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1. The optimization problem

We consider the following optimization problem. We wish to find the maximum
value of the linear function in n variables

(1.1) f(x1, . . . , xn) = c1x1 + · · ·+ cnxn

under the assumption that variables x1, . . . , xn be non-negative and satisfy the m
linear inequalities

(1.2)

a1,1x1,1 + a1,2x1,2 + · · ·+ a1,nx1,n 6 b1
a2,1x1,1 + a2,2x1,2 + · · ·+ a2,nx1,n 6 b2

:
am,1x1,1 + am,2x1,2 + · · ·+ am,nx1,n 6 bm

Let Hi ⊂ Rn be the subset of solutions to the ith linear inequality in (1.2), and let
H ′j ⊂ Rn be the set of solutions to the linear inequality xj > 0. Then Hi and H ′j are
closed halfspaces of Rn. We wish to find the maximum value of the function (1.1)
on the feasible region P ⊂ Rn defined by the intersection

(1.3) P =
( ⋂

16i6n

H ′i
)
∩
( ⋂

16j6m

Hj

)
.

The structure of the feasible region P is given by the main theorem of polytopes
which we now recall. We refer to [1, Thm. 1.1] for the proof.

Theorem 1.4. Let P ⊂ Rn be the intersection of a finite number of closed halfspaces
and suppose that P ⊂ Rn is bounded. Then P is equal to the convex hull of a finite
subset V ⊂ Rn.

We recall that the convex hull of the finite subset V = {v1, . . . , vN} ⊂ Rn is defined
to be the subset P ⊂ Rn of all linear combinations a1v1 + · · ·+ aNvN such that all
ai > 0 and a1 + · · ·+ aN = 1. The convex hull P ⊂ Rn of a finite subset of V ⊂ Rn

is called a convex polytope, and if V is minimal with this property, then V is called
the set of vertices of the convex polytope P .

Corollary 1.5. Let P ⊂ Rn be the convex hull of the finite set V ⊂ P , and let
f : Rn → R be a linear function. Then

max{f(x) | x ∈ P} = max{f(v) | v ∈ V }.
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Proof. Since V ⊂ P , we clearly have

max{f(x) | x ∈ P} > max{f(v) | v ∈ V }.

Conversely, every element x ∈ P can be written x =
∑

v∈V avv with av > 0 and∑
v∈V av = 1. Since f is linear, we find

f(x) =
∑
v∈V

avf(v) 6
∑
v∈V

av max{f(v) | v ∈ V } = max{f(v) | v ∈ V }.

This completes the proof. �

We return to the optimization problem at hand. Suppose that the feasible region
P is bounded. Then Cor. 1.5 shows that to find the maximum of the function f
on P , we need only compare the values of f at the finitely many vertices of P .
However, in real world examples, the number of vertices will be too large for this
to be practical.

2. A reformulation

Two vertices in the feasible region P are called neighbors if the line segment between
them lies in the boundary of P . The simplex algorithm produces a sequence

(2.1) v0, v1, . . . , vs . . .

of vertices of the convex polytope P such that vs and vs−1 are neighbors and
f(vs−1) 6 f(vs). The increasing sequence of values

(2.2) f(v0), f(v1), . . . , f(vs), . . .

becomes constant, for s large, and this constant value is the desired maximum value
of the optimization problem. In short, the algorithm is as follows. We first choose
some vertex v0, say, the origin. Then, given vs−1, we choose vs to be a neighboring
vertex of vs−1 for which the increase in the value of f is maximal.

It is possible to construct bad examples where the simplex algorithm visits all ver-
tices of P before arriving at the optimal vertex. In practice, however, the algorithm
is very effective. Moreover, it is easy to implement as we will now see.

We first rewrite the linear inequalities (1.2) and the requirement that the vari-
ables x1, . . . , xn be non-negative in the following equivalent form. We introduce m
additional variables xn+1, . . . , xm+n and ask that the linear equations

(2.3)

a1,1x1,1 + a1,2x1,2 + · · ·+ a1,nx1,n + xn+1 = b1
a2,1x1,1 + a2,2x1,2 + · · ·+ a2,nx1,n + xn+2 = b2

:
am,1x1,1 + am,2x1,2 + · · ·+ am,nx1,n + xm+n = bm

be satisfied and that all variables x1, . . . , xn, xn+1, . . . , xm+n be non-negative. The
new variables xn+1, . . . , xm+n are called the slack variables and measure how close
the original inequalities are to being equalities. Written in matrix form, this of
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linear equation becomes

(2.4)


a1,1 a1,2 . . . a1,n 1 0 . . . 0
a2,1 a2,2 . . . a2,n 0 1 . . . 0

: : : : : :
am,1 am,2 . . . am,n 0 0 . . . 1





x1

x2

:
xn

xn+1

:
xm+n


=


b1
b2
:
bm



We say that a solution (x1, . . . , xm+n) to the system of linear equations (2.4) is a
feasible solution, if all x1, . . . , xm+n are non-negative, and we say that a feasible
solution (x1, . . . , xm+n) is a basic feasible solution, if exactly n of the variables
x1, . . . , xm+n are equal to zero. The map

(x1, . . . , xn, xn+1, . . . , xm+n) 7→ (x1, . . . , xn)

that forgets the slack variables gives a one-to-one correspondance between the set
of feasible solutions (resp. basic feasible solutions) of (2.4) and the set of points
(resp. vertices) of the feasible region (1.3). Moreover, two vertices in the fesible
region (1.3) are neighbors if and only if the corresponding basic feasible solutions
of (2.4) share exactly n− 1 zeros.

