VECTOR SPACES

We first define the notion of a field, examples of which are the fields of real
numbers and the field of complex number.

Definition 1. A field is a triple (F,+, -) consisting of a set F and two maps
4+: FXF — Fand -: Fx F — F that satisfy the following axioms.

1) For all a,b,c€ F,a+ (b+c¢) =(a+b) +c.

2) There exists an element 0 € F' such that foralla € F,a+0=a =0+ a.
3) For every a € F, there exists b € F such that a +b=0=b+ a.

4) For alla,be F,a+b="0b+a.

1) For all a,b,c € F,a-(b-¢)=(a-b)-c.

2) There exists an element 1 € F'\ {0} such that foralla € F,a-1=a=1-a.
3) For every a € F' ~\ {0}, there exists b € F such that a-b=1=b"a.

4) Foralla,b€e F,a-b=b-a.

(D) For all a,b,c€ F,a-(b+c)=(a-b)+(a-c)and (a+b)-c=(a-c)+ (b-c).

Examples of fields are the fields of rational numbers (Q,+, -), real numbers
(R, +, -), and complex numbers (C, 4+, -) with the sum “4” and multiplication “-”
defined as usual. In the following, we will employ the standard practice to abuse
notation and simply write F' to indicate (F,+, -). We also often suppress - and
write ab instead of a - b.
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Remark 2. More generally, a triple (F,+, -) as in Definition 1 which satisfies the
axioms (A1)-(A4), (P1)-(P3), and (D), but not necessarily axiom (P4), is called a
skewfield. An example of a skewfield that is not a field is Hamilton’s skewfield of
quaternions (H, +, -), where

H={a+ib+jc+kd|a,b,c,decR}
with the addition + and scalar multiplication - defined by
(a+ib+je+kd) + (a' +ib + jc' + kd')
=(a+d)+ib+b)+jlc+)+kd+d)
(a+1ib+ je+ kd) - (a' +ib' + jc' + kd')
= (aa’ —bb' —cc —dd') +i(ab’ + a'b + cd' — dc’)
+j(ac +ad'c+dv —bd') + k(ad + a'd + b’ —b'c).

In the following, we will not use axiom (P4), so all definitions and theorems hold
for skewfields as well as for fields.

We note that the zero element 0 € F which exist by axiom (A2) is unique.
Indeed, if both 0 and 0’ satisfy (A2), then

0'=0+0=0.

Moreover, for a given a € F, the element b € F such that a + b= 0 = b+ a which
exists by (A3) is unique. Indeed, if both b and b satisfy (A3), then

b=b+0=b+(a+¥V)=(b+a)+b =0+b=V.

We write —a instead of b for this element. Similarly, the element 1 € F which
exists by axiom (P2) is unique, and for a € F \ {0}, the element b € F such that
a-b=1=b-a which exists by (P3) is unique. We write a~! for this element.
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Definition 3. Let F be a field. A right F-vector space is a triple (V,+, - ) of a set
V and two maps +: V xV — V and -: V x FF — V such that (V, +) satisfies the
axioms (A1)—(A4) and such that the following additional axioms hold.

(V1) Forallz e Vanda,be F, (z-a)-b=xz-(a-b).

(V2) Forallz,ye Vanda e F, (x+y)-a= (z-a)+ (y-a).

(V3) Forallz e Vand a,be F, x-(a+b) = (x-a)+ (z-b).

(V4) Forallz eV, z-1=uz.

The notion of a left F-vector space, in which scalars multiply from the left, is
defined analogously.

Ezample 4. (1) The field (F,+, -) both is a right F-vector space and a left F-vector
space. It is a 1-dimensional right F-vector space; see Definition 14 below for the
definition of dimension.

(2) The set My, 1(F) of n x 1-matrices with entries in F' admits a right F-vector
space structure with sum +: M, 1 (F) x M, 1(F) — M, 1(F) defined to be matrix
addition and scalar multiplication -: M, 1(F) x F' — M,,1(F) defined to be matrix
multiplication. Here we identify M; 1(F) = F. We write F™ for this right F-vector
space. Its dimension is n.

(3) The set C of complex numbers admits a structure of right R-vector space
with sum and scalar multiplication, respectively, defined by

(w1 4 dw2) + (y1 +y2) = (w1 +y1) +i(w2 + y2),

(x1 +iz2) - a = 210 + ix2a.

This right R-vector space is 2-dimensional.

(4) The set C of complex numbers also admits a structure of right Q-vector space
with sum and scalar multiplication given by the same formulas as in (3), but where
we now only allow a € Q. The dimension of the resulting right Q-vector space is
equal to the cardinality of the real numbers.

We will only consider right vector spaces. We abuse notation and write V' to
indicate the F-vector space (V,+, - ), and we abbreviate z - a by za.

We will say, synonymously, that a map x: I — X from a set I to a set X is a
family of elements in X indexed by I and write it (z;)ie; with z; = x(). We call
the set I the index set of the family (z;)ier.

Ezample 5. (1) For every set X, there is a unique family of elements in X indexed
by the empty set. We call it the empty family and write it ( ).

