
1 序文

開集合 U ⊂ R
2において、滑らかな写像 f : U → R

2もベクトル場とも呼ばれる。

質問 1.1. ベクトル場 f : U → R
2に対して、ポテンシャル F : U → Rが存在するか？

ここで、滑らかな関数 F : U → Rが f : U → R
2のポテンシャルであることは、F は次の微

分方程式を満たすことである。

∂F

∂x1
= f1,

∂F

∂x2
= f2.

ベクトル場 f : U → R
2のポテンシャル F : U → Rが存在するとき、

∂2F

∂x1∂x2
=

∂2F

∂x2∂x1

であるため、必ず f : U → R
2が次の等式を満たすことが成り立つ。

∂f2

∂x1
=
∂f1

∂x2
.

この等式を満たすベクトル場f : U → R
2は、保存ベクトル場と呼ばれる。よって、質問 1.1

の代わりに、次の質問を答えればよい。

質問 1.2. 保存ベクトル場 f : U → R
2に対して、ポテンシャル F : U → Rが存在するか？

例 1.3. 次のように定めるベクトル場 f : U = R
2

r {(0, 0)} → R
2を考えて見る。

f(x1, x2) =

(
−x2

x2
1 + x2

2

,
x1

x2
1 + x2

2

)

.

次の計算より、f : U → R
2が保存ベクトル場であることを得る。

∂f2

∂x1
(x1, x2) =

1 · (x2
1 + x2

2) − x1 · 2x1

(x2
1 + x2

2)
2

=
x2

2 − x2
1

(x2
1 + x2

2)
2

∂f1

∂x2

(x1, x2) =
−1 · (x2

1 + x2
2) − (−x2 · 2x2)

(x2
1 + x2

2)
2

=
x2

2 − x2
1

(x2
1 + x2

2)
2

今、ポテンシャル F : U → R
2が存在することを仮定し、次の線積分を計算する。

∫ 2π

0

d

dθ
F (cos θ, sin θ)dθ = F (1, 0) − F (1, 0) = 0.
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一方、連鎖律の公式により、
d

dθ
F (cos θ, sin θ) =

∂F

∂x1
(cos θ, sin θ) · (− sin θ) +

∂F

∂x2
(cos θ, sin θ) · cos θ

= f1(cos θ, sin θ) · (− sin θ) + f2(cos θ, sin θ) · cos θ

= 1

であるため、直接に線積分を計算すると、
∫ 2π

0

d

dθ
F (cos θ, sin θ)dθ =

∫ 2π

0

1 · dθ = 2π

を得る。よって、f : U → Rのポテンシャル F : U → Rが存在しないことが分かる。

定義 1.4. 次の性質を満たす部分集合X ⊂ R
nは星形集合と呼ばれる。「点 x̄ ∈ Xが存在し、

任意の x ∈ Xと t ∈ [0, 1]に対して、tx+ (1 − t)x̄ ∈ X」

TTTTTTTTTT

**
**

**
**

** ����������

jjjjjjjjjj

TTTTTTTTTT

**********��
��
��
��
��

jjjjjjjjjj

•
x̄

•
x̄

星形集合 星形集合星形でない集合

部分集合X ⊂ R
nが星形集合であることは、任意の点 x ∈ X が一つの点 x̄ ∈ Xから見える

ことと同値である。次の定理を復習する。

定理 1.5. 星形開集合U ⊂ R
2において、任意の保存ベクトル場 f : U → R

2に対して、ポテ
ンシャル F : U → Rが存在する。

証明. 開集合 U が点 x̄ = (0, 0)に関して星形集合であることを仮定すればよい。次のように
定める関数 F : U → Rを考えてみる。

F (x1, x2) =

∫ 1

0

(x1f1(tx1, tx2) + x2f2(tx1, tx2)) dt

写像 f : U → R
2とその偏導関数が連続であるため、

∂F

∂x1
(x1, x2) =

∫ 1

0

(

f1(tx1, tx2) + tx1
∂f1

∂x1
(tx1, tx2) + tx2

∂f2

∂x1
(tx1, tx2)

)

dt
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をえる。一方、f : U → R
2が保存ベクトル場であるため、

d

dt
(tf1(tx1, tx2)) = f1(tx1, tx2) + tx1

∂f1

∂x1

(tx1, tx2) + tx2
∂f1

∂x2

(tx1, tx2)

= f1(tx1, tx2) + tx1
∂f1

∂x1

(tx1, tx2) + tx2
∂f2

∂x1

(tx1, tx2)

が分かる。よって、
∂F

∂x1
= f1

が成り立つ。同様に、
∂F

∂x2

= f2

を得る。これで、F : U → Rは f : U → R
2のポテンシャルであることを示した。

以上の例 1.3と定理 1.5を比べると、質問 1.2の答えは、地域 U のトポロジーによることが
分かる。以下、一般の場合に質問 1.2を答えるために、地域U の不変量H1(U)を定義する。
先ず、次のベクトル空間と線形写像を考えてみる。

C∞(U,R)
grad

// C∞(U,R2)
rot

// C∞(U,R) (1.6)

ここで、C∞(U,Rk)は、各滑らかな写像 f : U → R
kからなるベクトル空間、勾配と呼ばれ

る線形写像 gradと回転と呼ばれる線形写像 rotは、次のように定義された線形写像である。

grad(F ) =

(
∂F

∂x1
,
∂F

∂x2

)

, rot(f) =
∂f2

∂x1
−
∂f1

∂x2

これらを用いて、保存ベクトル場のなすベクトル空間とポテンシャルを持つベクトル場のな
すベクトル空間が次のように表される。

ker(rot) = {保存ベクトル場 f : U → R
2} (ker =核)

im(grad) = {ポテンシャルを持つベクトル場 f : U → R
2} (im =像)

さらに、

(rot ◦ grad)(F ) = rot(grad(F )) = rot

(
∂F

∂x1
,
∂F

∂x2

)

=
∂2F

∂x1∂x2
−

∂2F

∂x2∂x1
= 0

であるため、
im(grad) ⊂ ker(rot)

が分かる。今、不変量H1(U)は、次の商ベクトル空間と定義される。
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定義 1.7. 開集合U ⊂ R
2において、H1(U) = ker(rot)/ im(grad)と定義される。

ここで、ベクトル空間W とその部分空間 V ⊂W において、商空間W/V は次の剰余類から
なるベクトル空間と定義される。

W/V = {w + V | w ∈W}

(w + V ) + (w′ + V ) = (w + w′) + V (w,w′ ∈W )

a(w + V ) = (aw) + V (a ∈ R, w ∈W )

任意の空集合でない開集合U ⊂ R
2に関して、ベクトル空間 ker(rot)と部分空間 im(grad)は、

無限次元ベクトル空間である。しかし、商空間H1(U)が有限次元ベクトル空間となること
はよくある。不変量H1(U)を用いて、質問 1.2が次のように表される。

質問 1.8. ベクトル空間H1(U)はゼロで空間あるか？

同様に定理 1.5と例 1.3が、それぞれ「星形開集合 U ⊂ R
2に対して、H1(U)はゼロ空間で

ある」と「開集合U = R
2
r {(0, 0)}の場合には、H1(U)はゼロ空間ではい」と表される。以

下の授業９では、後者のベクトル空間は１次元であることを示す。

開集合 U ⊂ R
2において、次の三つのベクトル空間は定義される。

H0(U) = ker(grad)

H1(U) = ker(rot)/ im(grad)

H2(U) = C∞(U,R)/ im(rot)

(1.9)

定理 1.10. 開集合 U ⊂ R
2に対して、次の性質 (1)–(2)は同値である。

(1) ベクトル空間H0(U)は１次元である。

(2) 地域 U は連結である。

証明. 滑らかな関数F : U → Rに関して、grad(F ) = 0であることとF が局所定関数である
ことは同値である。すなわち、H0(U)は局所定関数F : U → Rのなすベクトル空間である。
ある点 x̄ ∈ Uを固定すると、H0(U)は１次元ベクトル空間であることと次のように定める線
形写像が同型であることは同値である。

ǫ : H0(U) → R, ǫ(F ) = F (x̄)

4



(2) ⇒ (1)：任意の局所定関数 F : U → Rは定関数であることを示せばよい。部分集合

A = {x ∈ U | F (x) = F (x̄)} = F−1(F (x̄)) ⊂ U

を考えてみる。F は連続なので、Aは閉集合であることが分かる。さらに、F は局所定関数
であるため、Aも開集合であることを得る。仮定より、Uは連結であるため、閉集合である
かつ開集合である部分集合 A ⊂ U は、A = ∅と A = U しかない。しかし、x̄ ∈ Aため、
A = U が成り立つ。すなわち、F は定関数であることを示した。

(1) ⇒ (2)：Uは連結でない場合には、滑らかな全射F : U → {0, 1}が存在する。この関数F

は、必ず定関数でない局所定関数である。よって、dimH0(U) > 1を得る。

最後に、３次元ベクトル解析の場合には、開集合U ⊂ R
3において、次のベクトル空間と線

形写像を考えてみる。

C∞(U,R)
grad

// C∞(U,R3)
rot

// C∞(U,R3)
div

// C∞(U,R) (1.11)

ここで、勾配 grad及び回転 rot、発散 divは次のように定める線形写像である。

grad(F ) =

(
∂F

∂x1
,
∂F

∂x2
,
∂F

∂x3

)

rot(f) =

(
∂f3

∂x2
−
∂f2

∂x3
,
∂f1

∂x3
−
∂f3

∂x1
,
∂f2

∂x1
−
∂f1

∂x2

)

div(f) =
∂f1

∂x1

+
∂f2

∂x2

+
∂f3

∂x3

計算をすると、
rot ◦ grad = div ◦ rot = 0

を得るので、開集合 U ⊂ R
3に対する不変量が、次のように定義される。

H0(U) = ker(grad)

H1(U) = ker(rot)/ im(grad)

H2(U) = ker(div)/ im(rot)

H3(U) = C∞(U,R)/ im(div)

(1.12)

これらの不変量に対して、「H0(U)はゼロである」と「Uは連結である」は同値、「H1(U)は
ゼロである」と「任意の保存ベクトル場に対して、ポテンシャルが存在する」は同値、「H2(U)

はゼロである」と「任意の発散はゼロであるベクトル場に対して、ベクトルポテンシャルが
存在する」は同値である。
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2 交代代数

定義 2.1. 実ベクトル空間 V と正の整数 kにおいて、次の性質 (1)–(3)を満たす写像

ω : V × · · · × V
︸ ︷︷ ︸

k

→ R

は、k重交代式と呼ばれる。

(1) 任意の 1 6 i 6 kと v1, . . . , vi, v
′
i, . . . , vk ∈ V に対して、

ω(v1, . . . , vi + v′i, . . . , vk) = ω(v1, . . . , vi, . . . , vk) + ω(v1, . . . , v
′
i, . . . , vk)

(2) 任意の 1 6 i 6 kと v1, . . . , vk ∈ V , λ ∈ Rに対して、

ω(v1, . . . , λvi, . . . , vk) = λω(v1, . . . , vi, . . . , vk)

(3) 任意の 1 6 i < j 6 kと v1, . . . , vk ∈ V に対して、

vi = vj ⇒ ω(v1, . . . , vi, . . . , vj , . . . , vk) = 0

ベクトル空間V 上の k重交代式のなすベクトル空間は、Altk(V )と書かれる。このベクトル
空間では、ベクトル和とスカラー積は次のように定義される。

(ω + ω′)(v1, . . . , vk) = ω(v1, . . . , vk) + ω′(v1, . . . , vk) (ω, ω′ ∈ Altk(V ))

(λω)(v1, . . . , vk) = λω(v1, . . . , vk) (ω ∈ Altk(V ), λ ∈ R)

さらに、Alt0(V ) = Rと定義する。

注 2.2. 定義 2.1の性質 (1)と (2)を満たす写像

ω : V × · · · × V
︸ ︷︷ ︸

k

→ R

は、V 上の k重線形形式と呼ばれる。

補題 2.3. 任意の k > dim(V )に対して、Altk(V ) = 0である。
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証明. V は無限次元の場合には、補題は自明なので、V は有限次元nであることを仮定すれ
ばよい。S = {e1, . . . , en} ⊂ V を基底とする。これに対して、任意のベクトル v1, . . . , vk ∈ V

は、一意的に次のような線形結合と書くことができる。

v1 = a1,1e1 + · · · + a1,nen

...

vk = ak,1e1 + · · ·+ ak,nen

よって、k重交代式 ωに関して、定義 2.1の性質 (1)と (2)より、

ω(v1, . . . , vk) = ω(a1,1e1 + · · ·+ a1,nen, . . . , ak,1e1 + · · ·+ ak,nen)

=
∑

16h1,...,hk6n

a1,h1 . . . ak,hk
ω(eh1, . . . , ehk

)

を得る。しかし、k > nのとき、任意の 1 6 h1, . . . , hk 6 nに対して、必ず hi = hjを満たす
1 6 i < j 6 nが存在するため、ω(eh1, . . . , ehk

) = 0が分かる。よって、k > nのとき、

ω(v1, . . . , vk) = 0

が成り立つ。これで、補題を示した。

次に、対称群 Skと符号と呼ばれる準同型 sgn: Sk → {±1}を復習する。集合 {1, 2, . . . , k}の
置換からなる群は、対称群と呼ばれ、Skと書かれる。２つの元 1 6 i < j 6 kを入れ替える
特別な置換は、互換と呼ばれ、(i, j)と書かれる。任意の置換は、互換の積として表されるた
め、対称群は互換で生成されている。任意の互換を−1に移す準同型

sgn: Sk → {±1}

は、ただ一つ存在する。この準同型は符号と呼ばれる。

補題 2.4. 任意の交代式 ω ∈ Altk(V )と置換 σ ∈ Skに対して、

ω(vσ(1), . . . , vσ(k)) = sgn(σ)ω(v1, . . . , vk)

である。

証明. 帰納法を用い、次の命題を示す。「n個の互換の積として表せる置換 σ ∈ Skと任意の
交代式 ω ∈ Altk(V )、ベクトル v1, . . . , vk ∈ V に対して、

ω(vσ(1), . . . , vσ(k)) = sgn(σ)ω(v1, . . . , vk)
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である」

まず、n = 0のとき、σ = 1ため命題は自明なので、n− 1のときを正しいと仮定し、nのと
きを示せばよい。置換 σを互換 (i, j)と n− 1の互換の積として表せる置換 τ の積

σ = (i, j)τ

と表しておく。帰納法の仮定より、任意の ω ∈ Altk(V )と v1, . . . , vk ∈ V に対して、

ω(vτ(1), . . . , vτ(k)) = sgn(τ)ω(v1, . . . , vk)

である。特に、左辺で定義された多重線形形式

ωτ(v1, . . . , vk) = ω(vτ(1), . . . , vτ(k))

も交代式であることが分かる。それに、

ω(vσ(1), . . . , vσ(k)) = ωτ(v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vk)

と表される。しかし、

ωτ(v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vk)

= −ωτ (v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vj , vj+1, vk)
(2.5)

であるため、

ω(vσ(1), . . . , vσ(k)) = ωτ(v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vk)

= −ωτ (v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vj, vj+1, . . . , vk)

= − sgn(τ)ω(v1, . . . , vk)

= sgn(σ)ω(v1, . . . , vk)

であることが分かる。帰納法より、任意の非負整数 nに対して、命題は正しい。

最後に、(2.5)を示す。定義 2.1の性質 (3)より、

ωτ (v1, . . . , vi−1, vi + vj, vi+1, . . . , vj−1, vi + vj , vj+1, . . . , vk) = 0

ことが分かる。さらに、定義 2.1の性質 (2)より、左辺は次のように表される。

ωτ(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vi, vj+1, . . . , vk)

+ ωτ(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vj , vj+1, . . . , vk)

+ ωτ(v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vk)

+ ωτ(v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vj, vj+1, . . . , vk)
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ここで、定義 2.1の性質 (3)より、第１項と第４項はゼロであるため、(2.5)が成り立つ。

例 2.6. 有限次元のベクトル空間V とその基底 {e1, . . . , en}に関して、次のようにn重交代式
ω ∈ Altn(V )が定義される。n個のベクトル

v1 = a1,1e1 + · · · + a1,nen

...

vn = an,1e1 + · · ·+ an,nen

に対して、

ω(v1, . . . , vn) = det








a1,1 . . . a1,n

...
. . .

