 1: -1

(v,ws)  (v2,w3)
(v1,07) 2 (v2,02)

0 L 0+1+1 0 0-1+1 2 1
BT e s e S
1 1 +1+ 1 0+1+ 1 3

Vi har hermed fundet den nye basis

el )

der er ortogonal med hensyn til (—,—). Endelig normerer vi vektorerne i denne basis
og far derved basen

N Ui -2\ 4
 EE H e H

som er ortonormal med hensyn til (—,—). Her kan vi i stedet for at normere v3 ligesa
godt normere vé =wvg3-3, sadan at vi slipper for den ubehagelige faktor 1/3.

Vg3 =Ww3—0U7-

Definition 6.2.13 Lad enten F =R eller F = C, og lad (V,(—,—)) veere et F-vektorrum
med indre produkt. Hvis U c V er et underrum, sa kaldes

UL:{veVI(u,v):OforalleuEU}cV

for det ortogonale komplement af U c V med hensyn til (—, ).
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6 Vektorrum med indre produkt

Lemma 6.2.14 Lad enten F =R eller F =C, og lad (V,{(—,—)) veere et [F-vektorrum med
indre produkt. Hvis U c V er et underrum, da er dets ortogonale komplement U+ cV
med hensyn til (—,—) ligeledes et underrum. Desuden er U nU~* = {0}.

Bevis Vi efterviser, at UL c V opfylder definition (1)—(3). Vi har 0 € U+, idet
(u,0) =0 for alle u € U, s& (1) er opfyldt. Hvis vy,vs € UL, s& gzelder det for alle u € U,
at (u,v1 +v9) = (u,v1) +{u,v2) =0+0 =0, sa (2) er opfyldt. Hvis v € Ut ogacfl, sa
gaelder det for alle u e U, at (w,v-a) =(u,v)-a =0-a =0, sa ogsa (3) er opfyldt. Dermed
er U+ cV et underrum. Endelig folger U nU~ = {0} af positivitetsbetingelsen (P). O

Eksempel 6.2.15 For underrummet U = {x € R? | x; = x9} c R? fra eksempel er
dets ortogonale komplement med hensyn til standard-indreproduktet givet ved

Ut :{(il) € R? | x1 + x9 =0} cRZ.
2

Figur 6.3: Underrummene U,U* c R? fra eksempel |6.2.15

Saetning 6.2.16 Lad enten F =R eller F = C, lad (V,{—,—)) vaere et F-vektorrum med
indre produkt, lad U c V vere et endeligt frembragt underrum, og lad Ut c V veere
dets ortogonale komplement. Enhver vektor w €V kan da skrives entydigt som

w = pry(w) + (w - pry(w))

med pry(w) € U og w—pry(w) € U*. Huis endvidere (v1,...,v,) er en basis for U, der er
ortogonal med hensyn til (—,—), sa er

pry(w)=v;- ———+---+ v,
v (v1,01) "
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6.2 Ortogonalitet

Bevis Vi bemaerker forst, at hvis (#1,...,u,) er en vilkarlig basis for U, og hvisv e V
opfylder, at (u;,v) =0 foralle 1 <i <n, sd er ve U". For vi kan skrive en vilkarlig vektor
u € U som en linearkombination u =uia1+---+u,a,, og

(u,v) =(w1a1+---+Uya,,v) =aj(®1,v) +--+a,(u,,v)=0.

Vilader nu (u1,...,u,) vere en basis for U, der er ortonormal med hensyn til (—,—). En
sadan basis findes ifglge korollar|6.2.11] Hvisw =u+vmed u e U ogv e U', da er

(uij,w) =(u;,u+v)=(u;,u)+{u;,v) =(u;,u).
Derfor er vektoren u € U ngdvendigvis givet ved
u=ur (U, w)+ - +u, (U,,w).

Vi definerer nu u € U til at vaere denne vektor og definerer v = w—u. Vi mangler at vise,
atveU™'. Da (u;,uj)=0;;, sa gelder det for alle 1 <i <n, at

(i, v) =(u;,w—(ur- (W, w) +--+u, (U, w))) =(u;,w)—(u;,w) =0.

Altsa er v € U+ som gnsket. O

U1

_ (v2,w)
2 (v2,v2)

U2

Figur 6.4: Den ortogonale projektion u = pry(w) af w pa underrummet U < R® med
basen (v1,v29), der er ortogonal med hensyn til standard-indreproduktet.

Definition 6.2.17 Lad enten F =R eller F =C, lad (V, (—,—)) veere et F-vektorrum med
indre produkt, og lad U c V veere et endeligt frembragt underrum. Afbildningen

pry: V-V

kaldes for den ortogonale projektion pa U < V med hensyn til (—,—).
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6 Vektorrum med indre produkt

Vi bemaerker, at formlen for pry;(w) i seetning|6.2.16/samt egenskaberne (H1)-(H2) af
et indre produkt viser, at den ortogonale projektion pr;;: V — V er en lineaer afbildning.

Eksempel 6.2.18 Vi gnsker at bestemme den ortogonale projektion pry : R3 — R® pa
underrummet U c R? frembragt af familien

e

med hensyn til standard-indreproduktet pa R?, og vi anvender derfor Gram-Schmidt
algoritmen til at omdanne basen (w1,w2) for U til en ny basis (v1,v2), der er ortogonal
med hensyn til standard-indreproduktet.

U1 = W1

<Ul,l02> 1 0 0-2+0 1
V9 = W9 —V1- =12]-1-1 -?: 1
(v1,01) 0 1 0+1+ 1

Dermed er den ortogonale projektion pry;: R3 — R3 givet ved

pry(x) = vy1-

b

(vl,x) (vz,x) 0 O—xz + x3 1 X1+Xx9+Xx3
+v2. = —1 .—+ 1 - —_—
(v1,01) (v2,02) 1] 0+1+1 1 1+1+1

hvoraf vi afleeser, at pry;(x) = Ax, hvor
/3 1/3 1/3
A=|13 5/6 -1/6].
1/3 —1/6  5/6

Med andre ord er A € M3(R) den matrix, der repraesenterer pry : R> — R? med hensyn
til standardbasen (e1,e9, e3) for bade domaenet og codomaenet.

6.3 Linezre isometrier

Vi vil nu betragte de linesre afbildninger mellem vektorrum med indre produkt, der
bevarer det indre produkt. Disse afbildninger bevarer da de geometriske strukturer,
som det indre produkt repreesenterer, sdsom laengder og vinkler. Vi viser specielt, at en
linezer isomorfi f: V — V af et endeligt frembragt vektorrum bevarer et indre produkt
(—,—) pa V, hvis og kun hvis den matrix A, der repraesenterer f: V —V med hensyn til
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6.3 Linesere isometrier

en faelles ortonormal basis for domaene og codomaene, opfylder, at A* = A~!. Her er A*
den adjungerede matrix defineret i afsnit

Definition 6.3.1 Lad enten F =R eller F = C, og lad (V,{(—,—)v) og (W,{—,—)w) veere
F-vektorrum med indre produkt. En lineser afbildning f: W — V, der opfylder

(f@), fw")y = (w,ww

for alle w,w' € W, kaldes for en linezer isometri med hensyn til (—, —)w og (—, —)v.

Eksempel 6.3.2 (1) Vi betragter igen rotationen rg: R?> — R? gennem 6 radianer imod
urets retning fra eksempel 2.3.13] der er givet ved rg(x) = Byx med

_(003(9) —sin(@))
9= \sin(@  cos(0))

Udregningen

ro(@),ro(y)) = { (c?s(e) —sin(H)) x, (C(')S(H) —sin(B)) o)
sin(f)  cos(0) sin(@)  cos(0)
= cos(6)x1 — sin(B)x2)(cos(0)y1 —sin(8)ys)
+ (sin(0)x1 + cos(B)x2)(sin(B)y1 + cos(8)ys)
= (cos(0)? + sin(0)*)x1y1 + (cos(8)? + sin(6)*)xa vz
=X1y1+X2Yy2 = (X, )

viser da, at ry: R2 — R? er en lineser isometri med hensyn til standard-indreproduktet.
(2) Lad enten F =R eller F =C, og lad f: F2 — F2? vaere den vagtede skalering

(A O
f(x)—(o M)x.

