
1 ベクトル空間

まず、実数体は、次数のなす集合Rと加法+: R × R → R、乗法 · : R × R → Rで定義さ
れた写像からなる三組 (R, +, · )である。加法と乗法を満たす性質を思い出す。

(A1) 任意の a, b, c ∈ Rに対して、(a + b) + c = a + (b + c)である。

(A2) 任意の a ∈ Rに対して、a + 0 = a = 0 + aを満たす元 0 ∈ Rが存在する。

(A3) 任意の a ∈ Rに対して、a + b = 0 = b + aを満たす元 b ∈ Rが存在する。

(A4) 任意の a, b ∈ Rに対して、a + b = b + aである。

(P1) 任意の a, b, c ∈ Rに対して、(a · b) · c = a · (b · c)である。

(P2) 任意の a ∈ Rに対して、a · 1 = a = 1 · aを満たす 0でない元 1 ∈ Rが存在する。

(P3) 任意の 0でない a ∈ Rに対して、a · b = 1 = b · aを満たす元 b ∈ Rが存在する。

(P4) 任意の a, b ∈ Rに対して、a · b = b · aである。

(D) 任意のa, b, c ∈ Rに対して、a · (b+c) = (a · b)+(a · c)と (a+b) · c = (a · c)+(b · c)

である。

注 1. 一般的に、集合Kと以上の公理 (A1)–(A4)、(P1)–(P4)、(D)を満たす写像

+: K × K → K, · : K × K → K

からなる三組 (K, +, · )とは、体 (field)と呼ばれる。例として、集合F2 = {0, 1}と次のよう
に定義された写像+: F2 × F2 → F2、 · : F2 × F2 → F2からなる三組 (F2, +, · )も体である。

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0

0 · 0 = 0 0 · 1 = 0 1 · 0 = 0 1 · 1 = 1

体 (F2, +, · )は、位数 2の有限体とよばれ、数学や情報理論での大切なものである。

定義 2. 集合 V と次の公理 (A1)–(A4)と (M1)–(M4)を満たす写像

+: V × V → V, · : R × V → V

からなる三組 (V, +, · )とは、ベクトル空間 (vector space)と呼ばれる。
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(A1) 任意の u,v,w ∈ V に対して、(u + v) + w = u + (v + w)である。

(A2) 任意の u ∈ V に対して、u + 0 = u = 0 + uを満たす元 0 ∈ V が存在する。

(A3) 任意の u ∈ V に対して、u + v = 0 = v + uを満たす元 v ∈ V が存在する。

(A4) 任意の u,v ∈ V に対して、u + v = v + uである。

(M1) 任意の a, b ∈ R、u ∈ V に対して、(a · b) · u = a · (b · u)である。

(M2) 任意の a ∈ R、u,v ∈ V に対して、a · (u + v) = (a · u) + (a · v)である。

(M3) 任意の a, b ∈ R、u ∈ V に対して、(a + b) · u = (a · u) + (b · u)である。

(M4) 任意の u ∈ V に対して、1 · u = uである。

注 3. ベクトル空間 (V, +, · )について、次の用語が用いることが多い。

(i) 集合 V の元は、ベクトルと呼ばれ、太字 u,v,w, · · · で書かれている。

(ii) 集合Rの元は、スカラーと呼ばれ、小文字 a, b, c, · · · で書かれている。

(iii) ベクトル u,v ∈ V に対して、ベクトル u + v ∈ V は、そのベクトル和と呼ばれる。

(iv) スカラー a ∈ Rとベクトル u ∈ V に対して、ベクトル a ·u ∈ V は、そのスカラー積と
呼ばれ、単に auと書かれている。

(v) 任意の u ∈ V に対して u + 0 = u = 0 + uを満たすベクトル 0 ∈ V は、零ベクトルと
呼ばれる。

(vi) ベクトル u ∈ V に対して、u + v = 0 = v + uを満たすベクトル v ∈ V は、ベクトル
uの逆ベクトルと呼ばれ、−uと書かれる。

(vii) ベクトル u,v ∈ V のベクトル差は、u− v = u + (−v)と定義される。特に、任意のベ
クトル u ∈ V に対して、u − u = 0である。

補題 4. ベクトル空間 (V, +, · )をおいておく。

(1) 零ベクトルについては、ただ一つが存在する。
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(2) 任意のベクトル u ∈ V の逆ベクトルについては、ただ一つが存在する。

