3. Semi-simple rings
We next consider semi-simple modules in more detail.

LEMMA 3.1. Let R be a ring, let M be a left R-module, and let {S;};cr be a
finite family of simple submodules the union of which generates M. Then there
exists a subset J C I such that M = €D ; S;.

PROOF. We consider a subset J C I which is maximal among subsets with the
property that the sum of submodules Zje] S; C M is direct. Now, if ¢ € I \J,
then S; N )", ;S; # {0} or else J would not be maximal. Since S; is simple, we
conclude that S; N3, ;S; = 5;. It follows that >, ;S = M as desired. O

PROPOSITION 3.2. Let R be a ring and let M be a semi-simple left R-module.

(i) Let Q be a left R-module and let p: M — Q be a surjective R-linear map.
Then Q is semi-simple and there exists an R-linear map s: Q — M such that
pos: Q — Q is the identity map.

(ii) Let N be a left R-module and let i: N — M be an injective R-linear map.

Then N is semi-simple and there exists an R-linear map r: M — N such that

roi: N — N is the identity map.

PRrOOF. (i) We write M = @D, .; S; as a finite direct sum of simple submodules.
Let J C I be the subset of indices 7 such that p(S;) is non-zero. By Lemma 3.1,
we can find a subset K C J such that @, ., p(S;) = Q. Let j: @,cx S — M
be the canonical inclusion. Then p o j is an isomorphism which shows that @ is
semi-simple. Moreover, the composite map s = jo(poj)~t: @ — M has the desired
property that p o s is the identity map of Q).

(ii) It follows from (i) that there exists a submodule P C M such that the com-
position P — M — M/N of the canonical inclusion and the canonical projection
is an isomorphism. Now, if ¢: M — M/P is the projection onto the quotient by
P, then goi: N — M/P is an isomorphism. This shows that N is semi-simple and
that the map r = (goi) ' oq: M — N satisfies that r o i = idy. O

We fix a ring R and define A(R) be the set of isomorphism classes of the simple
left R-modules that are of the form S = R/I with I C R a left ideal.’ Let S be any
simple left R-module. To define the type of S, we choose a non-zero element =z € S
and consider the R-linear map p: R — S defined by p(a) = ax. It is surjective, since
S is simple, and hence, induces an isomorphism p: R/I — S, where I = Anng(z) is
the kernel of p. We now define the type of S to be the isomorphism class A € A(R)
of R/I. (Exercise: Show that the type of S is well-defined.) We prove that semi-
simple left R-modules admit the following canonical isotypic decomposition.

PROPOSITION 3.3. Let R be a ring.

(i) Let M be a semi-simple left R-module, and let My C M be the submodule
generated by the union of all simple submodules of type A € A(R). Then

M = @ M,y
AEA(R)

and My is a direct sum of simple submodules of type X. In addition, M) is
zero for all but finitely many A € A(R).

11t is not possible, within standard ZFC set theory, to speak of the isomorphism classes of
all simple R-modules or the set thereof. This is the reason that we define A(R) in this way.

9
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(ii) Let M and N be semi-simple left R-modules and let f: M — N be an R-linear
map. Then for every A € A(R), f(My) C Nj.

PrOOF. We first prove (i) Since M is semi-simple, we can write M as a finite
direct sum M = @, ; S; of simple submodules. If My = EBZ.EIA S;, where I, C I is
the subset of ¢ € I such that S; is of type A, then M = @)\GA(R) M} and M} C M.
We must show that My C M. Solet S C M be a simple submodule of type A
and let ¢ € I. The composition f;: S — M — 5; of the canonical inclusion and the
canonical projection is an R-linear map, and since S and .S; are both simple left
R-modules, the map f; is either zero or an isomorphism. If it is an isomorphism,
then we have i € I, which shows that S C Mj, and hence, My C M} as desired.
Finally, the finite set I is a the disjoint union of the subsets Iy with A € A(R), and
hence, all but finitely many of these subsets must be empty.

