LINEAR MAPS

We define the notion of linear maps between vector spaces. We show that, after
choosing bases of its domain and target, a linear map is uniquely represented by a
matrix. We continue to consider right vector spaces over a field or skewfield.

Definition 1. Let F be a field and let V and W be two F-vector spaces. A map
f:V — W is linear if the following hold:

(L1) For all z,y € V, f(x +y) = f(x) + f(y).
(L2) Forevery z € Vand a € F, f(x-a) = f(z) - a.

We remark that being linear is a property of the map f: V' — W. We also note
that a linear map always satisfies f(0) = 0. Indeed, using property (L1), we have

f(0)+ £(0) = f(0+0) = f(0),
and subtracting f(0) on both sides, we conclude that f(0) = 0 as claimed. A map
g: V. — W is said to be affine if the map f: V — W given by f(z) = g(x) — ¢(0)
is linear. Examples of linear maps are the identity map idy : V' — V and the zero
map 0: V. — W. The constant map b: V — W with value b € W is affine; it is
linear if and only if b = 0.

Proposition 2. Let F be a field, let U, V, and W be three F-vector spaces. If two
maps f:V =W and g: U — V are linear, then their composition fog: U — W
again is linear.
Proof. We verify that f o g satisfies (L1)—(L2), using that the maps f and g do so.
First, for all x,y € U,
(fog)x+y) = flglz+y) = flg(x) +9() = flg(x) + fg(y))
=(fog)(@)+ (fog)y),

which shows that f o g has property (L1). Similarly, for all z € U and a € F,

(fog)(za) = fg(xa)) = f(g(z)a) = f(g(x))a = (f o g)(z)a,
which shows that f o g also has property (L2). O

Proposition 3. Let I be a field and let f: V — W be a linear map between two
F-vector spaces. The following (1)—(2) are equivalent.

(1) The map f:V — W is a bijection.

(2) There exists a linear map g: W — V such that fog=1idw and go f =idy.

Proof. We first suppose that (2) holds. Since the identity map is a bijection, the
equality f o g = idy shows that f is surjective, and the equality g o f = idy shows
that f is injective. This shows that (1) holds. Conversely, if (1) holds, then we
may define a map g: W — V by declaring that g(y) = z if and only if y = f(z). It
follows immediately from the definition that f o g = idy and go f = idy, but we
must show that g: W — V is linear. Since f: V — W is linear, we have

y+2=flg(y) + fg9(2) = flg(y) +9(2))
ya = f(g9(y))a = f(g(y)a)

which shows that g(y + z) = g(y) + g(z) and g(ya) = g(y)a, respectively. This
shows that g: W — V is linear, so (2) holds. (]
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Definition 4. Let F' be a field, let V and W be two F-vector spaces of finite
dimension n and m, respectively, and let f: V' — W be a linear map. The matrix
of f: V — W with respect to bases (v1,...,v,) of V and (w1, ..., w,,) of W is the
unique m X n matrix A = (a;;) € My, »(F) such that

f(’l)j) = wlalj —+ w2a2j + -4 wmamj
forall 1 <j < n.

We stress that the matrix of f: V' — W with respect to the bases (v1,...,v,)
of V and (wy,...,wy,) of W depends not only on the map f: V — W but also on
the chosen bases of V and W.

Ezample 5. The following example is extremely useful to remember. Let (eq,...,e,)
be the standard basis of F" and let (v1,...,v,) be another basis of F™. Then the
matrix of idpn: F™ — F™ with respect to the basis (v1,...,v,) of the domain F"
and the basis (e1,...,e,) of the target F" is A = (a;;), where

’Uj = 61(11]' + ezagj + -4 enanj.

In other words, the jth column in the matrix A consists of the coordinates of the
vector v; with respect to the standard basis.