(3) 任意のベクトル u ∈ V に対して、0u = 0である。

(4) 任意のベクトル u ∈ V に対して、(−1)u = −uである。

証明. (1) ベクトル 0, 0′ ∈ V は、両方公理 (A2)を満たすとき、0 = 0
′であることを示せば

よい。ベクトル 0は公理 (A2)を満たすので、0
′ = 0

′ + 0であることが分かる。同様に、ベ
クトル 0

′は公理 (A2)を満たすので、0
′ + 0 = 0であることが分かる。すなわち、

0
′ = 0 + 0

′ = 0

を示した。

(2) ベクトル v,v′ ∈ V は、両方与えられたベクトルu ∈ V の逆ベクトルであることを仮定
する。そのとき、

v = v + 0 = v + (u + v
′) = (v + u) + v

′ = 0 + v
′ = v

′

が成り立つので、ベクトル uの逆ベクトルの一意性を示した。

(3) ベクトル u ∈ V をおいておく。それについて、

0u = (0 + 0)u = 0u + 0u

なので、0 = 0uが得る。

(4)ベクトル uをおいておく。

u + (−1)u = 1u + (−1)u = (1 − 1)u = 0u = 0

なので、ベクトル (−1)uはベクトル uの逆ベクトルであることが分かる。

例 5 (ユークリッド空間). 次のように定義されたベクトル空間 (Rn, +, · )は、n次のユーク
リッド空間と呼ばれる。集合R

nは、n次の列ベクトル
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のなす集合であり、ベクトル和+: R
n × R

n → R
nとスカラー積 · : R × R

n → R
nは、次の

公式で定義された写像である。
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例 6 (関数空間). 集合 V を任意の関数 f : R → Rからなる集合とし、ベクトル和とスカラー
積を、それぞれの公式 (f + g)(x) = f(x) + g(x)と (af)(x) = af(x)で定めると、(V, +, · )

はベクトル空間である。このベクトル空間の零ベクトルは、定関数 f(x) = 0である。

命題 7. ベクトル空間 (V, +, · )と次の性質 (i)—(iii)を満たす部分集合W ⊂ V をおいておく。

(i) 0 ∈ W

(ii) 任意の u,v ∈ W に対して、u + v ∈ W である。

(iii) 任意の a ∈ R、u ∈ W に対して、au ∈ W である。

そのとき、(W, +, · )は、ベクトル空間である。

証明. それぞれの性質 (ii)と (iii)により、+: W × W → W と · : R × W → W は、うまく
定義された写像である。この写像は、公理 (A1)—(A4)、(M1)—(M4)、(D)を満たすことを
示す。写像+: V × V → V と · : R× V → V が、その公理を満たすので、公理 (A2)と (A3)

以外の公理が成り立つ。公理 (A2)について、写像+: V × V → V が (A2)を満たすので、V

が、任意の u ∈ W に対して、u + 0 = u = 0 + uを満たす元 0を含む。しかし、仮定 (i)

より、0 ∈ W なので、+: W × W → W も公理 (A2)を満たすことが分かる。最後に、写像
+: V ×V → V が公理 (A3)を満たすので、任意のu ∈ W に対して、V が、u+v = 0 = v+u

を満たす元 vを含む。しかし、補題 4その (4)より、v = (−1) · uなので、仮定 (iii)より、
v ∈ W であることが分かる。よって、+: W × W → W も公理 (A3)を満たす。

定義 8. ベクトル空間 (V, +, · )と以上の性質 (i)—(iii)を満たす部分集合W ⊂ V からなるベ
クトル空間 (W, +, · )は、与えられたベクトル空間 (V, +, · )の部分空間とよばれる。

4



命題 9. m × n行列Aに対して、解集合

W = {x ∈ R
n | Ax = 0} ⊂ R

n

については、(W, +, · )はユークリッド空間 (Rn, +, · )の部分空間である。

証明. 部分集合W ⊂ R
nが命題 7の性質 (i)—(iii)を満たすことを示す。まず、A0 = 0なの

で、性質 (i)が成り立つ。続いて、u,v ∈ W のとき、A(u + v) = Au + Av = 0 + 0 = 0なの
で、性質 (ii)が得る。最後に、a ∈ R、u ∈ W のとき、A(au) = aAu = a0 = 0なので、性
質 (iii)も得る。命題 7より、(W, +, · )は、(Rn, +, · )の部分空間であることが分かる。

定義 10. m× n行列Aと解集合W = {x ∈ R
n | Ax = 0} ⊂ R

nにおいて、n次のユークリッ
ド空間 (Rn, +, · )の部分空間 (W, +, · )は、Aのカーネル（kernel）と呼ばれ、ker(A)と書
かれる。

例 11. (1) 次の部分集合W ⊂ R
2について、(W, +, · )は (R2, +, · )の部分空間である。

W = {x ∈ R
2 | 2x1 − 3x2 = 0}

ただし、(W, +, · )は 1 × 2行列A = ( 2 − 3 )のカーネルである。

(2) 次の部分集合Z ⊂ R
2は、ユークリッド空間 (R2, +, · )の部分空間ではない。

Z = {x ∈ R
2 | 2x1 − 3x2 = 1}

なぜなら、Zは、零ベクトル 0を含まない。
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