
2. Simple modules

We first introduce the natural notion of maps between modules.

Definition 2.1. Let R be a ring and let M and N be right R-modules. The
map f : N → M is called R-linear if for all x, y ∈ N and a ∈ R,

f(x + y) = f(x) + f(y)

f(x · a) = f(x) · a.

The set of R-linear maps f : N → M is denoted by HomR(N,M).

Remark 2.2. The set HomR(N,M) of R-linear maps from N to M is an
abelian group with addition defined by (f + g)(x) = f(x) + g(x). If M and N are
equal, we also write EndR(M) = HomR(M,M). It is a ring in which the product
of f and g is the composition f ◦ g defined by (f ◦ g)(x) = f(g(x)).

Example 2.3. Let R be a ring and let M and N be free right R-modules with
finite bases X = {x1, . . . , xm} and Y = {y1, . . . , yn}. If f : N → M is an R-linear
map, then we let A be the m× n-matrix whose entries aij ∈ R are defined by

f(yj) = x1a1j + x2a2j + · · ·+ xmamj .

In this situation, we find, for a general element y = y1s1 + · · ·+ ynsn of N , that

f(y) = f(y1)s1 + · · ·+ f(yn)sn

= (x1a11 + · · ·+ xmam1)s1 + · · ·+ (x1a1n + · · ·+ xmamn)sn

= x1(a11s1 + · · ·+ a1nsn) + · · ·+ xm(am1s1 + · · ·+ amnsn).

Hence, if y = y1s1 + · · ·+ ynsn, then f(y) = x1r1 + . . . xmrm, where
r1

r2

...
rm

 =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




s1

s2

...
sn


We say that the matrix A represents the R-linear maps f : N → M with respect to
the given bases Y ⊂ N and X ⊂ M . We note that It is important here to consider
right R-modules and not left R-modules. With left R-modules, we would obtain
“row vectors” instead of “column vectors.”

Proposition 2.4. Suppose that M , N , and P are free right R-modules with
finite bases X = {x1, . . . , xm}, Y = {y1, . . . , yn}, and Z = {z1, . . . , zp}, respectively.
Let A be the m×n-matrix that represents the R-linear map f : N → M with respect
to the bases Y ⊂ N and X ⊂ M , and let B be the n× p-matrix that represents the
R-linear map g : P → N with respect to the bases Z ⊂ P and Y ⊂ N . Then the
m × p-matrix that represents the R-linear map f ◦ g : P → M with respect to the
bases Z ⊂ P and X ⊂ M is the product matrix AB.
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Proof. Let z = z1t1+· · ·+zptp be an element of P , let g(z) = y1s1+· · ·+ynsn,
and let f(g(z)) = x1r1 + · · ·+ xmrm. By the definition of A and B,

r1

r2

...
rm

 =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




s1

s2

...
sn




s1

s2

...
sn

 =


b11 b12 · · · b1p

b21 b22 · · · b2p

...
...

. . .
...

bn1 bn2 · · · bnp




t1
t2
...
tp


and hence

r1

r2

...
rm

 =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




b11 b12 · · · b1p

b21 b22 · · · b2p

...
...

. . .
...

bn1 bn2 · · · bnp




t1
t2
...
tp


The proposition follows. �

Corollary 2.5. Let R be a ring and let M be a free right R-module with a
finite basis X = {x1, . . . , xm}. Then the map

α : Mm(R) → EndR(M)

that takes the m × m-matrix A to the R-linear map f : M → M represented by A
with respect to the basis X ⊂ M is a ring isomorphism.

Proof. Every R-linear map f : M → M is represented with respect to the
basis X ⊂ M by the unique m × m-matrix defined in Example 2.3. Therefore,
the map α is a bijection. Moreover, the R-linear map represented by the identity
matrix Im is the identity map idM ; the R-linear map represented by a sum A + B
of two matrices A and B is the sum f + g of the R-linear maps f and g represented
by the matrices A and B, respectively; and the R-linear map represented by the
matrix product AB is the composition f ◦ g of the R-linear maps f and g. This
shows that α is a ring homomorphism, and hence, a ring isomorphism. �

Remark 2.6. Let R = (R,+, ·) be a ring. The opposite ring Rop = (R,+, ∗)
has the same set R and addition + but the “opposite” product a∗b = b ·a. The left
R-module M = (M,+, ·) determines the right Rop-module Mop = (M,+, ∗) with
x ∗ a = a · x. Now, a map f : M → M is R-linear if and only if f : Mop → Mop is
Rop-linear, and therefore, the rings EndR(M) and EndRop(Mop) are equal. Hence,
if M is a free left R-module with a finite basis X = {x1, . . . , xm}, then the map

α : Mm(Rop) → EndR(M)

from Corollary 2.5 is a ring isomorphism.

Exercise 2.7. Let R be a ring. Show that the map

(−)t : Mn(R)op → Mn(Rop)

that takes a matrix A = (aij) to its transpose At = (aji) is a ring isomorphism.
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A division ring R is the simplest kind of ring in the sense that every left (or
right) R-module is a free module. We will next consider a slightly more complicated
class of rings that are called simple rings.

