

18.727: Problem Set 5

Due: 3/21/01

1. Let X be a scheme and let $x, x' \in X$. If $x' \in \{x\}^-$, we say that x' is a *specialization* of x . Let $f: X \rightarrow Y$ be a quasi-compact morphism. Show that the following are equivalent:

- (i) The morphism f is closed.
- (ii) For every $x \in X$ and every specialization y' of $y = f(x)$, there exists a specialization x' of x such that $f(x') = y'$.

2. Let $f: X \rightarrow S$ be a morphism, let $x \in X$, let $y = f(x) \in Y$, and let $y' \neq y$ be a specialization of y . Show that there exists a commutative diagram

$$\begin{array}{ccc} \text{Spec } K & \xrightarrow{g'} & X \\ \downarrow & & \downarrow f \\ \text{Spec } V & \xrightarrow{g} & S, \end{array}$$

where V is a valuation ring with quotient field K , such that if s (resp η) denotes the closed point of $\text{Spec } V$ (resp. the unique point of $\text{Spec } K$), then $g(s) = y'$ and $g'(\eta) = x$.

3. Suppose that the diagonal morphism $\Delta_{X/S}: X \rightarrow X \times_S X$ is quasi-compact. Show that if in every diagram of the form

$$\begin{array}{ccc} \text{Spec } K & \longrightarrow & X \\ \downarrow & \nearrow & \downarrow f \\ \text{Spec } V & \longrightarrow & S, \end{array}$$

where V is a valuation ring with quotient field K , at most one lifting exists, then f is separated.

4. Let $f: X \rightarrow S$ be a quasi-compact and separated morphism, and suppose that in every diagram of the form

$$\begin{array}{ccc} \text{Spec } K & \longrightarrow & X \\ \downarrow & \nearrow & \downarrow f \\ \text{Spec } V & \longrightarrow & S, \end{array}$$

where V is a valuation ring with quotient field K , a (necessarily unique) lift exists. Show that f is universally closed. (*Hint:* First show that f is closed. Then show that the hypothesis is satisfied for every base change of the morphism f .)

(over)

5. Let $f: (X, \mathcal{O}_X) \rightarrow (Y, \mathcal{O}_Y)$ be a map of schemes. Let M (resp. N) be an \mathcal{O}_X -module (resp. \mathcal{O}_Y -module). Show that there is an isomorphism

$$f_*M \otimes N \xrightarrow{\sim} f_*(M \otimes f^*N).$$

(*Hint:* Use universal properties to construct the map. Consider stalks to show that it is an isomorphism.)