

18.727: Problem Set 4

Due: 3/14/01

1. Let μ_n be the affine group scheme whose R -valued points are

$$\mu_n(R) = \{x \in R \mid x^n = 1\}$$

with the groups structure given by multiplication. Describe the Hopf algebra which represents μ_n .

2. Show that separated morphisms are preserved under base change. This means that if $f: X \rightarrow S$ is a separated morphism and if $g: S' \rightarrow S$ is any morphism, then the projection $f' = p_2: X \times_S S' \rightarrow S'$ is a separated morphism. (*Hint:* use the definition.)

3. Let $f: X \rightarrow S$ be a morphism. Show that f is separated (resp. proper) if and only if S has an open covering $\{U_i\}_{i \in I}$ such that for all $i \in I$, the induced map $f^{-1}(U_i) \rightarrow U_i$ is separated (resp. proper).

4. Consider the categories and functors

$$\begin{array}{ccccc} & & f & & \\ & A & \xleftarrow{\quad f' \quad} & \xrightarrow{\quad} & B \\ h' \uparrow & & h & & \uparrow g' \\ & C & \xleftarrow{\quad k \quad} & \xrightarrow{\quad} & D \\ & & k' & & \end{array}$$

and assume that f (resp. g , resp. h , resp. k) is left adjoint to f' (resp. g' , resp. h' , resp. k'). Show that $gf = kh$ if and only if $f'g' = h'k'$.