Definition 2.8. Let R be a ring and let M and M ′ be left R-modules.
(i) The direct sum of M and M ′ is the left R-module

M ⊕M ′ = {(x, x′) | x ∈ M,x′ ∈ M ′}

with sum and scalar multiplication defined by

(x, x′) + (y, y′) = (x + y, x′ + y′)

a · (x, x′) = (ax, ax′).

(ii) The subset N ⊂ M is a submodule if for all x, y ∈ N and a ∈ R, x+y ∈ N
and ax ∈ N .

(iii) The sum of two submodules N,N ′ ⊂ M is the submodule

N + N ′ = {x + x′ | x ∈ N,x′ ∈ N ′} ⊂ M.

(iv) The sum of the submodules N,N ′ ⊂ M is direct if the map

N ⊕N ′ → N + N ′

that to (x, x′) associates x + x′ is an isomorphism, or equivalently, if the
intersection N ∩N ′ is the zero submodule {0}.

Example 2.9. (1) A submodule I ⊂ R of the ring R considered as a left
R-module over itself is called a left ideal of R.

(2) Let m,n ∈ Z be integers. Then mZ, nZ ⊂ Z are ideals and

mZ ∩ nZ = [m,n]Z ⊂ mZ + nZ = (m,n)Z

where (m,n) and [m,n] are the greatest common divisor and least common multiple
of m and n, respectively. The sum mZ + nZ is direct if and only if one or both of
m and n are zero.

(3) Let R be a ring and let M2(R) be the ring of 2× 2-matrices. The subsets

P2,1(R) =
{(

a 0
c 0

)
| a, c ∈ R

}
⊂ M2(R)

P2,2(R) =
{(

0 b
0 d

)
| b, d ∈ R

}
⊂ M2(R)

are left ideals, and the sum P2,1(R)+P2,2(R) is direct and equals M2(R). Similarly,
the subsets

Q2,1(R) =
{(

a b
0 0

)
| a, b ∈ R

}
⊂ M2(R)

Q2,2(R) =
{(

0 0
c d

)
| c, d ∈ R

}
⊂ M2(R)

are right ideals, and the sum Q2,1(R) + Q2,2(R) is direct and equal to M2(R).

Definition 2.10. Let R be a ring.
(1) The left R-module S is simple if it is non-zero and if the only submodules

of S are {0} and S.
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(2) The left R-module M is semi-simple if it is a direct sum

M = S1 + · · ·+ Sn

of finitely many simple submodules.

Example 2.11. Let D be a division ring. We claim that as a left module over
itself, D is simple. Indeed, let N ⊂ D be a non-zero submodule and let a ∈ N be
a non-zero element. If b ∈ D, then b = ba−1 · a ∈ N , and hence, N = D which
proves the claim. Let S be any simple left D-module and let x ∈ S be a non-zero
element. We claim that the D-linear map f : D → S defined by f(a) = a · x is
an isomorphism. Indeed, the image f(D) ⊂ S is a submodule and it is not zero
since x ∈ f(D). Since S is simple, we necessarily have f(D) = S, so f is surjective.
Similarly, the kernel ker(f) = {a ∈ D | f(a) = 0} ⊂ D is a submodule and it is
not all of D since f(1) = x 6= 0. Since D is simple, we have ker(f) = {0}, so f is
injective. This proves the claim. We conclude that a division ring D has a unique
isomorphism class of simple left D-modules.

Lemma 2.12. Let D be a division ring and let R = Mn(D). The left R-module
of column n-vectors S = Mn,1(D) is a simple left R-module.

Proof. Let N ⊂ S be a non-zero submodule. We must show that N = S. We
first choose a non-zero vector x1 ∈ N . By Theorem 1.10, we can choose additional
vectors x2, . . . , xn ∈ S such that X = {x1, x2, . . . , xn} is a basis of S as a right
D-vector space. Here and below, we use that, by Remark 1.12, every basis of S as
a right D-vector space has n elements. Now let A ∈ R be the n× n-matrix whose
jth column is xj . We claim that A is invertible. Indeed, since X ⊂ S is a right
D-vector space basis, there exists B ∈ R such that AB = I which, in turn, implies
that A and B are invertible and BA = I. Hence

Bx1 = BAe1 = e1 =


1
0
...
0


which shows that e1 ∈ N . Now, given x ∈ S, we choose C ∈ R with x as its first
column. Then x = Ce1 ∈ N which shows that x ∈ N as desired. �

Proposition 2.13 (Schur’s lemma). Let R be a ring and let S be a simple right
R-module. Then the ring EndR(S) is a division ring.

Proof. Let f : S → S be a non-zero R-linear map. We must show that there
exists an R-linear map g : S → S such that both f ◦ g and g ◦ f are the identity
map of S. It suffices to show that f is a bijection. For then f−1 : S → S is the
desired R-linear map. Now, the image f(S) ⊂ S is a submodule which is non-zero
since f is non-zero. As S is simple, we conclude that f(S) = S, so f is surjective.
Similarly, ker(f) ⊂ S is a submodule which is not all of S since f is not the zero
map. Since S is simple, we conclude that ker(f) is zero, so f is injective. �


