
10 内積空間

内積空間は、ベクトル空間V とその内積 〈−,−〉からなる組 (V, 〈−,−〉)のものである。内積空
間 (V, 〈−,−〉)に関して、v ∈ V の長さ ‖v‖とゼロでないu,v ∈ V のなす角 θが定義できる。

定義 1. ベクトル空間 V の内積とは、次の性質を満たす写像

〈−,−〉 : V × V → R

のことである。

(i) 任意の u1,u2,v ∈ V に対して、〈u1 + u2,v〉 = 〈u1,v〉 + 〈u2,v〉 である。

(ii) 任意の u,v ∈ V と a ∈ Rに対して、〈au,v〉 = a〈u,v〉である。

(iii) 任意の u,v ∈ V に対して、〈u,v〉 = 〈v,u〉である。

(iv) 任意の u ∈ V に対して、〈u,u〉 > 0、〈u,u〉 = 0ならば u = 0である。

ベクトル空間V と内積 〈−,−〉 : V ×V → Rからなる組 (V, 〈−,−〉)は、内積空間と呼ばれる。

例 2. (1) R
nのとき、次のように定める写像 〈−,−〉 : R

n × R
n → Rが内積である。

〈

















x1

x2

...

xn

















,

















y1

y2

...

yn

















〉

= x1y1 + x2y2 + · · · + xnyn

これはR
nの標準的な内積とよばれ、内積空間 (Rn, 〈−,−〉)は n次元ユークリッド空間と呼

ばれる。

(2) 連続関数のなす空間C0([a, b]) = {f : [a, b] → R | f は連続である }のとき、次のように
定める写像 〈−,−〉 : C0([a, b]) × C0([a, b]) → Rは、内積である。

〈f, g〉 =

∫ b

a

f(x)g(x)dx

定義 3. 内積空間 (V, 〈−,−〉)において、ベクトル u,v ∈ V に対して、

〈u,v〉 = 0

なる関係が成り立つのとき、u,vが直交していると呼ばれる。
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例 4. (0) 一般的に、内積空間 (V, 〈−,−〉)の零ベクトル 0 ∈ V と任意のベクトル v ∈ V が直
交している。

(1)ユークリッド空間 (Rn, 〈−,−〉)に関して、基本ベクトル e1, . . . , enが互いに直交している。
なぜなら、任意の 1 6 i, j 6 nに対して、

〈ei, ej〉 =











1 (i = j)

0 (i 6= j)

である。

(2) 関数空間 (C0([0, 2π]), 〈−,−〉)に関して、cos xと sin xが直交している。なぜなら、

〈cos x, sin x〉 =

∫

2π

0

cos x sin xdx = 0

である。

定義 5. 内積空間 (V, 〈−,−〉)において、内積 〈−,−〉に関連するノルムは、

‖u‖ =
√

〈u,u〉

で定める写像 ‖ − ‖ : V → Rである。

例 6. (1) ユークリッド空間 (R3, 〈−,−〉)において、

‖2e1 + 3e2 + 6e3‖ =
√

22 + 32 + 62 =
√

4 + 9 + 36 =
√

49 = 7

‖4e1 − 4e2 + 7e3‖ =
√

42 + (−4)2 + 72 =
√

16 + 16 + 49 =
√

81 = 9

である。

(2) 関数空間 (C0([0, 2π]), 〈−,−〉)において、

‖ sin x ‖ =

√

∫

2π

0

sin x · sin xdx =

√

∫

2π

0

sin2 xdx =
√

π

である。

命題 7 (コーシー・シュワルツの不等式). 内積空間 (V, 〈−,−〉)において、任意のu,v ∈ V に
対して、

|〈u,v〉| 6 ‖u‖‖v‖

である。
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証明. u,v ∈ V を固定する。定義 1その (iv)より、任意の t ∈ Rに対して、

〈tu + v, tu + v〉 > 0

が分かる。一方、定義 1その (i)–(iii)より、

〈tu + v, tu + v〉 = 〈u,u〉t2 + 2〈u,v〉t + 〈v,v〉 = ‖u‖2t2 + 2〈u,v〉t + ‖v‖2

を得る。よって、任意の t ∈ Rに対して、

‖u‖2t2 + 2〈u,v〉t + ‖v‖2
> 0

が分かる。ゆえに、二次方程式の根の公式より、

∆2 = (2〈u,v〉)2 − 4‖u‖2‖v‖2
6 0

が成り立つ。すなわち、
|〈u,v〉| 6 ‖u‖‖v‖

を得る。

系 8 (三角不等式). 内積空間 (V, 〈−,−〉)において、任意の u,v ∈ V に対して、

‖u + v‖ 6 ‖u‖ + ‖v‖

である。

証明. コーシー・シュワルツの不等式より、

‖u + v‖2 = 〈u + v,u + v〉 = ‖u‖2 + 2〈u,v〉 + ‖v‖2

6 ‖u‖2 + 2‖u‖‖v‖ + ‖v‖2 = (‖u‖ + ‖v‖)2

が分かる。‖u + v‖, ‖u‖ + ‖v‖は非負の実数なので、系が成り立つ。

定義 9. 内積空間 (V, 〈−,−〉)において、ゼロでないベクトル u,v ∈ V のなす角 θは、次の性
質 (i)–(ii)を満たす実数 θである。

(i) 0 6 θ 6 π

(ii) cos θ =
〈u,v〉
‖u‖‖v‖
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例 10. (1) (R3, 〈−,−〉)において、u = e1 + e2 + e3,v = e1 + e2のなす角は、

cos θ =
〈u,v〉
‖u‖‖v‖ =

2√
3 ·

√
2

(0 6 θ 6 π)

