1. Witt vectors

The purpose of this note is to give a self-contained introduction to Witt vectors.
We cover both the classical p-typical Witt vectors of Teichmiiller and Witt [4] and
the generalized or big Witt vectors of Cartier [1]. In the approach taken here all
necessary congruences are isolated in the lemma of Dwork. A slightly different but
very readable account may be found in Bergman [3, Appendix]. We conclude with
a brief treatment of special A-rings and Adams operations. The reader is referred
to Langer-Zink [2, Appendix] for a careful analysis of the behavior of the ring of
Witt vectors with respect to étale morphisms.

Let N be the set of positive integers, and let S C N be a subset with the property
that, if n € S, and if d is a divisor in n, then d € S. We then say that S is a
truncation set. The big Witt ring Wg(A) is defined to be the set A% equipped
with a ring structure such that the ghost map

w: Wg(A) — A°
that takes the vector (ay | n € S) to the sequence (w, | n € S), where
Wy, = Z das/ d,
d|n

is a natural transformation of functors from the category of rings to itself. Here,
on the right-hand side, A® is considered a ring with componentwise addition and
multiplication. To prove that there exists a unique ring structure on Wg(A) that
is characterized in this way, we first prove the following result.

LeEmMA 1.1 (Dwork). Suppose that, for every prime number p, there exists a ring
homomorphism ¢,: A — A with the property that ¢,(a) = aP modulo pA. Then a
sequence (x, | n € S) is in the image of the ghost map

w: Wg(A) — A°
if and only if v, = ¢p(xy,p) modulo p»(M A, for every prime number p, and for
every n € S with vy(n) > 1. Here vy(n) denotes the p-adic valuation of n.

ProOF. We first show that, if a = b modulo pA, then a?’ " =" modulo
pUA. If we write a = b+ pe, then

In general, the p-adic valuation of the binomial coefficient (m:") is equal to the
number of carriers in the addition of m and n in base p. So

() I
v, ((Pvi_l>pi> =v—1+4i—0v,(i) >

This proves the claim. Now, since ¢, is a ring-homomorphism,

Sp(wayp(a) = Y doy(ay’™)
d|(n/p)
1

and hence,



which is congruent to >, /. dag/d modulo p*»(M A. If d divides n but not n/p,
then vy, (d) = vp(n), and hence this sum is congruent to >, dag/d = wy (a) modulo
p»(") A as stated. Conversely, if (x, | n € ) is a sequence such that z, = Gp(Zn/p)
modulo pr(™ A, we find a vector a = (a, | n € S) with w,(a) = x, as follows. We
let a; = x1 and assume, inductively, that a4 has been chosen, for all d that divides
n, such that wg(a) = x4. The calculation above shows that the difference

Ty — Z dag/d

d|n,d#n

is congruent to zero modulo p*»(™ A. Hence, we can find a, € A such that na,, is
equal to this difference. O

PROPOSITION 1.2. There exists a unique ring structure such that the ghost map
w: Wg(A) — A°

is a natural transformation of functors from rings to rings.

PROOF. Let A be the polynomial ring Z[a,, b, | n € S]. Then the unique ring
homomorphism
ppr A— A

that maps a,, to a?, and b, to b2, satisfies that ¢,(f) = f? modulo pA. Let a and b
be the sequences (a, | a € S) and (b, | n € S). Since ¢, is a ring homomorphism,
Lemma 1.1 shows immediately that the sequences w(a) 4+ w(b), w(a) - w(b), and
—w(a) are in the image of the ghost map. It follows that there are sequence of
polynomials s = (s, | n € S), p=(p, | n € 5), and ¢ = (1, | n € S) such that
w(s) = w(a) + w(b), w(p) = w(a) - w(b), and w(t) = —w(a). Moreover, since A is
torsion free, the ghost map is injective, and hence, these polynomials are unique.
Let now A’ be any ring, and let o/ = (al, | n € S) and ¥/ = (b, | n € S) be
two vectors in Wg(A’). Then there is a unique ring homomorphism f: A — A’
such that Wg(f)(a) = o/ and Wg(f)(b) = b'. We define o/ + ' = Wg(f)(s),
a-b=Wg(f)(p), and —a = Wg(f)(¢). It remains to prove that the ring axioms
are verified. Suppose first that A’ is torsion free. Then the ghost map is injective,
and hence, the ring axioms are satisfied in this case. In general, we choose a
surjective ring homomorphism ¢g: A” — A’ from a torsion free ring A”. Then

Ws(g): Ws(A”) = Wg(4)
is again surjective, and since the ring axioms are satisfied on the left-hand side,
they are satisfied on the right-hand side. O
If T C S are two truncation sets, then the forgetful map
R Wg(A) — Wr(A)

is a natural ring homomorphism called the restriction from S to T'. If n € N, and
if S C N is a truncation set, then

S/n={deN|ndecS}
is again a truncation set. We define the nth Verschiebung map

Vi: Wg/n(A4) — Ws(A)
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aq, if m=nd,

Vi((ag | d € S/n))m = {

0, else.

LEMMA 1.3. The Verschiebung map V,, is additive.

ProOOF. There is a commutative diagram

W/ (A) 2y A5/

JVH lv;“

Wy (A) w—> AS
where the map V¥ is given by

nxq, if m = nd,

V' (g | d € S/n))m = {

0, else.

Since the map V¥ is additive, so is the map V,,. Indeed, if A is torsion free, the
horizontal maps are both injective, and hence, V,, is additive in this case. In the
general case, we choose a surjective ring homomorphism ¢g: A’ — A and argue as
in the proof of Prop. 1.2 above. (I

LEMMA 1.4. There exists a unique natural ring homomorphism
F: Wg(A) — Wg,,(A)
such the diagram

Ws(A) w‘) AS

I

WS/n(A) L> AS/n,
where FY (x| m € S))g = Tna, commutes.

PROOF. We construct the Frobenius map F,, in a manner similar to the con-
struction of the ring operations on Wg(A) in Prop. 1.2. We let A be the polynomial
ring Z[a, | n € S], and let a be the vector (a, | n € S). Then Lemma 1.1 shows
that the sequence F*(w(a)) € A%/™ is the image of a (unique) element

Fn(a) = (fn,d | de S/n) S Ws/n(A)

by the ghost map. If A’ is any ring, and if ' = (a}, | n € S) is a vector in Wg(A'),
then we define F,(a’) = Wg/,(g)(Fn(a)), where g: A — A’ is the unique ring
homomorphism that maps a to a’. Finally, since F* is a ring homomorphism, an
argument similar to the proof of Lemma 1.3 shows that also F}, is a ring homomor-
phism. (Il

The Teichmiiller representative is the map

[—]s: A— Wg(A)
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defined by
a, ifn=1,
(la]s)n = {0, else.

It is a multiplicative map. Indeed, there is a commutative diagram

A:A

J{[—]s l[]g

Wg (A) - AS,
where ([a]¥), = a”, and [—]¥ is a multiplicative map.

LEMMA 1.5. The following relations holds.

(1) a =305 Vallanls/m)-
it) F,V,(a) = na.

( vV,
(#50) aVy(a') = Vo (Fr(a)a').
() Fr Vi = Vo B, if (myn) = 1.

PROOF. One easily verifies that both sides of each equation have the same
image by the ghost map. This shows that the relations hold, if A is torsion free,
and hence, in general. 0

PROPOSITION 1.6. The ring Wg(Z) of big Witt vectors in the ring of rational
integers is equal to the product

Ws(Z) =[] Z- Va([ls/m)
nes
with the multiplication given by

V(U s/m) - Va((lls/n) = ¢+ Va([l]s/a),

where ¢ = (m,n) and d = mn/(m,n) are the greatest common divisor and the least
common multiple of m and n.

