

18.917: Topics in algebraic topology

The course will give an introduction to higher algebraic K -theory following [1] and [2]. To give an idea of what this is about, suppose first that k is a field. The determinant $\det: GL_n(k) \rightarrow k^*$ factors through the group homomorphisms

$$GL_n(k) \hookrightarrow GL(k) \twoheadrightarrow GL(k)^{\text{ab}},$$

and the induced map $GL(k)^{\text{ab}} \xrightarrow{\sim} k^*$, it turns out, is an isomorphism. If k is any ring, we still have the group homomorphisms above, and therefore, we can define the “determinant” of $M \in GL_n(k)$ to be the image $[M] \in GL(k)^{\text{ab}}$. The abelian group $K_1(k) = GL(k)^{\text{ab}}$ is the first algebraic K -group or the Whitehead group.

There is no algebraic definition of the higher K -groups. Instead, let $BGL(k)$ be the classifying space with fundamental group $GL(k)$ and with all higher homotopy groups trivial. There is a space $K(k)$ which can be thought of as the “abelianization” of $BGL(k)$. The fundamental group of $K(k)$ is the group $K_1(k) = GL(k)^{\text{ab}}$, but the construction also introduces higher homotopy groups. These, by definition, are the higher K -groups, $K_q(k) = \pi_q K(k)$.

Clearly, the groups $K_q(k)$ depend only on the homotopy type of $K(k)$, and it is useful to consider many different homeomorphism types within this homotopy type. One example of a result we will prove is the so-called localization sequence: Let V be discrete valuation ring with field of fractions K and residue field k . Then there is a long-exact sequence of K -groups

$$\dots \rightarrow K_q(k) \rightarrow K_q(V) \rightarrow K_q(K) \xrightarrow{\partial} K_{q-1}(k) \rightarrow \dots,$$

which for $q = 1$ is isomorphic to the sequence

$$0 \rightarrow V^* \rightarrow K^* \xrightarrow{v} \mathbb{Z} \rightarrow 0.$$

References

- [1] D. Quillen, *Higher algebraic K -theory I*, Algebraic K -theory I: Higher K -theories (Battelle Memorial Inst., Seattle, Washington, 1972), Lecture Notes in Mathematics, vol. 341, Springer-Verlag, 1973.
- [2] F. Waldhausen, *Algebraic K -theory of spaces*, Algebraic and geometric topology, Lecture Notes in Mathematics, vol. 1126, Springer-Verlag, 1985, pp. 318–419.