...

an,1 . . . an,n








である。行列式の性質より、ωは定義 2.1の性質 (1)–(3)を満たすことになる。

定義 2.7. 非負整数 nと p+ q = nを満たす非負整数 pと qにおいて、

「σ(1) < · · · < σ(p) かつ σ(p+ 1) < · · · < σ(p+ q)」

を満たす置換 σ ∈ Snは、(p, q)シャッフルと呼ばれる。対称群 Snの (p, q)シャッフルからな
る部分集合は、Sp,qと書かれる。

補題 2.8. V を実ベクトル空間、kを非負整数とする。任意の v1, . . . , vk ∈ V と 1 ≤ i < kに
対して、「vi = vi+1ならば ω(v1, . . . , vk) = 0」を満たす k重線形形式 ωは、交代式である。

証明. ωは線形形式であるため、仮定

ω(v1, . . . , vi−1, vi + vi+1, vi + vi+1, vi+2, . . . , vk) = 0

を用い、

ω(v1, . . . , vi−1, vi+1, vi, vi+2, . . . , vk) = −ω(v1, . . . , vi−1, vi, vi+1, vi+2, . . . , vk)

を得る。対称群 Skは、互換 (i, i+ 1)（1 6 i < k）で生成されるので、任意の置換 σ ∈ Skに
対して、ω(vσ(1), . . . , vσ(k)) = sgn(σ)ω(v1, . . . , vk)であることが分かる。よって、ωは交代式
であることが成り立つ。
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定義 2.9. 交代式 ω1 ∈ Altp(V )と ω2 ∈ Altq(V )に対して、次のように定義される (p + q)重
線形形式は、ω1と ω2の外積と呼ばれ、ω1 ∧ ω2と書かれる。

(ω1 ∧ ω2)(v1, . . . , vp+q) =
∑

σ∈Sp,q

sgn(σ)ω1(vσ(1), . . . , vσ(p)) · ω2(vσ(p+1), . . . , vσ(p+q))

注 2.10. p = 0のとき、ω1 ∈ Alt0(V ) = Rが実数、外積ω1 ∧ω2とスカラー積ω1ω2が等しい。
同様に、q = 0のとき、ω2が実数、外積 ω1 ∧ ω2とスカラー積 ω2ω1が等しい。

補題 2.11. 任意の交代式ω1 ∈ Altp(V )と ω2 ∈ Altq(V )に対して、多重線形形式ω1 ∧ ω2も
交代式である。すなわち、ω1 ∧ ω2 ∈ Altp+q(V )。

証明. 補題 2.8より、任意の v1, . . . , vp+q ∈ V に対して、

「vi = vi+1 ならば (ω1 ∧ ω2)(v1, . . . , vp+q) = 0」

を示せばよい。そのために、Sp,qを、次の部分集合 S
(0)
p,q と S

(1)
p,q、S(2)

p,q に分解する。

S(1)
p,q = {σ ∈ Sp,q | σ

−1(i) 6 p かつ σ−1(i+ 1) > p + 1}

S(2)
p,q = {σ ∈ Sp,q | σ

−1(i) > p+ 1 かつ σ−1(i+ 1) 6 p}

S(0)
p,q = Sp,q r (S(1)

p,q ∪ S
(2)
p,q )

σ ∈ S
(0)
p,q のときには、ω1(vσ(1), . . . , vσ(p)) = 0か ω2(vσ(p+1), . . . , vσ(p+q)) = 0ため、

(ω1 ∧ ω2)(v1, . . . , vp+q) =
∑

σ∈S
(1)
p,q

sgn(σ)ω1(vσ(1), . . . , vσ(p)) · ω2(vσ(p+1), . . . , vσ(p+q))

+
∑

σ∈S
(2)
p,q

sgn(σ)ω1(vσ(1), . . . , vσ(p)) · ω2(vσ(p+1), . . . , vσ(p+q))

を得る。さらに、互換 τ = (i, i+ 1)において、写像 σ 7→ τσは、S(1)
p,q から S

(2)
p,q への全単射を

誘導し、sgn(τσ) = − sgn(σ)であるため、

(ω1 ∧ ω2)(v1, . . . , vp+q) =
∑

σ∈S
(1)
p,q

sgn(σ)ω1(vσ(1), . . . , vσ(p)) · ω2(vσ(p+1), . . . , vσ(p+q))

−
∑

σ∈S
(1)
p,q

sgn(σ)ω1(vτσ(1), . . . , vτσ(p)) · ω2(vτσ(p+1), . . . , vτσ(p+q))

が成り立つ。しかし、vi = vi+1より、任意の σ ∈ S
(1)
p,q に対して、

(vσ(1), . . . , vσ(p), vσ(p+1), . . . , vσ(p+q)) = (vτσ(1), . . . , vτσ(p), vτσ(p+1), . . . , vτσ(p+q))

が分かるので、(ω1 ∧ ω2)(v1, . . . , vp+q) = 0が成り立つ。これで、補題を示した。
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3 交代代数（続き）

交代式の構想を説明するために、次の定義を紹介する。

定義 3.1. R上次数つき反可換代数A∗とは、実ベクトル空間Ap（p > 0）と次の性質 (i)–(iii)

を満たす線形写像 η : R → A0と双線形写像 µp,q : A
p × Aq → Ap+q（p, q > 0）を合わせての

もである。

(i) 「単位」任意の p > 0と a ∈ Ap、λ ∈ Rに対して、

µ0,p(η(λ), a) = λa = µp,0(a, η(λ))

である。

(ii) 「結合律」任意の p, q, r > 0と a1 ∈ Ap、 a2 ∈ Aq、 a3 ∈ Arに対して、

µp,q+r(a1, µq,r(a2, a3)) = µp+q,r(µp,q(a1, a2), a3)

である。

(iii) 「反可換律」任意の p, q > 0と a1 ∈ Ap、a2 ∈ Aqに対して、

µq,p(a2, a1) = (−1)pqµp,q(a1a2)

である。

定義 3.2. 実ベクトル空間 V において、ベクトル空間Altp(V )（p > 0）と次のように定義さ
れた線形写像 η : R → Alt0(V )と双線形写像µp,q : Altp(V )×Altq(V ) → Altp+q(V )（p, q > 0）
を合わせてものは、V で生成された交代代数と呼ばれ、Alt∗(V )と書かれる。

η(λ) = λ, µp,q(ω1, ω2) = ω1 ∧ ω2

定理 3.3. 実ベクトル空間V に対して、交代代数Alt∗(V )はR上次数つき反可換代数である。

証明. 外積は結合律を満たすことを示すために、次の性質を満たす置換 σ ∈ Sp+q+rのなす部
分集合 Sp,q,r ⊂ Sp+q+rを考えてみる。

「σ(1) < · · · < σ(p) かつ σ(p+ 1) < · · · < σ(p+ q) かつ σ(p+ q+ 1) < · · · < σ(p+ q+ r)」

11



さらに、S ′
p,q,r, S

′′
p,q,r ⊂ Sp,q,rを次の部分集合とする。

S ′
p,q,r = {σ ∈ Sp,q,r |任意の i 6 pに対して、σ(i) = iである }

S ′′
p,q,r = {σ ∈ Sp,q,r |任意の p + q + 1 6 iに対して、σ(i) = iである }

これらの部分集合について、次の全単射が成り立つ。

f : Sp,q+r × S ′
p,q,r

∼
−→ Sp,q,r, f(σ, τ) = σ ◦ τ

g : Sp+q,r × S ′′
p,q,r

∼
−→ Sp,q,r, g(σ, τ) = σ ◦ τ

全単射 f を使い、

(ω1 ∧ (ω2 ∧ ω3)) (v1, . . . , vp+q+r)

=
∑

σ∈Sp,q+r

sgn(σ)ω1(vσ(1), . . . , vσ(p)) · (ω2 ∧ ω3)(vσ(p+1), . . . , vσ(p+q+r))

=
∑

σ∈Sp,q+r

sgn(σ)ω1(vσ(1), . . . , vσ(p)) ·
( ∑

τ∈S′

p,q,r

sgn(τ)

ω2(vστ(p+1), . . . , vστ(p+q)) · ω3(vστ(p+q+1), . . . , vστ(p+q+r))
)

=
∑

µ∈Sp,q,r

sgn(µ)ω1(vµ(1), . . . , vµ(p))ω2(vµ(p+1), . . . , vµ(p+q))ω3(vµ(p+q+1), . . . , vµ(p+q+r))

を得る。同様に、全単射 gを使い、

((ω1 ∧ ω2) ∧ ω3)) (v1, . . . , vp+q+r)

=
∑

µ∈Sp,q,r

sgn(µ)ω1(vµ(1), . . . , vµ(p))ω2(vµ(p+1), . . . , vµ(p+q))ω3(vµ(p+q+1), . . . , vµ(p+q+r))

が分かる。これで、外積は結合律を満たすことを示した。

以下、外積が反可換律を満たすことを示す。まず、τ ∈ Sp+qを次の置換とする。

τ(i) =







p+ i (1 6 i 6 q)

i− q (q + 1 6 i 6 p+ q)

この置換が次の性質 (i)–(iii)を満たす。

(i) sgn(τ) = (−1)pqである。

(ii) 次のように定める写像は全単射である。

f : Sp,q → Sq,p, f(σ) = σ ◦ τ
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(iii) 任意の v1, . . . , vp+q ∈ V に対して、

ω2(vστ(1), . . . , vστ(q)) = ω2(vσ(p+1), . . . , vσ(p+q))

ω1(vστ(q+1), . . . , vστ(p+q)) = ω1(vσ(1), . . . , vσ(p))

である。

よって、

(ω2 ∧ ω1)(v1, . . . , vp+q) =
∑

σ∈Sq,p

sgn(σ)ω2(vσ(1), . . . , vσ(q)) · ω1(vσ(q+1), . . . , vσ(p+q))

=
∑

σ∈Sp,q

sgn(στ)ω2(vστ(1), . . . , vστ(q)) · ω1(vστ(q+1), . . . , vστ(p+q))

= (−1)pq
∑

σ∈Sp,q

sgn(σ)ω1(vσ(1), . . . , vσ(p)) · ω2(vσ(p+1), . . . , vσ(p+q))

= (−1)pq(ω1 ∧ ω2)(v1, . . . , vp+q)

が分かる。すなわち、外積は反可換律であることを示した。

交代代数Alt∗(V )の構想を理解するために、次の補題を証明する。

補題 3.4. 任意の実ベクトル空間 V と自然数 p、交代式 ω1, . . . , ωp ∈ Alt1(V )、ベクトル
v1, . . . , vp ∈ V に対して、

(ω1 ∧ · · · ∧ ωp)(v1, . . . , vp) = det








ω1(v1) . . . ω1(vp)
...

. . .
...

ωp(v1) . . . ωp(vp)








である。

証明. 帰納法を用いて示す。p = 1のとき、ω1(v1) = det(ω1(v1))は正しいので、p = r− 1の
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ときを正しいと仮定し、p = rのときを示せばよい。

(ω1 ∧ (ω2 ∧ · · · ∧ ωr))(v1, . . . , vr)

=
r∑

j=1

(−1)j+1ω1(vj)(ω2 ∧ · · · ∧ ωr)(v1, . . . , vj−1, vj+1, . . . , vr)

=
r∑

j=1

(−1)j+1ω1(vj) det








ω2(v1) . . . ω2(vj−1) ω2(vj+1) . . . ω2(vr)
...

...
...

...

ωr(v1) . . . ωr(vj−1) ωr(vj+1) . . . ωr(vr)








= det








ω1(v1) . . . ω1(vr)
...

. . .
...

ωr(v1) . . . ωr(vr)








となる。ここで、最初の方程式は外積の定義、次の方程式は帰納法の仮定、最後の方程式は
行列式の性質から成り立つ。p = rのときは正しいことを示したため、帰納法より、補題が
成り立つ。

有限次元実ベクトル空間 V とその基底 {e1, . . . , en}において、次のように定めるAlt1(V )の
基底 {e∗1, . . . , e

∗
n}は、反対基底と呼ばれる。

e∗i (ej) =







1 (i = j)

0 (i 6= j)

定理 3.5. 有限次元実ベクトル空間 V とその基底 {e1, . . . , en}について、任意の 1 6 p 6 n

に対して、次の部分集合は、実ベクトル空間Altp(V )の基底となることである。

Bp = {e∗σ(1) ∧ · · · ∧ e∗σ(p) | σ ∈ Sp,n−p}

特に、dim Altp(V ) =
(
n

p

)
である。

証明. まず、補題 3.4より、

(e∗i1 ∧ · · · ∧ e∗ip)(ej1, . . . , ejp) =







sgn(σ) ({i1, . . . , ip} = {j1, . . . , jp})

0 ({i1, . . . , ip} 6= {j1, . . . , jp})
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を得る。ここで、σ ∈ Spは「σ(ik) = jk（1 6 k 6 p）」で定める置換である。よって、補
題 2.4より、任意の交代式 ω ∈ Altp(V )にたいして、

ω =
∑

σ∈Sp,n−p

ω(eσ(1), . . . , eσ(p))e
∗
σ(1) ∧ · · · ∧ e∗σ(p)

が分かれる。すなわち、任意のω ∈ Altp(V )がBpの線形結合で表される。それで、線形関係

∑

σ∈Sp,n−p

λσe
∗
σ(1) ∧ · · · ∧ e∗σ(p) = 0 (λσ ∈ R)

において、任意の τ ∈ Sp,n−pに対して、

λτ =
( ∑

σ∈Sp,n−p

λσe
∗
σ(1) ∧ · · · ∧ e∗σ(p)

)
(eτ(1), . . . , eτ(p)) = 0(eτ(1), . . . , eτ(p)) = 0

を得るため、Bpは線形独立であることも示した。

定義 3.6. 線形写像 f : V →W において、線形写像

Altp(f) : Altp(W ) → Altp(V ), Altp(f)(ω)(v1, . . . , vp) = ω(f(v1), . . . , f(vp))

は、f で誘導された写像と呼ばれ、Altp(f)または f ∗と書かれる。

誘導された写像に対して、次の性質 (i)–(ii)は示しやすいである。

(i) Altp(g ◦ f) = Altp(f) ◦ Altp(g)

(ii) Altp(idV ) = idAltp(V )

すなわち、Altp(−)は反変関手である。性質 (i)–(ii)を使うことがよくある。例として、次の
補題を示す。

補題 3.7. 任意の同型 f : V →Wに対して、誘導写像 f ∗ : Altp(W ) → Altp(V )も同型である。

証明. 線形写像 f : V → W は同型であるとは、次の性質を満たす線形写像 g : W → V が存
在することである。

f ◦ g = idW

g ◦ f = idV
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よって、
Altp(f ◦ g) = Altp(idW )

Altp(g ◦ f) = Altp(idV )

である。今、性質 (i)–(ii)を用い、

Altp(g) ◦ Altp(f)
(i)
= Altp(f ◦ g) = Altp(idW )

(ii)
= idAltp(W )

Altp(f) ◦ Altp(g)
(i)
= Altp(g ◦ f) = Altp(idV )

(ii)
= idAltp(V )

を得るため、誘導写像Altp(f)は同型であることが分かれる。

命題 3.8. 有限次元 nのベクトル空間 V と線形写像 f : V → V に対して、

Altn(f)(ω) = det(f)ω

である。

証明. V の基底 {e1, . . . , en}を選択する。定理 3.5より、Bn = {e∗1 ∧ · · · ∧ e∗n} ⊂ Altn(V )は
基底であることが分かる。よって、

Altn(f)(e∗1 ∧ · · · ∧ e∗n)(e1, . . . , en) = det(f)

を示せばよい。ここで、誘導写像の定義より、

Altn(f)(e∗1 ∧ · · · ∧ e∗n)(e1, . . . , en) = (e∗1 ∧ · · · ∧ e∗n)(f(e1), . . . , f(en))

である。さらに、補題 3.4より、

(e∗1 ∧ · · · ∧ e∗n)(f(e1), . . . , f(en)) = det








e∗1(f(e1)) . . . e∗1(f(en))
...

. . .
...

e∗n(f(e1)) . . . e∗n(f(en))








が分かる。しかし、右辺は det(f)である。なぜなら、

f(e1) = e∗1(f(e1))e1 + · · ·+ e∗n(f(en))en

...

f(en) = e∗1(f(en))e1 + · · · + e∗n(f(en))en

である。これで、補題が成り立つ。
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4 微分形式

以下、開集合U ⊂ R
nを固定する。

定義 4.1. U 上 p次微分形式とは、滑らかな写像

ω : U → Altp(Rn)

のものである。U 上 p次微分形式のなすベクトル空間はΩp(U)と書かれる。

注 4.2. U 上 p次微分形式のなすベクトル空間は、

Ωp(U) = C∞(U,Altp(Rn))

とも定義される。

定理 3.3を想起し、次の補題が成り立つ。

補題 4.3. ベクトル空間Ωp(U)（p > 0）と次のように定義された線形写像η : R → Ω0(U)と
双線形写像µp,q : Ωp(U)×Ωq(U) → Ωp+q(U)（p, q > 0）を合わせてものは、R上次数つき反
可換代数である。

η(λ)(x) = λ, µp,q(ω1, ω2)(x) = ω1(x) ∧ ω2(x)

ここで、「∧」は、交代代数Alt∗(Rn)の外積である。

注 4.4. (1) 次数つき反可換代数Ω∗(U)の積も外積と呼ばれ、ω1 ∧ω2と書かれる。すなわち、

(ω1 ∧ ω2)(x) = ω1(x) ∧ ω2(x)

である。

(2) µ0,0に関して、Ω0(U)は可換環、µ0,pに関して、Ωp(U)はΩ0(U)上加群となる。

(3) 空集合でない開集合U ⊂ R
nに対して、Ωp(U)（0 6 p 6 n）は無限次元ベクトル空間、

Ωp(U)（p > n）はゼロベクトル空間である。

ベクトル空間 V,W において、線形写像 f : V →W のなす集合

Hom(V,W ) = {f : V →W | f は線形写像 }
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は、次のようにベクトル空間となる。

(f + g)(v) = f(v) + g(v)

(λf)(v) = λf(v)

特に、ベクトル空間Hom(V,R)は、ベクトル空間 V の反対空間である。V は n次元、W は
m次元のとき、Hom(V,W )がmn次元である。なぜなら、

S = {ej | 1 6 j 6 n} ⊂ V

T = {di | 1 6 i 6 m} ⊂ W

は基底であるとき、

S∗T = {e∗jdi | 1 6 i 6 m, 1 6 j 6 n} ⊂ Hom(V,W )

が基底となる。ここで、(e∗jdi)(v) = e∗j (v)diである。ただし、f : V →W の基底 S∗T に関す
る座標 fijは、f : V →W の基底 Sと T に関する表現行列 (fij)の成分である。