Da viser udregningen

A1 O) (Al 0

(f(x),f(y)):(( o 1% 0 /12)3'):|/11|2x1y1+|/12|2x2y2,

at f: F2 — F? er en linezer isometri med hensyn til standard-indreproduktet pa F2, hvis
og kun hvis |[11] =1 og |1g] = 1.

Navnet “isometri” er noget forvirrende, idet det kunne antyde, at en lineser isometri
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6 Vektorrum med indre produkt

altid er en isomorfi, hvilket ikke er tilfaeldet. Derimod har vi fglgende resultat.

Lemma 6.3.3 Lad enten F =R eller F =C, og lad (V,{(—,-)v) og (W,{(—,—)w) veere to
F-vektorrum med indre produkt.

(1) En linezer isometri f: W — V er ngdvendigvis injektiv.

(2) Huis en linezer isometri [ : W — V er en isomorfi med invers afbildning g: V — W,
da er den inverse afbildning ogsa en linezer isometri.

Bevis Vi viser fgrst (1). Sa vi lader w € W og antager, at f(w)=0. Da er
(w,w)w = {f(w), f(w))vy =(0,0)y =0,

og positivitetsegenskaben (P) af (—,—)w medfgrer derfor, at w = 0. Da afbildningen
f: W —YV er linear, konkluderer vi fra lemma |4.2.9} at den er injektiv.

Vi viser derneest (2). Den inverse afbildning g: V — W er lineeer ifglge setning
S4 vi lader v,v’ € V og udregner, at

(g(0),g(@Nw = (f(g0), f(gWN)v = (v,v))y,

hvor den fgrste gaelder, da f: W — V er en lineser isometri, mens den anden gelder, da
afbildningerne f: W —V og g: V — W er hinandens inverse. O

En lineser isometri som er ogsa en isomorfi kaldes en isometrisk isomorfi.

Eksempel 6.3.4 Lad u € " vaere en enhedsvektor med hensyn til standard-indrepro-
duktet. Da er afbildningen o, : F — " defineret ved o,(a) = ua en lineser isometri,
men den er kun en isomorfi, hvis n = 1.

Vi indfgrer nu begrebet adjunktion for linesere afbildninger mellem vektorrum med
indre produkt. Vi anvender senere dette begreb til bedre at forsta linesere isometrier.

Definition 6.3.5 Lad enten F =R eller F = C, og lad (V,{(—,—)y) og (W,{—,—)w) veere
F-vektorrum med indre produkt. To linezere afbildninger f: W —V og g: V — W siges
at veere adjungerede med hensyn til (—,—)y og (—,—)w, hvis

(v, fW))y = (gv),w)w

foralleveVogweW.
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6.3 Linesere isometrier

Vi skal vise, at enhver linezer afbildning mellem to endeligt frembragte vektorrum
med indre produkt har en entydigt bestemt adjungeret afbildning. Vi begynder med at
vise entydighedsudsagnet, som geelder mere generelt.

Lemma 6.3.6 Lad enten F =R eller F =C, og lad (V,{(—,-)v) og (W,{(—,—)w) veere to
F-vektorrum med indre produkt. Lad f: W — V vare en linezer afbildning, og lad
g,h: V. — W vere linezre afbildninger, der begge er adjungerede til f: W — V med
hensyn til (—,—)y og (—,—)w. Da er g =h.

Bevis Vi antager, at bade g: V — W og h: V — W er adjungerede til f: W — V med
hensyn til (—,—)y og (—,—)w. For alle v e V og w € W geelder det da, at

(g(v) — h(v),w)w = (g(v),w)w — (h(v),w)w = (v, f(W))v — (v, f(W))y = 0.

Dette galder specielt for w = g(v) — h(v), og positivitetsegenskaben (P) ved et indre
produkt medfgrer derfor, at g(w) — h(w) = 0 som gnsket. O

Saetning 6.3.7 Lad enten F =R eller F =C, lad (V,{—,—)v) og (W,{—,—)w) veere to en-
deligt frembragte [F-vektorrum med indre produkt, og lad f: W — V vare en linezer
afbildning. Lad (vy,...,0,) og (W1,...,w,) vere baser for V og W, der er ortonormale
med hensyn til henholdsvis (—,—)y og (—,—)w.

(1) Der findes en entydigt bestemt linezer afbildning g: V — W, sadan at f: W -V
og g: V — W er adjungerede med hensyn til (—,—)y og (—,—)w.

(2) Hvis matricen A € My, ,(F) repraesenterer afbildningen f: W — V med hensyn
til de givne ortonormale baser, sa repraesenterer den adjungerede matrix A* €
M,, ,»(F) den adjungerede afbildning g: V — W med hensyn til disse baser.

Bevis Vi pastar, at hvis to linesere afbildninger f: W —V og g: V — W er reprasente-
ret ved adjungerede matricer A € M,, ,(F) og A* € M}, ,,(F) med hensyn til ortonormale
baser (v1,...,vy) for V og (w1,...,w,) for W, sa er de adjungerede linesere afbildninger.
Dette viser bade (1) og (2), da entydighedsudsagnet i (1) allerede er vist i lemma [6.3.6
SaladveVogweW,oglad x € F"* og y € " veere koordinaterne for v og w med hensyn
til de givne baser. Vi har da som gnsket, at

(v,fW))y =x"(Ay)=(A"x)"y = (g(v),w)w,

hvor de to identiteter til hgjre og venstre fglger af seetning [6.2.6, mens den midterste
identitet fglger af seetning O
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6 Vektorrum med indre produkt

Eksempel 6.3.8 Vilader W = R? og V = R? med standard-indreprodukterne og betrag-
ter den lineaere afbildning f: W — V defineret ved f(x) = Ax, hvor

2 3
A=10 1].
1 -1

Matricen A repraesenterer altsa f: W — V med hensyn til standardbaserne (e1,e2)
og (e1,e9,e3), og da disse er ortogonale med hensyn til standard-indreprodukterne, sa
repraesenterer den adjungerede matrix

A*—At—(g 0 1)

3 1 -1
ifglge s@tning den adjungerede afbildning g: V — W. Udregningen

(x, f(3)) = x1(2y1 + 3y2) + x2y2 + x3(y1 — y2)
= (2x1 +x3)y1 + (3x1 + x2 — x3)y2 = (8(x), y)

illustrerer dette forhold.

Udsagnet, at en lineaer afbildning er en isometri, kan udtrykkes ved hjelp af dens
adjungerede linezere afbildning pa felgende vis.

Lemma 6.3.9 Lad enten F =R eller F =C, og lad (V,{(—,-)v) og (W,{(—,—)w) veere to
F-vektorrum med indre produkt. Huis to linezre afbildninger f: W -V og g: V - W
er adjungerede med hensyn til (—,—)y og (—,—)w, da er f: W — V en linezer isometri
med hensyn til {(—,—)w og {—,—)v, hvis og kun hvis gof =idw: W - W.

Bevis Da f: W —V og g: V — W er adjungerede, sa er
(f@), fw")v = (g o fw),w)w
for alle w,w’ € W. Derfor er f: W — V en lineser isometri, hvis og kun hvis
(go Hw),ww = (w,w')w
for alle w,w' € W. Hvis dette geelder, sa far vi for w’' = (go f)(w) - w, at
W', w"w = (g o flw) —w,w)w = (go Hw),w)w — w,w"w =0,

hvorfra vi konkluderer, at w’ = 0 og dermed, at go f =idw. Hvis omvendt go f =idw, sa
er betingelsen ovenfor trivielt opfyldt. O
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6.3 Linesere isometrier

Saetning 6.3.10 Lad enten F =R eller F = C, og lad (V,{—,-)v) og (W,{(—,—)w) vaere
to endeligt frembragte F-vektorrum med indre produkt. Lad f: W — V vare en lineser
afbildning, og lad A € My, ,(F) veere matricen, der repraesenterer f: W — V med hensyn
til ortonormale baser (v1,...,Uy) 0g (W1,...,wy) for henholdsvis V og W. De fplgende
udsagn (1)—(3) er ekvivalente.

(1) Afbildningen f: W —V er en linezer isometri.
(2) Det geelder; at A*A =1,.

(3) Familien (a1,...,a,) af vektorer i F™, der bestar af sgjlerne i A, er ortonormal
med hensyn til standard indre-produktet.

Tilsvarende er de fplgende udsagn (4)—(6) akvivalente.
(4) Afbildningen f: W —V er en isometrisk isomorfi.
(5) Matricen A er invertibel, og A~ = A*.

