
Vector spaces

We first define the notion of a field, examples of which are the fields of real
numbers and the field of complex number.

Definition 1. A field is a triple (F,+, · ) consisting of a set F and two maps
+: F × F → F and · : F × F → F that satisfy the following axioms.

(A1) For all a, b, c ∈ F , a+ (b+ c) = (a+ b) + c.
(A2) There exists an element 0 ∈ F such that for all a ∈ F , a+ 0 = a = 0 + a.
(A3) For every a ∈ F , there exists b ∈ F such that a+ b = 0 = b+ a.
(A4) For all a, b ∈ F , a+ b = b+ a.
(P1) For all a, b, c ∈ F , a · (b · c) = (a · b) · c.
(P2) There exists an element 1 ∈ F r {0} such that for all a ∈ F , a · 1 = a = 1 ·a.
(P3) For every a ∈ F r {0}, there exists b ∈ F such that a · b = 1 = b · a.
(P4) For all a, b ∈ F , a · b = b · a.
(D) For all a, b, c ∈ F , a · (b+ c) = (a · b) + (a · c) and (a+ b) · c = (a · c) + (b · c).
Examples of fields are the fields of rational numbers (Q,+, · ), real numbers

(R,+, · ), and complex numbers (C,+, · ) with the sum “+” and multiplication “ · ”
defined as usual. In the following, we will employ the standard practice to abuse
notation and simply write F to indicate (F,+, · ). We also often suppress · and
write ab instead of a · b.
Remark 2. More generally, a triple (F,+, · ) as in Definition 1 which satisfies the
axioms (A1)–(A4), (P1)–(P3), and (D), but not necessarily axiom (P4), is called a
skewfield. An example of a skewfield that is not a field is Hamilton’s skewfield of
quaternions (H,+, · ), where

H = {a+ ib+ jc+ kd | a, b, c, d ∈ R}
with the addition + and scalar multiplication · defined by

(a+ ib+ jc+ kd) + (a′ + ib′ + jc′ + kd′)

= (a+ a′) + i(b+ b′) + j(c+ c′) + k(d+ d′)

(a+ ib+ jc+ kd) · (a′ + ib′ + jc′ + kd′)

= (aa′ − bb′ − cc′ − dd′) + i(ab′ + a′b+ cd′ − dc′)
+ j(ac′ + a′c+ db′ − bd′) + k(ad′ + a′d+ bc′ − b′c).

In the following, we will not use axiom (P4), so all definitions and theorems hold
for skewfields as well as for fields.

We note that the zero element 0 ∈ F which exist by axiom (A2) is unique.
Indeed, if both 0 and 0′ satisfy (A2), then

0′ = 0 + 0′ = 0.

Moreover, for a given a ∈ F , the element b ∈ F such that a+ b = 0 = b+ a which
exists by (A3) is unique. Indeed, if both b and b′ satisfy (A3), then

b = b+ 0 = b+ (a+ b′) = (b+ a) + b′ = 0 + b′ = b′.

We write −a instead of b for this element. Similarly, the element 1 ∈ F which
exists by axiom (P2) is unique, and for a ∈ F r {0}, the element b ∈ F such that
a · b = 1 = b · a which exists by (P3) is unique. We write a−1 for this element.
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Definition 3. Let F be a field. A right F -vector space is a triple (V,+, · ) of a set
V and two maps +: V × V → V and · : V × F → V such that (V,+) satisfies the
axioms (A1)–(A4) and such that the following additional axioms hold.

(V1) For all x ∈ V and a, b ∈ F , (x · a) · b = x · (a · b).
(V2) For all x, y ∈ V and a ∈ F , (x+ y) · a = (x · a) + (y · a).
(V3) For all x ∈ V and a, b ∈ F , x · (a+ b) = (x · a) + (x · b).
(V4) For all x ∈ V , x · 1 = x.

The notion of a left F -vector space, in which scalars multiply from the left, is
defined analogously.

Example 4. (1) The field (F,+, · ) both is a right F -vector space and a left F -vector
space. It is a 1-dimensional right F -vector space; see Definition 14 below for the
definition of dimension.

