

1. Rings and modules

The notion of a module is a generalization of the familiar notion of a vector space. The generalization consists in that the scalars used for scalar multiplication are taken to be elements of a general ring. We first define rings.

DEFINITION 1.1. A *ring* is a triple $(R, +, \cdot)$ consisting of a set R and two maps $+ : R \times R \rightarrow R$ and $\cdot : R \times R \rightarrow R$ that satisfy the following axioms.

- (A1) For all $a, b, c \in R$, $a + (b + c) = (a + b) + c$.
- (A2) There exists an element $0 \in R$ such that for all $a \in R$, $a + 0 = a = 0 + a$.
- (A3) For every $a \in R$, there exists $b \in R$ such that $a + b = 0 = b + a$.
- (A4) For all $a, b \in R$, $a + b = b + a$.
- (P1) For all $a, b, c \in R$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- (P2) There exists an element $1 \in R$ such that for all $a \in R$, $a \cdot 1 = a = 1 \cdot a$.
- (D) For all $a, b, c \in R$, $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ and $(a + b) \cdot c = (a \cdot c) + (b \cdot c)$.

The ring $(R, +, \cdot)$ is called *commutative* if the following further axiom holds.

- (P3) For all $a, b \in R$, $ab = ba$.

The axioms (A1)–(A4) and (P1)–(P2) express that $(R, +)$ is an abelian group and that (R, \cdot) is a monoid, respectively. The axiom (D) expresses that \cdot distributes over $+$. We often suppress \cdot and write ab instead of $a \cdot b$. The zero element 0 which exist by axiom (A2) is unique. Indeed, if both 0 and $0'$ satisfy (A2), then

$$0' = 0 + 0' = 0.$$

Moreover, for a given $a \in R$, the element $b \in R$ such that $a + b = 0 = b + a$ which exists by (A3) is unique. Indeed, if both b and b' satisfy (A3), then

$$b = b + 0 = b + (a + b') = (b + a) + b' = 0 + b' = b'.$$

We write $-a$ instead of b for this element. Similarly, the element $1 \in R$ which exists by axiom (P2) is unique. We usually abuse language and write R instead of $(R, +, \cdot)$.

EXAMPLE 1.2. (1) The ring \mathbb{Z} of integers. It is a commutative ring.

(2) The rings \mathbb{Q} , \mathbb{R} , and \mathbb{C} of rational numbers, real numbers, and complex numbers respectively. These rings are all *fields* which mean that they are commutative, that $1 \neq 0$, and that for all $a \in R \setminus \{0\}$, there exists $b \in R$ such that $ab = 1 = ba$. This element b is uniquely determined by a and is written a^{-1} .

(3) The ring $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n . It is a field if and only if n is a prime number.

(4) The ring \mathbb{H} of quaternions given by the set

$$\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}$$

with addition $+$ and multiplication \cdot defined by

$$\begin{aligned} (a + bi + cj + dk) + (a' + b'i + c'j + d'k) \\ = (a + a') + (b + b')i + (c + c')j + (d + d')k \\ (a + bi + cj + dk) \cdot (a' + b'i + c'j + d'k) \\ = (aa' - bb' - cc' - dd') + (ab' + a'b + cd' - dc')i \\ + (ac' + a'c + db' - bd')j + (ad' + a'd + bc' - b'c)k \end{aligned}$$

It is a *division ring* which means that $1 \neq 0$ and that for all $a \in R \setminus \{0\}$, there exists $b \in R$ such that $ab = 1 = ba$. A field is a commutative division ring. The quaternions \mathbb{H} is not a commutative ring. For instance, $ij = k$ but $ji = -k$.

(5) Let R be a ring and. For every positive integer n , the set of $n \times n$ -matrices with entries in R equipped with matrix addition and matrix multiplication forms a ring $M_n(R)$. The multiplicative unit element $1 \in M_n(R)$ is the identity matrix and is usually written I . The ring $M_n(R)$ is not commutative except if $n = 1$ and R is commutative.