(6) Familien (a,...,a,) af vektorer i F™, der bestar af sgjlerne i A, udger en basis,
der er ortonormal med hensyn til standard indre-produktet.

Bevis Ifglge s@tning er den adjungerede afbildning g: V — W repraesenteret af
den adjungerede matrix A* € M, ,,(F) med hensyn til de givne baser. S go f = idw,
hvis og kun hvis A*A =I,, og sekvivalensen af (1) og (2) fglger derfor af lemma [6.3.9
Vi bemeerker endvidere, at den (i, j)’te indgang i A*A er lig med a;a;, som netop er
standard indre-produktet (a;,a;) af vektorerne a; og a; i . Derfor er A*A = I, hvis
og kun hvis (a;,a;) =6, for alle 1 < i, j < n, hvilket viser, at (2) og (3) er zekvivalente.

Vi viser nu, at (4) og (5) er akvivalente. Hvis (4) er opfyldt, da er f: W — V bade en
lineser isometri, hvilket ifglge aekvivalensen af (1) og (2) medfgrer, at A*A =1, og en
isomorfi, hvilket medfgrer, at A er invertibel. Endvidere er

A*=A*(AAH=(A"A)A I =A"",

sa (5) er opfyldt. Omvendt, hvis (5) er opfyldt, da medfgrer seekvivalensen af (1) og (2),
at f: W — V er en lineeer isometri, og da A er invertibel, er f: W — V endvidere en
isomorfi, sa (4) er opfyldt. Endelig viser korollar at A er invertibel, hvis og kun
hvis familien (ai,...,a,) af vektorer i F, der bestar af sgjlerne i A, er en basis, og
akvivalensen af (5) og (6) fglger derfor fra sekvivalensen af (2) og (3). O
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6 Vektorrum med indre produkt

Eksempel 6.3.11 (1) Afbildningen f: R? — R? fra eksempel er ikke en isometri
med hensyn til standard-indreprodukterne. For udregningen

2 3
L (2 0 1 (5 5
a2 e 26

viser, at A*A er forskellig fra Io.

(2) Vi har allerede vist, at rotationsafbildningen rq : R2 — R? fra eksempel er en
isometrisk isomorfi med hensyn til standard-indreprodukterne, men udregningen

-0

2_( cos(0) sin(@)) B-1

~|=sin(®)  cos(®)

bekraefter, at dette er tilfaeldet.

(3) Familen (e, e3, e1) af vektorer i F? udggr en basis, der er ortonormal med hensyn
til standard indre-produktet. Seetning|6.3.10| viser derfor, at matricen

0 01
A=|1 0 O
010

010
Al=A"=|0 0 1|,

1 00

er invertibel med invers

samt at afbildningen f: F? — F? givet ved f(x) = Ax er en isometrisk isomorfi. Denne
afbildning er en rotation omkring linjen gennem e + es + e3.

Vi vil i resten af dette afsnit udelukkende betragte lineseere endomorfier, hvilket er
linaere afbildninger, hvis domaene og codomaene er identitiske.

Definition 6.3.12 Lad enten F =R eller F = C og lad (V,(—,—)) veere et endeligt frem-
bragt F-vektorrum med indre produkt. Lad f: V — V vare en lineser endomorfi, og lad
g:V —V vaere den adjungerede linesere endomorfi med hensyn til (—, —).

(1) Endomorfien f: V — V er selvadjungeret med hensyn til (—,—), hvis f = g.

(2) Endomorfien f: V —V er normal med hensyn til (—,—), hvis fog=gof.

Vi benytter de resultater, vi har vist ovenfor, til at vise folgende resultat for linesere
endomorfier.
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Saetning 6.3.13 Lad enten F =Reller F =C, lad (V,{—,—)) vaere et endeligt frembragt -
vektorrum med indre produkt, og lad (v1,...,v,) vare en basis for V, der er ortonormal
med hensyn til (—,—). Lad f:V — V vere en linezr endomorfi, og lad A € M, (F) vaere
matricen, der repreasenterer . V —V med hensyn den givne ortonormale basis.

(1) Endomorfien f:V —V er en isometri med hensyn til (—,—), hvis og kun huvis
A*A=1.
Dette er endvidere tilfeldet, hvis og kun hvis A* =A™,

(2) Endomorfien f:V —V er selvadjungeret med hensyn til (—,—), hvis og kun huvis

A" =A.

(3) Endomorfien f:V —V er normal med hensyn til (—,—), hvis og kun hvis

ATA=AA".

Bevis Den forste del af (1) fglger fra aekvivalensen af (1) og (2) i seetning[6.3.10] Da A
er kvadratisk, sd medfgrer identiteten A*A = I ifglge seetning[2.5.22] at A er invertibel
med invers A™1 = A*. Pastandene (2) og (3) fplger umiddelbart fra seetning og
definition O

De klassiske betegnelser for de kvadratiske matricer A € M, (F), der opfylder enten
A* = Al eller A* = A, athsenger desverre af F. Det er der ikke noget at ggre ved, sa
vi anfgrer disse klassiske betegnelser i den fglgende definition, hvor vi ogsa genkalder
nogle definitioner fra afsnit

Definition 6.3.14 Lad enten F =R eller F =C.

(1) En kvadratisk matrix @ € M,,(R), der opfylder @* = @ 1, kaldes ortogonal; og en
kvadratisk matrix U € M,,(C), der opfylder U* = U1, kaldes uniter.

(2) En kvadratisk matrix A € M,,(R), der opfylder A* = A, kaldes symmetrisk; og en
kvadratisk matrix A € M,,(C), der opfylder A* = A, kaldes hermitisk.

(3) En kvadratisk matrix A € M,,(F), der opfylder A*A = AA*, kaldes normal.

Vi bemerker, at den kvadratiske matrix P er invertibel med invers P~! = P*, hvis og
kun hvis familien (pq,...,p,,) af vektorer i """, der bestar af sgjlerne i P, er ortonormal
med hensyn til standard-indreproduktet; se beviset for seetning|(6.3.10
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6 Vektorrum med indre produkt

Eksempel 6.3.15 Enhver symmetrisk reel matrix er normal, men det omvendte er
ikke tilfaeldet. For eksempel er matricen

2 -1
A=li )
normal, idet
«0 (2 1Y(2 -1} (5 0\ (2 -1\( 2 1)\ . ..
wa=(3 o)l 2= 5)=( T 2=
men A er ikke symmetrisk. Vi bemaerker ogsa, at hvis B er en kvadratisk reel eller

kompleks matrix, da opfylder matricen A = B*B altid, at A* = A. I det reelle tilfeelde
er A saledes symmetrisk, mens den i det komplekse tilfeelde er hermitisk.

Seetning 6.3.16 Lad enten F =R eller F = C.
(1) Hvis A,B € M,,(F) opfylder A*=A"' 0g B* =B~!, da er ogsd (AB)* =(AB)™L.

(2) Hvis A € M,,(F) opfylder A* =A~1, da er ogsé (A~)* =(A~1)~L.

Bevis De to pastande fglger af de to udregninger

(AB)* =B*A* =B 1A 1=(AB)!
A—l(A—l)* :A*(A—l)* — (A—IA)* :I* — I,

hvor vi anvender saetning O

Bemaerkning 6.3.17 En kvadratisk matrix S € M,,(H), der opfylder S* = S~! kaldes
for en uniter symplektisk matrix, og satning [6.3.16| geelder ligeledes i1 dette tilfeelde.
Man anvender klassisk betegnelserne

O(m)cGL,,(R), U(m)cGL,(C) og Sp(m) c GL,(H)

for delmangden af de invertible m x m-matricer, der bestar af de m x m-matricer A, der
opfylder A* = AL, Saetningviser, at (O(m), ), (U(m), -) og (Sp(m), -) er grupper,
og de kaldes for den ortogonale gruppe, den unitaere gruppe og den symplektiske gruppe.
I modseetning hertil behgver en kvadratisk matrix A, der opfylder A* = A, ikke at veere
invertibel; og hvis bade A* = A og B* = B, sa er (AB)* = B*A* = BA, hvilket generelt
heller ikke er lig med AB. Sa de selvadjungerede matricer udggr ikke en gruppe.
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6.4 Spektralsaetningen

I dette afsnit viser vi den sakaldte spektralsetning for lineaere endomorfier af endeligt
frembragte reelle og komplekse vektorrum med indre produkt. Seetningen siger, at der
findes en ortonormal basis for vektorrummet, der bestar af egenvektorer for den linesere
endomorfi, hvis og kun hvis denne er selvadjungeret i det reelle tilfeelde og normal i
det komplekse tilfeelde. I matrixsprog siger seetningen, at der for en reel symmetrisk
matrix A findes en ortogonal matrix @, sadan at @ 1AQ er en reel diagonalmatrix,
mens der for en normal kompleks matrix A findes en uniteer matrix U, sadan at U TAU
er en kompleks diagonalmatrix. Beviset anvender algebraens fundamentalseetning til
at faktorisere det karakteristike polynomium hgrende til den linesere endomorfi i et
produkt af farstegradspolynomier. Denne del af beviset er derfor ikke konstruktiv, men
givet denne faktorisering er resten af beviset algoritmisk, hvilket vi illustrerer med
passende eksempler i slutningen af afsnittet.

