
1. Rings and modules

The notion of a module is a generalization of the familiar notion of a vector
space. The generalization consists in that the scalars used for scalar multiplication
are taken to be elements of a general ring. We first define rings.

Definition 1.1. A ring is a triple (R, +, ·) consisting of a set R and two maps
+: R × R → R and · : R × R → R that satisfy the following axioms.

(A1) For all a, b, c ∈ R, a + (b + c) = (a + b) + c.
(A2) There exists an element 0 ∈ R such that for all a ∈ R, a + 0 = a = 0 + a.
(A3) For every a ∈ R, there exists b ∈ R such that a + b = 0 = b + a.
(A4) For all a, b ∈ R, a + b = b + a.
(P1) For all a, b, c ∈ R, a · (b · c) = (a · b) · c.
(P2) There exists an element 1 ∈ R such that for all a ∈ R, a · 1 = a = 1 · a.
(D) For all a, b, c ∈ R, a · (b+ c) = (a · b)+ (a · c) and (a+ b) · c = (a · c)+ (b · c).

The ring (R, +, ·) is called commutative if the following further axiom holds.

(P3) For all a, b ∈ R, ab = ba.

The axioms (A1)–(A4) and (P1)–(P2) express that (R, +) is an abelian group
and that (R, ·) is a monoid, respectively. The axiom (D) expresses that · distributes
over +. We often suppress · and write ab instead of a · b. The zero element 0 which
exist by axiom (A2) is unique. Indeed, if both 0 and 0′ satisfy (A2), then

0′ = 0 + 0′ = 0.

Moreover, for a given a ∈ R, the element b ∈ R such that a + b = 0 = b + a which
exists by (A3) is unique. Indeed, if both b and b′ satisfy (A3), then

b = b + 0 = b + (a + b′) = (b + a) + b′ = 0 + b′ = b′.

We write −a instead of b for this element. Similarly, the element 1 ∈ R which
exists by axiom (P2) is unique. We usuall abuse language and write R instead of
(R, +, ·).

Example 1.2. (1) The ring Z of integers. It is a commutative ring.
(2) The rings Q, R, and C of rational numbers, real numbers, and complex

numbers respectively. These rings are all fields which mean that they are com-
mutative, that 1 6= 0, and that for all a ∈ R r {0}, there exists b ∈ R such that
ab = 1 = ba. This element b is uniquely determined by a and is written a−1.

(3) The ring Z/nZ of integers modulo n. It is a field if and only if n is a prime
number.

(4) The ring H of quarternions given by the set

H = {a + bi + cj + dk | a, b, c, d ∈ R}

with addition + and multiplication · defined by

(a + bi + cj + dk) + (a′ + b′i + c′j + d′k)

= (a + a′) + (b + b′)i + (c + c′)j + (d + d′)k

(a + bi + cj + dk) · (a′ + b′i + c′j + d′k)

= (aa′ − bb′ − cc′ − dd′) + (ab′ + a′b + cd′ − dc′)i

+ (ac′ + a′c + db′ − bd′)j + (ad′ + a′d + bc′ − b′c)k
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It is a division ring which means that 1 6= 0 and that for all a ∈ R r {0}, there
exists b ∈ R such that ab = 1 = ba. A field is a commutative division ring. The
quartenions H is not a commutative ring. For instance, ij = k but ji = −k.

(5) Let R be a ring and. For every positive integer n, the set of n× n-matrices
with entries in R equipped with matrix addition and matrix multiplication forms
a ring Mn(R). The multiplicative unit element 1 ∈ Mn(R) is the identity matrix
and is usually written I. The ring Mn(R) is not commutative except if n = 1 and
R is commutative.

(6) The set C0(X, C) of continuous complex valued functions on a topological
space X is a commutative ring under pointwise addition and multiplication. The
multiplicative unit element 1 ∈ C0(X, C) is the constant function with value 1 ∈ C.

Definition 1.3. Let R and S be rings. A ring homomorphism from R to S is
a map for which the following (i)—(iii) hold.

(i) f(1) = 1
(ii) For all a, b ∈ R, f(a + b) = f(a) + f(b).
(iii) For all a, b ∈ R, f(a · b) = f(a) · f(b).

Exercise 1.4. Let f : R → S be a ring homomorphism. Show that f(0) = 0
and that for all a ∈ R, f(−a) = −f(a).

Example 1.5. (1) For every ring R, the identity map id: R → R is a ring
homomorphism. Moreover, if f : R → S and g : S → T are ring homomorphisms,
then so is the composite map g ◦ f : R → T .

(2) For every ring R, there is a unique ring homomorphism f : Z → R. We
sometimes abuse notation and write n ∈ R for the image of n ∈ Z.

(3) There is a ring homomorphism f : H → M4(R) determined by

f(a + bi + cj + dk) =









a −b −c −d
b a −d c
c d a −b
d −c b a









(4) The canonical inclusions of Z in Q, of Q in R, of R in C, and of C in H are
all ring homomorphims.