PRrOOF. The formula for the multiplication follows from Lemma 1.5 (ii)-(iv).
Suppose first that S is finite. If S is empty, the statement is trivial, so assume
that S is non-empty. We let m € S be maximal, and let 7= S \ {m}. Then the
sequence of abelian groups

S

0 — W1y(Z) L2 We(Z) “2 Wi (Z) — 0

is exact, and we wish to show that it is equal to the sequence

S
nes nel
The latter sequence is a sub-sequence of the former sequence, and, inductively, the
left-hand terms (resp. the right-hand terms) of the two sequences are equal. Hence,
middle terms are equal, too. The statement for S finite follows. Finally, a general
truncation set .S is the union of the finite sub-truncation sets S, C .S, and hence,

Ws(2) = im W, (2).

This proves the stated formula in general. [
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The action of the restriction, Frobenius, and Verschiebung operators on the
generators V,,([1]g/,) is easily derived from the relations Lemma 1.5 (ii)-(iv). To
give a formula for the Teichmiiller representative, we recall the Mobius inversion
formula. Let g: N — Z be a function, and let f: N — Z be the function given by

n) = g(d)
d|n
Then the function g is given by f by means of the formula

Z,u fn/d),

where p: N — {-=1,0,1} is the Moblus function. Here p(d) = (=1)", if d is a
product of r > 0 dlstlnct prime numbers, and p(d) = 0, otherwise.

ADDENDUM 1.7. Let m be an integer Then
[m] Z (D uldym™ ) Va([ts/m),
nGS d|n
where pu: N — {—=1,0,1} is the Mébius function.

PrOOF. It suffices to prove that the formula holds in Wg(Z). We know from
Prop. 1.6 that there are unique integers 4, d € S, such that

mls = > raVa([l]s/a)-
des

Evaluating the nth ghost component of this equation, we get
=2 dra,
d|n

and the stated formula now follows from the Mobius inversion formula. O
LEMMA 1.8. Suppose that A is an Fp-algebra, and let ¢: A — A be the Frobenius

endomorphism. Then

F, = R§), 0 Ws(p): Ws(A4) — Wy, (4).

PrOOF. We recall from the proof of Prop. 1.4 that
Fy(a) = (fpala) | d € S/p),

where f, 4 are the integral polynomials defined by the equations
Z n/d Z da pn/d
d|n d|pn

for all n € S. Let A = Zla, | n € S]. We shall prove that for all n € S/p,

fom = ay,
modulo pA. This is equivalent to the statement of the lemma. If n = 1, we have
fp.1 = al +pay, and we are done in this case. So let n > 1 and assume, inductively,
that the stated congruence has been proved for all proper divisors in n. Then, if d
is a proper divisor in n, f, ¢ = a}; modulo pA, so
n/d _ ; pn/d
df,q =day
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modulo p¥»("+1 A; compare the proof of Lemma 1.1. Rewriting the defining equa-

tions
STapit =3 "da+ > daly*
d|n

dn d|pn,din

and noting that if d | pn and d { n, then v,(d) = v,(n) + 1, we find
nfpn = nal

modulo pU»(™+1 A, Since A is torsion free, we conclude that fpn = a2 modulo pA
as desired. O

We consider the truncation set P = {1,p, p?,...} C N that consists of all powers
of a fixed prime number p. The proper non-empty sub-truncation sets of P all are
of the form {1,p,...,p" '}, for some positive integer n. The rings

W(4) = Wp(4)
Wn(A) = W{17p7..~,p"‘1}(A)
are called the ring of p-typical Witt vectors in A and p-typical Witt vectors of
length n in A, respectively. We shall now show that, if A is a Z,-algebra, the

rings of big Witt vectors Wg(A) decompose canonically as a product of rings of
p-typical Witt vectors. We begin with the following result.