Saetning 6.4.1 Lad enten F =R eller F = C. En matrix A € M, (F) er bade triangulser og
normal, hvis og kun hvis den er en diagonalmatrix.

Bevis Hvis A = diag(ay,...,a,) er en diagonal matrix, s er A specielt en trianguleer
matrix, og udregningen

A*A =diag(ay,...,a,)" diagla,...,a,) = diaglaiai,...,a,an),
AA" =diag(ay,...,a,)diaglay,...,a,)* = diag(ai1ay,...,aa))

viser, at A er normal, idet den kommutative lov for multiplikation geelder i F. Sa vi
antager omvendt, at A = (a;;) € M,(F) er en normal gvre trianguleer matrix og viser,
at A er en diagonal matrix; beviset i tilfeeldet, hvor A er en normal nedre triangulaer
matrix er tilsvarende. Da A er normal, geelder det for alle x,y € F", at

(Ax,Ay) =(A"Ax,y) =(AA x,y) = (A") " A*x,y) = (A*x, A" y),
og ved at seette x = y = ep, konkluderer vi derfor, at
la1rl®+- +lankl® = (Aep, Aer) = (A"er, A" ep) = laps |+ + laga |’

for alle 1 <k <n. Da A endvidere er gvre trianguleer, er a;; = 0 for i > j, og det fglger
derfor af den identitet, vi netop har fundet, at

2 2 2 2
la1e]” + - +lappl” =lapp|”+ - +lagsl

for alle 1 <% < n. Vi viser ved induktion pd 1 <i <n, at a;; =0 for i < j, og begynder
med tilfeeldet i = 1. Den ovenstaende identitet for £ = 1 viser, at

2 2 2 2
la11l” =la11l” + a2l + -+ a1l
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6 Vektorrum med indre produkt
hvorfor a2 =--- =a1, =0 som gnsket. Sa vi antager, at pastanden er vist for i =r—1, og
viser den for i = r. Det gaelder da, at

|a/rr|2 = |alr|2 +oeeet |arr|2 = |arr|2 +eet |arn|27

idet den forste identitet folger fra den induktive hypotese, mens den anden identitet

er den identitet, vi viste ovenfor, for £ = r. Derfor er a, .1 =--- = a,, = 0, hvilket viser
induktionsskridtet og dermed pastanden. Det gzelder altsa, at a;; = 0 for ¢ # j, hvilket
som gnsket viser, at A er en diagonalmatrix. O

Den fglgende seetning kaldes for spektralsaetningen for symmetriske matricer.

Saetning 6.4.2 For en kvadratisk matrix A € M, (R) er folgende udsagn skvivalente:
(1) Matricen A er symmetrisk.

(2) Der findes en ortogonal matrix @ € M, (R), sidan at Q *AQ er en diagonalmatrix.

Bevis Vi antager forst (1) og viser (2). Ifglge seetning [5.2.10| findes der en invertibel
matrix P € M, (R), sddan at matricen P"1AP € M,(R) er gvre trianguleer. Endvidere
producerer Gram-Schmidt-algoritmen en gvre trianguleaer matrix C € M,(R), sadan at
matricen @ = PC € M,(R) er ortogonal. For hvis (p4,...,p,) er basen, der bestar af
sgjlerne i P, sa giver Gram-Schmidt algoritmen en basis («1,...,u,), der er ortonormal
med hensyn til standard-indreproduktet pa R", hvor

ui=pici

U2 =piC12+PaC22

Up =P1Cin tPoCon+ -+ P,Cnn,

og @ er da den ortogonale matrix med sgjler w1,...,u,, mens C er den gvre triangulaere
matrix med indgange c;;. Vi pastar, at Q@ 'AQ er bade normal og gvre trianguleer. For

Q'AQ)'Q'AQ =(Q"AQ)'Q"AQ =Q"A*QQ*AQ =Q* A" AQ
R AR AQ) =Q"AQQ™AQ) = Q" AQRA"Q =Q*AA™Q,

hvor vi bruger at @* = Q1. Da A er symmetrisk, er den normal, sa vi har nu vist, at
Q 'AQ er normal. Endvidere er

Q'AQ =(PC)'APC=C"'P'APC,

hvor P~1AP og C er gvre triangulaere matricer. Men produktet af to gvre triangulsere
matricer er igen en gvre trianguler matrix, og ved at bruge setning kan vi vise, at
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6.4 Spektralssetningen

ogsa den inverse matrix af en invertibel gvre trianguleer matrix igen er gvre trianguleer.
Dette viser vores pastand, og setning[6.4.1] viser, at denne medfgrer (2).

Vi antager dernsest (2) og viser (1). Sa lad @ € M, (R) veere en ortogonal matrix, sadan
at @ TAQ =D er en diagonalmatrix. Da D er symmetrisk, sa viser udregningen

A"=@QDQ™) =(@QDQ") =QD'Q"=QDQ ' =4,
at ogsa A er symmetrisk. Dette viser (1) og dermed satningen. O

Den naeste setning kaldes for spektralsaetningen for normale komplekse matricer.

Saetning 6.4.3 For en kompleks kvadratisk matrix A € M,,(C) er folgende akvivalent:
(1) Matricen A er normal.

(2) Der findes en unitser matrix U € M,(C), sidan at U AU er en diagonalmatrix.

Bevis Beviset for, at (1) medfarer (2) er helt som beviset for den tilsvarende implikation
1 seetning Den eneste forskel er, at “R” og “ortogonal” erstattes med henholdsvis
“C” og “uniteer”. Vi antager derfor (2) og viser (1). Sa lad U € M,,(C) veere en uniteer
matrix, sddan at U 'AU =D er en diagonalmatrix. Daer A=UDU ! =UDU"*, og da
diagonalmatricen D er normal, sa viser udregningen

A*A=UDU"*"UDU*=UD*U*UDU* =UD*DU",
AA*=UDU*(UDU")*=UDU*UD*U* =UDD*U"*

at ogsa A er normal. Dette viser (1) og dermed satningen. O

Korollar 6.4.4 En normal kompleks matrix A € M,,(C) er hermitisk, hvis og kun huvis
dens egenveerdier er reelle.

Bevis Da A er normal, sa findes der ifglge seetning en uniteer matrix U € M, (C),
sadan at U*AU = diag(A4,...,4,) € M,(C) er en diagonalmatrix D. Hvis egenveerdierne
A,..., A, alle er reelle, da er D* = D hermitisk, og udregningen

A*=UDU*)=UD*U*=UDU*=A
viser da, at A er hermitisk. Omvendt, hvis A = A* er hermitisk, sa viser udregningen
D*=U"AU)" =U*A*"U=U"AU =D,

at D er hermitisk, og dermed er egenvaerdierne A4,...,1, alle reelle. O
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6 Vektorrum med indre produkt

Vi betragter konkrete eksempler nedenfor, men oversatter forst seetning og seet-
ning til udsagn om linesere endomorfier af henholdsvis reelle og komplekse vek-
torrum med indre produkt.

Saetning 6.4.5 Lad (V,(—,—)) veere et endeligt frembragt reelt vektorrum med indre
produkt. For en linezer endomorfi f: V — V er folgende sekvivalent:

(1) Endomeorfien f:V —V er selvadjungeret.

(2) Der findes en basis for V, der bade er ortonormal med hensyn til (—,—) og bestar
af egenvektorer for f:V - V.

