
1. Witt vectors

The purpose of this note is to give a self-contained introduction to Witt vectors.
We cover both the classical p-typical Witt vectors of Teichmüller and Witt [4] and
the generalized or big Witt vectors of Cartier [1]. In the approach taken here all
necessary congruences are isolated in the lemma of Dwork. A slightly different but
very readable account may be found in Bergman [3, Appendix]. We conclude with
a brief treatment of special λ-rings and Adams operations. The reader is referred
to Langer-Zink [2, Appendix] for a careful analysis of the behavior of the ring of
Witt vectors with respect to étale morphisms.

Let N be the set of positive integers, and let S ⊂ N be a subset with the property
that, if n ∈ S, and if d is a divisor in n, then d ∈ S. We then say that S is a
truncation set. The big Witt ring WS(A) is defined to be the set AS equipped
with a ring structure such that the ghost map

w : WS(A) → AS

that takes the vector (an | n ∈ S) to the sequence (wn | n ∈ S), where

wn =
∑
d|n

da
n/d
d ,

is a natural transformation of functors from the category of rings to itself. Here,
on the right-hand side, AS is considered a ring with componentwise addition and
multiplication. To prove that there exists a unique ring structure on WS(A) that
is characterized in this way, we first prove the following result.

Lemma 1.1 (Dwork). Suppose that, for every prime number p, there exists a ring
homomorphism φp : A → A with the property that φp(a) ≡ ap modulo pA. Then a
sequence (xn | n ∈ S) is in the image of the ghost map

w : WS(A) → AS

if and only if xn ≡ φp(xn/p) modulo pvp(n)A, for every prime number p, and for
every n ∈ S with vp(n) > 1. Here vp(n) denotes the p-adic valuation of n.

Proof. We first show that, if a ≡ b modulo pA, then apv−1 ≡ bp
v−1

modulo
pvA. If we write a = b+ pε, then

apv−1
= bp

v−1
+

∑
16i6pv−1

(
pv−1

i

)
bp

v−1−ipiεi.

In general, the p-adic valuation of the binomial coefficient
(
m+n

n

)
is equal to the

number of carriers in the addition of m and n in base p. So

vp

((
pv−1

i

))
= v − 1− vp(i),

and hence,

vp

((
pv−1

i

)
pi

)
= v − 1 + i− vp(i) > v.

This proves the claim. Now, since φp is a ring-homomorphism,

φp(wn/p(a)) =
∑

d|(n/p)

dφp(a
n/pd
d )
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which is congruent to
∑

d|(n/p) da
n/d
d modulo pvp(n)A. If d divides n but not n/p,

then vp(d) = vp(n), and hence this sum is congruent to
∑

d|n da
n/d
d = wn(a) modulo

pvp(n)A as stated. Conversely, if (xn | n ∈ S) is a sequence such that xn ≡ φp(xn/p)
modulo pvp(n)A, we find a vector a = (an | n ∈ S) with wn(a) = xn as follows. We
let a1 = x1 and assume, inductively, that ad has been chosen, for all d that divides
n, such that wd(a) = xd. The calculation above shows that the difference

xn −
∑

d|n,d 6=n

da
n/d
d

is congruent to zero modulo pvp(n)A. Hence, we can find an ∈ A such that nan is
equal to this difference. �

Proposition 1.2. There exists a unique ring structure such that the ghost map

w : WS(A) → AS

is a natural transformation of functors from rings to rings.

Proof. Let A be the polynomial ring Z[an, bn | n ∈ S]. Then the unique ring
homomorphism

φp : A→ A

that maps an to ap
n and bn to bpn satisfies that φp(f) = fp modulo pA. Let a and b

be the sequences (an | a ∈ S) and (bn | n ∈ S). Since φp is a ring homomorphism,
Lemma 1.1 shows immediately that the sequences w(a) + w(b), w(a) · w(b), and
−w(a) are in the image of the ghost map. It follows that there are sequence of
polynomials s = (sn | n ∈ S), p = (pn | n ∈ S), and ι = (ιn | n ∈ S) such that
w(s) = w(a) + w(b), w(p) = w(a) · w(b), and w(ι) = −w(a). Moreover, since A is
torsion free, the ghost map is injective, and hence, these polynomials are unique.