3. The algorithm

We now explain Danzig’s algorithm for solving the optimization problem. It is
customary to write the system of linear equations (2.4) in the following form which is
called a tableau. We also include, as the bottom row, the negative of the coefficients
of the function f(x1, . . . , xn) we wish to maximize.

x1 x2 . . . xn xn+1 xn+2 . . . xm+n

a1,1 a1,2 . . . a1,n 1 0 . . . 0 b1
a2,1 a2,2 . . . a2,n 0 1 . . . 0 b2
: : : : : : :
am,1 am,2 . . . am,n 0 0 . . . 1 bm
−c1 −c2 −cn 0 0 0

The tableau above is called the initial tableau. The algorithm also uses a parti-
tion of the variables x1, . . . , xn, xn+1, . . . , xm into a group m variables called the
basic variables and a group of n variables called the non-basic variables. In the
initial partition, the m slack variables xn+1, . . . , xm+n are the basic variables and
the original variables x1, . . . , xn are the non-basic variables. Each iteration of the
algorithm produces a new tableau and a new partition of the variables.

Step 1: Are all the entries in the bottom row of the tableau non-negative? If yes,
stop; the current tableau is the final tableau. If no, go to Step 2.

Step 2: Choose a variable xs such that the corresponding entry in the bottom row
has as large a negative value as possible. We call xs the entering basic variable and
we call the sth column the pivot column.
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Step 3: Does there exist a positive entry in the pivot column between the two
horizontal lines? If yes, go to Step 4. If no, stop; the function f is unbounded on
the feasible region P (which is unbounded).

Step 4: Let αi,s be the ith entry in the pivot column, and let βi be the ith entry
in the column on the right-hand side of the vertical line. Then among the positive
entries in the pivot column, we choose an entry αr,s such that βr/αr,s is as small
as possible. The entry αr,s is called the pivot. There is a unique basic variable xt

such that, in the tth column, the rth entry αr,t is non-zero. We call xt the leaving
basic variable.

Step 5: Change the partition of the variables such that the entering basic variable
xs becomes a basic variable and the leaving basic variable xt becomes a non-basic
variable. Change the tableau by applying elementary row operations as follows.
Let Ri be the ith row. (We include the bottom row.) Then, for i 6= r, we replace
the ith row Ri by αr,sRi − αi,sRr.

Given the final tableau, we find the final basic feasible solution as follows. We set
all non-basic variables in the final partition equal to zero and solve for the basic
variables (using the final tableau). The final basic feasible solution is the solution
to the optimization problem.

4. An example

Let us work out a simple example. We wish to maximize the function

f(x1, x2, x3) = x1 + 2x2 + 3x3

subject to the constraints that x1, x2, and x3 be non-negative and satisfy the linear
inequalities

7x1 + x3 6 6
x1 + 2x2 6 20
3x2 + 4x3 6 30

Since we have 3 linear inequalities, we introduce 3 slack variables x4, x5, and x6.
The initial tableau takes the form

x1 x2 x3 x4 x5 x6

7 0 1 1 0 0 6
1 2 0 0 1 0 20
0 3 4 0 0 1 30
−1 −2 −3 0 0 0

and the initial basic variables are x4, x5, and x6. We apply the simplex algorithm.

Iteration 1:

Step 1: Not all entries in the bottom row are non-negative.

Step 2: The entering basic variable is x3 and the third column is the pivot column.

Step 3: There are positive entries in the pivot column.
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Step 4: Since 30/4 > 6/1, the pivot is the top entry 1 of the pivot column. The
leaving basic variable is x4.

Step 5: The new basic variables are x3, x5, and x6. To find the new tableau we
replace R2 by 3R2 − 2R3 and R4 by 3R4 + 2R3. It takes the form:

x1 x2 x3 x4 x5 x6

7 0 1 1 0 0 6
1 2 0 0 1 0 20

−28 3 0 −4 0 1 6
20 −2 0 3 0 0

Iteration 2:

Step 1: Not all entries in the bottom row are non-negative.

Step 2: The entering basic variable is x2 and the second column is the pivot column.

Step 3: There are positive entries in the pivot column.

Step 4: Since 20/2 > 6/3, the pivot is 3. The leaving basic variable is x6.

Step 5: The new basic variables are x2, x3, and x5. To find the new tableau, we
replace R2 by 3R2 − 2R3 and R4 by 3R4 + 2R3. It takes the form

x1 x2 x3 x4 x5 x6

7 0 1 1 0 0 6
59 0 0 8 3 −2 48
−28 3 0 −4 0 1 6

4 0 0 1 0 2 3

Iteration 3:

Step 1: All entries in the bottom row are non-negative.

We calculate the final basic feasible solution. We set the non-basic variables x1,
x4, and x6 equal to zero, and find x2 = 2, x3 = 6, and x5 = 16. Hence, the desired
maximal value of the function f is f(0, 2, 6) = 22.
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