LEMMA 1.9. Let m be an integer and suppose that m is invertible (resp. a non-
zero-divisor) in A. Then m is invertible (resp. a non-zero-divisor) in Wg(A).

PROOF. It suffices to prove the lemma, for S finite. Indeed, in general, Wg(A)
is the limit of W (A), where T ranges over the finite sub-truncation sets of S. So
assume that S is finite and non-empty. Let n € S be maximal, and let T'= S\ {n}.
Then S/n = {1} and we have an exact sequence

v, R3
0—-A— Wg(4A) — Wr(4) =0
from which the lemma follows by easy induction. O

PROPOSITION 1.10. Let p be a prime number, and let A be a Z,)-algebra. Let
S be a truncation set, and let I(S) ={k € S| ptk}. Then the ring Wg(A) has a
natural idempotent decomposition

Ws(A4) = H W (A)e
kEI(S)
where
1 1
= ][ 7 Ve(Us/r) = Vi ([s/m) ) -
1€I(S),l1#1
Moreover, the composite map

S/k
S/kNP

W(A)er — Wg(A) Wi (A)

Wi/ knp(A)

is an isomorphism.



PRrROOF. We calculate
1, if ke SNEN,

0, else,

wn(%Vk([l]S/k)) = {

and hence,

1, ifke SNkP,
wnler) = 0, else

It follows that the elements e, k € I(S), are orthogonal idempotents in Wg(A).
This proves the former part of the statement. To prove the latter part, we note
that multiplication by k defines a bijection

S/kNnP=(SNkP)/k = SNkP

and that the following diagram commutes:

Wy (A)ek — s ASOKP

S/k ;
JRS/kﬁPFk le

W ki (A) —— A5/F0P

We first assume that A is torsion free and has an endomorphism ¢,: A — A such
that ¢p(a) = a? modulo pA. Then the horizontal maps w are both injective.
Moreover, Lemma 1.1 identifies the image of the top horizontal map w with the set
of sequences (x4 | d € SN kP) such that x4 = ¢,(24/,) modulo pU» (D A, Similarly,
the image of the lower horizontal map w is the set of sequences (yq | d € S/kN P)
such that y4 = ¢,(y4/p) modulo p’r(D A, Since the right-hand vertical map k*
induces an isomorphism of these subrings, the left-hand vertical map RS;ZQ ply is
an isomorphism in this case.

EXAMPLE 1.11. Let S = {1,2,...,n} such that Wg(A) is the ring W, (A4) of big
Witt vectors of length n in A. Then S/kNP = {1,p,...,p* "'} where s = s(n, k)
is the unique integer with p* 'k < n < p°k. Hence, if A is a Zp)-algebra,

W (4) = T wa(4)

where the product ranges over 1 < k < n with pt k, and where s = s(n, k) is given
as above.

We now cousider the ring W,,(A) of p-typical Witt vectors of length n in A in
more detail. The ghost map

w: Wp(A4) — A"
takes the vector (ag,...,a,—1) to the sequence (wo, ..., w,_1) where

1

wi =af +paf  +-+pas

If : A — A is a ring homomorphism with ¢(a) = a? modulo pA, then Lemma 1.1
identifies the image of the ghost map with the subring of sequences (xq,...2zp—_1)
such that z; = ¢(x;_1) modulo p’A, for alll <i < n— 1. We write

[—]n: A — W,(A)
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for the Teichmiiller representative and
F:W,(A) - W,_1(4)
Vi Wno1(A) — Wi(A)
for the pth Frobnenius and pth Verschiebung.
LeMmMA 1.12. If A is an Fp-algebra, then VF = p.