Let now A′ be any ring, and let a′ = (a′n | n ∈ S) and b′ = (b′n | n ∈ S) be
two vectors in WS(A′). Then there is a unique ring homomorphism f : A → A′

such that WS(f)(a) = a′ and WS(f)(b) = b′. We define a′ + b′ = WS(f)(s),
a · b = WS(f)(p), and −a = WS(f)(ι). It remains to prove that the ring axioms
are verified. Suppose first that A′ is torsion free. Then the ghost map is injective,
and hence, the ring axioms are satisfied in this case. In general, we choose a
surjective ring homomorphism g : A′′ → A′ from a torsion free ring A′′. Then

WS(g) : WS(A′′) → WS(A′)

is again surjective, and since the ring axioms are satisfied on the left-hand side,
they are satisfied on the right-hand side. �

If T ⊂ S are two truncation sets, then the forgetful map

RS
T : WS(A) → WT (A)

is a natural ring homomorphism called the restriction from S to T . If n ∈ N, and
if S ⊂ N is a truncation set, then

S/n = {d ∈ N | nd ∈ S}

is again a truncation set. We define the nth Verschiebung map

Vn : WS/n(A) → WS(A)
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by

Vn((ad | d ∈ S/n))m =

{
ad, if m = nd,
0, else.

Lemma 1.3. The Verschiebung map Vn is additive.

Proof. There is a commutative diagram

WS/n(A) w //

Vn

��

A
S/n

V w
n

��

WS(A) w // AS

where the map V w
n is given by

V w
n ((xd | d ∈ S/n))m =

{
nxd, if m = nd,
0, else.

Since the map V w
n is additive, so is the map Vn. Indeed, if A is torsion free, the

horizontal maps are both injective, and hence, Vn is additive in this case. In the
general case, we choose a surjective ring homomorphism g : A′ → A and argue as
in the proof of Prop. 1.2 above. �

Lemma 1.4. There exists a unique natural ring homomorphism

Fn : WS(A) → WS/n(A)

such the diagram

WS(A) w //

Fn

��

AS

F w
n

��

WS/n(A) w // A
S/n

,

where Fw
n ((xm | m ∈ S))d = xnd, commutes.

Proof. We construct the Frobenius map Fn in a manner similar to the con-
struction of the ring operations on WS(A) in Prop. 1.2. We let A be the polynomial
ring Z[an | n ∈ S], and let a be the vector (an | n ∈ S). Then Lemma 1.1 shows
that the sequence Fw

n (w(a)) ∈ AS/n is the image of a (unique) element

Fn(a) = (fn,d | d ∈ S/n) ∈ WS/n(A)

by the ghost map. If A′ is any ring, and if a′ = (a′n | n ∈ S) is a vector in WS(A′),
then we define Fn(a′) = WS/n(g)(Fn(a)), where g : A → A′ is the unique ring
homomorphism that maps a to a′. Finally, since Fw

n is a ring homomorphism, an
argument similar to the proof of Lemma 1.3 shows that also Fn is a ring homomor-
phism. �

The Teichmüller representative is the map

[−]S : A→ WS(A)
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defined by

([a]S)n =

{
a, if n = 1,
0, else.

It is a multiplicative map. Indeed, there is a commutative diagram

A

[−]S
��

A

[−]wS
��

WS(A) w // AS ,

where ([a]wS )n = an, and [−]wS is a multiplicative map.

Lemma 1.5. The following relations holds.
(i) a =

∑
n∈S Vn([an]S/n).

(ii) FnVn(a) = na.
(iii) aVn(a′) = Vn(Fn(a)a′).
(iv) FmVn = VnFm, if (m,n) = 1.

Proof. One easily verifies that both sides of each equation have the same
image by the ghost map. This shows that the relations hold, if A is torsion free,
and hence, in general. �

Proposition 1.6. The ring WS(Z) of big Witt vectors in the ring of rational
integers is equal to the product

WS(Z) =
∏
n∈S

Z · Vn([1]S/n)

with the multiplication given by

Vm([1]S/m) · Vn([1]S/n) = c · Vd([1]S/d),

where c = (m,n) and d = mn/(m,n) are the greatest common divisor and the least
common multiple of m and n.