(6) The set $C^0(X, \mathbb{C})$ of continuous complex valued functions on a topological space X is a commutative ring under pointwise addition and multiplication. The multiplicative unit element $1 \in C^0(X, \mathbb{C})$ is the constant function with value $1 \in \mathbb{C}$.

DEFINITION 1.3. Let R and S be rings. A *ring homomorphism* from R to S is a map for which the following (i)–(iii) hold.

- (i) $f(1) = 1$
- (ii) For all $a, b \in R$, $f(a + b) = f(a) + f(b)$.
- (iii) For all $a, b \in R$, $f(a \cdot b) = f(a) \cdot f(b)$.

EXERCISE 1.4. Let $f: R \rightarrow S$ be a ring homomorphism. Show that $f(0) = 0$ and that for all $a \in R$, $f(-a) = -f(a)$.

EXAMPLE 1.5. (1) For every ring R , the identity map $\text{id}: R \rightarrow R$ is a ring homomorphism. Moreover, if $f: R \rightarrow S$ and $g: S \rightarrow T$ are ring homomorphisms, then so is the composite map $g \circ f: R \rightarrow T$.

(2) For every ring R , there is a unique ring homomorphism $f: \mathbb{Z} \rightarrow R$. We sometimes abuse notation and write $n \in R$ for the image of $n \in \mathbb{Z}$.

(3) There is a ring homomorphism $f: \mathbb{H} \rightarrow M_4(\mathbb{R})$ determined by

$$f(a + bi + cj + dk) = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix}$$

(4) The canonical inclusions of \mathbb{Z} in \mathbb{Q} , of \mathbb{Q} in \mathbb{R} , of \mathbb{R} in \mathbb{C} , and of \mathbb{C} in \mathbb{H} are all ring homomorphisms.

DEFINITION 1.6. Let R be a ring. A *left R -module* is a triple $(M, +, \cdot)$ consisting of a set M and two maps $+: M \times M \rightarrow M$ and $\cdot: R \times M \rightarrow M$ such that $(M, +)$ satisfy the axioms (A1)–(A4) and such that the following additional axioms hold.

- (M1) For all $a, b \in R$ and $x \in M$, $a \cdot (b \cdot x) = (a \cdot b) \cdot x$.
- (M2) For all $a \in R$ and $x, y \in M$, $a \cdot (x + y) = (a \cdot x) + (b \cdot y)$.
- (M3) For all $a, b \in R$ and $x \in M$, $(a + b) \cdot x = (a \cdot x) + (b \cdot x)$.
- (M4) For all $x \in M$, $1 \cdot x = x$.

The notion of a right R -module is defined analogously.

EXAMPLE 1.7. (1) The ring R is both a left R -module and a right R -module.

(2) The set R^n considered as the set of “ n -dimensional column vectors” is a left $M_n(R)$ -module and considered as the set of “ n -dimensional row vectors” is a right $M_n(R)$ -module.

(3) Let n be a positive integer, let d be a divisor in n , and define

$$\cdot: \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/d\mathbb{Z} \rightarrow \mathbb{Z}/d\mathbb{Z}$$

by $(a + n\mathbb{Z}) \cdot (x + d\mathbb{Z}) = ax + d\mathbb{Z}$. This makes $\mathbb{Z}/d\mathbb{Z}$ a left $\mathbb{Z}/n\mathbb{Z}$ -module.

DEFINITION 1.8. Let R be a ring and let M a left R -module.

(1) A *linear combination* of $X \subset M$ is a sum of the form

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

with $a_1, \dots, a_n \in R$ and $x_1, \dots, x_n \in X$.