Next, to prove (ii), we let S C M be a simple submodule of type A. Since S
is simple, either f(S) C N is zero or else f|g: S — f(S) is an isomorphism of left
R-modules. Therefore, f(My) C Ny as stated. ]

DEFINITION 3.4. A ring R is semi-simple if it semi-simple as a left module over
itself. A ring R is simple if it is semi-simple and if it has exactly one type of simple
modules.

We proceed to prove two theorems that, taken together, constitute a structure
theorem for semi-simple rings.

THEOREM 3.5. Let R be a semi-simple ring and let R = EBAGA(R) Ry be the
isotypic decomposition of R as a left R-module.

(i) For every A € A(R), the left ideal Ry C R is non-zero. In particular, the set
of types A(R) is finite.

(ii) For every A € A(R), the left ideal Ry C R is also a right ideal.

(iii) Let a,b € R and write a = Z/\eA(R) ay and b = Z/\eA(R) by with ay,by € Ry.
Then ab = ZAEA(R) axbx and a by € R,.

(iv) For every A € A(R), the subset Ry C R is a ring with respect to the restriction
of the addition and multiplication on R, and the identity element is the unique
element ey € Ry such that ZAeA(R) ey = 1.

(v) For every A\ € A(R), the ring R is simple.

ProoF. (i) Let S be a simple left R-module of type A\. We choose a non-zero
element x € S and consider again the surjective R-linear map p: R — S defined
by p(a) = a-x. By Proposition 3.2 there exists an R-linear map s: S — R such
that po s =idg. But then s(S) C R is a simple submodule of type A. Since R) is
non-zero, it follows from Proposition 3.3 (i) that A(R) is a finite set.

(ii) Let @ € R and let p,: R — R be the map p,(b) = ba defined by right
multiplication by a. It is an R-linear map from the left R-module R to itself. By
Proposition 3.3 (ii), we conclude that p,(Rx) C Ry which is precisely the statement
that Ry C R is a right ideal.

(ili) Since R, C R is a left ideal, we have axb, € R,, and since Ry C R is a
right ideal, we have axb, € Ry. It follows that axb, € Ry N R, which is equal to
Ry and {0}, respectively, as A = p and X\ # p.
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(iv) We have already proved in (iii) that the multiplication on R restricts to a
multiplication on Ry. Now, for all a) € Ry, we have

aA:a)\-lzaA-(Ze#):Za)\-eH:aA~e)\
HEA HEA

and the identity ay = ey - a) is proved analogously. It follows that R) is a ring.

(v) Let Sy be a simple left R-module of type A. Since Ry C R, the left
multiplication of R on S defines a left multiplication of Ry on Sy. To prove that
this defines a left Ry-module structure on Sy, we must show that ey - ¢ = z, for
all x € S). We have just proved that ey -y = y, for all y € R). Moreover, by
Proposition 3.3 (i), we can find an injective R-linear map fy: Sy — Ry. Since

Ialex-z) =ex- fulz) = fa(z),
we conclude that ey - x = x, for all z € S, as desired. We further note that S, is
a simple left Ry-module. Indeed, it follows from (iii) that a subset N C Sy is an
R-submodule if and only if it is an Ry-submodule. Finally, by Proposition 3.3 (i),
the left R-module Ry is a direct sum Sy 1 @ --- @ Sy, of simple submodules, all
of which are isomorphic to the simple left R-module Sy. Therefore, also as a left
Ry-module, Ry is the direct sum Sy 1 @ --- @ Sy, of submodules, all of which are
isomorphic to the simple left Ry-module Sy. This shows that Ry is a semi-simple
ring, and we conclude from (i) that every simple left Ry-module is isomorphic to
S\ So Ry is a simple ring. O

REMARK 3.6. The inclusion map iy: Ry — R is not a ring homomorphism
unless R = R)y. Indeed, the map 7, takes the multiplicative identity element e, €
R) to the element ey € R which is not equal to the multiplicative identity element
1 € R unless R = R). However, the projection map

pa: R— Ry

that takes a = EueA a, with a, € R, to ay is a ring homomorphism. In general,
the product ring of the family of rings {R)}rca is the defined to be the set

[T Br = {(a)ren | ar € Ry}

AEA

with componentwise addition and multiplication. The identity element in the prod-
uct ring is the tuple (ex)xea, where ey € Ry is the identity element. We may now
restate Theorem 3.5 (ii)—(v) as saying that the map

p: R— H Ry
AEA(R)
defined by p(a) = (pa(a))aea is an isomorphism of rings, and that each of the
component rings Ry is a simple ring.
THEOREM 3.7. The following statements holds.

