

18.727: Problem Set 9

Due: 5/9/01

1. Let X be an irreducible projective scheme over a field k . Show that $H^0(X, \mathcal{O}_X)$ is a finite extension field of k .

2. Let A be a noetherian ring, let $X = \text{Spec } A$, and let M and N be finitely generated A -modules.

(i) Show that for all $q \geq 0$, the groups $\text{Ext}_{\mathcal{O}_X}^q(\tilde{M}, \tilde{N})$ and $\text{Ext}_A^q(M, N)$ are naturally isomorphic.

(ii) Show that for all $q \geq 0$, the sheaves $\underline{\text{Ext}}_{\mathcal{O}_X}^q(\tilde{M}, \tilde{N})$ and $\text{Ext}_A^q(M, N)^\sim$ are naturally isomorphic.

3. Let (X, \mathcal{O}_X) be a ringed space. An \mathcal{O}_X -module M is of *finite type* if there exists a covering $\{U_i \rightarrow X\}_{i \in I}$, and for all $i \in I$, a surjection from a finite direct sum of copies of $\mathcal{O}_X|_{U_i}$ onto $M|_{U_i}$. It is *coherent* if it is of finite type and if for every open subset $U \subset X$ and every homomorphism $f: (\mathcal{O}_X|_U)^n \rightarrow M|_U$, the kernel of f is of finite type on $(U, \mathcal{O}_X|_U)$. Show:

(i) If M is a coherent \mathcal{O}_X -module and $N \subset M$ is a sub- \mathcal{O}_X -module of finite type, then N is coherent.

(ii) If two out of three \mathcal{O}_X -modules in an exact sequence of \mathcal{O}_X -modules

$$0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$$

are coherent, then so is the third.

(iii) If M and N are coherent \mathcal{O}_X -modules, then so are $M \otimes_{\mathcal{O}_X} N$ and $\underline{\text{Hom}}_{\mathcal{O}_X}(M, N)$.