Proposition 6. Let F' be a field; let V and W be two F-vector spaces of finite
dimension n and m, respectively; and let f: V — W be a linear map. Let

a1 a2 - QAin

a1 Q22 - a2n
A =

Am1 Am2 T Amn

be the matriz of f: V — W with respect to bases (vy,...,v,) of V and (w1, ..., wy)

of W; and let
r=V121 + VX2 + -+ UVpTp

f(x) = wiyr +wayz + - + Wiy
be the unique expressions of x € V and f(xz) € W as linear combinations of the

bases (v1,...,v,) of V and (w1,...,wy) of W. In this situation,

1 ay; a2 - Qip Z1

Y2 azy azz2 - A2p z2

Ym aAm1  aAm2 Amn Tn
Proof. By using the linearity of f: V' — W and the definition of the matrix A that
represents f with respect to the bases (v1,...,v,) and (wi,...,w.y,), we find

m

f(l’) = f(z ’UjCCj) = Zf(’l)j)l’j = Z(Z wiaij)xj = Zwl(z al-jxj).
j=1 j=1 Jj=1 i=1 i=1 j=1

Therefore, by the uniqueness of the coordinates of the vector f(z) with respect to
the basis (wy, ..., wy) of W, we conclude that for all 1 < ¢ < m,

n
Yi = E Aij Ty
j=1

The proposition now follows from the definition of matrix multiplication. ([l



Addendum 7. Let F be a field; let U, V and W be three F-vector spaces of finite
dimension p, n, and m, respectively. Let f: V — W and g: U — V be a linear
maps, let A be the matriz of f: V — W with respect to bases (v1,...,v,) of V
and (w1, ..., Wy) of W, and let B the matriz of g: U — V with respect to a basis
(u1,...,up) of U and the same basis (v1,...,v,) of V. In this situation, the matriz
C' of the composite map f o g: U — W with respect to the bases (u1,...,up) of U
and (w1, ..., Wy,) s the product matrizx C = AB.

Proof. We consider the unique expressions
T =uU1T1 + U2T2 + -+ + UpTp
g(x) = viyr +vay2 + -+ + VnYn
fg(z)) = wiz1 +wazz + -+ + Wi zm
of z € U as a linear combination of the basis (u1,...,up) of U; g(z) € V as a linear

combination of the basis (v1, ..., v,) of V;and f(g(x)) € W as a linear combination
of the basis (w1, ..., wy,) of W. We write out

ailr a2 te A1p b1 biz -+ bin

az; a2 t a2p ba1 by -+ b2y
A= , , B=

an1  An2 Anp bml bm2 e bmn

and use Proposition 6 in the case of the maps f and g to see that

21 b1 bi2 b1n Y1
29 bar b2 ban | | Y2
Zm | _bml bm2 bmn_ | Un
b11 bi2 bin ail a2 A1p A
ba1 b2 ban az; a2 azp €2
= . . . )
_bml bm2 bmn_ _anl an2 Anp Tp

from which the statement follows by applying Proposition 6 to the map f o g. We
also use that, by the associativity of matrix multiplication, the meaning of the triple
product at the right-hand side of the last equality is unambiguous. O

Remark 8. The following figure may help memorizing Addendum 7.

fog
U ? v ! w
(w1, up) By (01, o) e Ay (Wi, .. W)
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We note that the composition of the maps f and g and the product of the matrices
A and B that represent them with respect to the indicated bases are formed in the
same order. (This is true, because we use right vector spaces; if we were using left
vectors spaces, the order would be reversed.)

Corollary 9. Let F be a field and let f: V — W be a linear map between two
F-vector spaces V and W. Let A € My, o(F) be matriz of f: V — W with respect
to a basis (vi,...,vn) of V and a basis (wq,...,wy) of W. In this situation, the
following (1)—(2) are equivalent.
(1) There exists a linear map g: W — V such that fog=idw and go f =idy.
(2) There exists a matric B € M, ,,,(F') such that AB = E,,, and BA=E,,.