で仮定される。計算すると、
θ ; 35.26 ◦

となる。

定義 11. 内積空間 (V, 〈−,−〉)をおいておく。

(1) 次の性質を満たす部分集合 S ⊂ V は、正規直交であると呼ばれる。
「任意の u,v ∈ Sに対して、

〈u,v〉 =











1 (u = v)

0 (u 6= v)

である。」

(2) 正規直交である基底 S ⊂ V は、正規直交基底と呼ばれる。

補題 12. 内積空間 (V, 〈−,−〉)とその正規直交基底S ⊂ V に関して、任意のv ∈ V に対して、

v =
∑

u∈S

〈v,u〉u

である。

証明. S ⊂ V が基底であるため、任意の v ∈ V は、一意的に次のように表される。

v =
∑

w∈S

cww (cw ∈ R)

S ⊂ V が正規直交であるため、任意の u ∈ Sに対して、

〈v,u〉 = 〈
∑

w∈S

cww,u〉 =
∑

w∈S

cw〈w,u〉 = cu

を得る。これで補題を示した。
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命題 13 (グラム・シュミットの正規直交化法). 内積空間 (V, 〈−,−〉)、有限の１次独立であ
る部分集合 T = {v1, . . . ,vn} ⊂ V において、S = {u1, . . . ,vn} ⊂ V を、帰納法を用いて、

v
′
k = vk −

∑

16i<k

〈vk,ui〉ui

uk =
v
′
k

‖v′
k‖

で定義される部分集合とする。

(1) S ⊂ V は正規直交である。

(2) S ⊂ V で生成される部分空間と T ⊂ V で生成される部分空間は等しい。

証明. 帰納法を用いて示す。n = 1のときは自明なので、n = r−1のときを正しいと仮定し、
n = rのときを示せばよい。

以下、(1)を示す。帰納法の仮定より、S ′ = {u1, . . . ,ur−1} ⊂ V は正規直交であることが分
かる。さらに、urの定義より、

〈ur,ur〉 = 1,

任意の 1 6 j < rに対して、

〈ur,uj〉 = ‖v′
r‖−1〈v′

r,uj〉

= ‖v′
r‖−1〈vr −

∑

16i<r

〈vr,ui〉ui,uj〉

= ‖v′
r‖−1

(

〈vr,uj〉 −
∑

16i<r

〈vr,ui〉〈ui,uj〉
)

= ‖v′
r‖−1

(

〈vr,uj〉 − 〈vr,uj〉
)

= 0

を得る。すなわち、S = {u1, . . . ,ur} ⊂ V は正規直交であることを示した。これで、(1)を
示した。

さて、(2)を示す。帰納法の仮定より、

S ′ = {u1, . . . ,ur−1} ⊂ V

T ′ = {v1, . . . ,vr−1} ⊂ V

で生成される部分空間は等しい、urの定義より、

vr =
∑

1≤i<r

〈vk,ui〉ui + ‖v′
r‖ur
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ため、
S = {u1, . . . ,ur−1,ur} ⊂ V

T = {v1, . . . ,vr−1,vr} ⊂ V

で生成される部分空間は等しいことが分かる。これで、(2)を示した。

系 14. 有限次元内積空間 (V, 〈−,−〉)に対して、正規直交基底 S ⊂ V が存在する。

証明. 基底 T = {v1, . . . ,vn} ⊂ V をとると、グラム・シュミットの正規直交化法で定める部
分集合 S = {u1, . . . ,ur} ⊂ V は正規直交基底であることが分かる。

例 15. 次の部分集合 S = S(θ) ⊂ R
2は正規直交基底である。

S =











cos θ

sin θ



 ,





− sin θ

cos θ











なぜなら、
〈





cos θ

sin θ



 ,





cos θ

sin θ





〉

= 1

〈





cos θ

sin θ



 ,





− sin θ

cos θ





〉

= 0

〈





− sin θ

cos θ



 ,





− sin θ

cos θ





〉

= 1

ため、S ⊂ R
2は正規直交である。特に、S ⊂ R

2は１次独立であることが分かる。Sの個数
とR

2の次元は等しいため、S ⊂ R
2は基底であることが成り立つ。すなわち、S ⊂ R

2は正
規直交基底である。さらに、補題 12より、ベクトル

x =





x1

x2



 ∈ R
2

の基底 S ⊂ R
2に関する座標 c1, c2は、次のように表される。

c1 =

〈





x1

x2



 ,





cos θ

sin θ





〉

= x1 cos θ + x2 sin θ

c2 =

〈





x1

x2



 ,





− sin θ

cos θ





〉

= −x1 sin θ + x2 cos θ
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