
4 行列の簡約化

定義 1. 行列の零ベクトルでない行の 0でない左から最初の成分はその行の主成分（pivot）
と呼ばれる。

例 2. 次の行列 Aの第 1行の主成分は 3、第 2行の主成分は 1、第 4行の主成分は 2である。
第 3行は零ベクトルなので、主成分はない。

A =

















0 3 0 0 1

1 0 3 2 4

0 0 0 0 0

0 0 0 2 1

















定義 3. 次の性質を満たす行列は簡約な行列（reduced row echelon matrix）と呼ばれる。

(I) 行ベクトルのうちに零ベクトルがあれば、それ以下の行ベクトルも零ベクトルである。

(II) 零ベクトルでない行ベクトルの主成分は 1である。

(III) 第 i行の主成分を aiji
とすると、j1 < j2 < j3 < . . . となる。

(IV) 各行の主成分を含む列の他の成分は全て 0である。

例 4. （簡約な行列の例）








0 1 2 0 7

0 0 0 1 5

0 0 0 0 0









,









0 1 2 0 0

0 0 0 1 0

0 0 0 0 1

















1 0 0 −1 3

0 1 0 −2 2

0 0 1 4 3









,









1 −1 2 0 0

0 0 0 1 0

0 0 0 0 1









例 5. （簡約でない行列の例）






1 0 2 −1 3

0 1 0 −2 2

0 0 1 4 3






,







1 −1 2 0 0

0 0 0 1 0

0 0 0 1 0






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定理 6. 任意の行列Aは、行基本変形を繰り返すことにより簡約化できる。また、簡約化し
た行列Bは、行基本変形の方法によらず一意的である。

証明. 教科書をご覧ください。

例 7. 例 2で考えた行列Aを簡約化する。

A =

















0 3 0 0 1

1 0 3 2 4

0 0 0 0 0

0 0 0 2 1

































0 1 0 0 1

3

1 0 3 2 4

0 0 0 0 0

0 0 0 1 1

2

















1 × (1/3)

4 × (1/2)
















1 0 3 2 4

0 1 0 0 1

3

0 0 0 1 1

2

0 0 0 0 0

















1 と 2 を入れ替えた

3 と 4 を入れ替えた

B =

















1 0 3 0 3

0 1 0 0 1

3

0 0 0 1 1

2

0 0 0 0 0

















1 + 3 × (−2)

定義 8. Aを簡約化した行列Bの主成分の個数は、Aの階数とよばれ、rank(A)と書かれる。

注 9. 必ずしも簡約でない行列Aの主成分の個数は、rank(A)以上である。

例 10. 例 4における行列の階数を計算する。

rank









0 1 2 0 7

0 0 0 1 5

0 0 0 0 0









= 2 , rank









0 1 2 0 0

0 0 0 1 0

0 0 0 0 1









= 3
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rank









1 0 0 −1 3

0 1 0 −2 2

0 0 1 4 3









= 3 , rank









1 −1 2 0 0

0 0 0 1 0

0 0 0 0 1









= 3

例 11. 例 5における行列の階数を計算する。

rank







1 0 2 −1 3

0 1 0 −2 2

0 0 1 4 3






= rank









1 0 0 −9 −3

0 1 0 −2 2

0 0 1 4 3









= 3

rank







1 −1 2 0 0

0 0 0 1 0

0 0 0 1 0






= rank







1 −1 2 0 0

0 0 0 1 0

0 0 0 0 0






= 2

命題 12. m × n行列Aに対して、 rank(A) 6 min{m, n}である。

証明. Aを簡約化した行列Bもm × n行列である。よって、

rank(A) = Bの主成分を含む行の個数 6 m

rank(A) = Bの主成分を含む列の個数 6 n

である。

簡約化を用いて、連立１次方程式を解く。まず、二つの例を考えてみる。

例 13. 次の連立１次方程式を解いてみる。

(1)































x1 − x3 − 2x5 = 1

x2 + x3 + x5 = −2

−x1 + x3 + x4 + x5 = 3

2x1 + x2 − x3 − 3x5 = 1
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連立１次方程式の拡大係数行列 (A | b)を簡約化する。