Proof. The formula for the multiplication follows from Lemma 1.5 (ii)-(iv).
Suppose first that S is finite. If S is empty, the statement is trivial, so assume
that S is non-empty. We let m ∈ S be maximal, and let T = S r {m}. Then the
sequence of abelian groups

0 → W{1}(Z) Vm−−→ WS(Z)
RS

T−−→ WT (Z) → 0

is exact, and we wish to show that it is equal to the sequence

0 → Z · [1]{1}
Vm−−→

∏
n∈S

Z · Vn([1]S/n)
RS

T−−→
∏
n∈T

Z · Vn([1]T/n) → 0.

The latter sequence is a sub-sequence of the former sequence, and, inductively, the
left-hand terms (resp. the right-hand terms) of the two sequences are equal. Hence,
middle terms are equal, too. The statement for S finite follows. Finally, a general
truncation set S is the union of the finite sub-truncation sets Sα ⊂ S, and hence,

WS(Z) = lim
α

WSα
(Z).

This proves the stated formula in general. �
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The action of the restriction, Frobenius, and Verschiebung operators on the
generators Vn([1]S/n) is easily derived from the relations Lemma 1.5 (ii)–(iv). To
give a formula for the Teichmüller representative, we recall the Möbius inversion
formula. Let g : N → Z be a function, and let f : N → Z be the function given by

f(n) =
∑
d|n

g(d).

Then the function g is given by f by means of the formula

g(n) =
∑
d|n

µ(d)f(n/d),

where µ : N → {−1, 0, 1} is the Möbius function. Here µ(d) = (−1)r, if d is a
product of r > 0 distinct prime numbers, and µ(d) = 0, otherwise.

Addendum 1.7. Let m be an integer. Then

[m]S =
∑
n∈S

1
n

( ∑
d|n

µ(d)mn/d
)
Vn([1]S/n),

where µ : N → {−1, 0, 1} is the Möbius function.

Proof. It suffices to prove that the formula holds in WS(Z). We know from
Prop. 1.6 that there are unique integers rd, d ∈ S, such that

[m]S =
∑
d∈S

rdVd([1]S/d).

Evaluating the nth ghost component of this equation, we get

mn =
∑
d|n

drd,

and the stated formula now follows from the Möbius inversion formula. �

Lemma 1.8. Suppose that A is an Fp-algebra, and let ϕ : A→ A be the Frobenius
endomorphism. Then

Fp = RS
S/p ◦WS(ϕ) : WS(A) → WS/p(A).

Proof. We recall from the proof of Prop. 1.4 that

Fp(a) = (fp,d(a) | d ∈ S/p),
where fp,d are the integral polynomials defined by the equations∑

d|n

df
n/d
p,d =

∑
d|pn

da
pn/d
d

for all n ∈ S. Let A = Z[an | n ∈ S]. We shall prove that for all n ∈ S/p,
fp,n ≡ ap

n

modulo pA. This is equivalent to the statement of the lemma. If n = 1, we have
fp,1 = ap

1 +pap, and we are done in this case. So let n > 1 and assume, inductively,
that the stated congruence has been proved for all proper divisors in n. Then, if d
is a proper divisor in n, fp,d ≡ ap

d modulo pA, so

df
n/d
p,d ≡ da

pn/d
d
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modulo pvp(n)+1A; compare the proof of Lemma 1.1. Rewriting the defining equa-
tions ∑

d|n

df
n/d
p,d =

∑
d|n

da
pn/d
d +

∑
d|pn,d-n

da
pn/d
d

and noting that if d | pn and d - n, then vp(d) = vp(n) + 1, we find

nfp,n ≡ nap
n

modulo pvp(n)+1A. Since A is torsion free, we conclude that fp,n ≡ ap
n modulo pA

as desired. �

We consider the truncation set P = {1, p, p2, . . . } ⊂ N that consists of all powers
of a fixed prime number p. The proper non-empty sub-truncation sets of P all are
of the form {1, p, . . . , pn−1}, for some positive integer n. The rings

W (A) = WP (A)

Wn(A) = W{1,p,...,pn−1}(A)

are called the ring of p-typical Witt vectors in A and p-typical Witt vectors of
length n in A, respectively. We shall now show that, if A is a Z(p)-algebra, the
rings of big Witt vectors WS(A) decompose canonically as a product of rings of
p-typical Witt vectors. We begin with the following result.

Lemma 1.9. Let m be an integer and suppose that m is invertible (resp. a non-
zero-divisor) in A. Then m is invertible (resp. a non-zero-divisor) in WS(A).