- (2) The subset $X \subset M$ *generates* M if every $y \in M$ can be written as a linear combination $y = a_1x_1 + a_2x_2 + \cdots + a_nx_n$ of X .
- (3) The subset $X \subset M$ is *linearly independent* if for the linear combination $a_1x_1 + a_2x_2 + \cdots + a_nx_n$ to equal 0 implies that a_1, \dots, a_n are all zero.
- (4) The subset $X \subset M$ is a *basis* if it generates M and is linearly independent.
- (5) The module M is *free* if it admits a basis.

EXAMPLE 1.9. (1) The left $\mathbb{Z}/6\mathbb{Z}$ -module $\mathbb{Z}/2\mathbb{Z}$ in Example 1.7 (3) is not a free module. The subset $X = \{1 + 2\mathbb{Z}\} \subset \mathbb{Z}/2\mathbb{Z}$ generates $\mathbb{Z}/2\mathbb{Z}$ but it is not linearly independent. Indeed, $(2 + 6\mathbb{Z}) \cdot (1 + 2\mathbb{Z}) = 2 + 2\mathbb{Z}$ is zero in $\mathbb{Z}/2\mathbb{Z}$, but $2 + 6\mathbb{Z}$ is not zero in $\mathbb{Z}/6\mathbb{Z}$.

(2) Let M be a left R -module. The empty subset $\emptyset \subset M$ is linearly independent and the whole subset $M \subset M$ generates M .

THEOREM 1.10. *Every left module over a division ring is free. More precisely, given two subsets $X \subset Y \subset M$ such that X is linearly independent and such that Y generates M , there exists a basis $B \subset M$ with $X \subset B \subset Y$.*

PROOF. Let S be the set that consists of all subsets $Z \subset M$ that are linearly independent and satisfy $X \subset Z \subset Y$. We will use Zorn's lemma to prove that S has a maximal element. To this end, we must verify the following (i)–(ii).

- (i) The set S is non-empty.
- (ii) Every to subset $T \subset S$ which is totally ordered with respect to inclusion has an upper bound in S .

Now, since $X \in S$, we conclude that (i) holds. To verify (ii), let $T \subset S$ be a totally ordered subset of S . Then $Z_T = \bigcup_{Z \in T} Z$ is a linearly independent subset of M and $X \subset Z_T \subset Y$. So $Z_T \in S$ and for all $Z \in T$, $Z \subset Z_T$ which proves (ii). By Zorn's lemma, S has a maximal element B . Since $B \in S$, $B \subset M$ is linearly independent and $X \subset B \subset Y$. We show that B generates M . If not, there exists $y \in Y$ which is not a linear combination of elements in B . We claim that $B \cup \{y\} \subset M$ is linearly independent. Indeed, suppose

$$a_1x_1 + \cdots + a_nx_n + ay = 0$$

with $a_1, \dots, a_n, a \in R$ and $x_1, \dots, x_n \in B$. Then $a = 0$ or else

$$y = -a^{-1}(a_1x_1 + \cdots + a_nx_n)$$

which contradicts that y is not a linear combination of elements of B . (Here we have used the assumption that R is a division ring.) Since B is linearly independent, we further have $a_1 = \cdots = a_n = 0$. This proves the claim that $B \cup \{y\}$ is linearly independent. Thus $B \cup \{y\} \in S$ which contradicts that $B \in S$ is the maximal element. This shows that B generates M , and hence, is a basis as desired. \square

DEFINITION 1.11. A left module over a division ring is called a *left vector space*.

REMARK 1.12. Let M be a left vector space over the division ring R . One may show that the cardinality of a basis $B \subset M$ depends only on M and not on B . This

cardinality is called the *dimension* of M . For a general ring R , two different bases of the same free left R -module M do not necessarily have the same cardinality.

EXERCISE 1.13. The formula

$$(a + bi + cj + dk) \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \end{pmatrix} = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \end{pmatrix}$$

defines a left \mathbb{H} -vector space structure on \mathbb{R}^4 . Show that a subset $B \subset \mathbb{R}^4$ is a basis of this left \mathbb{H} -vector space if and only if B consists of a single non-zero vector.