(A | b) =

















1 0 −1 0 −2 1

0 1 1 0 1 −2

−1 0 1 1 1 3

2 1 −1 0 −3 1

































1 0 −1 0 −2 1

0 1 1 0 1 −2

0 0 0 1 −1 4

0 1 1 0 1 −1

















3 + 1

4 + 1 × (−2)

















1 0 −1 0 −2 1

0 1 1 0 1 −2

0 0 0 1 −1 4

0 0 0 0 0 1

















4 + 2 × (−1)

















1 0 −1 0 −2 0

0 1 1 0 1 0

0 0 0 1 −1 0

0 0 0 0 0 1

















1 + 4 × (−1)

2 + 4 × 2

3 + 4 × (−4)

よって、連立１次方程式 (1)の解集合と次の連立１次方程式 (1′)の解集合は等しい。

(1′)































x1 − x3 − 2x5 = 0

x2 + x3 + x5 = 0

x4 − x5 = 0

0 = 1

しかし、0 6= 1ため、連立１次方程式 (1′)は、解を持たない。

例 14. 次の連立１次方程式を考えてみる。

(2)



















x1 − 2x2 + 3x4 = 2

x1 − 2x2 + x3 + 2x4 + x5 = 2

2x1 − 4x2 + x3 + 5x4 + 2x5 = 5
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連立１次方程式の拡大係数行列 (A | b)を簡約化する。

(A | b) =











1 −2 0 3 0 2

1 −2 1 2 1 2

2 −4 1 5 2 5





















1 −2 0 3 0 2

0 0 1 −1 1 0

0 0 1 −1 2 1











2 + 1 × (−1)

3 + 1 × (−2)










1 −2 0 3 0 2

0 0 1 −1 1 0

0 0 0 0 1 1











3 + 2 × (−1)










1 −2 0 3 0 2

0 0 1 −1 0 −1

0 0 0 0 1 1











2 + 3 × (−1)

よって、連立１次方程式 (2)の解集合は、次の連立１次方程式 (2′)の解集合と等しい。

(2′)



















x1 − 2x2 + 3x4 = 2

x3 − x4 = −1

x5 = 1

連立１次方程式 (2′)は解を持ち、次のように表される。主成分を含まない列に対応する変数
x2, x4の値を任意に定めると、主成分を含む列と対応する変数 x1, x3, x5は、一意的に決まる。
すなわち、x2 = c1と x4 = c2とおくと、方程式 (2)の解集合は、次のように表される。

x =























x1

x2

x3

x4

x5























=























2 + 2c1 − 3c2

c1

−1 + c2

c2

1























=























2

0

−1

0

1























+ c1























2

1

0

0

0























+ c2























−3

0

1

1

0























(c1, c2 ∈ R)

注 15. 連立１次方程式 (1)において、その拡大係数行列を簡約化した行列の最も右の列は、
主成分を含むため、解を持たない。連立１次方程式 (2)において、拡大係数行列を簡約化し
た行列の最も右の列は、主成分を含まないため、解を持つ。
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定理 16. 連立１次方程式Ax = bが解を持つ必要十分条件は,

rank(A | b) = rank(A)

である。

証明. Aをm × n行列とする。

まず、rank(A | b) = rank(A)を仮定し、Ax = bが解を持つことを示す。(A | b)を簡約化
した行列 (C | d)の主成分を含む列と主成分を含まない列を、それぞれ j1 < j2 < · · · < jrと
k1 < k2 < · · · < ks+1とする。このとき、r + s + 1 = n + 1である。rank(A | b) = rank(A)