(i) Let D be a division ring and let R = M, (D) be the ring of nxn-matrices. Then
R is a simple ring with the left R-module S = M, 1(D) of column n-vectors as
its simple module, and the map

p: D — Endg(S)°P

defined by p(a)(x) = xa is a ring isomorphism.
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(ii) Let R be a simple ring and let S be a simple left R-module. Then S is a finite
dimensional right vector space over the division ring D = Endr(S)°P opposite
of the ring of R-linear endomorphisms of S, and the map

A: R — Endp(S)
defined by A(a)(z) = ax is a ring isomorphism.
Here, in (ii), the ring Endg(S)°P is a division ring by Schur’s lemma.

PROOF. (i) We have proved in Lemma 2.12 that S is a simple R-module. Now,
let e; € M, (D) be the row vector whose ith entry is 1 and whose remaining entries
are 0. Then the map f: S@ --- @& S — R, where there are n summands S, defined
by f(v1,...,vn) = vie; + - -+ + vpe, is an isomorphism of left R-modules. Indeed,
in the n X n-matrix v;e;, the ¢th column is v; and the remaining columns are zero.
This shows that R is a semi-simple ring. By Theorem 3.5 (i), we conclude that
every simple left R-module is isomorphic to S. Hence, the ring R is simple.

It is readily verified that the map p is a ring homomorphism. Now, the kernel
of p is a two-sided ideal in the division ring D, and hence, is either zero or all of D.
But p(1) = idg is not zero, so the kernel is zero, and hence the map p is injective.
It remains to show that p is surjective. So let f: S — S be an R-linear map. We
must show that there exists a € D such that for all y € S, f(y) = ya. To this end,
we fix a non-zero element x € S and choose a matrix P € R such that Pz = x and
such that PS =D C S. Since f is R-linear, we have

f(z) = f(Px) = Pf(x) € 2D

which shows that f(z) = za with a € D. Now, given any y € S, we can find a
matrix A € R such that Ax = y. Again, since f is R-linear, we have

fly) = f(Az) = Af(z) = Aza = ya
as desired. This shows that p is surjective, and hence, an isomorphism.
(ii) Since R is a simple ring with simple left R-module S, there exists an
isomorphism of left R-modules f: S™ — R from the direct sum of a finite number
n of copies of S onto R. We now have ring isomorphisms

R = Endg(R) = Endg(S™) = M,,(Endg(S)) = M, (D°P)
where the left-hand isomorphism is given by Remark 2.6, the middle isomorphism
is induced by the chosen isomorphism f, and the right-hand isomorphism takes the
endomorphism g to the matrix of endomorphisms (g;;) with the endomorphism g;;
defined to be the composition g;; = p; o g o %; of the inclusion i;: S — S™ of the
jth summand, the endomorphism g: S™ — S™, and the projection p;: S™ — S on
the ith summand. It follows that we have a ring isomorphism
R = My (DP)* = M, (D)) = My (D)

given by the composition of the isomorphism above and the isomorphism that takes
the matrix A to its transpose ‘A. This shows that the simple ring R is isomorphic
to the simple ring M,, (D) we considered in (i). Therefore, it suffices to show that
the map A is an isomorphism in this case. But this is precisely the statement of
Corollary 2.5, so the proof is complete. ([l

EXERCISE 3.8. Let D be a division ring, let R = M,,(D), and let S = M,, 1(D).
We view S as a left R-module and as a right D-vector space.
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(1) Let € S be a non-zero vector. Show that there exists a matrix P € R such
that PS =xD C S. (Hint: Try x = e; first.)

(2) Let x,y € S be non-zero vectors. Show that there exists a matrix A € R such
that Az = y.