定義 4.5. 滑らかな写像 ω : U → Altp(Rn)において、導関数とは、

(Dω)(x)(v) = Dxω(v) =
d

dt
ω(x+ tv)|t=0

で定義された滑らかな写像

Dω : U → Hom(Rn,Altp(Rn))

である。

注 4.6. ユークリッド空間R
nの標準基底 S = {e1, . . . , en}と p重交代式からなるベクトル空

間Altp(Rn)の誘導された基底T = {e∗i1 ∧ · · · ∧ e∗ip | 1 6 i1 < · · · < ip 6 n}を思い出す。任意
の写像 ω : U → Altp(Rn)が一意的に

ω(x) =
∑

16i1<···<ip6n

ωi1,...,ip(x)e
∗
i1
∧ · · · ∧ e∗ip

で表されるため、定義 4.5より、

(Dω)(x)(ej) = Dxω(ej) =
∑

16i1<···<ip6n

∂ωi1,...,ip
∂xj

(x)e∗i1 ∧ · · · ∧ e∗ip

であることが分かる。よって、線形写像 (Dω)(x) = Dxω : R
n → Altp(Rn)の基底 S ⊂ R

nと
T ⊂ Altp(Rn)に関する表現行列は、次の

(
n

p

)
× n行列となることが分かる。

(
∂ωi1,...,ip
∂xj

(x)

)
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定義 4.7. 次のように定義された線形写像

d : Ωp(U) → Ωp+1(U)

は、外微分とよばれる。

(dω)(x)(v1, . . . , vp+1) =

p+1
∑

i=1

(−1)i−1(Dω)(x)(vi)(v1, . . . , vi−1, vi+1, . . . , vp+1)

注 4.8. ωは p重微分形式であるとき、dωが p+1重微分形式となる。なぜなら、任意の v ∈ R
n

に対して、(Dω)(x)(v)は p重交代式であるため、vj = vj+1のとき、

(dω)(x)(v1, . . . , vp+1) =

p+1
∑

i=1

(−1)i−1Dxω(vi)(v1, . . . , vi−1, vi+1, . . . , vp+1)

= (−1)j−1Dxω(vj)(v1, . . . , vj−1, vj+1, vj+2, . . . , vp+1)

+ (−1)jDxω(vj+1)(v1, . . . , vj−1, vj, vj+2, . . . , vp+1)

= 0

が成り立つ。

射影写像 xi : U → Rを xi(x) = 〈x, ei〉で定める滑らかな写像とし、その外微分

dxi : U → Alt1(Rn)

を考えてみる。ここで、〈−,−〉は、R
nの標準内積である。

補題 4.9. 任意の滑らかな写像 f : U → Rに対して、

df =
∂f

∂x1
∧ dx1 + · · ·+

∂f

∂xn
∧ dxn

である。

証明. 定義 4.7と連鎖律の公式より、f ∈ Ω0(U)と v = (v1, . . . , vn) ∈ R
nに対して、

(df)(x)(v) =
d

dt
f(x+ tv)|t=0 =

∂f

∂x1

(x)v1 + · · ·+
∂f

∂xn
(x)vn

が分かる。特に、f = xiのとき、(dxi)(x)(v) = viであるため、

df(x)(v) =
∂f

∂x1

(x)dx1(x)(v) + · · · +
∂f

∂xn
(x)dxn(x)(v)

を得る。外積の定義と比べると補題が成り立つ。
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補題 4.10. 任意の滑らかな写像 f : U → R、1 6 i1 < · · · < ip 6 nに対して、

d(f ∧ dxi1 ∧ · · · ∧ dxip) = df ∧ dxi1 ∧ · · · ∧ dxip

である。

証明. 連鎖律の公式と定義 4.7より、任意の x ∈ U と v ∈ R
nにたいして、

D(f ∧ dxi1 ∧ · · · ∧ dxip)(x)(v) = (df)(x)(v)(dxi1 ∧ · · · ∧ dxip)(x)

が分かる。なぜなら、dxi1 ∧ · · · ∧ dxip : U → Altp(Rn)は、定関数である。よって、定義 4.7

と 2.9より、

d(f ∧ dxi1 ∧ · · · ∧ dxip)(x)(v1, . . . , vp+1)

=

p+1
∑

i=1

(−1)i−1(df)(x)(vi)(dxi1 ∧ · · · ∧ dxip)(x)(v1, . . . , vi−1, vi+1, . . . , vp+1)

=
(
df ∧ (dxi1 ∧ · · · ∧ dxip)

)
(x)(v1, . . . , vp+1)

を得る。これで、補題を示した。

補題 4.11. 任意の p > 0に対して、合成写像

d ◦ d : Ωp(U) → Ωp+2(U)

は、ゼロ写像である。

証明. 定理 3.5より、任意の f ∈ Ω0(U)と 1 6 i1 < . . . ip 6 nに対して、

d(d(f ∧ dxi1 ∧ · · · ∧ dxip)) = 0

であることを示せばよい。補体 4.10と 4.9より、

d(f ∧ dxi1 ∧ · · · ∧ dxip) = df ∧ dxi1 ∧ · · · ∧ dxip

=

n∑

i=1

∂f

∂xi
∧ dxi ∧ dxi1 ∧ · · · ∧ dxip

が分かる。同様に、dxi ∧ dxj = −dxj ∧ dxiであるため、

d(d(f ∧ dxi1 ∧ · · · ∧ dxip)) =
∑

16i,j6n

∂2f

∂xi∂xj
∧ dxi ∧ dxj ∧ dxi1 ∧ · · · ∧ dxip

=
∑

16i<j6n

(
∂2f

∂xi∂xj
−

∂2f

∂xj∂xi

)

∧ dxi ∧ dxj ∧ dxi1 ∧ · · · ∧ dxip

を得る。よって、d ◦ d = 0が成り立つ。
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補題 4.12. 任意の ω1 ∈ Ωp(U)、ω2 ∈ Ωq(U)に対して、

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)pω1 ∧ dω2

である。

証明. まず、p = q = 0のとき、ω1 = f と ω2 = gが滑らかな関数で、補題 4.9より、

d(ω1 ∧ ω2) = d(fg) =
∂(fg)

∂x1

dx1 + · · ·+
∂(fg)

∂xn
dxn

=
( ∂f

∂x1
g + f

∂g

∂x1

)
dx1 + · · ·+

( ∂f

∂xn
g + f

∂g

∂xn

)
dxn

=
( ∂f

∂x1
dx1 + · · · +

∂f

∂xn
dxn

)

g + f
( ∂g

∂x1
dx1 + · · ·+

∂g

∂xn
dxn

)

= dω1 ∧ ω2 + ω1 ∧ dω2

が分かる。一般的に、ω1 = f ∧ dxi1 ∧ · · · ∧ dxip、ω2 = g ∧ dxj1 ∧ · · · ∧ dxjq とすればよい。
そのとき、ω1 ∧ ω2 = fg ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq なので、補題 4.10より、

d(ω1 ∧ ω2) = d(fg) ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

= (df ∧ g + f ∧ dg) ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

= df ∧ g ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

+ f ∧ dg ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

= df ∧ dxi1 ∧ · · · ∧ dxip ∧ g ∧ dxj1 ∧ · · · ∧ dxjq

+ (−1)pf ∧ dxi1 ∧ · · · ∧ dxip ∧ dg ∧ dxj1 ∧ · · · ∧ dxjq

= dω1 ∧ ω2 + (−1)pω1 ∧ dω2

が成り立つ。これで、補題を示した。

定義 4.13. R上微分次数つき代数 (A∗, d)とは、次数つき反可換代数A∗と次の性質 (i)–(ii)

を満たす線形写像 d : Ap → Ap+1（p > 0）を合わせてものである。

(i) 「微分」任意の p > 0に対して、合成写像 d ◦ d : Ap → Ap+2はゼロ写像と等しい。

(ii) 「ライブニッツの公式」任意の p, q > 0と a1 ∈ Ap、a2 ∈ Aqに対して、

d(a1 · a2) = (da1) · a2 + (−1)pa1 · (da2)

である。
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定義 4.14. 開集合 U ⊂ R
nにおいて、次数つき反可換代数Ω∗(U)と外微分で定義された線

形写像 d : Ωp(U) → Ωp+1(U)（p > 0）を合わせてものは、U 上ド・ラーム複体と呼ばれ、
(Ω∗(U), d)または単にΩ∗(U)と書かれる。

補題 4.11と 4.12より、次の定理が成り立つ。

定理 4.15. 任意の開集合U ⊂ R
nに対して、U 上ド・ラーム複体 (Ω∗(U), d)は、R上微分次

数つき代数である。

例 4.16. 開集合U ⊂ R
3上ド・ラーム複体

Ω0(U)
d

// Ω1(U)
d

// Ω2(U)
d

// Ω3(U)

を計算してみる。まず、f ∈ Ω0(U)に対して、補題 4.9より、

df =
∂f

∂x1
∧ dx1 +

∂f

∂x2
∧ dx2 +

∂f

∂x3
∧ dx3

である。つづいて、任意の ω ∈ Ω1(U)を、

ω = f1 ∧ dx1 + f2 ∧ dx2 + f3 ∧ dx3

で表すと、外微分と外積の性質より、

dω =

(
∂f3

∂x2
−
∂f2

∂x3

)

∧ dx2 ∧ dx3 −

(
∂f1

∂x3
−
∂f3

∂x1

)

∧ dx1 ∧ dx3

+

(
∂f2

∂x1

−
∂f1

∂x2

)

∧ dx1 ∧ dx2

が分かる。最後に、任意の ω ∈ Ω2(U)を、

ω = g1 ∧ dx2 ∧ dx3 − g2 ∧ dx1 ∧ dx3 + g3 ∧ dx1 ∧ dx2

で表すと、
dω =

(
∂g1

∂x1

+
∂g2

∂x2

+
∂g3

∂x3

)

∧ dx1 ∧ dx2 ∧ dx3

が成り立つ。このように、外微分と外積から、勾配と回転、発散を得る。
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5 ド・ラームコホモロジー

開集合U ⊂ R
nとU上ド・ラーム複体 (Ω∗(U), d)を考える。外微分 dに関して、d ◦ dはゼロ

写像であるため、任意の p > 0に対して、

im(d : Ωp−1(U) → Ωp(U)) ⊂ ker(d : Ωp(U) → Ωp+1(U))

が分かる。

定義 5.1. 開集合U ⊂ R
n、p > 0において、ド・ラームコホモロジー群Hp(U)は、次のよう

に定義された商ベクトル空間のものである。

Hp(U) = ker(d : Ωp(U) → Ωp+1(U))
/

im(d : Ωp−1(U) → Ωp(U))

注 5.2. (1) ω ∈ ker(d : Ωp(U) → Ωp+1(U))はU上閉微分形式、ω ∈ im(d : Ωp−1(U) → Ωp(U))

は U 上完全微分形式と呼ばれる。よって、ド・ラームコホモロジー群Hp(U)がゼロである
ことと全てのU 上閉微分形式が完全微分形式であることは同値である。

(2) 閉微分形式 ωを含むコホモロジー類は、次のようにも書かれる。

[ω] = ω + im(d : Ωp−1(U) → Ωp(U)) ∈ Hp(U)

(3) ベクトル空間Hp(U)（p > 0）と以下のように定める線形写像 η : R → H0(U)、双線形写
像 µp,q : H

p(U) ×Hq(U) → Hp+q(U)（p, q > 0）は、R上次数つき反可換代数である。

η(λ) = [定置写像 x 7→ λ], µp,q([ω1], [ω2]) = [ω1 ∧ ω2]

ここで、コホモロジー類 [ω1∧ω2]は、がうまく定義されたことを確認する必要がある。まず、

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)pω1 ∧ dω2 = 0

ため、ω1 ∧ ω2は閉微分形式であることが分かる。さらに、

(ω1 + dτ1) ∧ (ω2 + dτ2) = ω1 ∧ ω2 + ω1 ∧ dτ2 + dτ1 ∧ ω2 + dτ1 ∧ dτ2

= ω1 ∧ ω2 + d
(
(−1)pω1 ∧ τ2 + τ1 ∧ ω2 + τ1 ∧ dτ2

)

ため、ω1 ∧ ω2を含むコホモロジー類 [ω1 ∧ ω2]は、ω1、ω2を含むコホモロジー類 [ω1]、[ω2]

しかによらない。よって、写像 µp,qはうまく定義されたことを示した。
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定義 5.3. 開集合 U1 ⊂ R
mと U2 ⊂ R

n、滑らかな写像 φ : U1 → U2において、次のように定
める線形写像Ωp(φ) : Ωp(U2) → Ωp(U1)は、φで誘導された写像と呼ばれ、φ∗とも書かれる。

Ωp(φ)(ω)(x) = Altp(Dxφ) ◦ ω(φ(x))

線形写像Altp(Dxφ)の定義を想起し、定義 5.3は次のようにも表される。

Ωp(φ)(ω)(x)(v1, . . . , vp) = ω(φ(x))((Dxφ)(v1), . . . , (Dxφ)(vp))

補題 5.4. 誘導された写像は、次の性質を満たす。

(i) Ωp(ψ ◦ φ) = Ωp(φ) ◦ Ωp(ψ)

(ii) Ωp(idU) = idΩp(U)

証明. 性質 (ii)は、直ちに定義 5.3から成り立つので、性質 (i)を示す。

(Ωp(φ) ◦ Ωp(ψ))(ω)(x)
(1)
= Altp(Dxφ) ◦ Ωp(ψ)(ω)(φ(x))

(2)
= Altp(Dxφ) ◦ Altp(Dφ(x)ψ) ◦ ω(ψ(φ(x))

(3)
= Altp(Dφ(x)ψ ◦Dxφ) ◦ ω(ψ(φ(x))

(4)
= Altp(Dx(ψ ◦ φ)) ◦ ω((ψ ◦ φ)(x))

(5)
= Ωp(ψ ◦ φ)(ω)(x)

ここで、(1)と (2)、(5)は、定義 5.3から成り立ち、(3)は、Altp(−)が反変関手であること
から成り立ち、(4)は、連鎖律の公式から成り立つ。

系 5.5. 微分同相写像 φ : U1 → U2で誘導された線形写像

Ωp(φ) : Ωp(U2) → Ωp(U1)

は、同型である。

証明. 滑らかな写像 φ : U1 → U2が微分同相写像であるとは、次の性質を満たす滑らかな写
像 ψ : U2 → U1が存在することである。

ψ ◦ φ = idU1

φ ◦ ψ = idU2
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このとき、補題 5.4より、

Ωp(φ) ◦ Ωp(ψ) = Ωp(ψ ◦ φ) = Ωp(idU1) = idΩp(U1)

Ωp(ψ) ◦ Ωp(φ) = Ωp(φ ◦ ψ) = Ωp(idU2) = idΩp(U2)

が成り立つ。すなわち、Ωp(φ)は同型である。

例 5.6. 開集合U1 ⊂ R
mと U2 ⊂ R

n、滑らかな写像φ = (φ1, . . . , φn) : U1 → U2において、滑
らかな写像 φi : U1 → R（1 6 i 6 n）は、Ω0(U1)の元で、

Ω1(φ)(dxi) = dφi

である。なぜなら、定義 5.3より、任意の x ∈ U1、v = (v1, . . . , vm) ∈ R
mに対して、

Ω1(φ)(dxi)(x)(v) = dxi(φ(x))((Dxφ)(v)) = e∗i
(

n∑

k=1

(
m∑

l=1

∂φk
∂xl

(x)vl
)
ek

)

=
m∑

l=1

∂φi
∂xl

(x)vl =
m∑

l=1

∂φi
∂xl

(x)e∗l (v) = dφi(x)(v)

を得る。

定理 5.7. 任意の開集合 U1 ∈ R
mと U2 ⊂ R

n、滑らかな写像 φ : U1 → U2に対して、誘導さ
れた写像は次の性質 (i)–(iii)を満たす。

(i) 任意の ω ∈ Ωp(U2)と τ ∈ Ωq(U2)に対して、

Ωp+q(φ)(ω ∧ τ) = Ωp(φ)(ω) ∧ Ωq(φ)(τ)

である。

(ii) 任意の f ∈ Ω0(U2)に対して、
Ω0(φ)(f) = f ◦ φ

である。

(iii) 任意の ω ∈ Ωp(U2)に対して、

d(Ωp(φ)(ω)) = Ωp+1(φ)(dω)

である。
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それで、性質 (i)–(iii)を満たす線形写像L : Ω∗(U2) → Ω∗(U1)には、必ず L = Ω∗(φ)である。

証明. (ii)が直ちに定義 5.3から成り立つので、(i)と (iii)を示す。

まず (i)を示す。任意の x ∈ U2、v1, . . . , vp+q ∈ R
mに対して、

Ωp+q(φ)(ω ∧ τ)(x)(v1, . . . , vp+q)

= (ω ∧ τ)(φ(x))((Dxφ)(v1), . . . , (Dxφ)(vp+q))

=
∑

σ∈Sp,q

sgn(σ)
(

ω(φ(x))((Dxφ)(vσ(1)), . . . , (Dxφ)(vσ(p)))

τ(φ(x))((Dxφ)(vσ(p+1)), . . . , τ(φ(x))((Dxφ)(vσ(p+q)))
)

=
∑

σ∈Sp,q

sgn(σ)Ωp(φ)(ω)(x)(vσ(1), . . . , vσ(p))Ω
q(φ)(τ)(x)(vσ(p+1), . . . , vσ(p+q))

= (Ωp(φ)(ω) ∧ Ωq(φ)(τ))(x)(v1, . . . , vp+q)

ため、(i)が成り立つ。

次に (iii)を示す。まず、p = 0のとき、任意の f ∈ Ω0(U2)に対して、

Ω1(φ)(df)
(1)
= Ω1(φ)

