

Pespectives in Mathematical Sciences: Report Problems

Due: Tuesday, October 25.

We recall that the abelian group A is said to be generated by the subset $S \subset A$ if every element $a \in A$ can be expressed as a \mathbb{Z} -linear combination

$$a = \sum_{s \in S} n_s s$$

where all but finitely many of the integers n_s are zero.

Problem 1. Given positive real numbers a and b , we let $T(a, b) \subset \mathbb{R}^2$ be the right triangle with vertices $(0, 0)$, $(a, 0)$, and (a, b) . Show that the subset

$$S = \{[T(a, b)] \mid a, b \in (0, \infty)\} \subset P(\mathbb{R}^2)$$

generates the scissors congruence group $P(\mathbb{R}^2)$.

Problem 2. Show that there is a group homomorphism

$$D: P(\mathbb{R}^3) \rightarrow \mathbb{R} \otimes (\mathbb{R}/\pi\mathbb{Z})$$

that to $[P]$ associates the Dehn invariant of P .