(2) The set Mn,1(F ) of n× 1-matrices with entries in F admits a right F -vector
space structure with sum +: Mn,1(F )×Mn,1(F )→Mn,1(F ) defined to be matrix
addition and scalar multiplication · : Mn,1(F )×F →Mn,1(F ) defined to be matrix
multiplication. Here we identify M1,1(F ) = F . We write Fn for this right F -vector
space. Its dimension is n.

(3) The set C of complex numbers admits a structure of right R-vector space
with sum and scalar multiplication, respectively, defined by

(x1 + ix2) + (y1 + iy2) = (x1 + y1) + i(x2 + y2),

(x1 + ix2) · a = x1a+ ix2a.

This right R-vector space is 2-dimensional.
(4) The set C of complex numbers also admits a structure of right Q-vector space

with sum and scalar multiplication given by the same formulas as in (3), but where
we now only allow a ∈ Q. The dimension of the resulting right Q-vector space is
equal to the cardinality of the real numbers.

We will only consider right vector spaces. We abuse notation and write V to
indicate the F -vector space (V,+, · ), and we abbreviate x · a by xa.

We will say, synonymously, that a map x : I → X from a set I to a set X is a
family of elements in X indexed by I and write it (xi)i∈I with xi = x(i). We call
the set I the index set of the family (xi)i∈I .

Example 5. (1) For every set X, there is a unique family of elements in X indexed
by the empty set. We call it the empty family and write it ( ).

(2) For every set X, the identity map idX : X → X is a family of elements in X
indexed by X. We call it the identity family and write it (x)x∈X .

(3) A family of elements in X indexed by the set I = {1, 2, . . . , n} is also called
an n-tuple of elements in X and written (x1, x2, . . . , xn) instead of (xi)i∈{1,2,...,n}.

The families (x) and (x, x) of elements in X are different, since their indexing
sets are different. By contrast, the subsets {x} and {x, x} of X are equal.

If (ai)i∈I a family of scalars in a field F , then we define its support to be

supp(a) = {i ∈ I | ai 6= 0} ⊂ I.

We now let V be an F -vector space and consider a family (vi)i∈I of vectors in V
and a family (ai)i∈I of scalars in F indexed by the same set I. We assume that the
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family of scalars (ai)i∈I has finite support. In this situation, we define∑
i∈I

viai =
∑

i∈supp(a)

viai ∈ V

and call it a linear combination of the family (vi)i∈I . The following three properties
of a family of vectors in a vector space are fundamental.

Definition 6. Let F be a field, let V an F -vector space, and let (vi)i∈I be a family
of vectors in V .

(1) The family of vectors (vi)i∈I is linearly independent if the only family of
scalars (ai)i∈I of finite support such that∑

i∈I
viai = 0

is the family (ai)i∈I with ai = 0 for all i ∈ I.
(2) The family of vectors (vi)i∈I generates V if for every v ∈ V , there exists a

family of scalars (ai)i∈I of finite support such that∑
i∈I

viai = v.

(3) The family (vi)i∈I is a basis of V if it is both linearly independent and
generates V .

Example 7. (1) The empty family ( ) is linearly independent. Indeed, for the empty
family, the requirement necessary to be linearly independent is vacuous.

(2) The identity family (v)v∈V generates V . For given w ∈ V , the family (av)v∈V ,
where av is 1 if v = w and 0 otherwise, is of finite support and

∑
v∈V vav = w.

(3) The standard basis of Fn is the family of vectors (e1, . . . , en), where

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , · · · , en =


0
0
...
1

 .
It is a basis of Fn, since we have

x1
x2
...
xn

 = e1x1 + e2x2 + · · ·+ enxn,

and since this expression of the left-hand side as a linear combination of the standard
basis is unique.

(4) A family of vectors (vi)i∈I for which there exists h ∈ I with vh = 0 is linearly
dependent. Indeed, the family of scalars (ai)i∈I with ai equal to 1 for i = h and 0
otherwise has finite support and

∑
i∈I viai = 0.

