

# The simplex algorithm

Lars Hesselholt

## 1. The optimization problem

We consider the following optimization problem. We wish to find the maximum value of the *linear* function in  $n$  variables

$$(1.1) \quad f(x_1, \dots, x_n) = c_1 x_1 + \dots + c_n x_n$$

under the assumption that variables  $x_1, \dots, x_n$  be non-negative and satisfy the  $m$  linear inequalities

$$(1.2) \quad \begin{aligned} a_{1,1}x_{1,1} + a_{1,2}x_{1,2} + \dots + a_{1,n}x_{1,n} &\leq b_1 \\ a_{2,1}x_{1,1} + a_{2,2}x_{1,2} + \dots + a_{2,n}x_{1,n} &\leq b_2 \\ &\vdots \\ a_{m,1}x_{1,1} + a_{m,2}x_{1,2} + \dots + a_{m,n}x_{1,n} &\leq b_m \end{aligned}$$

Let  $H_i \subset \mathbb{R}^n$  be the subset of solutions to the  $i$ th linear inequality in (1.2), and let  $H'_j \subset \mathbb{R}^n$  be the set of solutions to the linear inequality  $x_j \geq 0$ . Then  $H_i$  and  $H'_j$  are closed halfspaces of  $\mathbb{R}^n$ . We wish to find the maximum value of the function (1.1) on the *feasible region*  $P \subset \mathbb{R}^n$  defined by the intersection

$$(1.3) \quad P = \left( \bigcap_{1 \leq i \leq n} H'_i \right) \cap \left( \bigcap_{1 \leq j \leq m} H_j \right).$$

The structure of the feasible region  $P$  is given by the main theorem of polytopes which we now recall. We refer to [1, Thm. 1.1] for the proof.

**THEOREM 1.4.** *Let  $P \subset \mathbb{R}^n$  be the intersection of a finite number of closed halfspaces and suppose that  $P \subset \mathbb{R}^n$  is bounded. Then  $P$  is equal to the convex hull of a finite subset  $V \subset \mathbb{R}^n$ .*

We recall that the *convex hull* of the finite subset  $V = \{v_1, \dots, v_N\} \subset \mathbb{R}^n$  is defined to be the subset  $P \subset \mathbb{R}^n$  of all linear combinations  $a_1 v_1 + \dots + a_N v_N$  such that all  $a_i \geq 0$  and  $a_1 + \dots + a_N = 1$ . The convex hull  $P \subset \mathbb{R}^n$  of a finite subset of  $V \subset \mathbb{R}^n$  is called a *convex polytope*, and if  $V$  is minimal with this property, then  $V$  is called the set of *vertices* of the convex polytope  $P$ .

**COROLLARY 1.5.** *Let  $P \subset \mathbb{R}^n$  be the convex hull of the finite set  $V \subset P$ , and let  $f: \mathbb{R}^n \rightarrow \mathbb{R}$  be a linear function. Then*

$$\max\{f(x) \mid x \in P\} = \max\{f(v) \mid v \in V\}.$$

PROOF. Since  $V \subset P$ , we clearly have

$$\max\{f(x) \mid x \in P\} \geq \max\{f(v) \mid v \in V\}.$$

Conversely, every element  $x \in P$  can be written  $x = \sum_{v \in V} a_v v$  with  $a_v \geq 0$  and  $\sum_{v \in V} a_v = 1$ . Since  $f$  is linear, we find

$$f(x) = \sum_{v \in V} a_v f(v) \leq \sum_{v \in V} a_v \max\{f(v) \mid v \in V\} = \max\{f(v) \mid v \in V\}.$$

This completes the proof.  $\square$

We return to the optimization problem at hand. Suppose that the feasible region  $P$  is bounded. Then Cor. 1.5 shows that to find the maximum of the function  $f$  on  $P$ , we need only compare the values of  $f$  at the finitely many vertices of  $P$ . However, in real world examples, the number of vertices will be too large for this to be practical.

## 2. A reformulation

Two vertices in the feasible region  $P$  are called *neighbors* if the line segment between them lies in the boundary of  $P$ . The simplex algorithm produces a sequence

$$(2.1) \quad v_0, v_1, \dots, v_s \dots$$

of vertices of the convex polytope  $P$  such that  $v_s$  and  $v_{s-1}$  are neighbors and  $f(v_{s-1}) \leq f(v_s)$ . The increasing sequence of values

$$(2.2) \quad f(v_0), f(v_1), \dots, f(v_s), \dots$$

becomes constant, for  $s$  large, and this constant value is the desired maximum value of the optimization problem. In short, the algorithm is as follows. We first choose some vertex  $v_0$ , say, the origin. Then, given  $v_{s-1}$ , we choose  $v_s$  to be a neighboring vertex of  $v_{s-1}$  for which the increase in the value of  $f$  is maximal.

