
8 ベクトル空間

まず、実数体とは、実数のなす集合Rと加法+: R × R → R、乗法 · : R × R → Rで定義
された写像からなる三組 (R, +, · )である。以下、加法と乗法を満たす性質を思い出す。

(A1) 任意の a, b, c ∈ Rに対して、(a + b) + c = a + (b + c)である。

(A2) 任意の a ∈ Rに対して、a + 0 = a = 0 + aを満たす元 0 ∈ Rが存在する。

(A3) 任意の a ∈ Rに対して、a + b = 0 = b + aを満たす元 b ∈ Rが存在する。

(A4) 任意の a, b ∈ Rに対して、a + b = b + aである。

(P1) 任意の a, b, c ∈ Rに対して、(a · b) · c = a · (b · c)である。

(P2) 任意の a ∈ Rに対して、a · 1 = a = 1 · aを満たす 0でない元 1 ∈ Rが存在する。

(P3) 任意の 0でない a ∈ Rに対して、a · b = 1 = b · aを満たす元 b ∈ Rが存在する。

(P4) 任意の a, b ∈ Rに対して、a · b = b · aである。

(D) 任意のa, b, c ∈ Rに対して、a · (b+c) = (a · b)+(a · c)と (a+b) · c = (a · c)+(b · c)

である。

注 1. 一般的に、集合Kと以上の公理 (A1)–(A4)、(P1)–(P4)、(D)を満たす写像

+: K × K → K, · : K × K → K

からなる三組 (K, +, · )は、体 (field)と呼ばれる。例として、集合 F2 = {0, 1}と次のように
定義された写像+: F2 × F2 → F2、 · : F2 × F2 → F2からなる三組 (F2, +, · )も体である。

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0

0 · 0 = 0 0 · 1 = 0 1 · 0 = 0 1 · 1 = 1

この体は、位数 2の有限体とよばれ、数学や情報理論での大切なものである。

授業ノート等：www.math.nagoya-u.ac.jp/∼larsh/teaching/F2012 W
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定義 2. ベクトル空間とは、集合 V と次の公理 (A1)–(A4)と (M1)–(M4)を満たす写像

+: V × V → V, · : R × V → V

からなる三組 (V, +, · )である。

(A1) 任意の u,v,w ∈ V に対して、(u + v) + w = u + (v + w)である。

(A2) 任意の u ∈ V に対して、u + 0 = u = 0 + uを満たす元 0 ∈ V が存在する。

(A3) 任意の u ∈ V に対して、u + v = 0 = v + uを満たす元 v ∈ V が存在する。

(A4) 任意の u,v ∈ V に対して、u + v = v + uである。

(M1) 任意の a, b ∈ R、u ∈ V に対して、(a · b) · u = a · (b · u)である。

(M2) 任意の a ∈ R、u,v ∈ V に対して、a · (u + v) = (a · u) + (a · v)である。

(M3) 任意の a, b ∈ R、u ∈ V に対して、(a + b) · u = (a · u) + (b · u)である。

(M4) 任意の u ∈ V に対して、1 · u = uである。

注 3. ベクトル空間 (V, +, · )について、次の用語を用いることが多い。

(i) 集合 V の元は、ベクトルと呼ばれ、太字 u,v,w, · · · で書かれている。

(ii) 集合Rの元は、スカラーと呼ばれ、小文字 a, b, c, · · · で書かれている。

(iii) ベクトル u,v ∈ V に対して、u + v ∈ V は、u,vのベクトル和と呼ばれる。

(iv) スカラー a ∈ Rとベクトル u ∈ V に対して、ベクトル a · u ∈ V は、uの a倍と呼ば
れ、単に auとも書かれている。

(v) 任意の u ∈ V に対して u + 0 = u = 0 + uを満たすベクトル 0 ∈ V は、零ベクトルと
呼ばれる。

(vi) ベクトル u ∈ V に対して、u + v = 0 = v + uを満たすベクトル v ∈ V は、ベクトル
uの逆ベクトルと呼ばれ、−uと書かれる。
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(vii) u,v ∈ V のベクトル差は、u − v = u + (−v)で定義される。特に、任意のベクトル
u ∈ V に対して、u− u = 0である。