REMARK 3.9. The center of a ring R is the subring Z(R) C R of all elements
a € R with the property that for all b € R, ab = ba; it is a commutative ring. The
center k = Z(D) of the division ring D is a field, and it is not difficult to show
that also Z(M, (D)) = k- I,,. Tt is possible for a division ring D to be of infinite
dimension over the center k. However, one can show that if D is of finite dimension
d over k, then d = m? is a square and every maximal subfield £ C D has dimension
m over k. For example, the center of the division ring of quarternions H is the field
of real numbers R and the complex numbers C C H is a maximal subfield.

It is now high time that we see an example of a semi-simple ring. In general, if
k is a commutative ring and G a group, then the group ring k[G] is defined to be
the free k-module with basis G and with multiplication

(D ag9)- (O beg) =D (Y anbr)g.

geG geG 9€G h,keG
hk=g
We note that G C k[G] as the set of basis elements; the unit element e € G is also
the multiplicative unit element in the ring k[G]. Moreover, the map 7: k — k[G]
defined by n(a) = a - e is ring homomorphism. If M is a left k[G]-module, we also
say that M is a k-linear representation of the group G.

Let k£ be a field and let n: Z — k be the unique ring homomorphism. We
define the characteristic of k£ to be the unique non-negative integer char(k) such
that ker(n) = char(k)Z. For example, the fields Q, R, and C have characteristic
zero while, for every prime number p, the field Z/pZ has characteristic p.

EXERCISE 3.10. Let k be a field. Show that char(k) is either zero or a prime
number, and that every integer n not divisible by char(k) is invertible in k.

THEOREM 3.11 (Maschke’s theorem). Let k be a field and let G be finite group
whose order is not divisible by the characteristic of k. Then the group ring k[G] is
a semi-simple ring.

PROOF. We show that every left k[G]-module M of finite dimension m over k
is a semi-simple left k[G]-module. The proof is by induction on m; the basic case
m = 1 follows from Example 2.11, since a left k[G]-module of dimension 1 over k
is simple as a left k-module, and hence, also as a left k[G]-module. So we let M
be a left k[G]-module of dimension m > 1 over k and assume, inductively, that
every left k[G]-module of smaller dimension is semi-simple. We must show that
M is semi-simple. If M is simple, we are done. If M is not simple, there exists a
non-zero proper submodule N C M. We let i: N — M be the inclusion and choose
a k-linear map o: M — N such that 0 o7 = idy. The map o is not necessarily
k[G]-linear. However, we claim that the map s: M — N defined by

1 1
s() = i1 > golg~'a)

geG
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is k[G]-linear and satisfies s o ¢ = idy. Indeed, s is k-linear and if h € G, then

s(hx) go(g'hr) = hh™tgo(g ' ha
|G| 2 P> :

9€@ e
= 6 Z hko(k™'z) = hs(x)
Gl

which shows that s is k[G]-linear. Moreover, we have

(soi)(x) |G|Zg (g7 ti(x)) ‘G|Zgo (i(g~ " x))

geG geG

|(ﬂ j{:gg 117_'$

geG

which shows that so¢ = idy. This proves the claim. Now, let P be the kernel of s.
The claim shows that M is equal to the direct sum of the submodules N, P C M.
But N and P both have dimension less than m over k, and hence, are semi-simple
by the induction hypothesis. This shows that M is semi-simple as desired. ([l

ExaMPLE 3.12 (Cyclic groups). To illustrate the theory above, we determine
the structure of the group rings C[C,,], R[C,,], and Q[C,,], where C,, is a cyclic group
of order n. Theorem 3.11 shows that the three rings are semi-simple rings, and their
structure are given by Theorems 3.5 and 3.7 once we identify the corresponding sets
of types of simple modules; we proceed to do so. We choice a generator g € C,, and
a primitive nth root of unity ¢, € C.