It is possible to construct bad examples where the simplex algorithm visits all vertices of  $P$  before arriving at the optimal vertex. In practice, however, the algorithm is very effective. Moreover, it is easy to implement as we will now see.

We first rewrite the linear inequalities (1.2) and the requirement that the variables  $x_1, \dots, x_n$  be non-negative in the following equivalent form. We introduce  $m$  additional variables  $x_{n+1}, \dots, x_{m+n}$  and ask that the linear equations

$$(2.3) \quad \begin{aligned} a_{1,1}x_{1,1} + a_{1,2}x_{1,2} + \dots + a_{1,n}x_{1,n} + x_{n+1} &= b_1 \\ a_{2,1}x_{1,1} + a_{2,2}x_{1,2} + \dots + a_{2,n}x_{1,n} + x_{n+2} &= b_2 \\ &\vdots \\ a_{m,1}x_{1,1} + a_{m,2}x_{1,2} + \dots + a_{m,n}x_{1,n} + x_{m+n} &= b_m \end{aligned}$$

be satisfied and that all variables  $x_1, \dots, x_n, x_{n+1}, \dots, x_{m+n}$  be non-negative. The new variables  $x_{n+1}, \dots, x_{m+n}$  are called the *slack variables* and measure how close the original inequalities are to being equalities. Written in matrix form, this of

linear equation becomes

$$(2.4) \quad \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} & 1 & 0 & \dots & 0 \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} & 0 & 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ x_{n+1} \\ \vdots \\ x_{m+n} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

We say that a solution  $(x_1, \dots, x_{m+n})$  to the system of linear equations (2.4) is a *feasible solution*, if all  $x_1, \dots, x_{m+n}$  are non-negative, and we say that a feasible solution  $(x_1, \dots, x_{m+n})$  is a *basic feasible solution*, if exactly  $n$  of the variables  $x_1, \dots, x_{m+n}$  are equal to zero. The map

$$(x_1, \dots, x_n, x_{n+1}, \dots, x_{m+n}) \mapsto (x_1, \dots, x_n)$$

that forgets the slack variables gives a one-to-one correspondance between the set of feasible solutions (resp. basic feasible solutions) of (2.4) and the set of points (resp. vertices) of the feasible region (1.3). Moreover, two vertices in the feasible region (1.3) are neighbors if and only if the corresponding basic feasible solutions of (2.4) share exactly  $n - 1$  zeros.

### 3. The algorithm

We now explain Danzig's algorithm for solving the optimization problem. It is customary to write the system of linear equations (2.4) in the following form which is called a *tableau*. We also include, as the bottom row, the negative of the coefficients of the function  $f(x_1, \dots, x_n)$  we wish to maximize.

| $x_1$     | $x_2$     | $\dots$ | $x_n$     | $x_{n+1}$ | $x_{n+2}$ | $\dots$ | $x_{m+n}$ |          |
|-----------|-----------|---------|-----------|-----------|-----------|---------|-----------|----------|
| $a_{1,1}$ | $a_{1,2}$ | $\dots$ | $a_{1,n}$ | 1         | 0         | $\dots$ | 0         | $b_1$    |
| $a_{2,1}$ | $a_{2,2}$ | $\dots$ | $a_{2,n}$ | 0         | 1         | $\dots$ | 0         | $b_2$    |
| $\vdots$  | $\vdots$  |         | $\vdots$  | $\vdots$  | $\vdots$  |         | $\vdots$  | $\vdots$ |
| $a_{m,1}$ | $a_{m,2}$ | $\dots$ | $a_{m,n}$ | 0         | 0         | $\dots$ | 1         | $b_m$    |
| $-c_1$    | $-c_2$    |         | $-c_n$    | 0         | 0         |         | 0         |          |

The tableau above is called the initial tableau. The algorithm also uses a *partition* of the variables  $x_1, \dots, x_n, x_{n+1}, \dots, x_m$  into a group  $m$  variables called the *basic variables* and a group of  $n$  variables called the *non-basic variables*. In the initial partition, the  $m$  slack variables  $x_{n+1}, \dots, x_{m+n}$  are the basic variables and the original variables  $x_1, \dots, x_n$  are the non-basic variables. Each iteration of the algorithm produces a new tableau and a new partition of the variables.

Step 1: Are all the entries in the bottom row of the tableau non-negative? If yes, stop; the current tableau is the final tableau. If no, go to Step 2.

Step 2: Choose a variable  $x_s$  such that the corresponding entry in the bottom row has as large a negative value as possible. We call  $x_s$  the *entering basic variable* and we call the  $s$ th column the *pivot column*.

Step 3: Does there exist a positive entry in the pivot column between the two horizontal lines? If yes, go to Step 4. If no, stop; the function  $f$  is unbounded on the feasible region  $P$  (which is unbounded).

