
幾何学 II / 幾何学概論 II：レポート問題2の答え

問題 1. (1) d∗の定義より、

d∗
◦ d∗　 =

(
(−1)n(p+1)−1

∗ ◦ d ◦ ∗

)
◦

(
(−1)np−1

∗ ◦ d ◦ ∗

)
= (−1)n−1

∗ ◦ d ◦ ∗ ◦ ∗ ◦ d ◦ ∗

である。ここで、

∗ ◦ ∗ = (−1)(n−(p−1))(p−1) id : Ωn−(p−1)(U) → Ωn−(p−1)(U)

ため、d ◦ d = 0より、d∗
◦ d∗ = 0が分かる。

(2) まず、d∗の定義より、

d∗(f ∧ dx1 ∧ · · · ∧ dxp) = (−1)n(p+1)−1
∗ (d(∗(f ∧ dx1 ∧ · · · ∧ dxp)))

= (−1)n(p+1)−1
∗ (d(f ∧ dxp+1 ∧ · · · ∧ dxn))

= (−1)n(p+1)−1
∗ (

n∑

i=1

∂f

∂xi

∧ dxi ∧ dxp+1 ∧ · · · ∧ dxn)

= (−1)n(p+1)−1
∗ (

p∑

i=1

∂f

∂xi

∧ dxi ∧ dxp+1 ∧ · · · ∧ dxn)

= (−1)n(p+1)−1

p∑

i=1

∂f

∂xi

∧ ∗(dxi ∧ dxp+1 ∧ · · · ∧ dxn)

を得る。ここで、σ = σi ∈ Sn−(p−1),p−1を、

σ(s) =





i
(
s = 1

)

s + p − 1
(
2 6 s 6 n − (p − 1)

)

で定めるシャッフルとすると、

∗(dxi ∧ dxp+1 ∧ · · · ∧ dxn) = ∗(dxσ(1) ∧ · · · ∧ dxσ(n−(p−1)))

= sgn(σ)dxσ(n−(p−1)+1) ∧ · · · ∧ dxσ(n)

= sgn(σ)dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn

が分かる。さらに、

sgn(σ) = (−1)i−1((−1)p−1)n−p = (−1)n(p−1)−1+i
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ため、

d∗(f ∧ dx1 ∧ · · · ∧ dxp) =

p∑

i=1

(−1)i ∂f

∂xi

∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 · · · ∧ dxp

を示した。

(3)その (2)と同じ方法で解けるが、置換σの符号がもっと計算しにくいので、その代わりに変
数変換を用い解ける。さて、τ(1) = i1, . . . , τ(p) = ipを満たす (p, n−p)シャッフル τ ∈ Sp,n−p

とし、φ : R
n
→ R

nを、φ(x1, . . . , xn) = (xτ(1), . . . , xτ(n))で定める微分同相とする。このと
き、U ′ = φ−1(U)とすると、次の図式が可換になる。

Ωp(U ′)
Ωp(φ)

//

sgn(τ)∗
��

Ωp(U)

∗

��

Ωn−p(U ′)
Ωn−p(φ)

// Ωn−p(U)

なぜなら、
Ωn(φ)(vol) = φ∗(dx1 ∧ · · · ∧ dxn) = dxτ(1) ∧ · · · ∧ dxτ(n)

= sgn(τ)dx1 ∧ · · · ∧ dxn = sgn(τ) vol

である。従って、sgn(τ) sgn(τ) = +1ため、次の図式も可換になることが分かる。

Ωp(U ′)
Ωp(φ)

//

d∗

��

Ωp(U)

d∗

��

Ωp−1(U ′)
Ωp−1(φ)

// Ωp−1(U)

今、f : U → Rを f = g ◦ φ : U ′
→ Rと表すと、

d∗(f ∧ dxi1 ∧ · · · ∧ dxip) = d∗(Ωp(φ)(g ∧ dx1 ∧ · · · ∧ dxp))