(
n∑

k=1

∂f

∂xk
∧ dxk

) (2)
=

n∑

k=1

Ω0(φ)(
∂f

∂xk
) ∧ Ω1(φ)(dxk)

(3)
=

n∑

k=1

(
∂f

∂xk
◦ φ) ∧ dφk

(4)
=

n∑

k=1

(
∂f

∂xk
◦ φ) ∧

(
m∑

l=1

∂φk
∂xl

∧ dxl
)

(5)
=

m∑

l=1

( n∑

k=1

(
∂f

∂xk
◦ φ) ·

∂φk
∂xl

)

∧ dxl
(6)
=

m∑

l=1

∂(f ◦ φ)

∂xl
∧ dxl

(7)
= d(f ◦ φ)

(8)
= d(Ω0(φ)(f))

を得る。ここで、(1)と (4)、(7)は補題 4.9から成り立ち、(2)は (i)から成り立ち、(3)と (8)

は性質 (ii)と例 5.6から成り立ち、(6)は連鎖律の公式より成り立つ。一般的に、

ω = f ∧ dxi1 ∧ · · · ∧ dxip
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で表すと、

Ωp+1(φ)(dω)
(1)
= Ωp+1(φ)(df ∧ dxi1 ∧ · · · ∧ dxip)

(2)
= Ω1(φ)(df) ∧ Ω1(φ)(dxi1) ∧ · · · ∧ Ω1(φ)(dxip)

(3)
= d(Ω0(φ)(f)) ∧ d(Ω0(φ)(xi1)) ∧ · · · ∧ d(Ω0(φ)(xip))

(4)
= d

(
Ω0(φ)(f) ∧ d(Ω0(φ)(xi1)) ∧ · · · ∧ d(Ω0(φ)(xip))

)

(5)
= d

(
Ω0(φ)(f) ∧ Ω1(φ)(dxi1) ∧ · · · ∧ Ω1(φ)(dxip)

)

(6)
= d

(
Ωp(φ)(f ∧ dxi1 ∧ · · · ∧ dxip)

)

(7)
= d

(
Ωp(φ)(ω)

)

であることが分かる。ここで、(1)と (4)は定理 4.15から成り立ち、(2)と (6)は性質 (i)から
成り立ち、(3)と (5)は性質 (iii)から成り立つ。これで、(iii)を示した。

注 5.8. 定理 5.7の性質 (i)–(iii)も次のように書かれる。

(i) 任意の ω ∈ Ωp(U2)と τ ∈ Ωq(U2)に対して、φ∗(ω ∧ τ) = φ∗(ω) ∧ φ∗(τ) である。

(ii) 任意の f ∈ Ω0(U2)に対して、φ∗(f) = f ◦ φ である。

(iii) 任意の ω ∈ Ωp(U2)に対して、d(φ∗(ω)) = φ∗(dω) である。

定義 5.9. 開集合U1 ⊂ R
mとU2 ∈ R

n、滑らかな写像 φ : U1 → U2に対して、線形写像

Hp(φ) : Hp(U2) → Hp(U1), Hp([ω]) = [Ωp(φ)(ω)]

は、φで誘導された写像と呼ばれ、Hp(φ)または φ∗と書かれる。

注 5.10. 任意の閉微分形式 ω ∈ Ωp(U2)と微分形式 τ ∈ Ωp−1(U2)に対して、定理 5.7より、
次の方程式が成り立つ。

d(Ωp(φ)(ω)) = Ωp+1(dω) = Ωp+1(0) = 0

Ωp(φ)(ω + dτ) = Ωp(φ)(ω) + d(Ωp+1(τ))

よって、誘導された写像Hp(φ)は、うまく定義されたことが分かる。

補題 5.4と定理 5.7より、次の定理が成り立つ。
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定理 5.11. (i) 任意の開集合U1 ⊂ R
kと U2 ⊂ R

m、U3 ⊂ R
n、滑らかな写像 φ : U1 → U2

と ψ : U2 → U3に対して、

Hp(ψ ◦ φ) = Hp(φ) ◦Hp(ψ)

である。

(ii) 任意の開集合U ⊂ R
kに対して、

Hp(idU) = idHp(U)

である。

(iii) 任意の開集合U1 ⊂ R
kと U2 ⊂ R

n、滑らかな写像 φ : U1 → U2に対して、図式

R
η

// H0(U2)

H0(φ)
��

Hp(U2) ×Hq(U2)
µp,q

//

Hp(φ)×Hq(φ)

��

Hp+q(U2)

Hp+q(φ)
��

R
η

// H0(U1) Hp(U1) ×Hq(U1)
µp,q

// Hp+q(U1)

が可換になる。

注 5.12. 定理 5.11で、性質 (i)–(ii)は、Hp(−)が反変関手であることを示し、性質 (iii)は、
H∗(φ)がR上次数つき代数の準同型であることを示す。よって、性質 (i)–(iii)を合わせてこ
とは、ド・ラームコホモロジーが、次のような反変関手であることを示す。







ユークリッド空間の開集合
滑らか写像













体R上次数つき可換代数
その準同型







////

H∗(−)
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6 ポアンカレの補題

以下の定理 6.4（ポアンカレの補題）で、星形開集合 U ⊂ R
nのド・ラームコホモロジー群

を計算する。この結果は、定理 1.5の一般化である。

補題 6.1. 次の性質 (i)–(iii)を満たす滑らかな関数 ψ : R → Rが存在する。

(i) 任意の t ∈ Rに対して、0 6 ψ(t) 6 1である。

(ii) 任意の t 6 0に対して、ψ(t) = 0である。

(iii) 任意の t > 1に対して、ψ(t) = 1である。

証明. ψ : R → Rを、次のように定める。

ψ(t) =
f(t)

f(t) + f(1 − t)

ここで、f : R → Rは、

f(t) =







0 (t 6 0)

exp(−1/t) (t > 0)

で定義された写像である。明らかに、f : R → Rは滑らかなであることを示すと、補題が成
り立つ。そのために、任意の n > 0に対して、

lim
t→0+

f (n)(t)

t
= 0

であることを示せばよい。しかし、t > 0のとき、f の高階導関数は、次のように表される。

f (n)(t) = pn(1/t) exp(−1/t) (t > 0, n > 0)

ここで、pn(X)（n > 0）は、帰納法を用い、次のように定める多項式である。

p0(X) = 1

pn(X) = −X2(pn−1(X) + p′n−1(X)) (n > 1)

よって、
lim
t→0+

(
(1/t)k exp(−1/t)

)
= lim

x→∞

xk

exp(x)
= 0

ため、補題が成り立つ。
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補題 6.2. 滑らかな関数 ψ : R → Rにおいて、φ : R
n × R → R

nを φ(x, t) = ψ(t)xで定める
滑らかな写像とする。そのとき、誘導された写像

φ∗ : Ωp(Rn) → Ωp(Rn × R)

が、次のように与えられた。

φ∗(dxi) = ψ′(t)xi ∧ dt+ ψ(t) ∧ dxi (1 6 i 6 n)

証明. 例 5.6より、φ∗(dxi) = dφi であることが分かる。ここで、φi(x, t) = ψ(t)xiため、補
題 4.9より、補題が成り立つ。

定理 3.5より、開集合U ⊂ R
nに対して、任意の微分形式 ω ∈ Ωp(U)は、一意的に

ω =
∑

I

fI ∧ dxI (6.3)

で表される。ここで、添え字 Iは「1 6 i1 < · · · < ip 6 n」を満たす整数の p組 (i1, . . . , ip)、
fI ∈ Ω0(U)、dxI = dxi1 ∧ · · · ∧ dxip ∈ Ωp(U)である。

定理 6.4 (ポアンカレの補題). 任意の星形開集合U ⊂ R
nに対して、

Hp(U) =







R · 1U (p = 0)

0 (p > 0)

である。ここで、1U : U → Rは、1U(x) = 1で定める定関数である。

証明. 開集合 U ⊂ R
nは、原点 0 ∈ R

nに関して星形集合であることを仮定すればよい。以
下、次の微分方程式 (6.6)を満たす線形写像

sp : Ωp(U) → Ωp−1(U) (p > 1) (6.5)

を定める。
ηǫ+ s1d = idΩ0(U) (p = 0)

dsp + sp+1d = idΩp(U) (p > 0)
(6.6)

ここで、ǫ : Ω0(U) → Rと η : R → Ω0(U)は、それぞれ ǫ(ω) = ω(0)と η(λ) = λ · 1U で定義
された線形写像である。線形写像 spを用い、定理は次のように成り立つ。任意の閉微分形式
ω ∈ Ω0(U)に対して、

ω = idΩ0(U)(ω) = (ηǫ+ s1d)(ω) = η(ω(0)) = ω(0) · 1U
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が分かる。同様に、任意の閉微分形式 ω ∈ Ωp(U)（p > 0）に対して、

ω = idΩp(U)(ω) = (dsp + sp+1d)(ω) = dsp(ω)

ため、コホモロジー類 [ω]はゼロであることが分かる。

以下、線形写像 spを定める。まず、補助の線形写像

ŝp : Ωp(U × R) → Ωp−1(U) (p > 1)

を定義する。(6.3)より、任意の τ ∈ Ωp(U × R)は、次のように一意的な表現を持つ。

τ =
∑

I

fI(x, t) ∧ dxI +
∑

J

gJ(x, t) ∧ dt ∧ dxJ

ここで、添え字 Iと Jは、それぞれの「1 6 i1 < · · · < ip 6 n」と「1 6 j1 < · · · < jp−1 6 n」
を満たす整数の組 (i1, . . . , ip)と (j1, . . . , jp−1)で、fI , gJ ∈ Ω0(U × R)である。この表現を用
い、線形写像 ŝp : Ωp(U × R) → Ωp−1(U)を、次のように定義する。

ŝp(τ) =
∑

J

(∫ 1

0

gJ(x, t)dt
)

∧ dxJ

このとき、

dŝp(τ) =
n∑

i=1

∑

J

(∫ 1

0

∂gJ(x, t)

∂xi
dt

)

∧ dxi ∧ dxJ

ŝp+1d(τ) =
∑

I

(∫ 1

0

∂fI(x, t)

∂t
dt

)

∧ dxI −
n∑

i=1

∑

J

(∫ 1

0

∂gJ(x, t)

∂xi
dt

)

∧ dxi ∧ dxJ

が分かる。よって、任意の p > 1に対して、

(dŝp + ŝp+1d)(τ) =
∑

I

(∫ 1

0

∂fI(x, t)

∂t
dt

)

∧ dxI

=
∑

I

fI(x, 1) ∧ dxI −
∑

I

fI(x, 0) ∧ dxI

(6.7)

を得る。次に、ψ : R → Rを、補題 6.1に於ける滑らかな写像とし、

φ : U × R → U, φ(x, t) = ψ(t)x

で定める滑らかな写像を考える。（注：U ⊂ R
nは原点 0に関して星形である仮定より、φは

うまく定義された写像である。）このとき、線形写像 (6.5)を、

sp(ω) = ŝp(φ∗(ω))
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で定義する。

これから、このように定義したspは、性質 (6.6)を満たすことを示す。まず、p > 1のとき、
ω ∈ Ωp(U)を、ω =

∑

I hI(x) ∧ dxI で表すと、補題 6.2と定理 5.7より、τ = φ∗(ω)が、

τ =
∑

I

hI(ψ(t)x) ∧ (ψ′(t)xi1 ∧ dt+ ψ(t) ∧ dxi1) ∧ · · · ∧ (ψ′(t)xip ∧ dt+ ψ(t) ∧ dxip)

=
∑

I

hI(ψ(t)x)ψ(t)p ∧ dxI

+
∑

I

p
∑

r=1

(−1)r−1hI(ψ(t)x)ψ(t)p−1ψ′(t) ∧ dt ∧ dxi1 ∧ · · · ∧ dxir−1 ∧ dxir+1 ∧ · · · ∧ dxip

で表される。よって、(6.7)より、任意の p > 1に対して、

(dsp + sp+1d)(ω) = dŝp(φ∗(ω)) + ŝp+1(φ∗(dω)) = (dŝp + ŝp+1d)(φ∗(ω))

=
∑

I

hI(ψ(1)x)ψ(1)p ∧ dxI −
∑

I

hI(ψ(0)x)ψ(0)p ∧ dxI

=
∑

I

hI(x) ∧ dxI = ω

を得る。最後に、任意の f ∈ Ω0(U × R)に対して、

ŝ1df =

∫ 1

0

∂f(x, y)

∂t
dt = f(x, 1) − f(x, 0)

ため、任意の h ∈ Ω0(U)に対して、

s1dh = ŝ1d(h ◦ φ) = h(ψ(1)x) − h(ψ(0)x) = h(x) − h(0)

が分かる。これで、定理を示した。

定義 6.8. (i)ベクトル空間と線形写像からなる系列

· · · // Ai−1 di−1
// Ai

di
// Ai+1 di+1

// Ai+2 // · · ·

は、任意の iに対して di ◦ di−1 = 0であるとき、コチェイン複体と呼ばれ、(Ai, di)または単
にA∗と書かれる。

(ii)任意の iに対して ker(di) = im(di−1)を満たすコチェイン復体 (Ai, di)は、完全系列また
は完全コチェイン復体と呼ばれる。
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注 6.9. 任意の開集合U ⊂ R
nに対して、ド・ラース複体、線形形式写像 ηからなる系列

0 // R
η

// Ω0(U)
d

// Ω1(U)
d

// · · · d
// Ωn(U) // 0

は、コチェイン複体である。ポアンカレの補題 6.4より、U は星形のとき、このコチェイン
復体が完全である。

定義 6.10. コチェイン複体A∗とB∗において、チェイン写像ϕ : A∗ → B∗とは、次の図式
が可換になるような線形写像ϕi : Ai → Biを合わせてものである。

· · · // Ai−1 di−1
//

ϕi−1

��

Ai
di

//

ϕi

��

Ai+1 di+1
//

ϕi+1

��

Ai+2 //

ϕi+2

��

· · ·

· · · // Bi−1 di−1
// Bi di

// Bi+1 di+1
// Bi+2 // · · ·

例 6.11. 開集合 U ⊂ R
3に対して、例 4.16より、次のように定義された写像 ϕiを合わせて

のは、チェイン写像となる。

0 // Ω0(U)
d

//

ϕ0

��

Ω1(U)
d

//

ϕ1

��

Ω2(U)
d

//

ϕ2

��

Ω3(U) //

ϕ3

��

0

0 // C∞(U,R)
grad

// C∞(U,R3)
rot

// C∞(U,R3)
div

// C∞(U,R) // 0

ここで、ϕ0は恒道写像、ϕ1, ϕ2, ϕ3はそれぞれ

ϕ1(f1 ∧ dx1 + f2 ∧ dx2 + f3 ∧ dx3) = (f1, f2, f3)

ϕ2(g1 ∧ dx2 ∧ dx3 − g2 ∧ dx1 ∧ dx3 + g3 ∧ dx1 ∧ dx2) = (g1, g2, g3)

ϕ3(h ∧ dx1 ∧ dx2 ∧ dx3) = h

で定める線形写像である。

33



7 コチェイン複体とそのコホモロジー

次のような完全系列は、短完全系列と呼ばれる。

0 // A
f

// B
g

// C // 0

この系列が完全であることは、次の性質 (i)–(iii)と同値である。

(i) f は単射である。

(ii) im(f) = ker(g)である。

(iii) gは全射である。

ここで、像 im(f)とカネル ker(f)は、

im(f) = {f(a) | a ∈ A} ⊂ B

ker(g) = {b ∈ B | g(b) = 0} ⊂ B

で定める。

補題 7.1. ベクトル空間と線形写像からなる短完全系列

0 // A
f

// B
g

// C // 0

を固定する。基底 S ⊂ {ai | i ∈ I} ⊂ Aと T ⊂ {cj | j ∈ J} ⊂ Cに対して、次のように選ば
れた部分集合 ST̃ ⊂ Bは、Bの基底となる。

ST̃ = {f(ai) | i ∈ I} ∪ {bj | j ∈ J} ⊂ B, g(bj) = cj

特に、AとCが有限次元のとき、Bも有限次元で、

dim(B) = dim(A) + dim(C)

である。

証明. まず、ST̃ ⊂ Bは線形独立であることを示す。線形関係
∑

i∈I

λif(ai) +
∑

j∈J

µjbj = 0
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が与えられたとき、任意の λiと µjが 0であることを示せば良い。

0 = g
(∑

i∈I

λif(ai) +
∑

j∈J

µjbj
)

=
∑

i∈I

λig(f(ai)) +
∑

j∈J

µjg(bj) =
∑

j∈J

µjcj

なので、T は線形独立であるため、任意の µjは 0であることが分かる。さらに、

0 =
∑

i∈I

λif(ai) +
∑

j∈J

µjbj = f
(∑

i∈I

λiai
)

を得るので、f は単射であるため、
∑

i∈I

λiai = 0

が分かる。S ⊂ Aは線形独立であるため、任意の λiも 0であることが成り立つ。これで、
ST̃ ⊂ Bは線形独立であることを示した。

以下、ST̃ がBを生成することを示す。任意の b ∈ Bが ST̃ の線形結合で表されることを示
せば良い。まず、T がCを生成するため、

g(b) =
∑

j∈J

µjcj

で表される。さらに、
g
(
b−

∑

j∈J

µjbj
)

= g(b) −
∑

j∈J

µjcj = 0

ため、
b−

∑

j∈J

µjbj = f(a) = f
(∑

i∈I

λiai
)

=
∑

i∈I

λif(ai)

で表されることが分かる。なぜなら、ker(g) = im(f)で、SがAを生成する。よって、

b =
∑

i∈I

λif(ai) +
∑

j∈J

µjbj

で表されることを示した。すなわち、ST̃ がBを生成することをしめした。

例 7.2. 任意の線形写像 f : A→ Bに対して、次の短完全系列が成り立つ。

0 // ker(f) // A
f

// im(f) // 0

特に、Aは有限次元のとき、dim(A) = dim(ker(f)) + dim(im(f))が分かる。
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定義 7.3. コチェイン複体A∗ = (Ai, di)において、商ベクトル空間

Hp(A∗) = ker(dp : Ap → Ap+1)/ im(dp−1 : Ap−1 → Ap)

は、A∗の p次コホモロジー空間と呼ばれる。ker(dp : Ap → Ap+1)と像 im(dp−1 : Ap−1 → Ap)

の元は、それぞれA∗の p次コサイクルと p次コバウンダリーと呼ばれ、Hp(A∗)の元はA∗

の p次コホモロジー類と呼ばれる。p次コサイクル aを含むコホモロジー類は、

[a] = a+ im(dp−1 : Ap−1 → Ap) ∈ Hp(A∗)

とも書かれる。

例 7.4. ド・ラーム複体Ω∗(U)はコチェイン複体、コホモロジーベクトル空間

Hp(U) = Hp(Ω∗(U))

は、ド・ラームコホモロジー群である。さらに、Ω∗(U)の p次コサイクルと p次コバウンダ
リーは、それぞれ U 上の閉微分形式と完全微分形式である。

定義 7.5. チェイン写像ϕ : A∗ → B∗において、

ϕ∗ = Hp(ϕ) : Hp(A∗) → Hp(B∗), Hp(ϕ)([a]) = [ϕp(a)]

で定義された写像は、ϕで誘導された写像と呼ばれ、ϕ∗またはHp(ϕ)と書かれる。

注 7.6. チェイン写像 ϕ : A∗ → B∗で誘導された写像Hp(ϕ) : Hp(A∗) → Hp(B∗)は、うまく
定義された線形写像であることを示す。まず、A∗の p次コサイクル aに対して、

dp(ϕp(a)) = ϕp(dp(a)) = ϕp(0) = 0

ため、φp(a)はB∗の p次コサイクルである。さらに、A∗の p次コサイクル a1、a2は、同じ
コホモロジー類 [a1] = [a2]を表現するとき、a1 − a2 = dp−1(x)を満たす x ∈ Ap−1が存在す
る。このとき、

ϕp(a1) − ϕp(a2) = ϕp(a1 − a2) = ϕp(dp−1(x)) = dp(ϕp(x))

ため、p次コサイクルϕp(a1)、ϕp(a2)も同じコホモロジー類 [ϕp(a1)] = [ϕp(a2)]を表現する
ことが分かる。
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定義 7.7. コチェイン複体とチェイン写像からなる系列

0 // A∗
ϕ

// B∗
ψ

// C∗ // 0

は、任意の iに対して、

0 // Ai
ϕi

// Bi
ψi

// Ci // 0

は短完全系列であるとき、コチェイン複体の短完全系列と呼ばれる。

補題 7.8. コチェイン複体の短完全系列

0 // A∗
ϕ

// B∗
ψ

// C∗ // 0

に対して、誘導された写像からなる系列

Hp(A∗)
ϕ∗

// Hp(B∗)
ψ∗

// Hp(C∗)

は、完全系列である。

証明. im(ϕ∗) = ker(ψ∗)を示せば良い。まず、任意のコホモロジー類 [a] ∈ Hp(A∗)に対して、

(ψ∗ ◦ ϕ∗)([a]) = ψ∗(ϕ∗([a])) = ψ∗([ϕp(a)]) = [ψp(ϕp(a)] = [0]

ため、im(ϕ∗) ⊂ ker(ψ∗)を得る。次に、[b] ∈ ker(ψ∗)のとき、ψp(b) = dp−1(c)を満たす c ∈

Cp−1が存在することが分かる。それに、ψp−1 : Bp−1 → Cp−1は全射であるため、ψp−1(b1) = c

を満たす b1 ∈ Bp−1が存在することが分かる。それから、

ψp(b− dp−1(b1)) = ψp(b) − ψp(dp−1(b1)) = ψp(b) − dp−1(ψp−1(b1))

= ψp(b) − dp−1(c) = ψp(b) − ψp(b) = 0

なので、ϕp(a) = b − dp−1(b1)を満たす a ∈ Apが存在する。この a ∈ Apはコサイクルであ
る。なぜなら、ϕp+1は単射で、

ϕp+1(dp(a)) = dp(ϕp(a)) = dp(b− dp−1(b1)) = dp(b) − (dp ◦ dp−1)(b1) = 0 − 0 = 0

である。よって、ϕ∗([a]) = [b]を満たすコホモロジー類 [a] ∈ Hp(A∗)が存在することを示し
た。すなわち、ker(ψ∗) ⊂ im(ϕ∗)も得る。
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補題 7.8では、誘導された写像 ϕ∗には、一般的に単射ではない。同様に、誘導われた写像
ψ∗には、一般的に全射ではない。よって、誘導された写像からなる系列には、一般的に短完
全系列ではない。

定義 7.9. コチェイン複体の短完全系列

0 // A∗
ϕ

// B∗
ψ

// C∗ // 0

に関して、境界準同型と呼ばれるのは、次のように定義された線形写像である。

∂∗ : Hp(C∗) → Hp+1(A∗), ∂∗([c]) = [(φp+1)−1(dp((ψp)−1(c)))]

注 7.10. 次の図式を考え、境界準同型がうまく定義された線形写像であることを示す。

...
...

...

0 // Ap+2
ϕp+2

//

OO

Bp+2
ψp+2

//

OO

Cp+2 //

OO

0

0 // Ap+1
ϕp+1

//

dp+1

OO

Bp+2
ψp+1

//

dp+1

OO

Cp+1 //

dp+1

OO

0

0 // Ap
ϕp

//

dp

OO

Bp
ψp

//

dp

OO

Cp //

dp

OO

0

...

OO

...

OO

...

OO

境界準同型の定義より、p次コサイクル c ∈ Cpが与えられたとき、まず ψp(b) = cを満たす
b ∈ Bpを選ぶ。このとき、

ψp+1(dp(b)) = dp(ψp(b)) = dp(c) = 0

ため、ϕp+1(a) = dp(b)を満たす a ∈ Ap+1が、一意的に存在する。さらに、写像ϕp+2は単射
なので、次の計算より、aは p+ 1次コサイクルであることが分かる。

ϕp+2(dp+1(a)) = dp+1(ϕp+1(a)) = dp+1(dp(b)) = 0

よって、コホモロジー類 [a] ∈ Hp+1(A∗)が成り立つ。このコホモロジー類は、選んだ b ∈ Bp

によらないことを確認する必要がある。それぞれψp(b1) = cとψp(b2) = cを満たす b1, b2 ∈ Bp

とそれらに対応するコサイクル a1, a2 ∈ Ap+1を固定する。このとき、

ψp(b1 − b2) = ψp(b1) − ψp(b2) = 0
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ため、ϕp(a′) = b1 − b2を満たす a′ ∈ Apが存在する。さらに、

ϕp+1(dp(a′)) = dp(ϕp(a′)) = dp(b1 − b2) = dp(b1) − dp(b2)

= ϕp+1(a1) − ϕp+1(a2) = ϕp+1(a1 − a2)

なので、dp(a′) = a1 − a2であることが分かる。よって、

[a1] − [a2] = [a1 − a2] = [dp(a′)] = 0

が成り立つ。これで、境界準同型はうまく定義された写像であることを示した。

最後に、境界準同型は線形写像であることを示す。境界準同型の定義より、ψp(b1) = c1と
ψp(b2) = c2、ϕp+1(a1) = dp(b1)、ϕp+1(a2) = dp(b2)を満たす b1, b2 ∈ Bp、a1, a2 ∈ Ap+1におい
て、∂∗([c1]) = [a1]と ∂∗([c2]) = [a2]である。さらに、ψp(b1 + b2) = c1 + c2とϕp+1(a1 + a2) =

dp(b1 + b2)なので、∂∗([c1 + c2]) = [a1 + a2]を得る。よって、

∂∗([c1] + [c2]) = ∂∗([c1 + c2]) = [a1 + a2] = [a1] + [a2] = ∂∗([c1]) + ∂∗([c2])

が成り立つ。同様に、ψp(λb1) = λc1と ϕp+1(λa1) = dp(λb1)なので、

∂∗(λ[c1]) = ∂∗([λc1]) = [λa1] = λ[a1] = λ∂∗([c1])

が成り立つ。これで、境界準同型は線形写像であることを示した。

例 7.11. 次のように定義されたコチェイン複体の短完全系列

0 // A∗
ϕ

// B∗
ψ

// C∗ // 0

を考えてみる。ここで、A1 = B0 = B1 = C0をRとし、それ以外の Ap、Bp、Cpをゼロ空
間とし、写像 ϕ1 : A1 → B1と d0 : B0 → B1、ψ0 : B0 → C0をRの恒道写像と定義する。

...
...

...

0 // R
id

//

OO

R //

OO

0 //

OO

0

0 // 0 //

OO

R
id

//

id

OO

R //

OO

0

...

OO

...

OO

...

OO

このとき、∂∗ : H0(C∗) → H1(A∗)は、Rの恒道写像となる。
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補題 7.12. コチェイン複体の短完全系列

0 // A∗
ϕ

// B∗
ψ

// C∗ // 0

に対して、次の系列は完全である。

Hp(B∗)
ψ∗

// Hp(C∗)
∂∗

// Hp+1(A∗)

証明. まず、境界準同型の定義より、

∂∗(ψ∗([b])) = [(ϕp+1)−1(dp(b))] = [(ϕp+1)−1(0)] = [0] = 0

であるため、im(ψ∗) ⊂ ker(∂∗)を得る。次に、[c] ∈ ker(∂∗)のとき、ψp(b) = cを満たす b ∈ Bp

に対して、dp(b) = ϕp+1(dp(a))を満たす a ∈ Apが存在することが分かる。さらに、

dp(b− ϕp(a)) = dp(b) − dp(ϕp(a)) = dp(b) − ϕp+1(dp(a)) = dp(b) − dp(b) = 0

であるため、b− ϕp(a)は p次コサイクル、ψ∗([b− ϕp(a)]) = [c− 0] = [c]が分かる。よって、
ker(∂∗) ⊂ im(ψ∗)を得る。これで、補題を示した。

補題 7.13. コチェイン複体の短完全系列

0 // A∗
ϕ

// B∗
ψ

// C∗ // 0

に対して、次の系列が完全である。

Hp(C∗) ∂∗
// Hp+1(A∗)

ϕ∗

// Hp+1(B∗)

証明. まず、コサイクル c ∈ Cpに対して、ψp(b) = cを満たす b ∈ Bpを選ぶと、

ϕ∗(∂∗([c])) = [dp(b)] = 0

が分かる。すなわち、im(∂∗) ⊂ ker(ϕ∗)を得る。次に、[a] ∈ ker(ϕ∗)のとき、ϕp+1(a) = dp(b)

を満たす b ∈ Bpが存在し、

dp(ψp(b)) = ψp+1(dp(b)) = ψp+1(ϕp+1(a)) = 0

が分かる。境界準同形の定義より、[a] = ∂∗([ψp(b)])を得る。すなわち、ker(ϕ∗) ⊂ im(∂∗)が
成り立つ。これで、補題を示した。
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補題 7.8と 7.12、 7.13から、次の大切な定理が成り立つ。

定理 7.14. コチェイン複体の短完全系列

0 // A∗
ϕ

// B∗
ψ

// C∗ // 0

に対して、次の長完全系列が成り立つ。

· · · // Hp(A∗)
ϕ∗

// Hp(B∗)
ψ∗

// Hp(C∗)
∂∗

// Hp+1(A∗)
ϕ∗

// Hp+1(B∗) // · · ·

定義 7.15. チェイン写像 ϕ, ψ : A∗ → B∗において、ϕから ψへのチェインホモトピーとは、
次の性質を満たす線形写像 sp : Ap → Bp−1を合わせてものである。

dp−1sp + sp+1dp = ϕp − ψp

補題 7.16. チェイン写像ϕ, ψ : A∗ → B∗に対して、ϕからψへのチェインホモトピーが存在
するとき、それらの誘導された写像

ϕ∗, ψ∗ : Hp(A∗) → Hp(B∗)

が等しい。

証明. 任意のコサイクル a ∈ Apに対して、

(ϕ∗ − ψ∗)([a]) = [ϕp(a) − ψp(a)] = [dp−1sp(a) − sp+1dp(a)] = [dp−1sp(a)] = 0

ため、ϕ∗ = ψ∗が成り立つ。

例 7.17. 星形開集合U ⊂ R
nに対して、A∗ = A∗(U)を次のコチェイン複体とする。

0 // R
η

// Ω0(U)
d

// Ω1(U)
d

// · · · d
// Ωn−1(U)

d
// Ωn(U) // 0

前章の (6.5)で定義された線形写像

0 // R
η

// Ω0(U)
d

//

ǫ

zzvv
vv

vv
vv

vv
Ω1(U)

d
//

s1

yysssssssss
· · · d

// Ωn−1(U)
d

// Ωn(U) //

sn

yyssssssssss
0

0 // R
η

// Ω0(U)
d

// Ω1(U)
d

// · · · d
// Ωn−1(U)

d
// Ωn(U) // 0

は、(6.6)より、恒道写像からゼロ写像へのチェインホモトピーであるため、補題 7.16より、

id = 0: Hp(A∗) → Hp(A∗)

を得る。これで、Hp(A∗)はゼロであることが分かる。すなわち、A∗は完全系列である。
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8 １の分解

まず、位相空間の部分空間を復習する。位相空間X の部分空間とは、X の相対位相を持つ
部分集合A ⊂ X のものである。ここで、X の相対位相に関して開集合U ⊂ Aは、X の開
集合 V ⊂ XとAの交わりで表される部分集合U = V ∩A ⊂ Aである。（ただし、部分空間
A ⊂ Xとその部分集合 U ⊂ Aに対して、U がAの開集合であるとき、必ずしも U がXの
開集合ではない。）A ⊂ Xは部分空間であるとき、標準単射 i : A → Xが連続で、任意の位
相空間 Y と写像 f : Y → Aに対して、f : Y → Aが連続であることと i ◦ f : Y → Xが連続
であることは同値である。

ユークリッド空間 R
nの部分空間 A ⊂ R

nをおく。連続な関数 f : A → Rの台と呼ばれるの
は、f(x) 6= 0を満たす x ∈ Aからなる部分集合のAに関する閉包と定義され、

suppA(f) = {x ∈ A | f(x) 6= 0} ⊂ A

と書かれる。例として、
supp(0,1)(x) = (0, 1) = (0, 1)

supp[0,1)(x) = (0, 1) = [0, 1)

である。

定理 8.1. 開集合 U ⊂ R
nとその開被覆 {Vi | i ∈ I}に対して、次の性質 (i)–(iii)を満たす滑

らかな写像 φi : U → [0, 1]（i ∈ I）が存在する。

(i) 任意の i ∈ Iに対して、suppU(φi) ⊂ Viである。

(ii) 任意の x ∈ U に対して、次の性質を満たす開近傍 x ∈W ⊂ U が存在する。「有限個を
除いてほとんど全ての i ∈ Iに対して、φi|W = 0」

(iii) 任意の x ∈ U に対して、
∑

i∈I φi(x) = 1である。

このとき、族 {φi : U → R | i ∈ I}が、開被覆 {Vi | i ∈ I}に関して１の分解と呼ばれる。

注 8.2. 性質 (ii)を満たす関数の族 {φi : U → R | i ∈ I}は、局所的有限と呼ばれる。このと
き、次の公式がうまく定義された関数 φ : U → Rを与えられる。

φ(x) =
∑

i∈I

φi(x)

さらに、φi : U → R（i ∈ I）は滑らかな関数であるとき、φ : U → Rも滑らかな関数となる。
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定理 8.1を示すために、３つの補題を示す。まず、x ∈ R
nと r > 0に関して、次のように定

義された部分集合は、それぞれ中心 xと半径 rの開球体と閉球体と呼ばれる。
◦

Dr(x) = {y ∈ R
n | ‖x− y‖ < r}

Dr(x) = {y ∈ R
n | ‖x− y‖ 6 r}

補題 8.3. 任意の x ∈ R
nと r > 0に対して、ψ−1

(
(0,∞)

)
=

◦

Dr(x)を満たす滑らかな写像
ψ : R

n → [0,∞)が存在する。

証明. 補題 6.1の証明より、

ψ0(t) =
f(t)

f(t) + f(1 − t)
, f(t) =







0 (t 6 0)

exp(−1/t) (t > 0)

で定める写像 ψ0 : R → [0, 1]は滑らかなで、ψ−1
0 (0) = (−∞, 0]を満たす。よって、

ψ(y) = ψ0

(
1 − (‖y − x‖/r)

)

で定める写像ψ : R
n → [0, 1]は滑らかなで、ψ−1

(
(0,∞)

)
=

◦

Dr(x)を満たすことが分かる。

注 8.4. 補題 8.3に於ける写像 ψ : R
n → [0,∞)の台は、supp

Rn(ψ) = Dr(x)である。

位相空間X と任意の部分集合A ⊂ X において、Aの内部とは、次の性質 (i)–(ii)を満たす
U ⊂ Xの和集合である。

(i) U はXの開集合である。

(ii) U はAに含まれている。

例として、閉球体Dr(x) ⊂ R
nの内部は、開球体

◦

Dr(x)である。

補題 8.5. 任意の開集合U ⊂ R
nに対して、次の性質 (i)–(ii)を満たすコンパクトの部分集合

Km ⊂ R
n（m > 1）が存在する。

(i) 任意のm > 1に対して、Km ⊂
◦

Km+1である。

(ii) U =
⋃

m>1Kmである。
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証明. Heine-Borelの定理より、