Bevis Vi antager forst (1) og viser (2). Vi vaelger derfor en basis (v1,...,v,) for V, som er
ortonormal med hensyn til (—,—), hvilket er muligt ifslge korollar[6.2.11] Da den linezere
endomorfi f: V — V er selvadjungeret med hensyn til (—,—), viser ssetning at
matricen A € M,(R), der repraesenterer f: V — V med hensyn til basen (v4,...,v,) for
bade domenet og codomaenet, er symmetrisk. Derfor findes der ifglge saetning [6.4.2) en
ortogonal matrix @ =(q;;) € M,(R), sddan at

Q 'AQ =diag(ay,...,an)
er en diagonalmatrix. Da @ € M,,(R) er ortogonal, er familien (&1,...,u,), hvor
Uj=01q1; +v2q2;t--+0nqn;,
en basis for V, der er ortonormal med hensyn til (—,—). For

(Wi, uj) =(v1q1; +v2q2; + -+ 0, qni,01q1; +V2q2j + -+ Vnqpj)
*
=q1i91j+q2iq2j + -+ dnidnj =4q; 4, = 0ij.

Desuden repraesenterer matricen  identitetsafbildningen idy: V — V med hensyn til
basen (u1,...,u,) for domaenet og basen (vq,...,v,) for codomaenet. Som illustreret af
figuren pa neeste side, sa viser setning[4.4.14] at matricen, der repraesenterer f: V —V
med hensyn til basen (#1,...,u,) for baAde domeenet og codomaenet, er diagonalmatricen

Q AQ =diag(A4,...,1,) € M, (R).

Sé u; er en egenvektor for f: V — V hgrende til egenvaerdien A;, hvilket viser (2).
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6.4 Spektralssetningen

Vi antager omvendt (2) og viser (1). Sa vi lader (u1,...,u,) veere en basis for V, der er
ortonormal med hensyn til (—,—) og bestar af egenvektorer for f: V — V. Lad 1; € R
veere egenveerdien, sidan at f(u;) =u;A;. Da er D = diag(14,...,1,) € M,(R) matricen,
der repraesenterer f: V — V med hensyn til den valgte basis for bAde domanet og codo-
menet. Da D er symmetrisk, og da (u1,...,u,) er ortonormal med hensyn til (—,-), sa
viser setning[6.3.7, at f: V — V er selvadjungeret med hensyn til (—,—). Dette viser (1)
og dermed ssetningen. O

Saetning 6.4.6 Lad (V,(—,—)) vaere et endeligt frembragt komplekst vektorrum med
indre produkt. For en linezer endomorfi f: V — V er folgende 2ekvivalent:

(1) Endomorfien f:V —V er normal.

(2) Der findes en basis for V, der bade er ortonormal med hensyn til (—,—) og bestar
af egenvektorer for f: V —V.

Bevis Beviset ligner helt beviset for seetning |6.4.5] idet vi anvender satning i
stedet for saetning og erstatter “R” med “C”, “symmetrisk” og “selvadjungeret” med
“normal”, og “ortogonal” med “unitaer”. O

Vi bemeerker, at spektralseetningerne og deres beviser kun siger, at en ortonormal
basis af egenvektorer findes, men de siger ikke, hvordan man beerer sig ad med at finde
en sadan basis. Problemet er at finde rgdder i det karakteristiske polynomium. Hvis det
er gjort, sa findes der en algoritme, som vi illustrerer ved nogle eksempler pa de naeste
sider, der angiver den gnskede basis. Undervejs kan man spare sig en del arbejde ved
at bemaerke folgende.
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6 Vektorrum med indre produkt

Korollar 6.4.7 Lad A € M, (F) vaere enten en symmetrisk reel matrix eller en normal
kompleks matrix. Egenvektorer x,y € F", der hgrer til forskellige egenveerdier A,u€F, er
ngdvendigvis ortogonale med hensyn til standard-indreproduktet pa F".

Bevis Vi viser det komplekse tilfeelde; det reelle tilfeelde er helt tilsvarende. Vi lader
A, u € F veere to forskellige egenvaerdier for A og angiver baser for egenrummene N4 _g)
og N -, som falger. Ifplge saetning findes der en unitaer matrix U € M,(C), sadan
at U*AU = diag(Aq,...,A,) er en diagonalmatrix. Sa hvis I = {i e{l,....,n}|A; = A} og
J = {j €{l,...,n}A; = u}, daer (Ue;|i€l)og (Ue;j|je€J)baser for henholdsvis Nso_1)
0g Na_1y. Hvisnux=3;c;Ueja; ENpy-1y0gy=% jegUe;jb;€ Na_1,, sd er

x,y)= ) a;Ue;,Uepbj= ) ajle;,epb;=0

iel,jed iel,jed
som gnsket, idet I NJ = @. Se ogsa satning|(6.3.13 O

Eksempel 6.4.8 Vi gnsker at finde en basis for R, der er ortonormal med hensyn
til standard-indreproduktet, og som endvidere bestar af egenvektorer for den linesere
endomorfi f: R? — R3 givet ved f(x) = Ax, hvor A € M3(R) er den symmetriske matrix

1 2 -1
A= 2 -2 2].
-1 2 1

Vi ved fra seetning [6.4.2) at dette er muligt. For at bestemme egenveerdierne af A
udregner vi fgrst det karakteristiske polynomium.

1-¢ 2 -1
xa(t) =det(A — It) =det 2 -2t 2
2

(D6 )

0 22-t) -t(2-1)
="det

0
0 2—t 2(2—t))(m)(2 t)2det( 0
1 -1

0
1
2

2
1
9 1
0 4 t 0
2 (2 - )% det o 1 2 (9 _ 1)2(-4—t)det| ©
2 -1

H)

Egenverdierne for A er altsa 1; =2 og 13 = —4. Her har vi benyttet setning til
at udregne determinanten af den triangulaere matrix.

- 1
12 1-¢

) _ (9 1)2(~4 - t)det( 0 1 )_(2—;:)2( —4-¢)
0 0 1
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6.4 Spektralssetningen

Vi anvender dernaest Gauss-elimination til at finde baser for egenrummene hgrende
til A1 =2 og A9 = —4. Sa vi omdanner matricen B = A — I -2 til en raekkeakvivalent
matrix B’ pa reduceret echelonform:

-1 2 -1
B=| 2 -4 2| +2xR;
-1 2 -1) +(-DxR;

1 2 -1\ (-1)xR;

0O 0 O
0O 0 O
1 -2 1
B'=| 0 0 O
0O 0 O

Egenrummet N4_7.9 hgrende til A1; = 2, som er lgsningsmaengden til ligningssystemet
Bx =0, kan derfor aflaeses fra den raekkesekvivalente matrix B’ til at have basis

2 -1
(w1=(1), WQ:( O))
0 1

Tilsvarende omdanner vi matricen C = A + I -4 til en raekkesekvivalent matrix C’ pa
reduceret echelonform:

5 2 -1\ +5xRg
C=| 2 2 2| +2xR3
-1 2 5
0 12 24\ (1/12)xR;
0 6 12 | (1/6)xRs
-1 2 (-1)x Rs
0 1 2\ +(-1)xRe
o 1 2
1 -2 -5) +2xRs
0O 0 O
0 1 2| Ri<R3
1 0 -1
1 0 -1
c’'=(o0 1 2
0O 0 O
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6 Vektorrum med indre produkt

Egenrummet N4, 7.4 hgrende til A9 = —4, som er lgsningsmaengden til ligningssystemet
Cx =0, kan derfor afleeses fra C’ til at have basis

1
(s = (—2))
1
idet x3 er eneste frie variabel.