= Ωp−1(φ)(g)(d∗(g ∧ dx1 ∧ · · · ∧ dxp))

= Ωp−1(φ)(

p∑

s=1

(−1)s ∂g

∂xs

∧ dx1 ∧ · · · ∧ dxs−1 ∧ dxs+1 ∧ · · · ∧ dxp)

=

p∑

s=1

(−1)s ∂f

∂xis

∧ dxi1 ∧ · · · ∧ dxis−1
∧ dxis+1

∧ · · · ∧ dxip

が成り立つ。
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問題 2. (1)問題 1その (3)を用い、

(d ◦ d∗)(f ∧ dxi1 ∧ · · · ∧ dxip) = d
( p∑

s=1

(−1)s ∂f

∂xis

∧ dxi1 ∧ · · · ∧ d̂xis ∧ · · · ∧ dxip

)

=

n∑

i=1

p∑

s=1

(−1)s ∂2f

∂xi∂xis

∧ dxi ∧ dxi1 ∧ · · · ∧ d̂xis ∧ · · · ∧ dxip

かつ

(d∗
◦ d)(f ∧ dxi1 ∧ · · · ∧ dxip) = d∗

( n∑

i=1

∂f

∂xi

∧ dxi ∧ dxi1 ∧ · · · ∧ dxip

)

= −

(∂2f

∂x2
1

+ · · · +
∂2f

∂x2
n

)
∧ dxi1 ∧ · · · ∧ dxip

−

p∑

s=1

n∑

i=1

(−1)s ∂2f

∂xis∂xi

∧ dxi ∧ dxi1 ∧ · · · ∧ d̂xis ∧ · · · ∧ dxip

を得る。ただし、「 d̂xis」は、「dxis を除いた」意味である。従って、

∆(f ∧ dxi1 ∧ · · · ∧ dxip) = −

(∂2f

∂x2
1

+ · · ·+
∂2f

∂x2
n

)
∧ dxi1 ∧ · · · ∧ dxip

が分かる。

(2) 反復したホッジ演算子の公式より、

d ◦ ∗ ◦ d ◦ ∗ ◦ ∗ = ∗ ◦ ∗ ◦ d ◦ ∗ ◦ d

が分かる。これを用い、
∆ ◦ ∗ = ∗ ◦ ∆: Ωp(U) → Ωn−p(U)

を示す。まず、

∆ ◦ ∗ = (d ◦ d∗ + d∗
◦ d) ◦ ∗

= (−1)n(n−p+1)−1d ◦ ∗ ◦ d ◦ ∗ ◦ ∗ + (−1)n(n−p+2)−1
∗ ◦ d ◦ ∗ ◦ d ◦ ∗

= (−1)n(n−p+1)−1
∗ ◦ ∗ ◦ d ◦ ∗ ◦ d + (−1)n(n−p+2)−1

∗ ◦ d ◦ ∗ ◦ d ◦ ∗

= (−1)np−1
∗ ◦ ∗ ◦ d ◦ ∗ ◦ d + (−1)n(p+1)−1

∗ ◦ d ◦ ∗ ◦ d ◦ ∗

である。一方、

∗ ◦ ∆ = ∗ ◦ (d ◦ d∗ + d∗
◦ d)

= (−1)n(p+1)−1
∗ ◦ d ◦ ∗ ◦ d ◦ ∗ + (−1)n(p+2)−1

∗ ◦ ∗ ◦ d ◦ ∗ ◦ d

= (−1)np−1
∗ ◦ ∗ ◦ d ◦ ∗ ◦ d + (−1)n(p+1)−1

∗ ◦ d ◦ ∗ ◦ d ◦ ∗
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であるため、
∗ ◦ ∆ = ∆ ◦ ∗

が成り立つ。特に、∆(ω)はゼロであれば、∆(∗ω)もゼロであることが分かる。
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