
8 階数（続き）

今回、階数について色々な結果を示す。

命題 1. m × n行列Bと n × p行列Aに対して、

rank(BA) 6 min{rank(A), rank(B)}

である。

証明. F : R
p → R

nとG : R
n → R

mを、それぞれの F (x) = AxとG(y) = Byで定める線形
写像とする。このとき、F の基本基底R ⊂ R

pと S ⊂ R
nに関する表現行列はA、Gの基本

基底 S ⊂ R
nと T ⊂ R

mに関する表現行列はB、G ◦ F の基本基底R ⊂ R
pと T ⊂ R

mに関
する表現行列はBAである。さらに、

rank(A) = rank(F )

rank(B) = rank(G)

rank(BA) = rank(G ◦ F )

が分かる。今、im(G ◦ F ) ⊂ im(G)ため、

rank(G ◦ F ) = dim(im(G ◦ F )) 6 dim(im(G)) = rank(G)

が成り立つ。同様に、ker(F ) ⊂ ker(G ◦ F )ため、

null(G ◦ F ) = dim(ker(G ◦ F ) > dim(ker(F )) = null(F )

が分かる。よって、

rank(G ◦ F ) = p − null(G ◦ F ) 6 p − null(F ) = rank(F )

が成り立つ。これで、命題を示した。

定理 2. F : R
n → R

mを線形写像、r = rank(F )とする。このとき、次の性質を満たす基底
R′ ⊂ R

nと S ′ ⊂ R
mが存在する。「F の基底R′ ⊂ R

nと S ′ ⊂ R
mに関する表現行列Cは、

C =





Er Or,n−r

Om−r,r Om−r,n−r





となる。」
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証明. 前回証明した定理 8より、

dim(ker(F )) = dim(Rn) − dim(im(F )) = n − r

が分かる。まず、ker(F )の基底R′′ = {ur+1, . . . ,un}を捕る。それから、R′′ ⊂ R′を満たす
R

nの基底R′ = {u1, . . . ,ur,ur+1, . . . ,un}を捕る。このとき、v1 = F (u1), . . . ,vr = F (ur)

とすると、部分集合 S ′′ = {v1, . . . ,vr} ⊂ im(F )が、im(F )の基底である。なぜなら、S ′′が
im(F )を生成し、S ′′の個数は im(F )の次元と等しい。特に、S ′′ ⊂ R

mは１次独立である。
最後に、S ′′ ⊂ S ′を満たすR

m基底 S ′ = {v1, . . . ,vr,vr+1, . . . ,vm}と捕る。

今、基底R′ ⊂ R
nと S ′ ⊂ R

mの定義より、

F (uj) =











vj (1 6 j 6 r)

0 (r + 1 6 j 6 n)

が分かる。すなわち、F の基底R′ ⊂ R
nと S ′ ⊂ R

mに関する表現行列Cは、

C =





Er Or,n−r

Om−r,r Om−r,n−r





となる。

系 3. m × n行列Aに対して、次の性質 (i)—(ii)は同値である。

(i) rank(A) = rである。

(ii) 以下の式が成立するようなm次の可逆行列Xと n次の可逆行列 Y が存在する。

XA Y =





Er Or,n−r

Om−r,r Om−r,n−r





証明. F : R
n → R

mを、F (x) = Axで定義される線形写像とする。このとき、F の基本基底
R = {e1, . . . , en} ⊂ R

nと S = {e1, . . . , em} ⊂ R
mに関する表現行列が、Aである。定理 2

より、F の基底R′ ⊂ R
nと S ′ ⊂ R

mに関する表現行列Cは、

C =





Er Or,n−r

Om−r,r Om−r,n−r





2



となる基底R′ ⊂ R
nと S ′ ⊂ R

mが存在する。ここで、

r = rank(F ) = rank(A) = rank(C)

である。今、P を恒等写像 idRnの基底R ⊂ R
nとR′ ⊂ R

nに関する表現行列、Qを恒等写像
idRm の基底 S ⊂ R

mと S ′ ⊂ R
mに関する表現行列とすると、

C = Q−1AP

が分かる。よって、X = Q−1、Y = P とすると、系が成り立つ。

注 4. 任意の可逆行列は基本行列の積として書くことができる。ゆえに、任意のm× n行列
Aに対して、列基本変形と行基本変形を両方用いると、次の形の行列に変形できる。

XA Y =





Er Or,n−r

Om−r,r Om−r,n−r





ここで、rはAの階数 rank(A)である。

例 5. 次の 3 × 4行列Aを考えてみる。

A =











1 2 3 4

5 6 7 8

9 10 11 12











次のように行基本変形を使い、Aの簡約化Bが成り立つ。

B = E3,2(−1)E1,2(−2)P3(−
1

8
)P2(−

1

4
)E3,1(−9)E2,1(−5)A =











1 0 −1 −2

0 1 2 3

0 0 0 0











それから、列基本変形を使い、次の行列C = XA Y が成り立つ。

C = BE1,3(1)E1,4(2)E2,3(−2)E2,4(−3) =











1 0 0 0

0 1 0 0

0 0 0 0











よって、
X = E3,2(−1)E1,2(−2)P3(−

1

8
)P (−1

4
)E3,1(−9)E2,1(−5)

Y = E1,3(1)E1,4(2)E2,3(−2)E2,4(−3)
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とすると、

XAY =











1 0 0 0

0 1 0 0

0 0 0 0











を得る。Xと Y を計算する。

X =











−3

2

1

2
0

5

4
−1

4
0

−1

8

1

4
−1

8











Y =

















1 0 1 2

1 1 −2 −3

0 0 1 0

0 0 0 1
















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