We first consider the complex group ring C[C,,]. For every 0 < k < n, we define
the left C[C,,]-module C(¢¥) to be the sub-C-vector space C(¢¥) C C spanned by
the elements C,’fi with 0 <7 < n and with the module structure defined by

n—1 n—1
O aig) 2= akz
=0 =0

The left C[C,]-module C(¢¥) is simple. For as a C-vector space, C(¢*) = C, and
therefore has no non-trivial proper submodules. Suppose that f: C(¢¥) — C(¢) is
a C[C,,]-linear isomorphism. Then we have

(1) =f(C) =Flg-1)=g-f1) = (. f(L),

where the first and third equalities follows from C[C},]-linearity. Since f(1) # 0,
we conclude that k& = [. So the n simple left C[C,,]-modules C(¢¥), 0 < k < n, are
pairwise non-isomorphic. Therefore, Theorem 3.5 (i) implies that

as a left C[C,]-module. The endomorphism ring Endc(c,(C(¢¥)) is isomorphic to
the field C for all 0 < k < n.

We next consider the real group ring R[C,]. Again, for 0 < k < n, we define
the left R[C,]-module R(¢¥) to be the sub-R-vector space R(¢¥) C C spanned by
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k

the elements (¥ with 0 < i < n and with the module structure defined by

n—1 n—1
O aig) 2= aiz
=0 =0

The left R[C,]-module R(¢*) is simple. For if 2,2’ € R(¢¥) are two non-zero
elements, then there exists w € R[C,] with w -2z = 2. The dimension of R(¢¥)
as an R-vector space is either 1 or 2 according as (¥ € R or (¥ ¢ R. Moreover,
we find that the left R[C),]-modules R(¢*) and R(¢}) are isomorphic if and only if
the complex numbers ¢¥ and ¢!, are conjugate. Again, from Theorem 3.5 (i), we
conclude that, as a left R[C,,]-module,

[n/2]
R[Cy] = €D R(¢H).

k=0

Here |z] is the largest integer less than or equal to . The ring Endg(c,|(R(¢F)) is
isomorphic to R, if k = 0 or kK = n/2, and is isomorphic to C, otherwise.

Finally, we consider the rational group ring Q[C,,]. For all 0 < k < n, we define
the left Q[C,]-module Q(¢¥) to be the sub-Q-vector space Q(¢¥) C C spanned by
the elements (¥ with 0 < i < n and with the module structure defined by

n—1 n—1
O aig) 2= akz
=0 =0

Again, Q(¢¥) is a simple left Q[C),]-module, since given z, 2’ € Q(¢¥), there exists
an element w € Q[C,] with w -z = 2. Moreover, the simple left Q[C},]-modules
Q(¢*) and Q(¢!) are isomorphic if and only if

(¢ 10<i<n}={c¥|0<i<n}
as subsets of C. If this subset has d elements, then d divides n and
{Grlo<i<n}={Gl0<i<d}

with ¢4 € C a primitive dth root of unity. Let Q({4) C C be the left Q(¢{z)-module
defined by the sub-Q-vector space Q(¢4) C C spanned by the ¢} with 0 < i < d and
with the left Q[C),]-module structure defined by

n—1 n—1
(Z zi9') 2 = Z aiCgz-
=0 =0

In this case, we have a Q[C)]-linear isomorphism

£ Q(Ca) — Q(¢F)

given by the unique Q-linear map that takes ¢} to ¢*. One may show, following
Gauss, that the dimension of Q({y) as a Q-vector space is equal to the number ¢ (d)
of the integers 1 < ¢ < d that are relatively prime to d. Moreover, since

> pld)=n
d|n
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we conclude from Theorem 3.5 (i) that the simple left Q[C),]-modules Q(¢4) with
d a divisor of n represent all types of simple left Q[C),]-modules. Therefore,

Q[Cy] = P Q(¢a)
d|n

as a left Q[C},]-module. We note that Q((4) C C is a subfield, the dth cyclotomic
field over Q. The endomorphism ring Endgjc,(Q(Cq))°P is isomorphic to the field
Q(¢y) for every divisor d of n.

REMARK 3.13 (Modular representation theory). If the characteristic of the field
k divides the order of the group G, then the group ring k[G] is not semi-simple, and
it is a very difficult problem to understand the structure of this ring. For example,
if F}, is the field with p elements and &, is the symmetric group on p letters, then
the structure of the ring F,[&,] is understood only for a few primes p.



