1. Rings and modules

The notion of a module is a generalization of the familiar notion of a vector
space. The generalization consists in that the scalars used for scalar multiplication
are taken to be elements of a general ring. We first define rings.

DEFINITION 1.1. A ring is a triple (R, +, -) consisting of a set R and two maps
+:RxR— Rand -: Rx R — R that satisfy the following axioms.
) Forall a,b,c€ R, a+ (b+¢) = (a+b) +c.
2) There exists an element 0 € R such that foralla € R, a+0=a =0+ a.
3) For every a € R, there exists b € R such that a + b=0=0+ a.
4) Foralla,be R, a+b=b+ a.
1) For all a,b,c€ R,a-(b-c) =(a-b)-c.
2) There exists an element 1 € R such that foralla € R,a-1=a=1"-a.
(D) Foralla,b,c€ R,a-(b+c¢) =(a-b)+(a-c)and (a+b)-c=(a-c)+ (b-c).
The ring (R, +,-) is called commutative if the following further axiom holds.
(P3) For all a,b € R, ab = ba.

The axioms (A1)-(A4) and (P1)—(P2) express that (R, +) is an abelian group
and that (R, -) is a monoid, respectively. The axiom (D) expresses that - distributes
over +. We often suppress - and write ab instead of a -b. The zero element 0 which
exist by axiom (A2) is unique. Indeed, if both 0 and 0" satisfy (A2), then

0'=0+0"=0.
Moreover, for a given a € R, the element b € R such that a +b =0 = b + a which
exists by (A3) is unique. Indeed, if both b and b satisfy (A3), then
b=b+0=b+(a+b)=0b+a)+b' =0+ =1"

We write —a instead of b for this element. Similarly, the element 1 € R which
exists by axiom (P2) is unique. We usuall abuse language and write R instead of
(R,+, ).

ExaMPLE 1.2. (1) The ring Z of integers. It is a commutative ring.
(2) The rings Q, R, and C of rational numbers, real numbers, and complex
numbers respectively. These rings are all fields which mean that they are com-

mutative, that 1 # 0, and that for all @ € R ~ {0}, there exists b € R such that

ab =1 = ba. This element b is uniquely determined by @ and is written a .

(3) The ring Z/nZ of integers modulo n. It is a field if and only if n is a prime
number.
(4) The ring H of quarternions given by the set

H={a+bi+cj+dk|ab,c,decR}
with addition + and multiplication - defined by
(a+bi+cj+dk)+ (o' +bi+cj+dk)
=(a+d)+b+V)i+ (c+)j+ (d+d)k
(a+bi+cj+dk)-(a+Vi+j+dk)
= (aa’ —bb' —cc —dd') + (ab' + a'b+ cd' — dc')i

+ (ac +ad'c+db —bd")j+ (ad +a’'d+ b’ —b'c)k
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It is a division ring which means that 1 # 0 and that for all @ € R ~ {0}, there
exists b € R such that ab =1 = ba. A field is a commutative division ring. The
quartenions H is not a commutative ring. For instance, ¢j = k but ji = —k.

(5) Let R be a ring and. For every positive integer n, the set of n X n-matrices
with entries in R equipped with matrix addition and matrix multiplication forms
a ring M, (R). The multiplicative unit element 1 € M, (R) is the identity matrix
and is usually written I. The ring M, (R) is not commutative except if n = 1 and
R is commutative.

(6) The set C°(X,C) of continuous complex valued functions on a topological
space X is a commutative ring under pointwise addition and multiplication. The
multiplicative unit element 1 € C°(X, C) is the constant function with value 1 € C.

DEFINITION 1.3. Let R and S be rings. A ring homomorphism from R to S is
a map for which the following (i)—(iii) hold.
(i) f1)=1
(ii) For all a,b € R, f(a+b) = f(a)+ f(b).
(iii) For all a,b € R, f(a-b) = f(a)- f(b).
EXERCISE 1.4. Let f: R — S be a ring homomorphism. Show that f(0) =0
and that for all « € R, f(—a) = —f(a).

ExaMPLE 1.5. (1) For every ring R, the identity map id: R — R is a ring
homomorphism. Moreover, if f: R — S and ¢g: S — T are ring homomorphisms,
then so is the composite map go f: R — T.

(2) For every ring R, there is a unique ring homomorphism f: Z — R. We
sometimes abuse notation and write n € R for the image of n € Z.

(3) There is a ring homomorphism f: H — My(R) determined by

a —b —c —d

. . b —d
fla+bi+cj+dk) = Z . _Cb
d —c b a

(4) The canonical inclusions of Z in Q, of Q in R, of R in C, and of C in H are
all ring homomorphims.