Km = D2m(0) r
( ⋃

x∈RnrU

◦

D2−m(x)
)
⊂ R

n

は、コンパクトであることが分かる。さらに、これら部分集合が (i)–(ii)を満たすため、補題
が成り立つ。

補題 8.6. 開集合 U ⊂ R
nとその開被覆 {Vi | i ∈ I}に対して、次の性質 (i)–(iii)を満たす点

xj ∈ U と実数 rj > 0（j > 1）が存在する。

(i) U =
⋃

j>1

◦

Drj(xj)である。

(ii) 任意の j > 1に対して、
◦

D2rj (xj) ⊂ Viを満たす i ∈ Iが存在する。

(iii) 任意の x ∈ U に対して、次の性質を満たす開近傍 x ∈W ⊂ U が存在する。「有限個を
除いてほとんど全ての j > 1に対して、

◦

D2rj (xj) ∩W = ∅」

証明. 補題 8.5に於ける部分集合Km ⊂ R
n（m > 1）を思い出し、K0 = K−1 = ∅とする。

次のように定めれた部分集合Bm ⊂ Um ⊂ R
n（m > 1）を考える。

Bm = Km r
◦

Km−1

Um =
◦

Km+1 rKm−2

ここで、Bm ⊂ R
nはコンパクト、Um ⊂ R

nは開集合、
⋃

m>1 Bm =
⋃

m>1 Um = Uである。任
意の x ∈ Bmに対して、

◦

D2r(x)(x) ⊂ Um ∩ Viを満たす i ∈ I と r(x) > 0が存在する。なぜな
ら、Umと Viは、R

nの開集合である。このとき、
◦

Dr(x)(x)（x ∈ Bm）は、コンパクトの空間
Bmの開被覆となるため、次の性質 (a)–(b)を満たすような有限個の xm,k ∈ Bmと rm,k > 0

（1 6 k 6 dm ）が存在する。

(a) 任意のm > 1に対して、Bm ⊂
⋃

16k6dm

◦

Drm,k
(xm,k)である。

(b) 任意のm > 1と 1 6 k 6 dmに対して、

◦

D2rm,k
(xm,k) ⊂ Um ∩ Vi

を満たす i ∈ Iが存在する。
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今、全単射
α = (α1, α2) : {j | j > 1}

∼
−→ {(m, k) | m ≥ 1, 1 6 k 6 dm}

を選び、
xj = xα1(j),α2(j)

rj = rα1(j),α2(j)

とする。以下、性質 (i)–(iii)を示す。性質 (a)より、

U =
⋃

m>1

Bm ⊂
⋃

m>1

⋃

16k6dm

◦

Drm,k
(xm,k) ⊂

⋃

m>1

Um = U

であるため、
U =

⋃

m>1

⋃

16k6dm

◦

Drm,k
(xm,k) =

⋃

j>1

◦

Drj(xj)

を得る。これで、性質 (i)が成り立つ。性質 (b)より、任意の j > 1に対して、
◦

D2j(xj) ⊂ Vi

を満たす i ∈ Iが存在することが分かる。すなわち、性質 (ii)が成り立つ。最後に、x ∈ Uに
対して、x ∈ Umを満たすm > 1を選ぶと、性質 (b)より、任意のm′ > m+ 3に対して、

◦

D2rm′,k
(xm′,k) ∩ Um ⊂ Um′ ∩ Um = ∅

が分かる。よって、性質 (iii)が成り立つ。これで、補題を示した。

定理 8.1の証明. まず、補題 8.6の性質 (i)–(iii)を満たす点xj ∈ Uと実数 rj > 0（j > 1）を採
る。次に、補題 8.3に於ける、ψ−1

j

(
(0,∞)

)
=

◦

Drj(xj)を満たす滑らかな写像ψj : U → [0,∞)

（j > 1）を思い出し、ψ : U → [0,∞)を、

ψ(x) =
∑

j>1

ψj(x)

で定義する。このとき、注 8.2より、ψ : U → [0,∞)が、うまく定義された滑らかな写像で
あることが分かる。さらに、補体 8.6の (i)より、任意の x ∈ U に対して、ψ(x) > 0ため、

ψ̃j(x) = ψj(x)/ψ(x)

で定める ψ̃j : U → [0,∞)もうまく定義された滑らかな写像で、任意の x ∈ U に対して、
∑

j>1

ψ̃j(x) = 1
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であることを得る。

次に、任意の j > 1に対して、
◦

D2rj (xj) ⊂ Vi(j)を満たす i(j) ∈ Iを採り、φi : U → Rを、

φi(x) =
∑

j∈J(i)

ψ̃j(x)

で定める滑らかな写像とする。ここで、J(i) = {j > 1 | i(j) = i}で、J(i) = ∅のとき、
φi = 0とする。以下、性質 (i)–(iii)を示す。まず、任意の j ∈ J(i)に対して、

suppU(ψ̃j) = suppU(ψj) = Drj (xj) ⊂
◦

D2rj (xj) ⊂ Vi

ため、suppU(φi) ⊂ Viであることが分かる。よって、性質 (i)が成り立つ。次に、任意のx ∈ U

に対して、補題 8.6の (iii)に於けるような開近傍 x ∈ W ⊂ U を採る。このとき、有限個を
除いてほとんど全ての j ≥ 1に対して、ψj |W = 0であるため、有限個を除いてほとんど全
ての i ∈ Iに対して、φi|W = 0が分かる。すなわち、性質 (ii)が成り立つ。最後に、任意の
x ∈ U に対して、

∑

i∈I

φi(x) =
∑

i∈I

∑

j∈J(i)

ψ̃j(x) =
∑

j>1

ψ̃j(x) = 1

ため、性質 (iii)を得る。これで、定理を示した。

注 8.7. 定理 8.1の証明で定義した写像 φiについて、可算個除いてほとんど全ての i ∈ Iに対
して、φi = 0である。

定理 8.1を使い、補題 6.1の高次元一般化を証明する。

系 8.8. A ⊂ U を満たす閉集合A ⊂ R
nと開集合U ⊂ R

nに対して、次の性質 (i)–(ii)を満た
す滑らかな写像 ψ : R

n → Rが存在する。

(i) 任意の x ∈ Aに対して、ψ(x) = 1である。

(ii) supp
Rn(ψ) ⊂ U である。

証明. 開集合 V1 = U と V2 = R
n

rAは、R
nの開被覆を定める。定理 8.1に於けるような滑

らかな写像 φi : R
n → R（i = 1, 2）を採ると、ψ = φ1 : R

n → Rが性質 (i)–(ii)を満たす。
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9 マイヤー・ビートリス系列

二つのベクトル空間 V とW において、それらの直和とは、順序対のなすベクトル空間

V ⊕W = {(v, w) | v ∈ V, w ∈W}

である。直和のベクトル和とスカラー積は、次のように定義される。

(v, w) + (v′, w′) = (v + v′, w + w′)

λ(v, w) = (λv, λw)

基底 S = {vi|i ∈ I} ⊂ V と T = {wj|j ∈ J} ⊂ W が与えられているとき、

S ⊔ T = {(vi, 0)|i ∈ I} ∪ {(0, wj) | j ∈ J} ⊂ V ⊕W

は、基底となる。特に、V とW は有限次元のとき、V ⊕W も有限次元で、

dim(V ⊕W ) = dim(V ) + dim(W )

である。１の分解（定理 8.1）を用い、次の定理を証明する。

定理 9.1. 開集合 U1, U2 ⊂ R
nと単射 iv : Uv → U1 ∪ U2、jv : U1 ∩ U2 → Uv（v = 1, 2）に対

して、次のようなコチェイン復体の短完全系列が成り立つ。

0 // Ωp(U1 ∪ U2)
(i∗1 ,i

∗

2)
// Ωp(U1) ⊕ Ωp(U2)

j∗1−j
∗

2
// Ωp(U1 ∩ U2) // 0

ここで、(i∗1, i
∗
2)と j∗1 − j∗2 とは、次のように定める線形写像である。

(i∗1, i
∗
2)(ω) = (i∗1(ω), i∗2(ω)), (j∗1 − j∗2)(ω1, ω2) = j∗1(ω1) − j∗2(ω2)

証明. Uv ⊂ R
nが開集合であるため、U = U1 ∪ U2 ⊂ R

nとU1 ∩ U2 ⊂ R
nも開集合である。

まず、(i∗1, i
∗
2)は単射であることを示す。任意のω ∈ Ωp(U1∪U2)は、一意的にω =

∑

I fI ∧dxI

で表される。さらに、例 5.6と定理 5.7より、

i∗v(ω) =
∑

I

(fI ◦ iv) ∧ dxI (v = 1, 2)

ため、(i∗1, i
∗
2)(ω) = 0のとき、任意の Iに対して、fI ◦ i1 = 0と fI ◦ i2 = 0を得る。従って、

fI = 0で、ω = 0が分かる。これで、(i∗1, i
∗
2)は単射であることを示した。
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次に、im(i∗1, i
∗
2) = ker(j∗1 − j∗2)を示す。まず、i1 ◦ j1 = i2 ◦ j2なので、

((j∗1 − j∗2) ◦ (i∗1, i
∗
2))(ω) = (j∗1 − j∗2)(i

∗
1(ω), i∗2(ω)) = j∗1i

∗
1(ω) − j∗2i

∗
2(ω)

= (i1 ◦ j1)
∗(ω) − (i2 ◦ j2)

∗(ω) = 0

を得る。すなわち、im(i∗1, i
∗
2) ⊂ ker(j∗1 − j∗2)である。また、(j∗1 − j∗2)(ω1, ω2) = 0を満たす

ωv ∈ Ωp(Uv)が与えられているとき、(ω1, ω2) = (i∗1, i
∗
2)(ω)を満たす ω ∈ Ωp(U1 ∪ U2)を、次

のように定義する。まず、ωv ∈ Ωp(Uv)は、一意的に次のように表される。

ω1 =
∑

I

fI ∧ dxI , ω2 =
∑

I

gI ∧ dxI

さらに、j∗1(ω1) = j∗2(ω2)より、fI ◦ j1 = gI ◦ j2 : U1 ∩ U2 → Rため、

hI(x) =







fI(x) (x ∈ U1)

gI(x) (x ∈ U2)

で定める関数 hI : U → Rは、うまく定義された滑らかな写像であることが分かる。よって、

ω =
∑

I

hI ∧ dxI

で定める ω ∈ Ωp(U)は、(i∗1, i
∗
2)(ω) = (ω1, ω2)を満たす。すなわち、im(i∗1, i

∗
2) ⊃ ker(j∗1 − j∗2)

である。これで、im(i∗1, i
∗
2) = ker(j∗1 − j∗2)を示した。

最後に、j∗1 − j∗2は全射であることを示す。{U1, U2}は、Uの開被覆であるため、１の分解よ
り、次の性質 (i)–(ii)を満たす滑らかな関数φv : U → R（v = 1, 2）が存在することが分かる。

(i) suppU(φv) ⊂ Uv（v = 1, 2）

(ii) 任意の x ∈ U に対して、φ1(x) + φ2(x) = 1

よって、ω ∈ Ωp(U1 ∩ U2)が与えられたとき、ωv ∈ Ωp(Uv)（v = 1, 2）を、

ω1(x) =







φ2(x)ω(x) (x ∈ U1 ∩ U2)

0 (x ∈ U1 r suppU(φ2))

ω2(x) =







−φ1(x)ω(x) (x ∈ U1 ∩ U2)

0 (x ∈ U2 r suppU(φ1))
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で定めると、(j∗1 − j∗2)(ω1, ω2) = ωである。なぜなら、任意の x ∈ U1 ∩ U2に対して、

(j∗1 − j∗2)(ω1, ω2)(x) = ω1(x) − ω2(x) = φ2(x)ω(x) − (−φ1(x)ω(x)) = ω(x)

である。すなわち、j∗1 − j∗2 は全射であることを示した。これで、定理が成り立つ。

コチェイン複体A∗とB∗において、それらの直和A∗ ⊕ B∗とは、次のように定義されたコ
チェイン複体である。

· · · // Ap−1 ⊕ Bp−1 d⊕d
// Ap ⊕Bp d⊕d

// Ap+1 ⊕ Bp+1 d⊕d
// Ap+2 ⊕ Bp+2 // · · ·

ここで、d⊕ dは、(d⊕ d)(a, b) = (da, db)で定める微分ある。

補題 9.2. コチェイン複体A∗とB∗に対して、([a], [b])を [(a, b)]に移す線形写像

Hp(A∗) ⊕Hp(B∗) → Hp(A∗ ⊕ B∗)

は、同型である。

証明. コホモロジー類 ([a], [b])をコホモロジー類 [(a, b)]に移す写像は、うまく定義された線
形写像で、逆写像は、コホモロジー類 [(a, b)]をコモロジー類 ([a], [b])に移す写像である。

定理 9.3 (マヤー・ビートリス系列). 開集合 U1, U2 ⊂ R
nと単射 iv : Uv → U = U1 ∪ U2、

jv : U1 ∩ U2 → Uv（v = 1, 2）に対して、次の長完全系列が成り立つ。

· · · Hp(U) Hp(U1) ⊕Hp(U2) Hp(U1 ∩ U2) Hp+1(U) · · ·//
(i∗1 ,i

∗

2)
//

j∗1−j
∗

2
// ∂∗

// //

ここで、(i∗1, i
∗
2)と j∗1 − j∗2 は、

(i∗1, i
∗
2)([ω]) = (i∗1([ω]), i∗2([ω])), (j∗1 − j∗2)([ω1], [ω2]) = j∗1([ω1]) − j∗2([ω2])

で定める線形写像である。

証明. 定理 9.1と定理 7.14、補題 9.2から成り立つ。

系 9.4. 互いに素な開集合U1, U2 ⊂ R
nに対して、線形写像

(i∗1, i
∗
2) : Hp(U1 ∪ U2) → Hp(U1) ⊕Hp(U2)

は、同型である。
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証明. ド・ラームコホモロジー群の定義より、任意の p > 0に対して、

Hp(U1 ∩ U2) = Hp(∅) = 0

ため、マヤー・ビートリス系列より、

Hp(U1 ∪ U2) Hp(U1) ⊕Hp(U2)
(i∗1 ,i

∗

2)
//

は同型であることが分かる。

例 9.5. 開集合U = R
2

r {0} ⊂ R
2のド・ラームコホモロジー群を計算する。U を、開集合

U1 = R
2

r {(x, 0) | x 6 0} ⊂ U

U2 = R
2

r {(x, 0) | x > 0} ⊂ U

の和集合で表し、マヤー・ビートリス系列

· · · Hp(U) Hp(U1) ⊕Hp(U2) Hp(U1 ∩ U2) Hp+1(U) · · ·//
(i∗1 ,i

∗

2)
//

j∗1−j
∗

2
// ∂∗

// //

を考えてみる。ここで、U1 ∩ U2は、次の開集合 V1と V2の和集合で表される。

V1 = {(x, y) ∈ R
2 | y > 0}

V2 = {(x, y) ∈ R
2 | y < 0}

また、V1 ∩ V2 = ∅だめ、系 9.4より、

Hp(U1 ∩ U2)
(k∗1 ,k

∗

2)
// Hp(V1) ⊕Hp(V2)

は同形であることが分かる。ただし、kv : Vv → U1 ∩U2（v = 1, 2）は、標準単射である。さ
らに、Uv, Vv（v = 1, 2）は、星形開集合であるため、ポアンカレの補題（定理 6.4）より、

Hp(Uv) =







R · 1Uv
(p = 0)

0 (p 6= 0)

Hp(U1 ∩ U2) =







R · 1V1 ⊕ R · 1V2 (p = 0)

0 (p 6= 0)

が分かる。ここで、1Uv
: Uv → Rと 1Vv

: U1 ∩ U2 → R（v = 1, 2）は、それぞれ Uv, Vvの指
示関数である。また、j∗v(1Uv

) = 1U1∩U2 = 1V1 + 1V2ため、

(j∗1 − j∗2)(a · 1U1, b · 1U2) = (a− b) · (1V1 + 1V2)
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を得る。よって、マヤー・ビートリス系列から、

Hp(U) =







R · 1U (p = 0)

R · ∂∗(1V1) (p = 1)

0 (p 6= 0, 1)

であることが成り立つ。

以下、コホモロジー類 ∂∗(1V1)に関して、次の公式を示す。

∂∗(1V1) =
1

2π
·
[

−
y

x2 + y2
∧ dx+

x

x2 + y2
∧ dy

]

(9.6)

次の図式を考える。

0 // Ω1(U)
(i∗1 ,i

∗

2)
// Ω1(U1) ⊕ Ω1(U2)

j∗1−j
∗

2
// Ω1(U1 ∩ U2) // 0

0 // Ω0(U)
(i∗1 ,i

∗

2)
//

d

OO

Ω0(U1) ⊕ Ω0(U2)
j∗1−j

∗

2
//

d⊕d

OO

Ω0(U1 ∩ U2) //

d

OO

0

逆関数の定理より、次の写像は微分同相であることが分かる。

F1 : (0,∞) × (−π, π) → U1, F1(r, θ1) = (r cos θ1, r sin θ1)

F2 : (0,∞) × (0, 2π) → U2, F2(r, θ2) = (r cos θ2, r sin θ2)