Proposition 8. Let (vi)i∈I be a basis of an F -vector space V . For every vector
v ∈ V , there exists a unique family of scalars (ai)i∈I of finite support such that∑

i∈I
viai = v.
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Proof. Since (vi)i∈I generates V , there exists a family of scalars (ai)i∈I of finite
support such that

∑
i∈I viai = v. To prove that the family of scalars (ai)i∈I is

unique with this property, we suppose that also (bi)i∈I is a family of scalars of
finite support such that

∑
i∈I vibi = v. The family of scalars (ai − bi)i∈I again is

of finite support, and moreover,∑
i∈I

vi(ai − bi) = (
∑
i∈I

viai)− (
∑
i∈I

vibi) = v − v = 0.

Since (vi)i∈I is linearly independent, we find that ai − bi = 0 for all i ∈ I, proving
the desired uniqueness statement. �

Definition 9. Let (vi)i∈I be a basis of an F -vector space V . The coordinates of
a vector v ∈ V with respect to the basis (vi)i∈I is the unique family of scalars of
finite support (ai)i∈I with the property that∑

i∈I
viai = v.

Example 10. In V = F 2, the coordinates of the vector

x =

[
x1
x2

]
with respect to the standard basis (e1, e2) are (x1, x2). Indeed, we have

x = e1x1 + e2x2.

Similarly, the coordinates of x with respect to the basis (v1, v2) with

v1 =

[
1
2

]
, v2 =

[
1
1

]
are (−x1 + x2, 2x1 − x2). Indeed, we have

x = v1(−x1 + x2) + v2(2x1 − x2).

Given a family (xi)i∈I of elements in a set X and a subset J ⊂ I of the index set,
we say that the family (xi)i∈J is a subfamily of the family (xi)i∈I . The following
result is the main theorem of linear algebra.

Theorem 11. Let F be a field and let V be an F -vector space. Suppose that (vi)i∈I
is a family of vectors that generates V and that (vi)i∈K is a linearly independent
subfamily. In this situation, there exists K ⊂ J ⊂ I such that the family (vi)i∈J is
a basis of V .

Proof. Let S be the set that consists of all subsets K ⊂M ⊂ I such that the family
(vi)i∈M is linearly independent. The inclusion relation M ⊂ M ′ is a partial order
on the set S. We will use Zorn’s lemma, which states that S has a maximal element
with respect to the inclusion relation, provided that the following hold:

(i) The set S is non-empty.
(ii) Every subset T ⊂ S which is totally ordered with respect to the inclusion

relation has an upper bound in S.

First, since K ∈ S, we conclude that (i) holds. Second, given totally ordered subset
T ⊂ S, we set MT =

⋃
M∈T M . The family (vi)i∈MT

again is linearly independent,
so we have MT ∈ S. Moreover, for every M ∈ T , we have M ⊂ MT , which
proves (ii). By Zorn’s lemma, the partially ordered set S has a maximal element
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J . By definition, it satisfies that K ⊂ J ⊂ I and that the family (vi)i∈J is linearly
independent. It remains to prove the family (vi)i∈J generates V . So we assume
that (vi)i∈J does not generate V and derive a contradiction. By this assumption,
there exists an h ∈ I such that h /∈ J and such that vh is not a linear combination
of (vi)i∈J . We claim that J ′ = J∪{h} also is an element of S. We have K ⊂ J ′ ⊂ I
by definition and must show that (xi)i∈J′ is linearly independent. So let (ai)i∈J′

be a family of scalars of finite support such that∑
i∈J′

viai = 0.

First, by rewriting this equation as

vhah +
∑
i∈J

viai = 0,

we find that if ah = 0. For if not, then

vh = (
∑
i∈J

viai) · (−a−1h ) =
∑
i∈J

vi(−aia−1h ),

which contradicts that vh is a not a linear combination of (vi)i∈J . Next, since the
family (xi)i∈J is linearly independent, we conclude from the equality∑

i∈J
viai = vhah +

∑
i∈J

viai = 0

that also ai = 0 for all i ∈ J . This proves that (xi)i∈J′ is linearly independent,
and hence, we have proved the claim that J ′ ∈ S. But J is strictly contained in
J ′, contradicting the maximality of J ∈ S, so the assumption that (xi)i∈J does not
generate V is false. Therefore, we conclude that (xi)i∈J generates V , and hence, is
a basis of V , as desired. �

We will show that, given two bases of the same vector space, the cardinality of
their index sets always are equal. In preparation, we prove the following lemma,
which is very useful in its own right.

