
11 対称行列と直交行列

内積空間 (Rn, 〈−,−〉)において、次の性質を満たすような部分集合 S = {u1, . . . ,uk} ⊂ R
n

は、正規直交であると呼ばれる。

〈ui,uj〉 =











1 (i = j)

0 (i 6= j)

例として、基本基底 S = {e1, . . . , en} ⊂ R
nが、正規直交である。

定義 1. (i) tA = Aを満たす正方行列Aは、対称行列と呼ばれる。

(ii) n次の正方行列 P において、P の列ベクトルからなる部分集合 S ⊂ R
nは正規直交であ

るとき、P が直交行列と呼ばれる。

例 2. (1) 単位行列Enは、n次の対称行列である。

(2) 単位行列Enは、n次の直交行列である。なせなら、Enの列ベクトルからなる部分集合
は、基本基底 S = {e1, . . . , en} ⊂ R

nと等しい、正規直交である。

(3) 任意の 2次の対称行列Aは、次のように表される。

A =





a b

b d





(4) 任意の 2次の直交行列 P は、次のように表される。

P =





cos θ − sin θ

sin θ cos θ



 または P =





cos θ sin θ

sin θ − cos θ





補題 3. n次の正方行列Aに対して、次の性質 (i)–(ii)は、同値である。

(i) Aは対称行列である。

(ii) 任意の x,y ∈ R
nに対して、〈Ax,y〉 = 〈x, Ay〉である。

証明. まず、(i)を仮定し、(ii)を示す。一般的に、u,v ∈ R
nの内積が、次のように行列積で

表される。
〈u,v〉 = tuv
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特に、
〈Ax,y〉 = t(Ax)y = tx tAy = 〈x, tAy〉

である。

逆に、(ii)を仮定し、(i)を示す。仮定より、特に、

aij = 〈ei, Aej〉 = 〈Aei, ej〉 = aji

が分かる。よって、Aは対称行列であることが成り立つ。

命題 4. Aを n次の対称行列、λ1, . . . , λkをAの互いに異なる固有値、v1, . . . ,vkをそれらに
属する固有ベクトルとする。そのとき、任意の 1 6 i < j 6 kに対して、

〈vi,vj〉 = 0

である。

証明. 補題 3を用いて、

λi〈vi,vj〉 = 〈λivi,vj〉 = 〈Avi,vj〉 = 〈vi, Avj〉 = 〈vi, λjvj〉 = λj〈vi,vj〉

が分かる。仮定より、λi 6= λjなので、〈vi,vj〉 = 0が成り立つ。

例 5. 次の対称行列Aを考えてみる。

A =





9 −2

−2 6





以下、Aの固有値と固有ベクトルを計算する。

Aの固有多項式は、

χA(t) = det(A − tE) = det





9 − t −2

−2 6 − t



 = (9 − t)(6 − t) − 4

= t2 − 15t + 50 = (t − 5)(t − 10)

であるため、Aの固有値は、λ1 = 5と λ2 = 10である。λiに属する固有ベクトルviは、連
立１次方程式 (A − λiE)vi = 0を満たすゼロでないベクトル viである。計算すると、

v1 =





1

2



 , v2 =





2

−1




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を得る。（任意の viのゼロでないスカラー倍も、λiに属する固有ベクトルである。）特に、

〈v1,v2〉 = 1 · 2 + 2 · (−1) = 0

である。

補題 6. n次の正方行列 P に対して、次の性質 (i)–(iv)は同値である。

(i) P は直交行列である。

(ii) 任意の x ∈ R
nに対して、‖Px‖ = ‖x‖である。

(iii) 任意の x,y ∈ R
nに対して、〈Px, Py〉 = 〈x,y〉である。

(iv) (tP ) P = Enである。

証明. P の第 j列を pjとすると、

〈pi,pj〉 = (tP ) P の (i, j)成分

であるため、S = {p1, . . . ,pn} ⊂ R
nが正規直交であることと (tP ) P = Enであることは同

値である。すなわち、(i)と (iv)は同値である。

任意の u,v ∈ R
nに対して、

‖u + v‖2 = 〈u + v,u + v〉 = 〈u,u〉 + 〈u,v〉 + 〈v,u〉 + 〈v,v〉 = ‖u‖2 + 2〈u,v〉 + ‖v‖2

ため、
〈u,v〉 =

1

2

(

‖u + v‖2 − ‖u‖2 − ‖v‖2
)

が分かる。よって、(ii)と (iii)は同値であることが成り立つ。

次に、(iii)ならば (i)を示す。(iii)を仮定すると、

〈pi,pj〉 = 〈Pei, Pej〉 = 〈ei, ej〉

を得る。よって、(i)が成り立つ。

最後に、(i)ならば (ii)を示す。任意の x ∈ R
nに対して、

Px = p1x1 + · · ·+ pnxn
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である。よって、(i)を仮定すると、

‖Px‖2 = 〈p1x1 + · · ·+ pnxn,p1x1 + · · · + pnxn〉 = x2

1
+ · · · + x2

n = ‖x‖2

を得るため、(ii)が成り立つ。

例 7. 補題 6より、n次の正方行列P に対して、P が直交行列であることと tP が直交行列で
あることは同値である。なせなら、

P が直交行列 ⇔ (tP ) P = En ⇔ P−1 = tP ⇔ P (tP ) = En ⇔ tP が直交行列

命題 8. 任意の直交行列 P に対して、次の性質 (i)–(ii)が成り立つ。

(i) | det(P )| = 1である。

(ii) 任意の P の固有値 λに対して、|λ| = 1である。

証明. (i) (tP ) P = Eであるため、det(P )2 = det((tP ) P ) = det(E) = 1が分かる。

(ii) vを、固有値 λに属する固有ベクトルとすると、

λ2〈v,v〉 = 〈λv, λv〉 = 〈Pv, Pv〉 = 〈v,v〉

を得る。v 6= 0ため、λ2 = 1が分かる。

例 9. P を n次の直交行列とする。以下、det(P ) = −1のとき、λ = −1が P の固有値であ
ることを示す。

授業 9の定理 7より、det(P + E) = 0を示せばよい。P は直交行列であるため、

(tP )(P + E) = (tP )P + (tP )E = E + tP = tE + tP = t(E + P ) = t(P + E)

が分かる。よって、

det(P + E) = det(t(P + E)) = det((tP )(P + E))

= det(tP ) det(P + E) = det(P ) det(P + E) = − det(P + E)

を得る。ゆうに、det(P + E) = 0が成り立つ。
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