Vi har nu fundet en basis (w1, w2, ws3) for R?, bestaende af egenvektorer for A. Den-
ne basis er dog ikke ortonormal med hensyn til standard-indreproduktet, og vi an-
vender derfor Gram-Schmidt-algoritmen til at omdanne den til en ortonormal basis
(u1,u9,us3). Vived dog allerede fra korollar|6.4.7| at w3 er ortogonal til bade w; og wo,
idet de hgrer til forskellige egenveerdier for den symmetriske matrix A. Vi finder fgrst
den ortogonale basis (v1,v2,v3), hvor

2
U1 = W1 = 1
0
(v1,w9) i 2\ _240+0 -1
v2:w2_v1' = 0 — 1  _ = 2 0=
(v1,v71) 4+1+0 5

1
V3= W3 = -21.
1

Endelig far vi ved normalisering af vektorerne i denne basis den ortonormale basis

2/y5 15 116
(u]_: 1/v5 , Uu2= 2/\/%’ us= —2/Veé )a

0 5/V/30 NG

der bestar af egenvektorer for A. Den ortogonale matrix @ € M3(R), der reprasenterer
identitetsafbildningen id: R — R? med hensyn til den nye basis (#1, ws, u3) for domae-
net og standardbasen (e, eg, e3) for codomaenet, er da givet ved

26 =130 146
Q=5 2/30 —2/V6|eMsR),
0 5/V30 1/Ve

og ifslge seetning |4.4.14| gaelder det endvidere, at

2 0 0
Q 1AQ = (o 2 0) € M5(R),
0 0 —4

idet w1, us og us er egenvektorer for f: R — R3 hgrende til egenvaerdierne 2, 2 og —4.
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6.4 Spektralssetningen

Eksempel 6.4.9 Vi gnsker at finde en basis for C2, der er ortonormal med hensyn til
standard-indreproduktet og bestar af egenvektorer for den linesere endomorfi f: C2 —
C? givet ved f(x) = Ax, hvor A € M5(C) er den normale matrix

2 -1
a-(; 7
fra eksempel |6.3.15] Det karakteristiske polynomium er givet ved

2-t -1

)(A(t)Zdet(A—It)Zdet( 1 9t

)z(2—t)2+1:t2—4t+5,

og det har diskriminant A = (—4)> —4-1-5 = —4 og redder

—(-4)+v-4 —(-4)-v-4
=SV o g A=V,
2-1 2-1
Vi anvender nu Gauss-elimination til at bestemme baser for de to egenrum, der begge
ngdvendigvis er en-dimensionale. Vi omdanner fgrst B = A —I A, til en rekkeakviva-

lent matrix B’ pa reduceret echelonform.

_(~i -1) +ixRy
B=1

0 0

1 - | 1o Re
Y
B={l0o o

Herved finder vi basen

for egenrummet N4 _j), hgrende til 1; =2+:. Vi omdanner ligeledes C = A —I 15 til en
matrix C’ pa reduceret echelonform.

C= i _1 +(=i) x Ry
0 0
1 ) Bi—Re
, (1
C=lo o

Herved finder vi basen
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6 Vektorrum med indre produkt

for egenrummet N_j), hgrende til A3 = 2 —i. Basen (v1,vg) for C? vides allerede at
vaere ortogonal, hvilket ogsa fglger af korollar [6.4.7, sa vi behgver ikke at anvende
Gram-Schmidt. Endelig far vi ved normalisering direkte den ortonormale basis

_(-iv2 [ iv2
er={ az ) %25 1pz )
for C2, der bestar af egenvektorer for f: C2 — C2. Den uniteere matrix U € Ms(C), der

repreaesenterer identitetsafbildningen id: C2 — C2 med hensyn til den nye basis (#1,u2)
for domanet og standardbasen (e, e2) for codomaenet, er da givet ved

(Ve —ilva
U‘(w& 1/@)€M2(C)’

og s@tning 4.4.14|viser derfor, at

U AU = (23‘ 21’) € M3(C),

idet w1 og us er egenvektorer for f: C2 — C2 med egenvaerdier henholdsvis 2+i og 2—1i.

6.5 Klassifikation af hermitiske former
Vi lader fortsat F =R eller F = C og lader ()" : F — [ veere skaevinvolutionen givet ved

. Ja hvisF=R,
a =
a hvisF=C.

Vi betragter hermitiske former (—,—): V xV — F pa F-vektorrum V og bemszrker, at

valget af skavinvolution medfgrer, at (v,v) er et reelt tal for alle v € V. Dermed er den
folgende definition meningsfuld.

Definition 6.5.1 LadF=Reller F =C, oglad (—,—): VxV — F vaere en hermitisk form
pa et F-vektorrum V.

(1) Et underrum W c 'V er positiv definit med hensyn til {(—,-), hvis (w,w) > 0 for alle
0AweW.

(2) Et underrum W c 'V er negativ definit med hensyn til (—,—), hvis (w,w) < 0 for alle
OAweW.
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6.5 Klassifikation af hermitiske former

Eksempel 6.5.2 (1) En hermitisk form (—,—): V xV — F er et indre produkt, hvis og
kun hvis ethvert underrum W cV er positiv definit med hensyn til (—, —), hvis og kun
hvis V er positiv definit med hensyn til (—,—).

(2) I tilfeeldet V = R” med Minkowskis hermitiske form

(x,y) = —x1y1+X2y2+ - +XpYn

siger vi ogsa, at et underrum W c V, der er positiv definit med hensyn til (—,-), er
“spacelike”, og at et underrum W c V, der er negativ definit med hensyn til (—,-), er
“timelike”. Det en-dimensionale underrum frembragt af (e;aq1 +--- + e,a,) er saledes

spacelike, hvis a% < a% +-e-+ a%, mens det er timelike, hvis a% > a% +-e-+ a%.

Lad n vaere et naturligt tal, og lad p, g og r vaere naturlige tal, sddan at p+q +r =n.
Vi definerer da D(p,q,r) € M, (F) til at veere diagonalmatricen

D(p,q,r)=diag(-1,...,-1,0,...,0,1,...1),

hvor de fgrste p diagonalindgange er lig med —1; de neeste ¢ diagonalindgange er lig
med 0; og de sidste r diagonalindgange er lig med 1. Vi skal nu vise fglgende satning,
der kaldes Sylvesters inertisaetning.

Saetning 6.5.3 (Sylvester) Lad enten F =R eller F=C, og lad (—,—): V xV — F vaere
en hermitisk form pa et n-dimensionalt F-vektorrum.

(1) Der findes en basis (v1,...,v,) for V og naturlige tal p, q og r, sadan at det for alle
v,w €V med koordinater x,y € F" med hensyn til basen (v1,...,v,) gelder, at

(v,w)=x"D(p,q,r)y.

(2) De naturlige tal p, q og r afhaenger ikke af valget af basis og er karakteriseret som
folger: p er den maksimale dimension af et underrum W <V, der er negativ definit
med hensyn til {(—,—); r er den maksimale dimension af et underrum W cV, der er
positiv definit med hensyn til (—,—); 08 q=n—p-—r.

Bevis Vi viser forst (1) for F = R. Vi vaelger en vilkarlig basis (w1,...,w;) for V og lader
h:R" —V vaere den entydigt bestemte isomorfi, sddan at h(e;) = w; for alle 1 <i <n.
Da h: R" — V er lineeer, sa er (h(-),h(-)) en hermitisk form pa R"”, s4 matricen

A =((h(e;),h(e)))) = (w;,w;)) € M,(R)
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6 Vektorrum med indre produkt
er symmetrisk ifglge seetning[2.6.10] Hvis v,w € V har koordinater x, y € R” med hensyn
til den valgte basis, da galder det endvidere, at
(v,w) = (h(x),h(y)) =x"Ay.
Seetning[6.4.2) viser nu, at der findes en ortogonal matrix @ € M, (R), sddan at
Q" AQ =diag(Aq,...,1,) € M, (R)
er en diagonalmatrix. Vi pastar, at vi kan vaelge @ € M, (R), sadan at
AM<Ag<---<A,.

For ellers kan vi vaelge en permutation af n bogstaver ¢: {1,...,n} —{1,...,n}, sddan at
Ao1) £ Ag@) <+ < Ag(n).- Permutationsmatricen P(o) € M, (F) er da ortogonal, idet dens
sgjler er standardenhedsvektorer, og

P(U)*Q*AQP(U) = diag(ia(lb e ’Aa(n)) € M,(R).

Derfor kan og vil vi antage, at 11 <13 <--- < A,, idet vi ellers erstatter @ med QP(0).
Vi lader nu p, q og r vaere de naturlige tal, sddan at 1; <0 for 1 <i < p; A; =0 for
p+l<i<p+q;ogl;>0for p+qg+1<i<n.Vilader dernaest R =diag(pi,...,on) € M,(R)
veere diagonalmatricen med diagonalindgange
InE hwis 4; #£0,
T hvis A; = 0.

