
9 固有値と固有ベクトル

ベクトル空間 V と線形写像 F : V → V において、任意の λ ∈ Rに対して、

F − λ idV : V → V

も線形写像である。なぜなら、

(F − λ idV )(u1 + u2) = F (u1 + u2) − λ(u1 + u2) = F (u1) + F (u2) − λu1 − λu2

= (F − λ idV )(u1) + (F − λ idV )(u2)

(F − λ idV )(cu) = F (cu) − λcu = cF (u) − cλu = c(F − λ idV )(u)

定義 1. V をベクトル空間、F : V → V を線形写像とする。任意の実数 λ ∈ Rに対して、

ker(F − λ idV ) = {u ∈ V | (F − λ idV )(u) = 0} = {u ∈ V | F (u) = λu} ⊂ V

がゼロ空間でないとき、λはF の固有値、ker(F −λ idV )はF の固有値 λに属する固有空間、
0 6= u ∈ ker(F − λ idV )は F の固有値 λに属する固有ベクトルと呼ばれる。

例 2. (1) ゼロ写像 0 : V → V に対して、λ = 0は固有値、λ = 0に属する固有空間は V、任
意の 0 6= u ∈ V は λ = 0に属する固有ベクトルである。さらに、λ = 0以外固有値はない。

(2) 恒等写像 idV : V → V に対して、λ = 1は固有値、λ = 1に属する固有空間はV、任意の
0 6= u ∈ V は λ = 1に属する固有ベクトルである。さらに、λ = 1以外固有値はない。

(3) F : R
2 → R

2を次のように定める線形写像とする。
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このとき、λ = 2と λ = 3はF の固有値、それらに属する固有空間は、次のように表される。
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(4) G : R
2 → R

2を次のように定める線形写像とする。
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このとき、Gの固有値はない。

(5) V を微分可能関数 f : R → Rのなすベクトル空間、D : V → V をD(f(x)) = f ′(x)で定め
る線形写像とする。このとき、任意の実数 λ ∈ RはDの固有値で、λに属する固有空間は、

ker(D − λ idV ) = {ceλx | c ∈ R} ⊂ V

である。

これから、V を有限次元ベクトル空間とする。まず、V から自分自身への線形写像の行列式
を定義する。

定義 3. V を有限次元ベクトル空間、G : V → V を線形写像とする。S ⊂ V を基底、AをG

の S ⊂ V に関する表現行列とする。このとき、Gの行列式は、

det(G) = det(A)

で定義される。

以下、det(G)は、選んだ基底 S ⊂ V によらず、うまく定義したものであることを示す。

補題 4. V を有限次元ベクトル空間、G : V → V を線形写像、S ⊂ V と T ⊂ V を基底、A

とBをそれぞれGの基底 S ⊂ V に関する表現行列とGの基底 T ⊂ V に関する表現行列と
する。このとき、det(A) = det(B)である。

証明. P を恒等写像 idV : V → V の基底 T ⊂ V と S ⊂ V に関する表現行列とすると、以下
の図式を考えると、

B = P−1AP

が分かる。
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従って、
det(B) = det(P−1AP ) = det(P )−1 det(A) det(P ) = det(A)

が成り立つ。

命題 5. V を有限次元ベクトル空間、G : V → V を線形写像とする。このとき、次の性質
(i)–(ii)は同値である。

(i) ker(G) 6= {0}

(ii) det(G) = 0

証明. Sを V の基底、AをGの Sに関する表現行列とすると、

ker(G) = {0} ⇔ null(G) = 0 ⇔ rank(G) = dim(V ) ⇔

rank(A) = dim(V ) ⇔ det(A) 6= 0 ⇔ det(G) 6= 0　

が分かる。これで、命題が成り立つ。

定義 6. 有限次元ベクトル空間 V において，ある線形写像 F : V → V の固有多項式とは、

χF (t) = det(F − t idV )