Lemma 12. Let F be a field, let V be an F -vector space, and let W ⊂ V be a
subspace generated by a family (w1, . . . , wm) of m vectors in V . If (v1, . . . , vn) is a
linearly independent family of n vectors in W , then necessarily n 6 m.

Proof. We prove the statement by induction on m. If m = 0, then W = {0} is the
zero space in which the only linearly independent family of vectors is the empty
family. So also n = 0, as desired. To prove the induction step, we assume that the
statement has been proved for m = r − 1 and prove it for m = r. We write

v1 = w1a11 + w2a21 + · · ·+ wrar1

v2 = w1a12 + w2a22 + · · ·+ wrar2

...

vn = w1a1n + w2a2n + · · ·+ wrarn

as linear combinations of the family (w1, . . . , wr). If the coefficients arj are zero for
all 1 6 j 6 n, then (v1, . . . , vn) is a linearly independent family of n vectors in the
subspace W ′ ⊂ V generated by the smaller family (w1, . . . , wr−1) of r − 1 vectors.
Hence, by the inductive hypothesis, we have n 6 r − 1, and so in particular, we
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have n 6 r, as desired. Finally, suppose that one of the coefficients arj is nonzero.
By reindexing the family (v1, v2, . . . , vn), if necessary, we may assume that arn is
nonzero. We now consider the family (v′1, . . . , v

′
n−1) with

v′j = vj − vna−1rn ajn.

By construction, this is a family of n−1 vectors in the subspace W ′ ⊂ V . We claim
that it is also linearly independent. Granting this, we conclude from the inductive
hypothesis that n−1 6 r−1, and hence, that n 6 r, as desired. This will complete
the proof of the induction step. Finally, to prove the claim, suppose that

v′1b1 + v′2b2 + · · ·+ v′n−1bn−1 = 0.

This equation is is equivalent to the equation

v1b1 + v2b2 + · · ·+ vn−1bn−1 − vna−1rn (a1nb1 + a2nb2 + · · ·+ an−1,nbn−1) = 0,

and since the family (v1, v2, . . . , vn) is linearly independent, it follows that all of
the coeffients b1, b2, . . . , bn−1 are zero, as required. �

In the following theorem, the case of infinite bases requires some understanding
of the notion of the cardinality of a set. We will not discuss this notion here,
except to say that a set α is defined, following von Neumann, to be an ordinal if
it is hereditarily transitive with respect to ∈ and that the cardinality of a set X is
defined to be the smallest ordinal α for which there exists a bijection f : α→ X.

Theorem 13. Let F be a field and let V be an F -vector space. If both (vi)i∈I and
(wj)j∈J are bases of V , then the index sets I and J have the same cardinality.

Proof. We will show that card(I) 6 card(J). The same argument will show that
also card(I) > card(J), and we may then conclude that card(I) = card(J) from
the Schröder-Bernstein theorem.

To show that card(I) 6 card(J), we first assume that I is finite. If J is infinite,
then there is nothing to prove, and if J is finite, then the statement follows from
Lemma 12. Suppose next that I is infinite. We assume that card(I) > card(J)
and proceed to derive a contradiction. For every j ∈ J , we define Sj ⊂ I to be the
support of the family (ai,j)i∈I of coordinates of wj with respect to the basis (vi)i∈I
and define S =

⋃
j∈J Sj ⊂ I. The subsets Sj ⊂ I are finite, by the definition of

linear combination. Therefore, since I is infinite and card(I) > card(J), we may
conclude that also card(I) > card(S). In particular, the subset S ⊂ I is a proper
subset, so there exists h ∈ I such that h /∈ S. We let Th ⊂ J be the support of the
family (bj)j∈J of coordinates of vh with respect to the basis (wj)j∈J . Now

vh =
∑
j∈Th

wjbj =
∑
j∈Th

(
∑
i∈Sj

viai,j)bj ,

and therefore, the vector vh is a linear combination of the family (vi)i∈S , which
contradicts that (vi)i∈I is a linearly independent family. �

Definition 14. Let F be a field. The dimension of an F -vector space V is the
cardinality of the index set of any basis (xi)i∈I of V as is written dimF (V ).

The reader may now verify the dimension statements in Example 4.


