18.906: Problem Set 9

Due: No.

In this problem, cohomology will be with \mathbb{F}_2 -coefficients.

- **1.** Let $E \xrightarrow{p} X$ be a real vector bundle of rank n over a compact space X. Show that there exists a unique cohomology class $u \in H^n(E, E_0)$ that restricts to the unique generator $u_x \in H^n(E_x, E_x \setminus \{0\})$, for all $x \in X$. Show that as an $H^*(X)$ -module, $H^*(E, E_0)$ is free of rank one generated by u.
- **2.** Show that for a real vector bundle \mathcal{E} over a compact space X, there exists characteristic classes $w_i(\mathcal{E}) \in H^i(X)$, $i \geq 0$, that are uniquely characterized by the following three properties.
- (i) $w_i(f^*\mathcal{E}) = f^*w_i(\mathcal{E}).$
- (ii) $w_i(\mathcal{E} \oplus \mathcal{E}') = \sum_{0 \le j \le i} w_j(\mathcal{E}) \cup w_{i-j}(\mathcal{E}').$
- (iii) Let $\mathcal{O}(-1)$ be the tautological line bundle over $\mathbb{R}P^n$. Then $w_i(\mathcal{O}(-1))$ is non-zero, for $0 \le i \le 1$, and zero, for i > 1.
- **3**. Let \mathcal{E} be a real vector bundle of rank n over X. Show that the composite

$$X \xrightarrow{f} BGL_n(\mathbb{R}) \xrightarrow{B \det} B\mathbb{R}^*,$$

where f classifies \mathcal{E} , represents $w_1(\mathcal{E}) \in H^1(X)$. Conclude that \mathcal{E} is orientable if and only if $w_1(\mathcal{E}) = 0$.

- **4.** Let $\phi: H^*(X) \xrightarrow{\sim} H^{*+n}(E, E_0)$ be the isomorphism $\phi(a) = p^*(a) \cup u$. Show that the classes $w_i'(\mathcal{E}) = (\phi^{-1} \operatorname{Sq}^i \phi)(a)$ satisfy the axioms (i)–(iii) above and conclude that $w_i'(\mathcal{E}) = w_i(\mathcal{E})$.
- **5**. Determine the cohomology ring $H^*(BGL_n(\mathbb{R}))$.

1