Definition 1.6. Let R be a ring. A left R-module is a triple (M, +, ·) consisting
of a set M and two maps +: M × M → M and · : R × M → M such that (M, +)
satisfy the axioms (A1)–(A4) and such that the following additional axioms hold.

(M1) For all a, b ∈ R and x ∈ M , a · (b · x) = (a · b) · x.
(M2) For all a ∈ R and x, y ∈ M , a · (x + y) = (a · x) + (b · y).
(M3) For all a, b ∈ R and x ∈ M , (a + b) · x = (a · x) + (b · x).
(M4) For all x ∈ M , 1 · x = x.

The notion of a right R-module is defined analogously.

Example 1.7. (1) The ring R is both a left R-module and a right R-module.
(2) The set Rn considered as the set of “n-dimensional column vectors” is a

left Mn(R)-module and considered as the set of “n-dimensional row vectors” is a
right Mn(R)-module.

(3) Let n be a positive integer, let d be a divisor in n, and define

· : Z/nZ × Z/dZ → Z/dZ

by (a + nZ) · (x + dZ) = ax + dZ. This makes Z/dZ a left Z/nZ-module.
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Definition 1.8. Let R be a ring and let M a left R-module.

(1) A linear combination of X ⊂ M is a sum of the form

a1x1 + a2x2 + · · · + anxn

with a1, . . . , an ∈ R and x1, . . . , xn ∈ X .
(2) The subset X ⊂ M generates M if every y ∈ M can be written as a linear

combination y = a1x1 + a2x2 + · · · + anxn of X .
(3) The subset X ⊂ M is linearly independent if for the linear combination

a1x1 + a2x2 + · · · + anxn to equal 0 implies that a1, . . . , an are all zero.
(4) The subset X ⊂ M is a basis if it generates M and is linearly independent.
(5) The module M is free if it admits a basis.

Example 1.9. (1) The left Z/6Z-module Z/2Z in Example 1.7 (3) is not a free
module. The subset X = {1 + 2Z} ⊂ Z/2Z generates Z/2Z but it is not linearly
independent. Indeed, (2 + 6Z) · (1 + 2Z) = 2 + 2Z is zero in Z/2Z, but 2 + 6Z is
not zero in Z/6Z.

(2) Let M be a left R-module. The empty subset ∅ ⊂ M is linearly independent
and the whole subset M ⊂ M generates M .

Theorem 1.10. Every left module over a division ring is free. More precisely,

given two subsets X ⊂ Y ⊂ M such that X is linearly independent and such that

Y generates M , there exists a basis B ⊂ M with X ⊂ B ⊂ Y .

Proof. Let S be the set that consists of all subsets Z ⊂ M that are linearly
independent and satisfy X ⊂ Z ⊂ Y . We will use Zorn’s lemma to prove that S
has a maximal element. To this end, we must verify the following (i)–(ii).

(i) The set S is non-empty.
(ii) Every to subset T ⊂ S which is totally ordered with respect to inclusion

has an upper bound in S.

Now, since X ∈ S, we conclude that (i) holds. To verify (ii), let T ⊂ S be a totally
ordered subset of S. Then ZT =

⋃

Z∈T
Z is a linearly independent subset of M and

X ⊂ ZT ⊂ Y . So ZT ∈ S and for all Z ∈ T , Z ⊂ ZT which proves (ii). By Zorn’s
lemma, S has a maximal element B. Since B ∈ S, B ⊂ M is linearly independent
and X ⊂ B ⊂ Y . We show that B generates M . If not, there exists y ∈ Y which is
not a linear combination of elements in B. We claim that B ∪ {y} ⊂ M is linearly
independent. Indeed, suppose

a1x1 + · · · + anxn + ay = 0

with a1, . . . , an, a ∈ R and x1, . . . , xn ∈ B. Then a = 0 or else

y = −a−1(a1x1 + · · · + anxn)

which contradicts that y is not a linear combination of elements of B. (Here we have
used the assumption that R is a division ring.) Since B is linearly independent,
we further have a1 = · · · = an = 0. This proves the claim that B ∪ {y} is linearly
indenpent. Thus B∪{y} ∈ S which contradicts that B ∈ S is the maximal element.
This shows that B generates M , and hence, is a basis as desired. �

Definition 1.11. A left module over a division ring is called a left vector space.

Remark 1.12. Let M be a left vector space over the division ring R. One may
show that the cardinality of a basis B ⊂ M depends only on M and not on B. This
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cardinality is called the dimension of M . For a general ring R, two different bases
of the same free left R-module M do not necessarily have the same cardinality.

Exercise 1.13. The formula

(a + bi + cj + dk) ·









x1

x2

x3

x3









=









a −b −c −d
b a −d c
c d a −b
d −c b a

















x1

x2

x3

x3









defines a left H-vector space structure on R4. Show that a subset B ⊂ R4 is a basis
of this left H-vector space if and only if B consists of a single non-zero vector.