DEFINITION 1.6. Let R be aring. A left R-module is a triple (M, +, -) consisting
of a set M and two maps +: M x M — M and -: R x M — M such that (M, +)
satisfy the axioms (A1)—(A4) and such that the following additional axioms hold.

(M1) Foralla,be Randz € M,a-(b-z) = (a-b)-z.

(M2) Forallae Rand z,y e M, a- (x+y) = (a-2)+ (b-y).
(M3) Foralla,be Randz € M, (a+b)-2=(a-z)+ (b-x).
(M4) Forallz € M, 1 -z =x.

The notion of a right R-module is defined analogously.

EXAMPLE 1.7. (1) The ring R is both a left R-module and a right R-module.
(2) The set R™ considered as the set of “n-dimensional column vectors” is a
left M, (R)-module and considered as the set of “n-dimensional row vectors” is a
right M, (R)-module.
(3) Let n be a positive integer, let d be a divisor in n, and define
1 Z/nZ X Z/dZ — Z7./dZ

by (a 4+ nZ) - (z + dZ) = ax + dZ. This makes Z/dZ a left Z/nZ-module.



DEFINITION 1.8. Let R be a ring and let M a left R-module.

(1) A linear combination of X C M is a sum of the form
a1xr1 + asxs + -+ + anTy

with a;,...,a, € Rand z1,...,2, € X.
(2) The subset X C M generates M if every y € M can be written as a linear
combination y = a1x1 + asxs + -+ - + anpx, of X.
(3) The subset X C M is linearly independent if for the linear combination
a1x1 + asxs + - - - + apx, to equal 0 implies that a4, ..., a, are all zero.
(4) The subset X C M is a basis if it generates M and is linearly independent.
(5) The module M is free if it admits a basis.

EXAMPLE 1.9. (1) The left Z/6Z-module Z/27Z in Example 1.7 (3) is not a free
module. The subset X = {1 + 2Z} C Z/27Z generates Z/27 but it is not linearly
independent. Indeed, (2 + 6Z) - (1 4+ 2Z) = 2 + 27Z is zero in Z/27, but 2 + 6Z is
not zero in Z/6Z.

(2) Let M be a left R-module. The empty subset () C M is linearly independent
and the whole subset M C M generates M.

THEOREM 1.10. Ewery left module over a division ring is free. More precisely,
giwen two subsets X CY C M such that X is linearly independent and such that
Y generates M, there exists a basis B C M with X C BCY.

PRrROOF. Let S be the set that consists of all subsets Z C M that are linearly
independent and satisfy X C Z C Y. We will use Zorn’s lemma to prove that S
has a maximal element. To this end, we must verify the following (i)—(ii).

(i) The set S is non-empty.

(ii) Every to subset T' C S which is totally ordered with respect to inclusion

has an upper bound in S.

Now, since X € S, we conclude that (i) holds. To verify (ii), let T C S be a totally
ordered subset of S. Then Zr = |4 Z is a linearly independent subset of M and
X CZrCY. SoZre Sandforall Ze€T,Z C Zr which proves (ii). By Zorn’s
lemma, S has a maximal element B. Since B € S, B C M is linearly independent
and X C B C Y. We show that B generates M. If not, there exists y € Y which is
not a linear combination of elements in B. We claim that B U {y} C M is linearly
independent. Indeed, suppose

a1r1+ -+ ap®, +ay =20
with a1,...,an,a € R and z1,...,x, € B. Then a =0 or else
Yy = 70471((111'1 ++anzn)

which contradicts that y is not a linear combination of elements of B. (Here we have
used the assumption that R is a division ring.) Since B is linearly independent,
we further have a; = -+ = a,, = 0. This proves the claim that B U {y} is linearly
indenpent. Thus BU{y} € S which contradicts that B € S is the maximal element.
This shows that B generates M, and hence, is a basis as desired. (I

DEFINITION 1.11. A left module over a division ring is called a left vector space.

REMARK 1.12. Let M be a left vector space over the division ring R. One may
show that the cardinality of a basis B C M depends only on M and not on B. This
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cardinality is called the dimension of M. For a general ring R, two different bases
of the same free left R-module M do not necessarily have the same cardinality.

EXERCISE 1.13. The formula

T a —b —c —d T

. . x| _|b a —-d ¢ To
(a+bi+cj+dk)- | =le 4 o —b s
T3 d —c b a T3

defines a left H-vector space structure on R*. Show that a subset B C R? is a basis
of this left H-vector space if and only if B consists of a single non-zero vector.