Step 4: Let  $\alpha_{i,s}$  be the  $i$ th entry in the pivot column, and let  $\beta_i$  be the  $i$ th entry in the column on the right-hand side of the vertical line. Then among the positive entries in the pivot column, we choose an entry  $\alpha_{r,s}$  such that  $\beta_r/\alpha_{r,s}$  is as small as possible. The entry  $\alpha_{r,s}$  is called the *pivot*. There is a unique basic variable  $x_t$  such that, in the  $t$ th column, the  $r$ th entry  $\alpha_{r,t}$  is non-zero. We call  $x_t$  the *leaving basic variable*.

Step 5: Change the partition of the variables such that the entering basic variable  $x_s$  becomes a basic variable and the leaving basic variable  $x_t$  becomes a non-basic variable. Change the tableau by applying elementary row operations as follows. Let  $R_i$  be the  $i$ th row. (We include the bottom row.) Then, for  $i \neq r$ , we replace the  $i$ th row  $R_i$  by  $\alpha_{r,s}R_i - \alpha_{i,s}R_r$ .

Given the final tableau, we find the *final basic feasible solution* as follows. We set all non-basic variables in the final partition equal to zero and solve for the basic variables (using the final tableau). The final basic feasible solution is the solution to the optimization problem.

#### 4. An example

Let us work out a simple example. We wish to maximize the function

$$f(x_1, x_2, x_3) = x_1 + 2x_2 + 3x_3$$

subject to the constraints that  $x_1$ ,  $x_2$ , and  $x_3$  be non-negative and satisfy the linear inequalities

$$\begin{aligned} 7x_1 + x_3 &\leq 6 \\ x_1 + 2x_2 &\leq 20 \\ 3x_2 + 4x_3 &\leq 30 \end{aligned}$$

Since we have 3 linear inequalities, we introduce 3 slack variables  $x_4$ ,  $x_5$ , and  $x_6$ . The initial tableau takes the form

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ |    |
|-------|-------|-------|-------|-------|-------|----|
| 7     | 0     | 1     | 1     | 0     | 0     | 6  |
| 1     | 2     | 0     | 0     | 1     | 0     | 20 |
| 0     | 3     | 4     | 0     | 0     | 1     | 30 |
| -1    | -2    | -3    | 0     | 0     | 0     |    |

and the initial basic variables are  $x_4$ ,  $x_5$ , and  $x_6$ . We apply the simplex algorithm.

Iteration 1:

Step 1: Not all entries in the bottom row are non-negative.

Step 2: The entering basic variable is  $x_3$  and the third column is the pivot column.

Step 3: There are positive entries in the pivot column.

Step 4: Since  $30/4 > 6/1$ , the pivot is the top entry 1 of the pivot column. The leaving basic variable is  $x_4$ .

Step 5: The new basic variables are  $x_3$ ,  $x_5$ , and  $x_6$ . To find the new tableau we replace  $R_2$  by  $3R_2 - 2R_3$  and  $R_4$  by  $3R_4 + 2R_3$ . It takes the form:

$$\begin{array}{c|cccccc|c} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & & \\ \hline 7 & 0 & 1 & 1 & 0 & 0 & & 6 \\ 1 & 2 & 0 & 0 & 1 & 0 & & 20 \\ -28 & 3 & 0 & -4 & 0 & 1 & & 6 \\ \hline 20 & -2 & 0 & 3 & 0 & 0 & & \end{array}$$

Iteration 2:

Step 1: Not all entries in the bottom row are non-negative.

Step 2: The entering basic variable is  $x_2$  and the second column is the pivot column.

Step 3: There are positive entries in the pivot column.

Step 4: Since  $20/2 > 6/3$ , the pivot is 3. The leaving basic variable is  $x_6$ .

Step 5: The new basic variables are  $x_2$ ,  $x_3$ , and  $x_5$ . To find the new tableau, we replace  $R_2$  by  $3R_2 - 2R_3$  and  $R_4$  by  $3R_4 + 2R_3$ . It takes the form

$$\begin{array}{c|cccccc|c} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & & \\ \hline 7 & 0 & 1 & 1 & 0 & 0 & & 6 \\ 59 & 0 & 0 & 8 & 3 & -2 & & 48 \\ -28 & 3 & 0 & -4 & 0 & 1 & & 6 \\ \hline 4 & 0 & 0 & 1 & 0 & 2 & & 3 \end{array}$$

Iteration 3:

Step 1: All entries in the bottom row are non-negative.

We calculate the final basic feasible solution. We set the non-basic variables  $x_1$ ,  $x_4$ , and  $x_6$  equal to zero, and find  $x_2 = 2$ ,  $x_3 = 6$ , and  $x_5 = 16$ . Hence, the desired maximal value of the function  $f$  is  $f(0, 2, 6) = 22$ .

## References

[1] G. M. Ziegler, *Lectures on polytopes*, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995.

NAGOYA UNIVERSITY, NAGOYA, JAPAN

*E-mail address:* larsh@math.nagoya-u.ac.jp