具体的に、Fv（v = 1, 2）は、開集合の微分可能全単射で、ヤコビ行列 ∂(x, y)/∂(r, θv)は可
逆行列である。さらに、

∂(r, θv)

∂(x, y)
=

( ∂(x, y)

∂(r, θv)

)−1

=
1

r




r cos θv r sin θv

− sin θv cos θv



 =






x
√

x2 + y2

y
√

x2 + y2

−
y

x2 + y2

x

x2 + y2






ため、

(d⊕ d)(θ1, θ2) =
(

−
y

x2 + y2
∧ dx+

x

x2 + y2
∧ dy,−

y

x2 + y2
∧ dx+

x

x2 + y2
∧ dy

)

= (i∗1, i
∗
2)

(

−
y

x2 + y2
∧ dx+

x

x2 + y2
∧ dy

)

を得る。一方、関数 θv : Uv → Rの定義より、

(j∗1 − j∗2)(θ1, θ2) = −2π · 1V2
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である。なぜなら、任意の (x, y) ∈ V1対して、θ1(x, y) = θ2(x, y)で、任意の (x, y) ∈ V2に対
して、θ1(x, y) = θ2(x, y) − 2πである。よって、境界準同型の定義（定義 7.9）より、

∂∗(−2π · 1V2) =
[

−
y

x2 + y2
∧ dx+

x

x2 + y2
∧ dy

]

を得る。最後に、

2π · ∂∗(1V1) = ∂∗(−2π · 1V2) + ∂∗(2π · 1V1 + 2π · 1V2)

=
[

−
y

x2 + y2
∧ dx+

x

x2 + y2
∧ dy

]

+ 0

であるため、(9.6)が成り立つ。

定理 9.7. 有限個の凸開集合U1, . . . , Ur ⊂ R
nに関して、任意の p > 0に対して、

dimRH
p(U1 ∪ · · · ∪ Ur) <∞

である。

証明. 帰納法を用い示す。r = 1のとき、定理がポアンカレの補題（定理 6.4）からよるため、
r = k − 1のときが正しいを仮定し、r = kのときを示せば良い。マイヤー・ビートリス系列
より、次の完全系列が成り立つ。

Hp−1((U1 ∪ · · · ∪ Uk−1) ∩ Uk)
∂∗

// Hp(U1 ∪ · · · ∪ Uk)
(i∗1,i

∗

2)
// Hp(U1 ∪ · · · ∪ Uk−1) ⊕Hp(Uk)

ここで、帰納法の仮定より、最右辺と最左辺は有限次元ベクトル空間である。なぜなら、

(U1 ∪ · · · ∪ Uk−1) ∩ Uk = (U1 ∩ Uk) ∪ · · · ∪ (Uk−1 ∩ Uk)

も、k − 1個の凸開集合の和集合で表される。よって、次の短完全系列で、最左辺と最右辺
も、有限次元ベクトル空間であることが分かる。

0 // im(∂∗) // Hp(U1 ∪ · · · ∪ Uk) // im((i∗1, i
∗
2))

// 0

よって、補題 7.1より、Hp(U1 ∪ · · · ∪ Uk)の有限次元性が成り立つ。

注 9.8. 一般的に、開集合 U ⊂ R
nとその開被覆 {Ui | i ∈ I}が与えられたとき、次のような

スペクタラル系列が成り立つ。スペクトラル系列とは、長完全系列の一般化である。

Ep,q
1 =

⊕

i1<···<ip

Hq(Ui1 ∩ · · · ∩ Uip) ⇒ Hp+q(U)

52



10 ホモトピー不変性

以下、ド・ラームコホモロジー群Hp(−)は、ユークリッド空間の開集合とその連続写像のホ
モトピー類のなす圏から実ベクトル空間とその線形写像のなす圏への反変関手となることを
示す。それを用い、U = R

n
r {0} ⊂ R

nのコホモロジー群を計算する。

定義 10.1. 位相空間X と Y、連続写像 f, g : X → Y において、f から gへのホモトピーと
は、次の性質を満たす連続写像F : X × [0, 1] → Y のものである。「任意の x ∈ Xに対して、
F (x, 0) = f(x)かつ F (x, 1) = g(x)」

fから gへのホモトピーが存在するとき、fと gがホモトピックと呼ばれ、f ≃ gと書かれる。

補題 10.2. 任意の連続写像 f, g, h : X → Y に対して、次の性質が成り立つ。

(i) f ≃ f

(ii) f ≃ gならば g ≃ f

(iii) f ≃ gかつ g ≃ hならば f ≃ h

すなわち、ホモトピーは同値関係である。

証明. (i) F (x, t) = f(x)で定める写像F : X × [0, 1] → Y は、fから自分自身へのホモトピー
である。

(ii) F : X × [0, 1] → Y は、f から gへのホモトピーであるとき、G(x, t) = F (x, 1 − t)で定
める写像G : X × [0, 1] → Y が、gから f へのホモトピーである。

(iii) F,G : X × [0, 1] → Y は、それぞれ f から gへのホモトピーと gから hへのホモトピー
であるとき、

H(x, t) =







F (x, 2t) (0 6 t 6
1
2
)

G(x, 2t− 1) (1
2

6 t 6 1)

で定める写像H : X × [0, 1] → Y が、f から hへのホモトピーとなる。

補題 10.3. 任意の f0 ≃ f1 : X → Y と g0 ≃ g1 : Y → Zを満たす連続写像に対して、

g0 ◦ f0 ≃ g1 ◦ f1 : X → Z

である。
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証明. F : X × [0, 1] → Y とG : Y × [0, 1]は、それぞれ f0から f1へのホモトピーと g0から
g1へのホモトピーであるとき、H(x, t) = G(F (x, t), t)で定める写像H : X × [0, 1] → Z が
g0 ◦ f0から g1 ◦ f1へのホモトピーとなる。

定義 10.4. 連続写像 f : X → Y は、ホモトピー同値であることとは、

g ◦ f ≃ idX

f ◦ g ≃ idY

を満たす連続写像 g : Y → Xが存在することである。これら性質をみたすような写像 gは、
f のホモトピー逆写像と呼ばれる。

ホモトピー同値 f : X → Y が存在するとき、位相空間Xと Y がホモトピー同値であると呼
ばれる。特に、空間１点とホモトピー同値である位相空間は、可縮な空間と呼ばれる。

注 10.5. 補題 10.2より、位相空間Xから位相空間 Y への連続写像のホモトピー類のなす集
合は、うまく定義された集合であることが分かる。この集合は、[X, Y ]と書かれ、連続写像
fを含むホモトピー類は、[f ]と書かれる。さらに、補題 10.3より、三つの位相空間Xと Y、
Zに対して、次のように定める写像は、うまく定義された写像であることが分かる。

[Y, Z] × [X, Y ]
◦

// [X,Z] ([g], [f ]) � // [g ◦ f ]

このように、位相空間と連続写像のホモトピー類を合わせてホモトピー圏が成り立つ。さら
に、連続写像 f : X → Y に対して、次の性質 (i)–(ii)は、同値である。

(i) f は、ホモトピー同値である。

(ii) [f ]は、ホモトピー圏の同形である。

例 10.6. 任意の位相空間X と部分空間 Y ⊂ R
n、連続写像 f, g : X → Y に関して、任意の

x ∈ Xに対して、Y が f(x)から g(x)への線分を含むとき、

F (x, t) = (1 − t)f(x) + tg(x)

で定める写像 F : X × [0, 1] → Y は、f から gのホモトピーとなる。

例として、星形である部分空間 Y ⊂ R
nは可縮であることを示す。Y は、ȳに関して星形で

あるとき、標準単射 f : {ȳ} → Y と定置写像 g : Y → {ȳ}を考えてみる。このとき、以上の
ホモトピーを用い、f ◦ g ≃ idY が分かる。さらに、g ◦ f = id{ȳ}ため、f はホモトピー同値、
位相空間 Y は可縮であることを得る。
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空集合でない部分集合 S ⊂ R
nにおいて、Sからの距離とは、

d(x, S) = inf{‖x− s‖ | s ∈ S}

で定める写像 d(−, S) : R
n → [0,∞)のものである。

補題 10.7. S ⊂ R
nを、空集合でない部分集合とする。任意の x, y ∈ R

nに対して、

|d(x, S) − d(y, S)| 6 ‖x− y‖

である。特に、d(−, S) : R
n → [0,∞)は、連続写像である。

証明. 三角不等式より、任意の x, y ∈ R
nと s ∈ Sに対して、

‖x− s‖ = ‖x− y + y − s‖ 6 ‖x− y‖ + ‖y − s‖

が分かる。よって、任意の x, y ∈ R
n、s ∈ Sに対して、

d(x, S) 6 ‖x− y‖ + ‖y − s‖

ため、任意の x, y ∈ R
nに対して、

d(x, S) 6 ‖x− y‖ + d(y, S)

が分かる。同様に、任意の x, y ∈ R
nに対して、

d(y, S) 6 ‖y − x‖ + d(x, S) = ‖x− y‖ + d(x, S)

を得るため、補題が成り立つ。

補題 10.8. U ⊂ R
mと V ⊂ R

nを開集合とし、A ⊂ U0 ⊂ UをそれぞれUの閉集合とUの開
集合とし、ǫ : U → (0,∞)を連続写像とする。このとき、任意のU0上滑らかなである連続写
像 f : U → V に対して、次の性質 (i)–(ii)を満たす滑らかな写像 φ : U → V が存在する。

(i) 任意の x ∈ U に対して、‖φ(x) − f(x)‖ < ǫ(x)

(ii) 任意の x ∈ Aに対して、φ(x) = f(x)
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証明. まず、V = R
nのときを考える。このとき、任意の p ∈ U r Aに対して、次の性質を

満たす開近傍 p ∈ Up ⊂ U rAが存在する。「任意の x ∈ Upに対して、‖f(x) − f(p)‖ < ǫ(x)

である」なぜなら、g(x) = ǫ(x) − ‖f(x) − f(p)‖で定める写像 g : U r A → Rは連続で、
p ∈ g−1((0,∞)) ⊂ U rAは開近傍である。今、{U0, Up | p ∈ U rA}は、Uの開被覆であるた
め、１の分解より、定理 8.1の (i)–(iii)を満たす滑らかな写像φ0, φp : U → [0, 1]（p ∈ U rA）
が選べる。これらを用い、次のように定める滑らかな写像 φ : U → R

nが成り立つ。　

φ(x) = φ0(x)f(x) +
∑

p∈UrA

φp(x)f(p)

また、定理 8.1の性質 (iii)より、

f(x) = φ0(x)f(x) +
∑

p∈UrA

φp(x)f(x)

であるため、
φ(x) − f(x) =

∑

p∈UrA

φp(x)(f(p) − f(x))

が分かる。ここで、suppU(φp) ⊂ U rAため、任意の x ∈ Aに対して、φ(x) = f(x)を得る。
同様に、suppU(φp) ⊂ Upなので、任意の x ∈ U に対して、

‖φ(x) − f(x)‖ 6
∑

p∈UrA

φp(x)‖f(p) − f(x)‖ <
∑

p∈UrA

φp(x)ǫ(x) 6 ǫ(x)

が分かる。これで、V = R
nのとき、補題が成り立つ。

最後に、V ⊂ R
nは、一般的な開集合であるとき、与えられた写像 ǫ : U → (0,∞)の代わり

に、次のように定める写像 ǫ′ : U → (0,∞)を考える。

ǫ′(x) = min{ǫ(x), d(f(x),Rn
r V )}

ここで、V ⊂ R
nは開集合、f(x) ∈ V であるため、d(f(x),Rn

r V ) > 0を得る。よって、
ǫ′ : U → (0,∞)は、うまく定義された写像であり、補題 10.7より、連続であることが分か
る。今、φ : U → R

nを、ǫ′に関する性質 (i)–(ii)を満たす滑らかなとすると、必ず φ(U) ⊂ V

である。これで、補題を示した。

命題 10.9. U ⊂ R
mと V ⊂ R

nを、開集合とする。

(i) 任意の連続写像 f : U → V に対して、f とホモトピックである滑らかな写像φ : U → V

が存在する。
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(ii) 任意の滑らかな写像 φ0, φ1 : U → V に対して、φ0 と φ1 がホモトピックならば、次の
性質を満たす滑らかな写像 Φ: U × R → V が存在する。「任意の x ∈ U に対して、
Φ(x, 0) = φ0(x)かつΦ(x, 1) = φ1(x)」

証明. (i) 補題 10.8より、ǫ : U → (0,∞)を、ǫ(x) = d(f(x),Rn
r V )で定める連続写像とす

ると、任意の x ∈ U に対して、‖φ(x) − f(x)‖ < ǫ(x)を満たす滑らかな写像 φ : U → V が存
在する。ǫ(x)の定義より、このような写像 φ : U → V は、任意の x ∈ U に対して、

φ(x) ∈ Dǫ(x)(f(x)) ⊂ V

を満たすことが分かるため、例 10.6より、φと f はホモトピックである。

(ii) 補題 6.1を用い、次の性質を満たす滑らかな関数ψ : R → [0, 1]を選ぶ。

ψ(t) =







0 (t 6 1/3)

1 (t > 2/3)

今、φ0から φ1へのホモトピー F : U × [0, 1] → V が与えられたとき、

G(x, t) = F (x, ψ(t))

で定める連続写像を考えてみる。与えられた φ0, φ1 : U → Rは、滑らかな写像であるため、
開集合 U × (−∞, 1

3
) ∪ U × (2

3
,∞) ⊂ U × R上、G : U × R → V も滑らかな写像であるこ

とが分かる。さらに、U × {0, 1} ⊂ U × Rは、閉集合であるため、補題 10.8より、任意の
(x, t) ∈ U × {0, 1}に対して、Φ(x, t) = G(x, t)を満たす滑らかな写像Φ: U × R → V が存在
することを得る。これで、命題を示した。

注 10.10. 命題 10.9に於けるような滑らかな写像Φ: U × R → V は、φ0から φ1への滑らか
なホモトピーとも呼ばれる。
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11 ホモトピー不変性（続き）

定義 7.15から、チェインホモトピーの定義を想起する。

命題 11.1. U ⊂ R
m と V ⊂ R

n を開集合、φ0, φ1 : U → V を滑らかな写像とする。この
とき、φ0 から φ1 への滑らかなホモトピー Φ: U × R → V は、φ∗

0 : Ω∗(V ) → Ω∗(U)から
φ∗

1 : Ω∗(V ) → Ω∗(U)へのチェインホモトピーを誘導する。

証明. ポアンカレの補題（定理 6.4）の証明で定義された線形写像

ŝp : Ωp(U × R) → Ωp−1(U) (p ∈ Z)

を思い出す。ここで、任意の開集合W ⊂ R
k、p < 0に対して、Ωp(W ) = 0とする。さらに、

ιv : U → U × Rを、ιv(x) = (x, v)で定める滑らかな写像とすると、(6.7)より、

dŝp + ŝp+1d = ι∗1 − ι∗0 (p ∈ Z)

が分かる。よって、
sp = ŝp ◦ Φ∗ : Ωp(V ) → Ωp−1(U) (p ∈ Z)

とすると、任意の整数 pに対して、

dsp + sp+1d = dŝpΦ∗ + ŝp+1Φ∗d = dŝpΦ∗ + ŝp+1dΦ∗ = (dŝp + ŝp+1d)Φ∗

= (ι∗1 − ι∗0)Φ
∗ = (Φι1)

∗ − (Φι0)
∗ = φ∗

1 − φ∗
0

を得る。これで、命題を示した。

開集合U ⊂ R
mと V ⊂ R

n、連続写像 f : U → V を考えてみる。命題 10.9より、f とホモト
ピックである滑らかな写像 φ : U → V が存在する。誘導された線形写像

φ∗ : H∗(V ) → H∗(U)

は、φによらず、f で決定されたものである。以下、φ0, φ1 : U → V は、f とホモトピックで
ある滑らかな写像であとき、φ∗

0 = φ∗
1 : H∗(V ) → H∗(U)を示す。φ0と φ1は、ホモトピック

であるため、命題 10.9より、φ0から φ1の滑らかなホモトピーが存在することが分かる。こ
のとき、命題 11.1より、φ∗

0 : Ω∗(V ) → Ω∗(U)から φ∗
1 : Ω∗(V ) → Ω∗(U)へのチェインホモト

ピーを得るため、補題 7.16より、φ∗
0 = φ∗

1 : H∗(Ω∗(V )) → H∗(Ω∗(U))が成り立つ。これで、
次のように定める線形写像 f ∗は、うまく定義された写像であることを示した。
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定義 11.2. 開集合U ⊂ R
mと V ⊂ R

nにおいて、連続写像 f : U → V で誘導された線形写像

f ∗ : Hp(V ) → Hp(U)

とは、任意の f とホモトピックである滑らかな写像 φ : U → V で誘導された線形写像 φ∗の
ものである。

注 11.3. 連続写像 f : U → V の場合には、Ωp(V )からΩp(U)への f で誘導された写像は定義
されていない。

定理 11.4. 連続写像で誘導された線形写像について、次の性質 (i)–(ii)が成り立つ。

(i) 任意のホモトピックである連続写像 f0, f1 : U → V に対して、

f ∗
0 = f ∗

1 : Hp(V ) → Hp(U)

である。

(ii) 任意の連続写像 f : U → V と g : V →W に対して、

(g ◦ f)∗ = f ∗ ◦ g∗ : Hp(W ) → Hp(U)

である。

ここで、U ⊂ R
kと V ⊂ R

m、W ⊂ R
nは、開集合である。

証明. (i)補題 10.2より、滑らかな写像φ : U → V に対して、φ ≃ f0であることとφ ≃ f1で
あることは同値であるため、定義 11.2より、f ∗