Proof. It suffices to prove the lemma, for S finite. Indeed, in general, WS(A)
is the limit of WT (A), where T ranges over the finite sub-truncation sets of S. So
assume that S is finite and non-empty. Let n ∈ S be maximal, and let T = Sr{n}.
Then S/n = {1} and we have an exact sequence

0 → A
Vn−−→ WS(A)

RS
T−−→ WT (A) → 0

from which the lemma follows by easy induction. �

Proposition 1.10. Let p be a prime number, and let A be a Z(p)-algebra. Let
S be a truncation set, and let I(S) = {k ∈ S | p - k}. Then the ring WS(A) has a
natural idempotent decomposition

WS(A) =
∏

k∈I(S)

WS(A)ek

where

ek =
∏

l∈I(S),l 6=1

(
1
k
Vk([1]S/k)− 1

kl
Vkl([1]S/kl)

)
.

Moreover, the composite map

WS(A)ek ↪→ WS(A) Fk−−→ WS/k(A)
R

S/k

S/k∩P−−−−−→ WS/k∩P (A)

is an isomorphism.
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Proof. We calculate

wn(
1
k
Vk([1]S/k)) =

{
1, if k ∈ S ∩ kN,
0, else,

and hence,

wn(ek) =

{
1, if k ∈ S ∩ kP ,
0, else.

It follows that the elements ek, k ∈ I(S), are orthogonal idempotents in WS(A).
This proves the former part of the statement. To prove the latter part, we note
that multiplication by k defines a bijection

S/k ∩ P = (S ∩ kP )/k ∼−→ S ∩ kP

and that the following diagram commutes:

WS(A)ek
w //

R
S/k

S/k∩P
Fk

��

AS∩kP

∼ k∗

��

WS/k∩k(A) w // A
S/k∩P

.

We first assume that A is torsion free and has an endomorphism φp : A → A such
that φp(a) ≡ ap modulo pA. Then the horizontal maps w are both injective.
Moreover, Lemma 1.1 identifies the image of the top horizontal map w with the set
of sequences (xd | d ∈ S ∩ kP ) such that xd ≡ φp(xd/p) modulo pvp(d)A. Similarly,
the image of the lower horizontal map w is the set of sequences (yd | d ∈ S/k ∩ P )
such that yd ≡ φp(yd/p) modulo pvp(d)A. Since the right-hand vertical map k∗

induces an isomorphism of these subrings, the left-hand vertical map RS/k
S/k∩PFk is

an isomorphism in this case. �

Example 1.11. Let S = {1, 2, . . . , n} such that WS(A) is the ring Wn(A) of big
Witt vectors of length n in A. Then S/k ∩ P = {1, p, . . . , ps−1} where s = s(n, k)
is the unique integer with ps−1k 6 n < psk. Hence, if A is a Z(p)-algebra,

Wn(A) ∼−→
∏

Ws(A)

where the product ranges over 1 6 k 6 n with p - k, and where s = s(n, k) is given
as above.

We now consider the ring Wn(A) of p-typical Witt vectors of length n in A in
more detail. The ghost map

w : Wn(A) → An

takes the vector (a0, . . . , an−1) to the sequence (w0, . . . , wn−1) where

wi = api

0 + papi−1

1 + · · ·+ piai.

If φ : A→ A is a ring homomorphism with φ(a) ≡ ap modulo pA, then Lemma 1.1
identifies the image of the ghost map with the subring of sequences (x0, . . . xn−1)
such that xi ≡ φ(xi−1) modulo piA, for all1 6 i 6 n− 1. We write

[−]n : A→Wn(A)
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for the Teichmüller representative and

F : Wn(A) →Wn−1(A)

V : Wn−1(A) →Wn(A)

for the pth Frobnenius and pth Verschiebung.

Lemma 1.12. If A is an Fp-algebra, then V F = p.

Proof. For any ring A, the composite V F is given by multiplication by the
element V ([1]n−1). Suppose that A is an Fp-algebra. The exact sequences

0 → A
V n−1

−−−→Wn(A) R−→Wn−1(A) → 0

show, inductively, that Wn(A) is annihilated by pn. Hence, V ([1]n−1) is annihilated
by pn−1. We show by induction on n that V ([1]n−1) = p[1]n, the case n = 1 being
trivial. The formula from Addendum 1.7 gives that

[p]n = p[1]n +
∑

0<s<n

pps − pps−1

ps
V s([1]n−s).