より、(C | d)の最も右の列 dは、主成分を含まないため、ks+1 = n + 1が分かる。さらに、
連立１次方程式Ax = bの解集合と次の連立１次方程式の解集合は等しい。



































xj1 = d1 − c1,k1
xk1

− c1,k2
xk2

− · · · − c1,ks
xks

xj2 = d2 − c2,k1
xk1

− c2,k2
xk2

− · · · − c2,ks
xks

...

xjr
= dr − cr,k1

xk1
− cr,k2

xk2
− · · · − cr,ks

xks

よって、変数 xk1
, xk2

, . . . , xks
の値を任意に定めると、変数 xj1 , xj2, . . . , xjr

は、一意的に決ま
る。特に、連立１次方程式Ax = bは、解を持つことが分かる。

逆に、rank(A | b) 6= rank(A)のとき、拡大係数行列 (A | b)を簡約化した行列 (C | d)の最も
右の列 dは、主成分を含むことが分かる。(C | d)の主成分を含む列と主成分を含まない列
を、それぞれ j1 < j2 < · · · < jr+1と k1 < k2 < · · · < ksとすると、連立１次方程式Ax = b

の解集合は、次の連立１次方程式の解集合と等しいことを得る。


















































xj1 = d1 − c1,k1
xk1

− c1,k2
xk2

− · · · − c1,ks
xks

xj2 = d2 − c2,k1
xk1

− c2,k2
xk2

− · · · − c2,ks
xks

...

xjr
= dr − cr,k1

xk1
− cr,k2

xk2
− · · · − cr,ks

xks

1 = 0

しかし、この連立１次方程式は、解を持たないため、Ax = bも解を持たないことが分かる。
これで、定理を示した。
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補遺 17. m個の方程式からなるn変数の連立１次方程式Ax = bとそのm× (n + 1)型の拡
大係数行列 (A | b)において、

rank(A | b) = rank(A)

を仮定し、その階数を rとする。

(i) r = nのとき、連立１次方程式Ax = bは、ただ一つの解を持つ。

(i) r < nのとき、連立１次方程式Ax = bの解集合

{x ∈ R
n | Ax = b} ⊂ R

n

は、n − r個のパラメーター c1, c2, . . . , cn−rで表される。

証明. 拡大係数行列 (A | b)を簡約化した行列を (C | d)とする。

(i) 仮定 r = nより、C = Enが分かる。従って、連立１次方程式Ax = bの解集合は、連立
１次方程式Enx = dの解集合と等しいため、x = dはただ一つの解であることが分かる。

(ii) 行列Cの主成分を含まない列と対応する変数 xk1
, xk2

, . . . , xkn−r
の値を任意に定めると、

主成分を含む列と対応する変数 xj1 , xj2, . . . , xjr
は、一意的に決まる。

例 18. 次の連立１次方程式を解いてみる。






x1 − 2x2 + 3x4 = 3

x1 − x2 + x3 + 2x4 = −2

拡大係数行列 (A | b)を簡約化する。

(A | b) =

(

1 −2 0 3 3

1 −1 1 2 −2

)

(

1 −2 0 3 3

0 1 1 −1 −5

)

2 + 1 × (−1)

(

1 0 2 1 −7

0 1 1 −1 −5

)

1 + 2 × 2
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これを見ると、rank(A | b) = rank(A) = 2が分かる。よって、補遺 17の (ii)より、連立１
次方程式Ax = bの解集合は、n − r = 4 − 2 = 2個のパラメーター c1, c2で表される。簡約
化した拡大係数行列と対応する連立１次方程式は、次のように得られる。







x1 + 2x3 + x4 = −7

x2 + x3 − x4 = −5

よって、解集合 {x ∈ R
4 | Ax = b}は、次のように表される。

x =

















−7 − 2c1 − c2

−5 − c1 + c2

c1

c2

















=

















−7

−5

0

0

















+ c1

















−2

−1

1

0

















+ c2

















−1

1

0

1

















(c1, c2 ∈ R
2)
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