(2) For every set X, the identity map idx: X — X is a family of elements in X
indexed by X. We call it the identity family and write it (z)zex.

(3) A family of elements in X indexed by the set I = {1,2,...,n} is also called
an n-tuple of elements in X and written (z1,22,...,2,) instead of (2;);cq1,2,....n}-

The families (z) and (x,z) of elements in X are different, since their indexing
sets are different. By contrast, the subsets {z} and {z,z} of X are equal.
If (a;);cr a family of scalars in a field F', then we define its support to be

supp(a) ={i €1 |a; #0} C I.

We now let V' be an F-vector space and consider a family (v;);er of vectors in V/
and a family (a;);ecs of scalars in F indexed by the same set I. We assume that the



family of scalars (a;);es has finite support. In this situation, we define
Z via; = Z via; €V
i€l i€supp(a)

and call it a linear combination of the family (v;);e;. The following three properties
of a family of vectors in a vector space are fundamental.

Definition 6. Let F' be a field, let V' an F-vector space, and let (v;);es be a family
of vectors in V.
(1) The family of vectors (v;);cs is linearly independent if the only family of
scalars (a;);er of finite support such that

Z v;ia; = 0
icl
is the family (a;);cr with a; =0 for all ¢ € I.
(2) The family of vectors (v;);er generates V if for every v € V, there exists a
family of scalars (a;);er of finite support such that

Z v;a; = V.
iel
(3) The family (v;);es is a basis of V if it is both linearly independent and
generates V.

Ezample 7. (1) The empty family ( ) is linearly independent. Indeed, for the empty
family, the requirement necessary to be linearly independent is vacuous.

(2) The identity family (v),cv generates V. For given w € V, the family (ay,)vcv,
where a, is 1 if v = w and 0 otherwise, is of finite support and ] ., va, = w.

(3) The standard basis of F™ is the family of vectors (eq,...,e,), where
[1 0 0
0 1 0
€1 = . , €2= . ) tt, €n =
0 0 1

It is a basis of F™, since we have

Ty
€2
=e1x1 + €Ty + -+ eply,

Tn

and since this expression of the left-hand side as a linear combination of the standard
basis is unique.

(4) A family of vectors (v;);er for which there exists h € I with vy, = 0 is linearly
dependent. Indeed, the family of scalars (a;);er with a; equal to 1 for i = h and 0

otherwise has finite support and >, ; via; = 0.
Proposition 8. Let (v;)ier be a basis of an F-vector space V. For every vector
v € V, there exists a unique family of scalars (a;)icr of finite support such that

E via; = .

el



Proof. Since (v;);er generates V, there exists a family of scalars (a;);ec; of finite
support such that ), ;v;a; = v. To prove that the family of scalars (a;)ier is
unique with this property, we suppose that also (b;);es is a family of scalars of
finite support such that Ziel v;b; = v. The family of scalars (a; — b;);c; again is
of finite support, and moreover,

Zvi(ai - bl) == (Z viai) — (Z Uibi) =v—0v=0.

icl icl il
Since (v;);er is linearly independent, we find that a; — b; = 0 for all ¢ € I, proving
the desired uniqueness statement. O

Definition 9. Let (v;);er be a basis of an F-vector space V. The coordinates of
a vector v € V' with respect to the basis (v;);er is the unique family of scalars of
finite support (a;);e; with the property that

E V;a; = V.

el

Example 10. In V = F?2, the coordinates of the vector

xTr =
T2
with respect to the standard basis (e, e2) are (z1,22). Indeed, we have

T =e1xr1 + exxs.

Similarly, the coordinates of « with respect to the basis (v1,v9) with

-] u-]

are (—x1 + 2,221 — x2). Indeed, we have
x=v1(—x1 + 22) + v2(221 — 2).

Given a family (z;);c; of elements in a set X and a subset J C I of the index set,
we say that the family (x;);cs is a subfamily of the family (z;);c;. The following
result is the main theorem of linear algebra.

Theorem 11. Let F be a field and let V' be an F-vector space. Suppose that (v;)ier
is a family of vectors that generates V and that (v;)iex is a linearly independent
subfamily. In this situation, there exists K C J C I such that the family (v;);cy is
a basis of V.

Proof. Let S be the set that consists of all subsets K C M C I such that the family
(vi)ienm is linearly independent. The inclusion relation M C M’ is a partial order
on the set S. We will use Zorn’s lemma, which states that S has a maximal element
with respect to the inclusion relation, provided that the following hold:

(i) The set S is non-empty.

(ii) Every subset T' C S which is totally ordered with respect to the inclusion

relation has an upper bound in S.