0 = φ∗ = f ∗
1 が分かる。

(ii)補題 10.3より、滑らかな写像 φ : U → V と ψ : U → V に対して、φ ≃ f と ψ ≃ gなら、
ψ ◦ φ ≃ g ◦ f ため、

(g ◦ f)∗ = (ψ ◦ φ)∗ = φ∗ ◦ ψ∗ = f ∗ ◦ g∗

を得る。

注 11.5. 定理 11.4と定理 5.11は、ド・ラームコホモロジーは、次のような反変関手である
ことを示す。







ユークリッド空間の開集合
連続写像のホモトピー類













R上次数つき反可換代数
その準同型







H∗(−)
//
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ただし、連続写像 f : U → V を含むホモトピー類 [f ]は、誘導された写像

[f ]∗ = f ∗ : Hp(V ) → Hp(U)

に移される。

系 11.6. 開集合U ⊂ R
mと V ⊂ R

n、連続写像 f : U → V に対して、f はホモトピー同値な
ら、f ∗ : Hp(V ) → Hp(U)は同型である。特に、f は同相であるとき、f ∗は同型である。

証明. 反変関手である性質より、

f ∗ ◦ g∗ = (g ◦ f)∗ = id∗
U = idHp(U)

g∗ ◦ f ∗ = (f ◦ g)∗ = id∗
V = idHp(V )

が成り立つ。ただし、gは f のホモトピー逆写像である。

系 11.7. 任意の可縮な開集合U ⊂ R
nに対して、

Hp(U) =







R · 1U (p = 0)

0 (p 6= 0)

である。

証明. R
0は、空間一点で、ド・ラームコホモロジー群の定義より、

Hp(R0) =







R · 1R0 (p = 0)

0 (p > 0)

である。今、U は可縮であるため、標準射影 f : U → R
0はホモトピー同値である。よって、

系 11.6より、
f ∗ : Hp(R0) → Hp(U)

は同形であることが分かる。さらに、

f ∗(1R0) = 1R0 ◦ f = 1U

であるため、系が成り立つ。
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次に、Aを、R
nでない閉集合A ⊂ R

nとし、開集合

U = (Rn × R) r (A× {0}) ⊂ R
n × R

を考えてみる。このとき、開集合

U1 = R
n × (0,∞) ∪ (Rn

r A) × (−1,∞) ⊂ R
n × R

U2 = R
n × (−∞, 0) ∪ (Rn

r A) × (−∞, 1) ⊂ R
n × R

は、U の解被覆となる。

R
n

R

• • • •_________ _________

______ ________ _________ ◦ ◦ ◦ ◦

�
�
�

�
�
�

�
�
�

�
�
�

U1

______ ________ _________ ◦ ◦ ◦ ◦

�
�
�

�
�
�

�
�
�

�
�
�

U2

以下、マヤー・ビートリス系列

· · · // Hp(U)
(i∗1,i

∗

2)
// Hp(U1) ⊕Hp(U2)

j∗1−j
∗

2
// Hp(U1 ∩ U2)

∂∗
// Hp+1(U) // · · ·

を考えてみる。境界準同形と標準射影

pr1 : U1 ∩ U2 = (Rn
rA) × (−1, 1) → R

n
rA

で誘導された線形写像の合成写像は、サスペンション準同型とよばれ、

σ∗ = ∂∗ ◦ pr∗1 : Hp(Rn
r A) → Hp+1((Rn × R) r (A× {0}))

と書かれる。

命題 11.8. 真閉部分集合A ⊂ R
nに対して、次の性質 (i)–(iii)が成り立つ。

(i) H0((Rn × R) r (A× {0})) = R · 1(Rn×R)r(A×{0})
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(ii) 次のような完全系列が成り立つ。

0 // R · 1RnrA
// H0(Rn

r A)
σ∗

// H1((Rn × R) r (A× {0})) // 0

(iii) 任意の p > 1に対して、サスペンション準同型

σ∗ : Hp(Rn
rA) → Hp+1((Rn × R) r (A× {0}))

は、同型である。

証明. まず、A ⊂ R
nは真部分集合なので、開集合 U = (Rn × R) r (A× {0}) ⊂ R

n × Rは
連結集合であることがわかる。よって、命題の (i)が成り立つ。

次に、(iii)を示す。まず、

pr∗1 : Hp(Rn
r A) → Hp((Rn

r A) × (−1, 1)) = Hp(U1 ∩ U2)

は、同型である。なぜなら、i : R
n

r A → (Rn × A) × (−1, 1)を、i(y) = (y, 0)で定める写
像とすると、例 10.6より、i ◦ pr1 ≃ id(RnrA)×(−1,1)と pr1 ◦ i = idRnrAを得るため、系 11.6

より、pr∗1は同形であることが分かる。それで、U1 ⊂ R
n × Rは、可縮である。なぜなら、

例 10.6より、idU1と φ(x, t) = (x, t+ 1)で定める写像 φ : U1 → U1は、ホモトピックで、φと
c(x, t) = (0, 1)で定める定数写像 c : U1 → U1は、ホモトピックであるため、U1は可縮であ
ることが成り立つ。同様に、U2は、可縮であるため、系 11.7より、

Hp(Uv) =







R · 1Uv
(p = 0)

0 (p 6= 0)

を得る。よって、p > 1のとき、マヤー・ビートリス系列より、

∂∗ : Hp(U1 ∩ U2) → Hp+1(U)

が、同型であることが分かる。これで、(iii)を示した。

最後に、(ii)を示す。以上の計算より、p = 0のとき、マヤー・ビートリス系列は、

0 // R · 1U
(i∗1,i

∗

2)
// R · 1U1 ⊕ R · 1U2

j∗1−j
∗

2
// H0(U1 ∩ U2)

∂∗
// H1(U) // 0
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となることが分かる。ここで、j∗1 − j∗2 の像は、R · 1U1∩U2であるため、以下の図式で、上の
系列は完全であることが得られる。

0 R · 1U1∩U2 H0(U1 ∩ U2) H1(U) 0

0 R · 1RnrA H0(Rn
r A) H1(U) 0

// // ∂∗
// //

pr∗1

OO

pr∗1

OO OO

// // σ∗
// //

しかし、図式が可換で、縦の写像は同形であるため、下の系列は完全でもあることが分かる。
これで、(ii)が成り立つ。
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12 ブラウワーの定理

まず、サスペンション準同型を用い、例 9.5の一般化を示す。

定理 12.1. 任意の n > 2に対して、

dimRH
p(Rn

r {0}) =







1 (p = 0及び p = n− 1)

0 (それ以外)

である。

証明. 帰納法を使う。n = 2のとき、定理が例 9.5から得るため、n = k − 1のときを正しい
と仮定し、n = kのときを示せばよい。今、命題 11.8の (iii)より、任意の p > 2に対して、

dimR H
p(Rk

r {0}) = dimR H
p((Rk−1 × R) r ({0} × {0})) = dimRH

p−1(Rk−1
r {0})

が分かる。さらに、命題 11.8の (i)と (ii)より、

dimR H
0(Rk

r {0}) = 1

dimR H
1(Rk

r {0}) = 0

を得る。よって、帰納法で、定理が成り立つ。

注 12.2. 定理 12.1に於ける開集合R
n

r {0}に関して、n = 1のとき、

dimR H
p(R r {0}) =







2 (p = 0)

0 (p > 0)

である。なぜなら、系 9.4とポアンカレの補体（定理 6.4）より、

Hp(R r {0}) =







R · 1(−∞,0) ⊕ R · 1(0,∞) (p = 0)

0 (p > 0)

を得る。

微分同相 f : R
m → R

nが存在するとき、連鎖律の公式より、任意の x ∈ R
mに対して、ヤコ

ビ行列Dxf は可逆行列であることが分かる。よって、このとき、m = nが、簡単に分かる。
一方、次の結果を証明するために、ここまで導入された理論の全体を必要とする。
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定理 12.3 (Brouwer). 同相 f : R
m → R

nが存在するとき、必ずm = nである。

証明. f : R
m → R

nは同相だと、g(x) = f(x) − f(0)で定める写像

g : R
m

r {0} → R
n

r {0}

も同相である。よって、命題 11.6より、任意の p > 0に対して、誘導された写像

g∗ : Hp(Rn
r {0}) → Hp(Rm

r {0})

は、同型であることが分かる。すなわち、任意の p > 0に対して、

dimRH
p(Rm

r {0}) = dimR H
p(Rn

r {0})

が分かるため、定理 12.1と注 12.2より、m = nが成り立つ。

n次閉球体Dnとその境界 Sn−1を復習する。

Dn = {x ∈ R
n | ‖x‖ 6 1}, Sn−1 = ∂Dn = {x ∈ R

n | ‖x‖ = 1}

補題 12.4. 任意の x ∈ Sn−1に対して、g(x) = xを満たすような連続写像 g : Dn → Sn−1は
存在しない。

証明. 逆に、任意の x ∈ Sn−1に対して、g(x) = xを満たす連続写像 g : Dn → Sn−1が存在す
ることを仮定する。例 10.6より、r(x) = x/‖x‖で定める連続写像 r : R

n
r {0} → R

n
r {0}

は、恒道写像 idRnr{0}とホモトピックであることが分かる。さらに、写像 g : Dn → Sn−1を
用い、次のように定める連続写像F : (Rn

r {0})× [0, 1] → R
n

r {0}は、c(x) = g(0)で定め
る定置写像 c : R

n
r {0} → R

n
r {0}から rへのホモトピーである。

F (x, t) = g(t · r(x))

よって、恒等写像 idRnr{0}と定置写像 cは、ホモトピックであることが成り立つ。すなわち、
R
n

r {0}は可縮であることを示した。従って、系 11.7より、

dimRH
n−1(Rn

r {0}) =







1 (n = 1)

0 (n > 1)
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を得る。しかし、定理 12.1と注 12.2より、

dimRH
n−1(Rn

r {0}) =







2 (n = 1)

1 (n > 1)

ため、写像 g : Dn → Sn−1が存在する仮定に矛盾する。これで、補題を示した。

次の定理は、1912年にBrouwerによって証明された。代数トポロジーのうち、もっとも応用
されているものである。

定理 12.5 (Brouwerの不動点定理). 任意の連続写像 f : Dn → Dnに対して、必ず

f(x) = x

を満たす点 x ∈ Dnが存在する。

証明. 逆に、任意の x ∈ Dnに対して、f(x) 6= xを満たす連続写像 f : Dn → Dnが存在する
ことを仮定する。このとき、f(x)が始点 xを通る半直線と球面Sn−1の交点を、g(x)とする
と、写像 g : Dn → Sn−1が定義される。

•

•
OOOOOOOOOOOO

•
OO

OOOOOOOOOO

f(x)

x
g(x)

Sn−1

具体的に、xが与えられたとき、tを 2次方程式

〈tx+ (1 − t)f(x), tx+ (1 − t)f(x)〉 = 1

の一意の正の実数解とすると、

g(x) = tx+ (1 − t)f(x)

である。よって、g : Dn → Sn−1は連続で、任意の x ∈ Sn−1に対して、g(x) = xを満たすこ
とが分かる。しかし、補題 12.4より、このような写像 gは、存在しないため、仮定されたよ
うな写像 f は存在しないことが分かる。これで、定理が得る。
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次に、R(x, t) = (x,−t)で定め、鏡映とよばれる写像

R : R
n−1 × R → R

n−1 × R

を考えてみる。命題 11.8について、次の補遺を示す。

補遺 12.6. 任意のA 6= R
n−1を満たす閉集合A ⊂ R

n−1と p > 1に対して、

R∗ = − id : Hp((Rn−1 × R) r (A× {0})) → Hp((Rn−1 × R) r (A× {0}))

である。

証明. 命題 11.8の証明に於ける開集合

U1 = R
n−1 × (0,∞) ∪ (Rn−1

r A) × (−1,∞) ⊂ R
n−1 × R

U2 = R
n−1 × (−∞, 0) ∪ (Rn−1

rA) × (−∞, 1) ⊂ R
n−1 × R

に関して、R1 : U1 → U2とR2 = R−1
1 : U2 → U1、R0 : U1 ∩ U2 → U1 ∩ U2を、Rで誘導され

た微分同相とする。このとき、次の図式が可換になることが分かる。

U
R

// U U
R

// U

U1

i1

OO

R1
// U2

i2

OO

U2

i2

OO

R2
// U1

i1

OO

U1 ∩ U2
R0

//

j1

OO

U1 ∩ U2

j2

OO

U1 ∩ U2
R0

//

j2

OO

U1 ∩ U2

j1

OO

よって、次のコチェイン複体とチェイン写像からなる図式も可換になることが分かる。

0 // Ω∗(U)
(i∗1 ,i

∗

2)
//

R∗

��

Ω∗(U1) ⊕ Ω∗(U2)
j∗1−j

∗

2
//

T
��

Ω∗(U1 ∩ U2) //

−R∗

0

��

0

0 // Ω∗(U)
(i∗1 ,i

∗

2)
// Ω∗(U1) ⊕ Ω∗(U2)

j∗1−j
∗

2
// Ω∗(U1 ∩ U2) // 0

ただし、T (ω1, ω2) = (R∗
1(ω2), R

∗
2(ω1))である。今、境界準同型の定義 7.9より、以下の図式

で、右辺の正方形は可換になることを得る。さらに、

pr1 ◦R0 = pr1 : U1 ∩ U2 = (Rn−1
r A) × (−1, 1) → R

n−1
r A

ため、左辺の正方形も可換になる。

Hp−1(Rn−1
rA)

pr∗1
//

− id
��

Hp−1(U1 ∩ U2)
∂∗

//

−R∗

0

��

Hp(U)

R∗

��

Hp−1(Rn−1
rA)

pr∗1
// Hp−1(U1 ∩ U2)

∂∗
// Hp(U)
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しかし、命題 11.8より、任意のp > 1に対して、σ∗ = ∂∗◦pr∗1は、全射であるため、a ∈ Hp(U)

を、a = σ∗(b)と書くと、

R∗(a) = R∗(σ∗(b)) = σ∗(−b) = −σ∗(b) = −a

が分かる。これで、補遺を示した。

系 12.7. 任意の n > 2に対して、A(x) = −xで定める写像A : R
n

r {0} → R
n

r {0}で誘導
された写像は、

A∗ = (−1)n id : Hn−1(Rn
r {0}) → Hn−1(Rn

r {0})

で与えられている。

証明. Ri : R
n

r {0} → R
n

r {0}を、

Ri(x1, . . . , xi−1, xi, xi+1, . . . , xn) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn)

で定める写像とすると、AがA = Rn ◦ · · · ◦R2 ◦R1で表されるため、

R∗
i = − id : Hn−1(Rn

r {0}) → Hn−1(Rn
r {0})

を示せばよい。このために、σi : (Rn−1 × R) r ({0} × {0}) → R
n

r {0}を、

σi((x1, . . . , xn−1), t) = (x1, . . . , xi−1, t, xi, . . . , xn−1)

で定める同相とする。このとき、

(Rn−1 × R) r ({0} × {0})
σi

//

R
��

R
n

r {0}

Ri

��

(Rn−1 × R) r ({0} × {0})
σi

// R
n

r {0}

が可換になるため、

Hn−1((Rn−1 × R) r ({0} × {0})) Hn−1(Rn
r {0})

σ∗i
oo

Hn−1((Rn−1 × R) r ({0} × {0}))

R∗

OO

Hn−1(Rn
r {0})

R∗

i

OO

σ∗i
oo

も可換になることが分かる。σ∗
i は線形同形であるため、補遺 12.6より、

R∗
i (a) = (σ∗

i )
−1(R∗(σ∗

i (a)) = (σ∗
i )

−1(−σ∗
i (a)) = (σ∗

i )
−1(σ∗

i (−a)) = −a

が成り立つ。これで、系を示した。
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定義 12.8. 球面 Sn−1上連続の接ベクトル場とは、任意の x ∈ Sn−1に対して、

〈x,X(x)〉 = 0

を満たす連続写像X : Sn−1 → R
nのものである。

例 12.9. n = 2mは偶数のとき、次のように S2m−1上連続の接ベクトル場が定義される。

X(x1, x2, . . . , x2m−1, x2m) = (−x2, x1, . . . ,−x2m, x2m−1)

任意の x ∈ Sn−1に対して、‖X(x)‖ = 1であるため、任意の x ∈ Sn−1に対して、X(x) 6= 0

である。

次の定理は、n = 3のとき、Poincaréによって 1885年に証明され、n > 3のとき、Brouwer

によって 1911年に証明された。

定理 12.10 (Poincaré, Brouwer). n > 3は奇数なら、任意の Sn−1上連続接ベクトル場

X : Sn−1 → R
n

に対して、必ずX(x) = 0を満たす点 x ∈ Sn−1が存在する。

証明. 逆に、任意の x ∈ Sn−1に対して、X(x) 6= 0を満たす連続の接ベクトル場が存在する
ことを仮定する。このとき、

F (x, t) = (cosπt)x+ (sin πt)X(x/‖x‖)

で定める連続写像 F : (Rn
r {0})× [0, 1] → R

n
r {0}は、恒等写像から系 12.7に於ける写像

Aへのホモトピーとなる。よって、定理 11.4より、

A∗ = (id)∗ = id: Hn−1(Rn
r {0}) → Hn−1(Rn

r {0})

が分かる。しかし、系 12.7より、

A∗ = (−1)n id : Hn−1(Rn
r {0}) → Hn−1(Rn

r {0})

であるため、仮定に矛盾する。これで、定理を示した。

例 12.11. 定理 12.10により、地球上で水平風速が 0であるような場所が必ずあることが分
かる。
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