Since [p]n = 0, and since, inductively, V s([1]n−s) = ps−1V ([1]n−1), for 0 < s < n,
we can rewrite this formula as

0 = p[1]n + (ppn−1−1 − 1)V ([1]n−1).

But pn−1 − 1 > n− 1, so we get p[1]n = V ([1]n−1) as stated. �

We now suppose that A is a p-torsion free ring and that there exists a ring homo-
morphism φ : A → A such that φ(a) ≡ ap modulo pA. It follows from Lemma 1.1
that there is a unique ring homomorphism

sφ : A→W (A)

such that the composite

A
sφ−→W (A) w−→ AN0

maps a to (a, φ(a), φ2(a), . . . ). We then define

tφ : A→W (A/pA)

to be the composite of sφ and the map induced by the canonical projection of A onto
A/pA. We recall that the Fp-algebra A/pA is said to be perfect, if the Frobenius
endomorphism ϕ : A/pA→ A/pA is an automorphism.

Proposition 1.13. Let A be a p-torsion free ring, and let φ : A → A be a ring
homomorphism such that φ(a) ≡ ap modulo pA. Suppose that A/pA is a perfect
Fp-algebra. Then the map tφ induces an isomorphism

tφ : A/pnA
∼−→Wn(A),

for all n > 1.

Proof. The map tφ factors as in the statement since

V nW (A/pA) = V nW (φn(A/pA)) = V nFnW (A/pA) = pnW (A/pA).
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The proof is not completed by an induction argument based on the following com-
mutative diagram:

0 // A/pA
pn−1

//

ϕn−1

��

A/pnA
pr

//

tφ

��

A/pn−1A //

tφ

��

0

0 // A/pA
V n−1

// Wn(A/pA) R // Wn−1(A/pA) // 0.

The top horizontal sequence is exact, since A is p-torsion free, and the left-hand
vertical map is an isomorphism, since A/pA is perfect. The statement follows by
induction on n > 1. �

We return to the ring of big Witt vectors.

Proposition 1.14. There is a natural commutative diagram

W(A)
γ

//

w

��

(1 + tA[[t]])∗

t d
dt log

��

AN γw

// tA[[t]]

where

γ(a1, a2, . . . ) =
∏
n>1

(1− ant
n)−1,

γw(x1, x2, . . . ) =
∑
n>1

xnt
n,

and the horizontal maps are isomorphisms of abelian groups.

Proof. It is clear that γw is an isomorphism of additive abelian groups. We
show that γ is a bijection. We have∏

n>1

(1− ant
n)−1 = (1 + b1t+ b2t

2 + . . . )−1

where the coefficient bn is given by the sum

bn =
∑

(−1)rai1 . . . air

that runs over all 1 6 i1 < · · · < ir 6 n such that i1 + 2i2 + · · · + rir = n.
This formula shows that the coefficients an, n > 1, are determined uniquely by the
coefficients bn, n > 1. Indeed, we have the recursive formula

an = bn −
∑

(−1)rai1 . . . air
,

where the sum on the right-hand side ranges over 1 6 i1 < · · · < ir < n such that
i1 + 2i2 + · · · + rir = n. To prove that the map γ is a homomorphism from the
additive group W(A) to the multiplicative group (1 + tA[[t]])∗, it suffices as usual
to consider the case where A is torsion free. In this case the vertical maps in the
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diagram of the statement are both injective, and hence, it suffices to show that the
diagram of the statement commutes. We calculate:

t
d

dt
log(

∏
d>1

(1− adt
t)−1) = −

∑
d>1

t
d

dt
log(1− adt

t) =
∑
d>1

tadt
d

1− adtd

=
∑
d>1

∑
s>0

dadt
d · as

dt
sd =

∑
d>1

∑
q>1

daq
dt

qd =
∑
n>1

( ∑
d|n

da
n/d
d

)
tn.

This completes the proof. �

Addendum 1.15. The map γ induces an isomorphism of abelian groups

γS : WS(A) ∼−→ ΓS(A)

where ΓS(A) is the quotient of the multiplicative group Γ(A) = (1 + tA[[t]])∗ by the
subgroup IS(A) of all power series of the form

∏
n∈NrS(1− ant

n)−1.