補題 4. (V, +, · )をベクトル空間とする。

(1) 零ベクトルについては、ただ一つが存在する。

(2) 任意の u ∈ V に対して、逆ベクトルは、ただ一つが存在する。

(3) 任意の u ∈ V に対して、0u = 0である。

(4) 任意の u ∈ V に対して、(−1)u = −uである。

証明. (1) 0, 0′ ∈ V は、両方公理 (A2)を満たすとき、0 = 0
′であることを示せばよい。今、

0は公理 (A2)を満たすため、0
′ = 0

′ + 0が分かる。同様に、0
′は公理 (A2)を満たすため、

0
′ + 0 = 0が分かる。すなわち、

0
′ = 0 + 0

′ = 0

を示した。

(2) v,v′ ∈ V は、両方与えられた u ∈ V の逆ベクトルであることを仮定する。そのとき、

v = v + 0 = v + (u + v
′) = (v + u) + v

′ = 0 + v
′ = v

′

が成り立つため、uの逆ベクトルの一意性を示した。

(3) u ∈ V において、
0u = (0 + 0)u = 0u + 0u

であるため、0 = 0uが分かる。

(4)逆ベクトルの一意性より、u + (−1)u = 0を示せば良い。今、

u + (−1)u = 1u + (−1)u = (1 + (−1))u = 0u = 0

であるため、補題を示した。
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例 5. n次のユークリッド空間とは、次のように定義されたベクトル空間 (Rn, +, · )である。
ここで、R

nは、n次の列ベクトル
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例 6. 次のように、ベクトル空間 (V, +, · )を定める。V を、任意の関数 f : R → Rから
なる集合とし、ベクトル和とスカラー積を、それぞれの公式 (f + g)(x) = f(x) + g(x)と
(af)(x) = af(x)で定める。このベクトル空間の零ベクトルは、定関数 f(x) = 0である。

命題 7. (V, +, · )を、ベクトル空間とし、W ⊂ V を、以下の性質 (i)—(iii)を満たす部分集
合とする。このとき、(W, +, · )は、ベクトル空間である。

(i) 0 ∈ W

(ii) 任意の u,v ∈ W に対して、u + v ∈ W である。

(iii) 任意の a ∈ R、u ∈ W に対して、au ∈ W である。

証明. それぞれの性質 (ii)と (iii)により、+: W × W → W と · : R × W → W は、うまく
定義された写像である。以下、公理 (A1)–(A4)、(M1)–(M4)、(D)が満たされていることを
示す。まず、(V, +, · )が (A1)–(A4)、(M1)–(M4)、(D)を満たすため、(W, +, · )も (A1)、
(A4)、(M1)–(M4)、(D)を満たすことが直ちに分かる。さらに、性質 (i)より、V の零ベクト
ル0がW に含まれているため、(W, +, · )が (A2)を満たすことが成り立つ。最後に、(V, +, ·)

が (A3)を満たすため、任意の u ∈ W に対して、u + v = 0 = v + uを満たす v ∈ V が存在
することが分かる。しかし、補題 4その (4)より、v = (−1)uが分かるため、性質 (iii)より、
v ∈ W を得る。よって、(W, +, · )が (A3)を満たすことを示した。
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定義 8. ベクトル空間 (V, +, · )において、以上の性質 (i)—(iii)を満たす部分集合W ⊂ V か
らなるようなベクトル空間 (W, +, · )は、(V, +, · )の部分空間とよばれる。

命題 9. m × n行列Aに対して、W ⊂ R
nを、解集合

W = {x ∈ R
n | Ax = 0} ⊂ R

n

とする。このとき、(W, +, · )は、ユークリッド空間 (Rn, +, · )の部分空間である。

証明. W ⊂ R
nが命題 7の性質 (i)—(iii)を満たすことを示せばよい。A0 = 0ため、(i)が成

り立つ。任意の u,v ∈ W に対して、A(u + v) = Au + Av = 0 + 0 = 0ため、(ii)を得る。
任意の a ∈ R、u ∈ W に対して、A(au) = aAu = a0 = 0なので、(iii)が成り立つ。よって、
命題 7より、(W, +, · )は、(Rn, +, · )の部分空間であることが分かる。

定義 10. m × n行列Aにおいて、解集合

W = {x ∈ R
n | Ax = 0} ⊂ R

n

からなる部分空間 (W, +, · ) ⊂ (Rn, +, · )は、Aのカーネル（kernel）と呼ばれ、ker(A)と
書かれる。

例 11. (1) 次の部分集合W ⊂ R
2について、(W, +, · )は (R2, +, · )の部分空間である。

W = {x ∈ R
2 | 2x1 − 3x2 = 0}

ただし、(W, +, · )は 1 × 2行列A = ( 2 − 3 )のカーネルである。

(2) 次の部分集合Z ⊂ R
2は、ユークリッド空間 (R2, +, · )の部分空間ではない。

Z = {x ∈ R
2 | 2x1 − 3x2 = 1}

なぜなら、Zは、零ベクトル 0を含まない。
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