Matricen R er symmetrisk, og den er valgt, sadan at
P*AP=R*"Q"AQR =D(p,q,r),

hvor vi skriver P = (p;;) = QR € M,(R). Endelig definerer vi
V;=wipy1j+twapgj+t---+WypPnj

for alle 1 < j <n. Daer (vy,...,v,) en basis for V, og hvis x,y € " er koordinaterne for
v,w € V med hensyn til basen (vq,...,v,), sa er Px,Py € [F" koordinaterne for v € V med
hensyn til basen (w1,...,w,). Derfor er

(v,w) =(Px)"A(Py)=x"P*"APy=x"D(p,q,r)y

som gnsket. Dette viser (1) for F = R; beviset for F = C er helt analogt, idet man blot
erstatter “symmetrisk” med “hermitisk”, “ortogonal” med “uniteer” og saetning med

seetning
Vi mangler at vise (2). Vi betragter igen F = R; tilfeeldet F = C er helt analogt. Det er

ikke klart, at de naturlige tal p, g og r i beviset for (1) er uafhaengige af vores valg af
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6.6 Opgaver

den ortogonal matrix @ € M,(R). Vi treeffer nu et valg af en sddan matrix @ € M,(R) og
finder derefter en basis (v1,...,v,) for V som i beviset for (1). Vi lader V.o €V vaere un-
derrummet frembragt af (v1,...,v,) og lader V5o € V vaere underrummet frembragt af
(vp+1,...,0,). Underrummet V.o €V har dimension p og er negativ definit med hensyn
til (—,—). Vi gnsker at vise, at hvis W c V er et underrum, der er negativ definit med
hensyn til (—,—), sa er dimensionen af W hgjst p. Men W NV = {0}, og derfor er

dim(W) + dim(Vsq) < dim(V),

hvilket viser, at dim(W) < p som gnsket. Hermed har vi vist, at p er den maksimale
dimension af et underrum W <V, der er negativ definit med hensyn til (—,—). Beviset
for, at r er den maksimale dimension af et underrum W c V, der er positiv definit med
hensyn til (—,—) er helt tilsvarende. Dette afslutter beviset. O

Bemaerkning 6.5.4 Lad (V,{(—,-)) vaere som i sa&tning Vi understreger, at et
maksimalt underrum W c V, der er enten negativ definit eller positiv definit med hen-
syn til den hermitiske form (—,—), ikke er entydigt. Det er kun de respektive dimensio-
ner p og r af sddanne underrum, der er entydigt bestemte.

Eksempel 6.5.5 Vi betragter igen Minkowskiformen pa R” fra eksempel 6.5.2, hvor
vi antager at n = 2. Med notation som i saetning|6.5.3], er denne givet ved

(x,y)=x"D(p,q,r)y,

hvor p =1, ¢ =0 og r = n— 1. Seetning [6.5.3| viser derfor, at et timelike underrum hgjst
kan veere en-dimensionalt. Vi har allerede set i eksempel at det en-dimensionale
underrum frembragt af (eja1+---+ e,ay,) er timelike, hvis a% > a% +-ee+ a%. Sa der er
altsa uendeligt mange forskellige maksimale timelike underrum. Vi bemaerker ogsa,
at selvom ¢ = 0, sa findes der en-dimensionale underrum U c R", saddan at det for
alle x € U geelder, at (x,x) = 0. Delmaengden C = {x € R" | (x,x) = 0} c R" er en tosidet
kegle med keglepunkt 0, som kaldes “lyskeglen” og som udggr graensen mellem de

“spacelike” og “timelike” dele af R”.

6.6 Opgaver

6.1 Vilader V = C? og definerer afbildningen (—,—)": V xV — C ved
(x,9) = 3%1y1 +4X2y2.

a) Vis, at (—,—): V xV — C er et indre produkt.
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6 Vektorrum med indre produkt

b) Find normen af vektorerne

) ) L)

med hensyn til (—,-)".

¢) Afggr, hvorvidt x og y er ortogonale med hensyn til (—,-)’.

d) Afggr, hvorvidt x og y er ortogonale med hensyn til standard-indreproduktet
(=,—:VxV —=C.

6.2 Vi betragter R—vektorrummet V = C°([0,1]) af kontinuerte funktioner f: [0,1] — R
med det indre produkt (—,—): V xV — R defineret ved

1
f\g) = fo F0g() dx.

a) Eftervis, at (—,—) er et indre produkti V.

[Det falgende resultat kan anvendes uden bevis: Given en kontinuert afbildning
h:[0,1] — R, sddan at A(x) = 0 for alle x € [0,1], da medferer fol h(x)dx =0, at
h(x) =0 for alle x € [0,1].]

b) Vis, at de kontinuerte funktioner f,g: [0,1] — R, der er defineret ved f(x) =1 og
g(x) = vV3(2x — 1), er ortogonale enhedsvektorer med hensyn til (-, —).

¢) Bestem normen af den kontinuerte funktion A: [0,1] — R, der er defineret ved
h(x) =x", hvor n = 0 er et helt tal, med hensyn til (—,—).

6.3 Vis, at det for reelle tal x1,...,x, geelder, at
(14 +xn)  <n(a+-+x2).
(Vink: Anvend Cauchy-Schwarz’ ulighed).

6.4 Find vinklen mellem vektorerne x,y € R* givet ved

8
I
_ =
o
oQ
= =)

med hensyn til standard-indreproduktet pa R?.

6.5 Lad U c R* veere underrummet frembragt af den linesert uatheengige familie (w1, ws)
af vektorer i R*, hvor

w1 =

= =W Ot
|
w
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6.6

6.7

6.6 Opgaver

a) Omdan basen (w1,w2) for U til en basis (v1,v2), der er ortogonal med hensyn til
standard-indreproduktet pa R*.

b) Omdan endvidere basen (v1,vs) for U til en basis (u1,us), der er ortonormal med
hensyn til standard-indreproduktet pa R*.

Vi betragter de fslgende vektorer i R3:

)l

a) Vis, at (v1,v2) er en ortogonal familie med hensyn til standard-indreproduktet
pa R3 og konkluder, at den er linesert uafhaengig.

b) Find en vektor ws, sddan at (v1, vy, ws) er en basis for R3.

¢) Anvend Gram-Schmidt-ortogonalisering til at omdanne basen (v1,ve,ws3) til en
basis (u1,us,u3), der er ortonormal med hensyn til standard-indreproduktet.

d) Vis, at matricen P = (w1 u2 us3), er ortogonal.

e) Bestem koordinaterne af standardenhedsvektorerne e, es og es med hensyn til
basen (u1,us,u3).

Vi betragter de fslgende vektorer i R*:
1 1 0 -1
0 il |1 |1
vl O ’ v2 1 ’ v3 - _1 ’ v4 - 1 .
1 -1 0 1

a) Eftervis, at familien (v1,v9,v3,v4) er ortogonal med hensyn til standard-indreproduktet

(-, —) pa R* og konkluder, at den udggr en basis for R*.
b) Vis, at afbildningen f: R* — R* defineret ved

f(x) =v2(v1,x) + v3(V2,%x) + V4 (V3,x)

er lineaer.

c¢) Bestem matricen A, der reprasenterer f: R* — R* med hensyn til standardba-
sen (e1,eq,es3,ey) for bade domeenet og codomaenet, samt matricen B, der repree-
senterer f: R* — R* med hensyn til basen (vi,vs,v3,v4) for bade domenet og
codomeenet.

d) Beregn matricerne A2, A%, A* samt B2, B3, B4, gerne ved brug af Maple.

e) Bestem dimensionen af billedet af f°: R* — R*, hvor
fo=f, fP=fof, fP=fofof, ..,

for alle n = 1.
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6 Vektorrum med indre produkt

6.8 Lad V veere et vektorrum af dimension n, og lad (vq,ve,...,v;) veere en linesert
uafhaengig familie af vektorer i V. Angiv med “ja” eller “nej” om fglgende udsagn er
korrekte eller e;j.

a. Hvis f: V —V er en linezr endomorfi af et endeligt frembragt komplekst vek-
torrum, sa findes der en egenvektor for f: V — V.

b. Hvis f: V — V er en linear endomorfi af et endeligt frembragt komplekst vek-
torrum, sa har V en basis, der bestar af egenvektorer for f: V - V.

c. Ethvert endeligt frembragt reelt vektorrum med indre produkt (V,(—,-)) har
en basis, der ortogonal med hensyn til (—,—).

d. Ethvert endeligt frembragt reelt vektorrum med indre produkt (V,{—,—)) har
en basis, der ortonormal med hensyn til (—,—).

e. Lad (V,{(—,-)v) og (W,{—,—)w) veere to reelle vektorrum med indre produkt,
og lad f: V — W vere en lineser afbildning. Hvis vektorerne v,v’' € V er orto-
gonale med hensyn til (—, —)y, sa er vektorerne f(v), f(v') € W ortogonale med
hensyn til (-, —)w.

