
12 核と像

定義 1. 線形写像 F : U → V において、次のように定義された部分集合 ker(F ) ⊂ U と
im(F ) ⊂ V は、それぞれ F の核と F の像と呼ばれる。

ker(F ) = {u ∈ U | F (u) = 0} ⊂ U

im(F ) = {F (u) | u ∈ U} ⊂ V

例 2. (1) 恒等写像 idU : U → U , idU(u) = u, に対して、

ker(idU) = {u ∈ U | u = 0} = {0}

im(idU) = {u | u ∈ U} = U

である。

(2) ゼロ写像 0 : U → V , 0(u) = 0, に対して、

ker(0) = {u ∈ U | 0 = 0} = U

im(0) = {0 | u ∈ U} = {0}

である。

補題 3. 線形写像 F : U → V に対して、ker(F ) ⊂ U と im(F ) ⊂ V は、部分空間である。

証明. 以下、im(F ) ⊂ V は部分空間であることを示す。ker(F ) ⊂ U は部分空間であること
は、同様に示される。

(i) F (0) = 0ため、0 ∈ im(F )が分かる。

(ii) v1 = F (u1),v2 = F (u2) ∈ im(F )のとき、

v1 + v2 = F (u1) + F (u2) = F (u1 + u2) ∈ im(F )

が成り立つ。

(iii) v = F (u) ∈ im(F )と a ∈ Rのとき、

av = aF (u) = F (au) ∈ im(F )

が得られる。
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写像 F : U → V について概念を復習する。任意の u1,u2 ∈ U に対して、F (u1) = F (u2)が
成り立つならば必ずu1 = u2が成り立つとき、F : U → V は単射と呼ばれる。任意の v ∈ V

に対して、F (u) = vを満たす u ∈ U が存在するとき、F : U → V は全射と呼ばれる。全射
であるかつ単射であるような写像 F : U → V は、全単射と呼ばれる。明らかに、F : U → V

が全射であることと im(F ) = V であることは同値である。

補題 4. 線形写像 F : U → V に対して、次の性質 (i)と (ii)は同値である。

(i) ker(F ) = {0}である。

(ii) F : U → V は単射である。

証明. 「(ii)⇒(i)」は自明なので、「(i)⇒(ii)」を示す。u1,u2 ∈ Uを、F (u1) = F (u2)満たすと
き、F (u1−u2) = F (u1)−F (u2) = 0ため、u1−u2 ∈ ker(F )が分かる。(i)より、u1−u2 = 0

が分かるため、u1 = u2を得る。よって、F は単射であることを示した。

定義 5. 有限次元ベクトル空間 U と V、線形写像 F : U → V において、ker(F )と im(F )の
次元は、それぞれ F の退化次数と F の階数と呼ばれ、

null(F ) = dim(ker(F ))

rank(F ) = dim(im(F ))

と書かれる。

補題 6. Aを、m × n行列、F : R
n → R

mを、F (x) = Axで定める線形写像とすると、

rank(F ) = rank(A)

である。

証明. 像の定義より、im(F ) ⊂ R
mは、Aの列ベクトルで生成される部分空間である。

まず、Aは、簡約な行列であることを仮定する。このとき、rank(A)は、Aの主成分の個数
と定義された。一方、主成分を含む列ベクトルのなす部分集合S = {aj1, . . . , ajr

} ⊂ im(F )

は、im(F )の基底である。なぜなら、Aが簡約な行列であるため、Sは１次独立で、主成分を
含まない列ベクトルが、主成分を含む列ベクトルの１次結合で表されることが分かる。よっ
て、Aは、簡約な行列であるとき、rank(F ) = rank(A)が成り立つ。
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次に、Aを、任意のm × n行列とし、Bを、Aの簡約化とする。階数の定義より、

rank(A) = rank(B)

が分かる。さらに、B = CAを満たす可逆なm × m行列 Cが存在する。G : R
m → R

mを、
G(y) = Cyで定める線形写像とすると、

(G ◦ F )(x) = CAx = Bx

ため、rank(G◦F ) = rank(B)が分かる。よって、rank(F ) = rank(G◦F )を示せばよい。今、C

は、可逆であるため、G : R
m → R

mは、全単射で、G−1(z) = C−1zであることが分かる。よっ
て、S = {y1, . . . ,yr} ⊂ im(F )は基底であるとき、G(S) = {G(y1), . . . , G(yr)} ⊂ im(G ◦ F )

も基底であることが成り立つ。同様に、T = {z1, . . . , zs} ⊂ im(G ◦ F )は基底であるとき、
G−1(T ) = {G−1(z1), . . . , G

−1(zs)} ⊂ im(F )も基底であることが分かる。特に、r = sである
ため、

rank(F ) = dim(im(F )) = dim(im(G ◦ F )) = rank(G ◦ F )

が成り立つ。これで、補題をしめした。

命題 7. UとV を、有限次元ベクトル空間、F : U → V を、線形写像、R = {u1, . . . ,un} ⊂ U、
S = {v1, . . . ,vm} ⊂ V を、基底、Aを、F のRと Sに関する表現行列とする。このとき、

rank(F ) = rank(A)

である。

証明. G : R
n → U とH : R

m → V を、次のように定める線形写像とする。

G











x1

...