ProOF. For any ring A, the composite VF' is given by multiplication by the
element V([1],—1). Suppose that A is an F,-algebra. The exact sequences

0 AL W) w1 (4) o0

show, inductively, that W, (A) is annihilated by p™. Hence, V([1],,—1) is annihilated
by p"~1. We show by induction on n that V([1],—1) = p[1],, the case n = 1 being
trivial. The formula from Addendum 1.7 gives that

Since [p], = 0, and since, inductively, V*([1],,—s) = p* 'V ([1],_1), for 0 < s < n,
we can rewrite this formula as

0 =p[1]n + (p” — DV ([An-1)-
But pnfl -1 > n — ]_7 SO we get p[]_]n = V([l]nfl) as Stated. D

n—171

We now suppose that A is a p-torsion free ring and that there exists a ring homo-
morphism ¢: A — A such that ¢(a) = a? modulo pA. It follows from Lemma 1.1
that there is a unique ring homomorphism

s¢: A— W(A)
such that the composite
AL W(A) L AN
maps a to (a,¢(a),p?(a),...). We then define
ty: A — W(A/pA)

to be the composite of s4 and the map induced by the canonical projection of A onto
A/pA. We recall that the F,-algebra A/pA is said to be perfect, if the Frobenius
endomorphism ¢: A/pA — A/pA is an automorphism.

PRrROPOSITION 1.13. Let A be a p-torsion free ring, and let ¢: A — A be a ring
homomorphism such that ¢(a) = a? modulo pA. Suppose that A/pA is a perfect
Fp-algebra. Then the map ty induces an isomorphism

ty: A/p"A = Wa(A),

foralln > 1.

ProoF. The map t4 factors as in the statement since

V'"W(A/pA) = V"W (¢"(A/pA)) = V"F"W(A/pA) = p"W (A/pA).
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The proof is not completed by an induction argument based on the following com-
mutative diagram:

n—1

0 AJpA - AJpnA — 5 A/pr-taA—— 5
b b
0 AfpA LW, (AfpA) — B W, (A/pA) —— 0.

The top horizontal sequence is exact, since A is p-torsion free, and the left-hand
vertical map is an isomorphism, since A/pA is perfect. The statement follows by
induction on n > 1. O

We return to the ring of big Witt vectors.

ProPOSITION 1.14. There is a natural commutative diagram

W(A) —— (1 +tA[])*

lw ltddt log

AN T A[Y

where

v(ay,az,...) = H(l —a,t™)t,

n>1
w n
v (x1, 2o, ... ) = E zpt",
n>1

and the horizontal maps are isomorphisms of abelian groups.

PrROOF. It is clear that v* is an isomorphism of additive abelian groups. We
show that v is a bijection. We have

[T —ant™)™ =@+ bt + bt +...)7"

n>1

where the coefficient b,, is given by the sum

bn = Z(—l)Tail e air

that runs over all 1 < 41 < --- < 4, < n such that i1 + 2i5 + --- + ri, = n.
This formula shows that the coefficients a,,, n > 1, are determined uniquely by the
coefficients b,,, n > 1. Indeed, we have the recursive formula

Ap = bn — Z(—l)rail e Qg

where the sum on the right-hand side ranges over 1 < 47 < --- < 4, < n such that

i1 + 2ig + -+ - + i, = n. To prove that the map  is a homomorphism from the

additive group W (A) to the multiplicative group (1 + tA[t])*, it suffices as usual

to consider the case where A is torsion free. In this case the vertical maps in the
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diagram of the statement are both injective, and hence, it suffices to show that the
diagram of the statement commutes. We calculate:

d 1 d . taqt?
d>1 d>1 d>1
=Yttt = Y gt = 3 (Y
d>15>0 dz1g>1 n>1 dn
This completes the proof. O

ADDENDUM 1.15. The map v induces an isomorphism of abelian groups
Vst Ws(A) = T's(A4)
where T's(A) is the quotient of the multiplicative group T'(A) = (1 + tA[t])* by the
subgroup Is(A) of all power series of the form [], ey g(1 — ant™) ™"

PRrROOF. The kernel of the restriction map
RY: W(A4) — Wg(A)
is equal to the subset of all vectors a = (a,, | n € N) such that a, = 0, if n € S.
The image of this subset by the map + is the subset Is(A4) C T. O

EXAMPLE 1.16. If S = {1,2,...,m}, then I5(A) = (1 + t™TLA[t])*. Hence, in
this case, Addendum 1.15 gives an isomorphism of abelian groups
Y5t Win(A) & Ts(A) = (1+ LAT) /(1 + ™LA
The structure of this group, for A a Z,)-algebra, was examined in Example 1.11.