6.9 Lad @ € M3(R) veere matricen
2/3  2/3 -1/3
Q=\|-1/3 2/3 2/3|e M3(R).
2/3 —1/3  2/3

a) Eftervis, at @ er ortogonal.
b) Find @ L.

6.10 Eftervis, at de tre Pauli-matricer

S 0 1 (0 =i (1 0
=l o) 270H o) 72Tl 41
bade er hermitiske og uniteere komplekse matricer. Vis dernaest, at hver af de tre

Pauli-matricer har egenvaerdierne +1 og —1.

6.11 (%) Betragt triplen (M2(C), +,-), hvor +: My(C) x Mo(C) — M2(C) er matrixsum, og
hvor - : Mo(C) x R — Mo(C) er givet ved

21 22 a= zZ1a z2a
z3 24 "\ z3a z4a |’
Det kan anvendes uden bevis, at (Ms(C), +,) er et R-vektorrum.

a) Vis, at maengden V af hermitiske matricer udger et underrum i Mo(C)

b) Vis, at familien (I,01,09,03), hvor I er identitetsmatricen, og hvor o1, o9 og o3
er Pauli-matricerne, udggr en basis for V.
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6.12

6.13

6.14

6.15

6.16

6.6 Opgaver

Lad @ € M,,(R) veere en ortogonal matrix, og lad U € M, (C) veere en uniteer matrix.
a) Vis, at |det(®)| = 1.

b) Vis, at |[det(U)| = 1.

(Vink: Husk, at for ze C er |z| = Vz*z.)

Lad @ € M,,(R) veere en ortogonal matrix.

a) Vis,at QU@ -1)=-(Q - I)".

b) Vis, at hvis n er lige og det(Q) = —1, sa er 1 =1 en egenveerdi for matricen Q.
c¢) Vis, at hvis n er ulige og det(®) =1, sa er A =1 en egenvaerdi for matricen Q.
(Vink: Hvis A € M,,(F), sa er det(—A) =(-1)"det(A).)

Find et eksempel pa to symmetriske matricer A,B € Ms(R), sadan at deres ma-
trixprodukt AB € M2(R) ikke er en symmetrisk matrix.

Lad f: R? — R3 veaere den linesere endomorfi, der er repraesenteret med hensyn til
standardbasen (e1, eg, e3) for bade domanet og codomanet af den symmetriske ma-

trix
3 1 -1
A=l 1 3 -1|eMs3R).
-1 -1 5

a) Udregn det karakteristiske polynomium y((¢) og bestem samtlige egenveerdier
af f: R3 — R3.

b) Bestem en basis (u1,us,us) for R%, der er ortonormal med hensyn til standard-
indreproduktet pa R? og bestar af egenvektorer for f: R — R3.

¢) Angiv en ortogonal matrix @, sadan at
D=Q7'AQ
er en diagonalmatrix.

Lad f: R? — R3 veere den linesere endomorfi, der er repraesenteret med hensyn til
standardbasen (e1, e2, e3) for bade domanet og codomanet af den symmetriske ma-

trix
3 -1 -2
A=|-1 3 2|eMs3R).
-2 2 6

a) Udregn det karakteristiske polynomium y/(¢) og bestem samtlige egenvaerdier
af f: R — R3.

b) Bestem en basis (u1,us,us) for R%, der er ortonormal med hensyn til standard-
indreproduktet pa R? og bestar af egenvektorer for f: R — R3.
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6.17

6.18

6.19

6.20

6.21

268

c) Angiv en ortogonal matrix , sadan at
D=Q 'AQ
er en diagonalmatrix.

Lad f: C2 — C? vaere den lineaere endomorfi, der er repraesenteret med hensyn til
standardbasen (e1, e2) for bade domaenet og codomaenet af den normale matrix

1 g

a) Udregn det karakteristiske polynomium y((¢) og bestem samtlige egenveerdier
af f: C? — C2.

b) Bestem en basis (w1, us) for C2, der er ortonormal med hensyn til standard-
indreproduktet pa C2 og bestar af egenvektorer for f: C2 — C2.

¢) Angiv en uniteer matrix U, sadan at
D=U'AU
er en diagonalmatrix.

Lad A € M,,(R) vaere en symmetrisk matrix. Vis, at hvis A2 er lig med nulmatricen,
sa er A ngdvendigvis lig med nulmatricen.

(Vink: Anvend spektralsaetningen.)

Lad A € M,,(C) veere en normal kompleks matrix. Vis, at der findes en matrix B €
M,,(C), sadan at A = B2,

(Vink: Bemaerk fgrst, at der for alle z € C findes w € C, sddan at z = w?, og anvend
derefter spektralssetningen.)

Vis, at hvis A € M,(R) er en invertibel symmetrisk reel matrix, sa er den inverse
matrix A~ € M, (R) ogsa symmetrisk.

(Vink: Brug spektralsaetningen.)
(%) Lad A,B € M,(R) vaere symmetriske matricer, der opfylder, at
AB =BA.

a) Lad 1 € R vaere en egenvaerdi for A, og lad (u1,...,u) vaere en basis for egen-
rummet N4 1, der er ortonormal med hensyn til standard-indreproduktet pa
R”. (Spektralsatningen viser, at disse findes.) Anvend antagelsen, at A og B
kommuterer, til at vise, at det for alle 1 <i <d geelder, at

Bu;e Ny _g;.



6.22

6.6 Opgaver

b) Vis, at matricen
C = ((Bui,u;)) e Mg(®)

er symmetrisk.
¢) Lad x € R? vaere en egenvektor for den symmetriske matrix C. (En sadan findes
ifplge spektralsatningen.) Vis, at vektoren

v=uix1+...ugxq

er en faelles egenvektor for A og B.

Man kan nu gentage beviset for s@etning 6.4.2 og vise, at der findes en basis for R",
der er ortonormal med hensyn til standard-indreproduktet og bestar af egenvekto-
rer for bade A og B. Bemaerk ogsi, at antagelsen AB = BA ifplge s®tning er
ngdvendig.

(%) Vi lader C°(R) veere det reelle vektorrum bestaende af kontinuerte funktioner
f:R—R, og vi definerer
Trigy(R) < CO(R)

til at veere underrummet frembragt af familien
(1, cos(x), cos(2x), cos(8x), ..., cos(Nx)).
Vi kalder en vektor i Trigy(R) for et signal for at understrege anvendelsen til re-

praesention af lyd. Det indre produkt

21

(f,8) = ; f(x)g(x)dx

pa C°(R) definerer specielt et indre produkt pa underrummet Trigy (R). Vi betragter
1 det folgende signalerne

1
vo=——, ©vi=cos(x), vg=cos(2x), wv3=-cos(3x)
V2
1 Trigs(R).
a. Vis, eventuelt ved brug af Maple, at for 0 <i,j <3 er
7 hvisi=j,
(v;,vj) = .
0 hvisi#j,

og konkludér, at familien (vg,v1,v2,v3) er en ortogonal basis for underrummet
Trigs(R) med hensyn til det indre produkt (—,—).

b. Angiv en basis (wg,u1,u2,u3) for Trigs(R), der er ortonormal med hensyn til
det indre produkt (—,—).
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6 Vektorrum med indre produkt

c. Vis, at hvis f, g € Trigs(R) har koordinater henholdsvis x,y € R* med hensyn
til basen (v, v1,v2,03), sa er

(f,8) =n(x1y1 +x2y2 +x3Y3 +X4Y4).

d. Betragt den linesere endomorfi A: Trigs(R) — Trigs(R) defineret ved

_df
A(f) = ot

Find den matrix A € M4(R), der repreesentere denne lineare endomorfi med
hensyn til basen (vg,v1,v2,v3) for bade domeenet og codomaenet.

Den lineaere endomorfi A: Trigs(R) — Trigs(R) kaldes for Laplace operatoren. Den
er et eksempel pa en differentialoperator.
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