Proof. The kernel of the restriction map

RN
S : W(A) → WS(A)

is equal to the subset of all vectors a = (an | n ∈ N) such that an = 0, if n ∈ S.
The image of this subset by the map γ is the subset IS(A) ⊂ Γ. �

Example 1.16. If S = {1, 2, . . . ,m}, then IS(A) = (1 + tm+1A[[t]])∗. Hence, in
this case, Addendum 1.15 gives an isomorphism of abelian groups

γS : Wm(A) ∼−→ ΓS(A) = (1 + tA[[t]])∗/(1 + tm+1A[[t]])∗.

The structure of this group, for A a Z(p)-algebra, was examined in Example 1.11.

Lemma 1.17. Let p be a prime number, and let A be any ring. Then the ring
homomorphism Fp : W(A) → W(A) satisfies that Fp(a) ≡ ap modulo pW(A).

Proof. We first let A = Z[a1, a2, . . . ] and a = (a1, a2, . . . ). If suffices to show
that there exists b ∈ W(A) such that Fp(a)− ap = pb. By Lemma 1.9, the element
is necessarily unique; we use Lemma 1.1 to prove that it exists. We have

wn(Fp(a)− ap) =
∑
d|pn

da
pn/d
d −

( ∑
d|n

da
n/d
d

)p

which is clearly congruent to zero modulo pA. So let x = (xn | n ∈ N) with

xn =
1
p
(Fp(a)− ap).

We wish to show that x = w(b), for some b ∈ W(A). The unique ring homomor-
phism φ` : A → A that maps an to a`

n satisfies that φ`(f) = f ` modulo `A, and
hence, Lemma 1.1 shows that x is in the image of the ghost map if and only if

xn ≡ φ`(xn/`)

modulo `v`(n)A, for all primes ` and all n ∈ `N. This is equivalent to showing that

wn(Fp(a)− ap) ≡ φ`(wn/p(Fp(a)− ap))
10



modulo `v`(n)A, if ` 6= p and n ∈ `N, and modulo `v`(n)+1A, if ` = p and n ∈ `N. If
` 6= p, the statement follows from Lemma 1.1, and if ` = p and n ∈ `N, we calculate

wn(Fp(a)− ap)− φp(wn/p(Fp(a)− ap))

=
∑

d|pn,d-n

da
pn/d
d −

( ∑
d|n

da
n/d
d

)p +
( ∑

d|(n/p)

da
n/d
d

)p
.

If d | pn and d - n, then vp(d) = vp(n) + 1, so the first summand is congruent to
zero modulo pvp(n)+1A. Similarly, if d | n and d - (n/p), then vp(d) = vp(n), and
hence, ∑

d|n

da
n/d
d ≡

∑
d|(n/p)

da
n/d
d

modulo pvp(n)A. But then( ∑
d|n

da
n/d
d

)p ≡
( ∑

d|(n/p)

da
n/d
d

)p

modulo pvp(n)+1A; compare the proof of Lemma 1.1. This completes the proof. �

Let ε : W(A) → A be the ring homomorphism that takes a = (an | n ∈ N) to a1.

Proposition 1.18. There exists a unique natural ring homomorphism

∆: W(A) → W(W(A))

such that wn(∆(a)) = Fn(a), for all n ∈ N. Moreover, the functor W(−) and the
ring homomorphisms ∆ and ε form a comonad on the category of rings.

Proof. By naturality, we may assume that A is torsion free. Then Lemma 1.9
shows that also W(A) is torsion free, and hence, the ghost map

w : W(W(A)) → W(A)N

is injective. Lemma 1.17 and Lemma 1.1 show that the sequence (Fn(a) | a ∈ N) is
in the image of the ghost map. Hence, the natural ring homomorphism ∆ exists.
The second part of the statement means that

W(∆A) ◦∆A = ∆W(A) ◦∆A : W(A) → W(W(W(A)))

and
W(εA) ◦∆A = εW(A) ◦∆A : W(A) → W(A).

Both equalities are readily verified by evaluating the ghost coordinates. �

Definition 1.19. A special λ-ring is a ring A and a ring homomorphism

λ : A→ W(A)

that makes A a coalgebra over the comonad (W(−),∆, ε).

Let (A, λ : A → W(A)) be a special λ-ring. Then the associated nth Adams
operation is the ring homomorphism defined by the composition

ψn : A λ−→ W(A) wn−−→ A

of the structure map and the nth ghost map.
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