LEMMA 1.17. Let p be a prime number, and let A be any ring. Then the ring
homomorphism F,: W(A) — W (A) satisfies that F,(a) = a? modulo pW (A).

ProOOF. We first let A = Zla1,ag,...] and a = (a1, az,...). If suffices to show
that there exists b € W(A) such that F,(a) —a? = pb. By Lemma 1.9, the element
is necessarily unique; we use Lemma 1.1 to prove that it exists. We have

n/d n/d
wn (Fy(a) —a?) = > da"!* = (" da}i/*)"
d|pn d|n
which is clearly congruent to zero modulo pA. So let = (z, | n € N) with
1
z, = —(F,(a) — a?).
p( p(a) —a”)

We wish to show that = w(b), for some b € W(A). The unique ring homomor-
phism ¢;: A — A that maps a, to a’, satisfies that ¢,(f) = f¢ modulo £A, and
hence, Lemma 1.1 shows that x is in the image of the ghost map if and only if

Tp = ¢Z(xn/6)
modulo £¥¢(™ A, for all primes ¢ and all n € /N. This is equivalent to showing that

wn(Fp(a) = a”) = do(wn)p(Fp(a) — a?))
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modulo £¢(™ A, if ¢ # p and n € (N, and modulo ¢2¢("+1 A if ¢ = p and n € ¢N. If
¢ # p, the statement follows from Lemma 1.1, and if £ = p and n € /N, we calculate

wn(F (a) —a?) — (bp(wn/p(Fp(a) - ap))

Z dap"/d (Zdaz/d) Z da"/d

d|pn,din d|n d|(n/p)

If d | pn and d 1 n, then v,(d) = v,(n) + 1, so the first summand is congruent to
zero modulo p'»(MWF1A. Similarly, if d | n and d { (n/p), then v,(d) = v,(n), and

hence,
Zda”/dz Z dan/d

d|(n/p)
modulo p”»("™) A. But then
Z dan/d = Z dan/d
d|(n/p)

modulo p?»(™M+1 A; compare the proof of Lemma 1.1. This completes the proof. [

Let €¢: W(A) — A be the ring homomorphism that takes a = (a, | n € N) to a;.
PROPOSITION 1.18. There exists a unique natural ring homomorphism
A: W(A) - W(W(A))
such that w,(A(a)) = Fy(a), for alln € N. Moreover, the functor W(—) and the
ring homomorphisms A and € form a comonad on the category of rings.
PROOF. By naturality, we may assume that A is torsion free. Then Lemma 1.9
shows that also W(A) is torsion free, and hence, the ghost map
w: W(W(A)) - W(AN

is injective. Lemma 1.17 and Lemma 1.1 show that the sequence (F,,(a) | a € N) is
in the image of the ghost map. Hence, the natural ring homomorphism A exists.
The second part of the statement means that

W(A4) oAy = Aw(a)oAa: W(A) - W(W(W(4)))
and
W(ea) o Ag =ewayoAa: W(A) - W(A).
Both equalities are readily verified by evaluating the ghost coordinates. ([l
DEFINITION 1.19. A special A-ring is a ring A and a ring homomorphism
A A— W(A)
that makes A a coalgebra over the comonad (W (=), A e).

Let (A,A\: A — W(A)) be a special A\-ring. Then the associated nth Adams
operation is the ring homomorphism defined by the composition

P A D W(A) 2 A

of the structure map and the nth ghost map.
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