Proof. We first suppose that (1) holds and define B € M,, ,,, (F') to be the matrix of
g: W — V with respect to the bases (w1, ...,w,,) of W and (v1,...,v,) of V. By
Addendum 7, AB € M,, ,,(F) is the matrix of idy : W — W with respect to the
same basis (wq, ..., wy,) of the domain and target, and this matrix, by definition,
is the identity matrix F,,. Similarly, Addendum 7 shows that BA € M, ,(F)
is the matrix of idy: V — V with respect to the same basis (v1,...,v,) of the
domain and target, and, by definition, this matrix is the identity matrix E,. So (2)
holds. Conversely, if (2) holds, then we define g: W — V to be the map that to
y=wiy1 + -+ WpYym € W assigns r = vix1 + -+ + vz, € V with

x1 bir b2 -+ bim Y1
T2 bar b2z -0 bam | |2
Tn bnl bn2 e bnm Ym
where B = (bj;) € My, m(F). It is linear, so (1) holds by Addendum 7. O

Remark 10. If the equivalent conditions (1)—(2) in Corollary 9 hold, then m = n.
Indeed, if (vy,...,vy) if a basis of V, then (f(vy1),..., f(v,)) is a basis of W.

We next apply Addendum 7 to prove the following change-of-basis result, and
encourage the reader to memorize the easy proof instead of the more complicated
statement.

Corollary 11. Let F be a field and let f: V — W be a linear map between two
F-vector spaces V and W. Let A be the matriz of f: V — W with respect to bases
(v1,...,0,) of V and (w1,...,wnm) of W, and let B be the matriz of f: V — W
with respect to bases (vi,...,v}) of V and (wi,...,w},) of W. Let P be the matriz
of idy : V' with respect to the bases (vi,...,v)) of the domain and (v1,...,v,) of

the target, and let Q@ be the matriz of idy: W — W with respect to the bases
(wy,...,w..) of the domain and (w1, ..., wy) of the target. In this situation,

B=Q 'AP.
Proof. Let C be the matrix of f: V — W with respect to the bases (v{,...,v.,) of
V and (wy,...,wy,) of W. Now, on the one hand, since f = foidy: V — W, we

conclude from Addendum 7 that C' = AP. And on the other hand, since we also
have f =idw of: V — W, we find that C' = @B. Therefore,

QB = AP.
The statement follows, since @ is invertible by Corollary 9. (]



Remark 12. The following figure may help memorizing the proof of Corollary 11.

P |1dV idw Q

We note that, to write the dotted arrow “B” as the composition of the remaining
dotted arrows, the arrow “Q” must be reversed, whence B = Q1 AP.

Ezxample 13. To illustrate the material above, we will evaluate the matrix of the
linear map f: R? — R? defined by

1 x1
2 4 1

f( Z2 ) = {1 1 O} X2

XT3 T3

with respect to the bases

2 0 1 1 9
(v’l = 10| ,vy=|1{,v5= |0 ) and (w'l = [J ,wh = {3] )
3 1 1

of R? and R?, respectively. Now, the matrix A of f: R? — R? with respect to the
standard bases (ey, e, e3) of R and (eq,es) of R? is

2 4 1
A= [1 -1 0] ’
the matrix P of idgs : R® — R3 with respect to the bases (v}, v}, v}) of the domain
and (eq, eq, e3) of the target is

P=

w O N
o
_— O =

and the matrix @ of idge : R? — R? with respect to the bases (w/, w}) of the domain
and (e1, ea) of the target is
1 2
=i i]



6

Therefore, the matrix B of f: R® — R? with respect to the bases (v}, v, v}) of R3
and (w},wh) of R? is

2 01
_ 3 —2|(2 4 1 17 17 7
BQlAP[ H ]010[ }
-1 111 -1 0 31 1 -5 —6 -2
The following figure illustrates the situation.
2 4 1
1 -1 0
(e1,e2,€3) (e1,€2)
= 1",'7
R3%R2
2 0 171 ':7
0 1 0f: idps idgo [1 g}
3 1 1) :
RS%RQ
(v], v3,v3) (wi, w))
R

To make this kind of calculation and to always make it right, we need only remember
two things, namely, (a) the definition of the matrix representing a linear map with
respect to given bases of its domain and target, and (b) that the composition of
linear maps corresponds to the product of the matrices that represent them.



