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問題 1 (20点). W を n次元ベクトル空間とし、S ⊂ W をm個のベクトルからなる部分集合
とする。次の命題が正しくなるように (a)(b)(c)の中から選べ。

(1) SがW を生成するとき、必ず

(a) m > nである、 (b) m 6 nである、 (c) m = nである。

(2) Sが１次独立であるとき、必ず

(a) m > nである、 (b) m 6 nである、 (c) m = nである。

(3) SがW の基底であるとき、必ず

(a) m > nである、 (b) m 6 nである、 (c) m = nである。

(1) (a) は正しい。

(2) (b) は正しい。

(3) (a), (b), (c) は正しい。
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問題 2 (20点). S ⊂ R
3を、次のように定める部分集合とする。
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次の各問いに答えよ。

(1) Sは１次独立であることを示せ。

(2) Sを含むR
3の基底 T を求めよ。

(1) 任意の１次関係
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に対して、c1 = 0と c2 = 0を得るため、S ⊂ R
3は１次独立であることが成り立つ。

(2) T を、
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とすると、T は１次独立である。なぜなら、
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のとき、必ず c1 = 0、c2 = 0、c3 = 0である。さらに、T の個数はR
3の次元と等しいため、

T はR
3の基底であることが分かる。
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問題 3 (20点). V ⊂ R
3を、次のように定める部分空間とする。

V =


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⊂ R
3

F : V → R
2を、次のように定める線形写像とする。
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次の各問いに答えよ。

(1) V の基底Rを求めよ。

(2) F の基底Rと基本基底 S = {e1, e2}に関する表現行列Aを求めよ。

(3) F の逆写像 F−1の基本基底 Sと基底Rに関する表現行列Bを求めよ。
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
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問題 4 (20点). F : R
3 → R

2を、次のように定める線形写像とする。

F
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R = {e1, e2, e3} ⊂ R
3, S = {e1, e2} ⊂ R

2を基本基底、R′ ⊂ R
3, S ′ ⊂ R

2を次のように定め
る基底とする。
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恒等写像 idR3 : R
3 → R

3と idR2 : R
2 → R

2を、それぞれ idR3(x) = xと idR2(y) = yで定義さ
れる線形写像とする。次の各問いに答えよ。

(1) F の基底Rと Sに関する表現行列Aを求めよ。

(2) 恒等写像 idR3 : R
3 → R

3の基底R′とRに関する表現行列 P を求めよ。

(3) 恒等写像 idR2 : R
2 → R

2の基底 S ′と Sに関する表現行列Qを求めよ。

(4) F の基底R′と S ′に関する表現行列Bを求めよ。
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問題 5 (20点). F : R
3 → R

3を、次のように定義される線形写像とする。

F (x) = Ax, A =
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S = {e1, e2, e3} ⊂ R
3を基本基底、S ′ ⊂ R

3を次のように定める基底とする。
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恒等写像 idR3 : R
3 → R

3を、idR3(x) = xで定める線形写像とする。次の各問いに答えよ。

(1) 恒等写像 idR3の基底 S ′と Sに関する表現行列 P を求めよ。

(2) F の基底 S ′と S ′に関する表現行列Bを求めよ。
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