で定める多項式である。

定理 7. V を有限次元ベクトル空間、F : V → V を線形写像とする。このとき、任意の λ ∈ R

に対して、次の性質 (i)–(ii)は同値である。

(i) λは F の固有値である。

(ii) λは F の固有多項式 χF (t)の根である。

証明. G = F −λ idV とする。固有値の定義より、λがF の固有値であることと ker(G) 6= {0}

であることは同値である。さらに、固有多項式 χF (t)の定義より、λが固有多項式の根であ
ることと det(G) = 0であることは同値である。ゆえに、定理は命題 5から成り立つ。
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例 8. 例 2における線形写像をもう一回考えてみる。

(1) 有限次元 nのベクトル空間 V について、ゼロ写像 0 : V → V の固有多項式は、

χ0(t) = det(0 − t idV ) = det(−t idv) = (−t)n

であるため、定理 7より、λ = 0は固有値で、それ以外の固有値はないことが分かる。

(2) 有限次元 nのベクトル空間 V について、恒等写像 idV : V → V の固有多項式は、

χidV
(t) = det(idV −t idV ) = det((1 − t) idV ) = (1 − t)n

であるため、定理 7より、λ = 1は固有値で、それ以外の固有値はないことが分かる。

(3) F : R
2 → R

2の固有多項式は、

χF (t) = det(F − t id) = det





−t 1

−6 5 − t



 = t2 − 5t + 6 = (t − 2)(t − 3)

であるため、定理 7より、λ = 2と λ = 3は F の固有値で、それ以外の固有値はないことが
分かる。

(4) G : R
2 → R

2の固有多項式は、

χG(t) = det(G − t id) = det





−t −1

1 −t



 = t2 + 1

であるため、定理 7より、Gの固有値はないことが分かる。

(5) 微分可能関数 f : R → Rのなすベクトル空間 V は無限次元なので、線形写像Dの固有多
項式が定義されていない。

命題 9. V をベクトル空間、F : V → V を線形写像、λ1 < λ2 < · · · < λkを F のすべての固
有値、u1,u2, . . . ,ukをそれらに属する固有ベクトルとする。このとき、部分集合

S = {u1, . . . ,uk} ⊂ V

は１次独立である。

証明. 帰納法を用いて示す。k = 0のときは自明なので、k = r− 1のときを正しいと仮定し、
k = rのときを示せばよい。さて、

(F − λi idV )(uj) = (λj − λi)uj
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ため、ある１次関係 c1u1 + c2u2 + · · · + crur = 0に対して、

((F − λ1 idV ) ◦ (F − λ2 idV ) ◦ · · · ◦ (F − λr−1 idV ))(c1u1 + c2u2 + · · ·+ crur)

= 0 + · · ·+ 0 + (λr − λ1)(λr − λ2) . . . (λr − λr−1)crur

なので、crur = 0が分かる。ゆえに、ur 6= 0ため、cr = 0、

c1u1 + · · ·+ cr−1ur−1 = 0

を得る。帰納法の仮定より、c1 = 0, . . . , cr−1 = 0ため、S = {u1, . . . ,ur} ⊂ V は１次独立で
あることを示した。

系 10. V を有限次元 nのベクトル空間、F : V → V を n個の互いに異なる固有値を持つ線
形写像とする。このとき、V が F の固有ベクトルからなる基底を持つ。

証明. λ1 < · · · < λnを F の固有値、u1, . . . ,unをそれらに属する固有ベクトルとする。命
題 9より、S = {u1, . . . ,un} ⊂ V は１次独立であることが分かる。Sの個数 nは V の次元 n

と等しいため、S ⊂ V は基底であることが分かる。

例 11. F : R
2 → R

2を次のように定める線形写像とする。

F





x1

x2



 =





1 1

0 1









x1

x2





F の固有多項式は χF (t) = (1 − t)2ため、λ = 1は F の固有値で、それ以外の固有値はない
ことが分かる。さらに、λ = 1と属する固有空間は、

ker(F − idR2) =
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= {x1e1 | x1 ∈ R}

である。よって、このとき、R
2が F の固有ベクトルからなる基底を持たない。
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