xn











= x1u1 + · · ·+ xnun, H











y1

...

ym











= y1v1 + · · · + ymvm

このとき、GとHは全単射で、(H−1 ◦ F ◦ G)(x) = Axであるため、補題 6より、

rank(H−1 ◦ F ◦ G) = rank(A)

であることが分かる。さらに、GとHは全単射なので、補題 6の証明と同じように、

rank(H−1 ◦ F ◦ G) = rank(F ◦ G) = rank(F )

が示される。よって、rank(F ) = rank(A)が成り立つ。
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定理 8. 有限次元ベクトル空間U と V、線形写像 F : U → V に対して、

null(F ) + rank(F ) = dim(U)

である。

証明. r = null(F ), s = rank(F )とおき、ker(F )と im(F )の基底

R = {u1, . . . ,ur} ⊂ ker(F )

S = {v1, . . . ,vs} ⊂ im(F )

を捕る。さらに、

F (ur+1) = v1, F (ur+2) = v2, · · ·F (ur+s) = vs

を満たす ur+1, . . . ,ur+s ∈ U を捕る。このとき、

T = {u1, . . . ,ur,ur+1, . . . ,ur+s} ⊂ U

が、U の基底となることを示せばよい。

まず、T はU を生成することを示す。uをU の任意のベクトルとする。F (u) ∈ im(F )ため、

F (u) = b1v1 + · · · + bsvs (b1, . . . , bs ∈ R)

で表される。さて、

F (u− (b1ur+1 + · · · + bsur+s)) = F (u) − (b1F (ur+1) + · · · + bsF (ur+s))

= b1v1 + · · · + bsvs − (b1v1 + · · ·+ bsvs) = 0

ため、u− (b1ur+1 + · · ·+ bsur+s) ∈ ker(F )が分かる。ゆえに、

u− (b1ur+1 + · · · + bsur+s) = a1u1 + · · · + arur (a1, . . . , ar ∈ R)

で表される。よって、

u = a1u1 + · · ·+ arur + b1ur+1 + · · · + bsur+s

となるので、T = {u1, . . . ,ur,ur+1, . . . ,ur+s}は U を生成することを示した。

次に、T は１次独立であることを示す。１次結合

a1u1 + · · ·+ arur + b1ur+1 + · · ·+ bsur+s = 0

4



が与えられたとき、F を両辺に施す。u1, . . . ,ur ∈ ker(F )ため、

b1F (ur+1) + · · ·+ bsF (ur+s) = 0

または同等
b1v1 + · · ·+ bsvs = 0

を得る。今、S = {v1, . . . ,vs}は１次独立であるため、b1 = 0, . . . , bs = 0を得る。よって、

a1u1 + · · ·+ arur = 0

が分かる。しかし、R = {u1, . . . ,ur} ⊂ ker(F )も１次独立であるため、a1 = 0, . . . , ar = 0

が成り立つ。これで、T = {u1, . . . ,ur,ur+1, . . . ,ur+s}は１次独立であることを示した。

例題 9. F : R
4 → R

3を次のように定める線形写像とする。

F (x) = Ax, A =









1 2 3 4

5 6 7 8

9 10 11 12









(i) F の退化次数と階数を求めよ。

(ii) ker(F )の基底R、im(F )の基底 Sを求めよ。

解答. (i) Aの簡約した行列Bを計算すると、

B =









1 0 −1 −2

0 1 2 3

0 0 0 0









を得る。よって、rank(A) = 2が分かる。今、補題 6より、rank(F ) = rank(A) = 2、定理 8

より、null(F ) = 4 − rank(F ) = 2が成り立つ。

(ii) まず、ker(F )の基底Rを与える。

ker(F ) = {x ∈ R
4 | Ax = 0} = {x ∈ R

4 | Bx = 0}

ため、ker(F )は、次の連立１次方程式の解集合と等しい。

x1 − x3 − 2x4 = 0

x2 + 2x3 + 3x4 = 0

0 = 0
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その解は、次のように表される。














x1

x2

x3

x4















= c1















1

−2

1

0















+ c2















2

−3

0

1















(c1, c2 ∈ R)

すなわち、

R =









































1

−2

1

0















,















2

−3

0

1









































は、ker(F )の基底であることが分かる。

次に、im(F )の基底Sを与える。Aを簡約した行列Bの主成分を含む列ベクトルと対応する
列ベクトルからなる部分集合

S =























1

5

9









,









2

6

10























⊂ im(F )

は、im(F )の基底である。

以下、S ⊂ im(F )は基底である主張を示す。C を、B = CAを満たす可逆な 3 × 3行列、
G : R

3 → R
3を、G(y) = Cyで定める線形写像とする。このとき、合成写像G ◦F : R

4 → R
3

は、(G ◦ F )(x) = CAx = Bx で表される線形写像である。im(G ◦ F ) ⊂ R
3は、Bの列ベク

トルで生成された部分空間である。さらに、Bが簡約な行列であるため、主成分を含む列ベ
クトルからなる部分集合

T =























1

0

0









,









0

1

0























⊂ im(G ◦ F )

は、基底であることが分かる。今、G−1 : R
3 → R

3は、G−1(z) = C−1zで表され、

S = G−1(T ) ⊂ im(F )

は、im(F )の基底であることが成り立つ。
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