18.906: Problem Set 2

Due: Thursday, February 27.

1. Let X and Y be objects in a category C, and let * and *' be two composition laws on the set of morphisms $\operatorname{Hom}_{\mathcal{C}}(X,Y)$. Assume that * and *' have a common two-sided identity element and are mutually distributive in the sense that

$$(f*f')*'(g*g') = (f*'g)*(f'*'g'),$$

for all $f, f', g, g' \in \text{Hom}_{\mathcal{C}}(X, Y)$. Show that * and *' are equal, and that each is commutative and associative.

2. Let (X,e) be an H-space with multiplication $\mu \colon X \times X \to X$ (see Hatcher p. 281). Show that for all $n \ge 1$, the group structure on $\pi_n(X,e)$ defined by

$$(f*g)(x) = \mu(f(x), g(x))$$

is equal to the usual group structure. Show further that $\pi_1(X,e)$ is an abelian group.

- 3. Hatcher, chap. 4, §1, exercise 11.
- 4. Hatcher, chap. 4, §1, exercise 23.

1