First, since K € S, we conclude that (i) holds. Second, given totally ordered subset
T C S, weset My =Jy;ep M. The family (v;)iens, again is linearly independent,
so we have My € S. Moreover, for every M € T, we have M C My, which
proves (ii). By Zorn’s lemma, the partially ordered set S has a maximal element



J. By definition, it satisfies that K C J C I and that the family (v;);cs is linearly
independent. It remains to prove the family (v;);cs generates V. So we assume
that (v;);cs does not generate V and derive a contradiction. By this assumption,
there exists an h € I such that h ¢ J and such that v, is not a linear combination
of (v;)icg. We claim that J' = JU{h} also is an element of S. We have K C J' C I
by definition and must show that (z;);cy is linearly independent. So let (a;)ics
be a family of scalars of finite support such that

Z v;a; = 0.

ieJ’
First, by rewriting this equation as

VhAp + Z v;a; = O,
icJ
we find that if ap, = 0. For if not, then
vp = (Z via;) - (—a; ") = Zvi(—aia}jl),
ieJ ieJ

which contradicts that vy, is a not a linear combination of (v;);cs. Next, since the
family (x;);es is linearly independent, we conclude from the equality

Z V;a; = Vpap + Z via; =0

icJ ieJ
that also a; = 0 for all ¢ € J. This proves that (x;);c;s is linearly independent,
and hence, we have proved the claim that J' € S. But J is strictly contained in
J’, contradicting the maximality of J € S, so the assumption that (x;);cs does not
generate V is false. Therefore, we conclude that (z;);c; generates V', and hence, is
a basis of V', as desired. ([

We will show that, given two bases of the same vector space, the cardinality of
their index sets always are equal. In preparation, we prove the following lemma,
which is very useful in its own right.

Lemma 12. Let F be a field, let V be an F-vector space, and let W C V be a
subspace generated by a family (w1, ..., wy) of m vectors in V. If (v1,...,v,) is a
linearly independent family of n vectors in W, then necessarily n < m.

Proof. We prove the statement by induction on m. If m = 0, then W = {0} is the
zero space in which the only linearly independent family of vectors is the empty
family. So also n = 0, as desired. To prove the induction step, we assume that the
statement has been proved for m = r — 1 and prove it for m = r. We write

V1 = w1011 + Waa21 + ¢+ ¢+ WyrQp1

Vg = WiQ12 + W2a22 + «+ - + WrQra

Up = W1A1n + W22y + - - + Wyl

as linear combinations of the family (wy,...,w,). If the coefficients a,; are zero for
all 1 < j < n, then (vq,...,v,) is a linearly independent family of n vectors in the
subspace W’ C V generated by the smaller family (wq,...,w,_1) of r — 1 vectors.
Hence, by the inductive hypothesis, we have n < r — 1, and so in particular, we



have n < r, as desired. Finally, suppose that one of the coefficients a,; is nonzero.

By reindexing the family (vi,vo,...,v,), if necessary, we may assume that a,, is
nonzero. We now consider the family (vi,...,v}_;) with
Vj = Vj — Unlyp G-

By construction, this is a family of n— 1 vectors in the subspace W’ C V. We claim
that it is also linearly independent. Granting this, we conclude from the inductive
hypothesis that n —1 < r—1, and hence, that n < r, as desired. This will complete
the proof of the induction step. Finally, to prove the claim, suppose that

’Uib1 + ’Uébg + -+ ’U;L_lbn_l =0.
This equation is is equivalent to the equation
v1by +vaba + -+ Up_1bp_1 — ”Una;nl(amlh +agnbs+ -+ an—10bn-1) =0,

and since the family (vq,vs,...,v,) is linearly independent, it follows that all of
the coeffients by, bs, ..., b,_1 are zero, as required. O

In the following theorem, the case of infinite bases requires some understanding
of the notion of the cardinality of a set. We will not discuss this notion here,
except to say that a set « is defined, following von Neumann, to be an ordinal if
it is hereditarily transitive with respect to € and that the cardinality of a set X is
defined to be the smallest ordinal o for which there exists a bijection f: o — X.

Theorem 13. Let F' be a field and let V' be an F-vector space. If both (v;)ier and
(wj)jes are bases of V', then the index sets I and J have the same cardinality.

Proof. We will show that card(I) < card(J). The same argument will show that
also card(I) > card(J), and we may then conclude that card(I) = card(J) from
the Schréder-Bernstein theorem.

To show that card(I) < card(J), we first assume that I is finite. If .J is infinite,
then there is nothing to prove, and if J is finite, then the statement follows from
Lemma 12. Suppose next that I is infinite. We assume that card(I) > card(J)
and proceed to derive a contradiction. For every j € J, we define S; C I to be the
support of the family (a; ;)ier of coordinates of w; with respect to the basis (v;)icr
and define S = (J;c;S; C I. The subsets S; C I are finite, by the definition of
linear combination. Therefore, since I is infinite and card(l) > card(J), we may
conclude that also card(l) > card(S). In particular, the subset S C I is a proper
subset, so there exists h € I such that h ¢ S. We let T;, C J be the support of the
family (b;);ecs of coordinates of vj, with respect to the basis (w;);cs. Now

o=y wiby = Y (Y viaig)bj,
JET, JET, i€S;

and therefore, the vector vy is a linear combination of the family (v;);cs, which
contradicts that (v;);es is a linearly independent family. O

Definition 14. Let F be a field. The dimension of an F-vector space V is the
cardinality of the index set of any basis (x;);cr of V as is written dimp (V).

The reader may now verify the dimension statements in Example 4.



