

The left and right homotopy relations

We recall that a *coproduct* of two objects A and B in a category \mathcal{C} is an object $A \amalg B$ together with two maps $\text{in}_1: A \rightarrow A \amalg B$ and $\text{in}_2: B \rightarrow A \amalg B$ such that, for every pair of maps $f: A \rightarrow C$ and $g: B \rightarrow C$, there exists a *unique* map

$$f + g: A \amalg B \rightarrow C$$

such that $f = (f + g) \circ \text{in}_1$ and $g = (f + g) \circ \text{in}_2$. If both $A \amalg B$ and $A \amalg' B$ are coproducts of A and B , then the maps $\text{in}'_1 + \text{in}'_2: A \amalg B \rightarrow A \amalg' B$ and $\text{in}_1 + \text{in}_2: A \amalg' B \rightarrow A \amalg B$ are isomorphisms and each others inverses. The map $\nabla = \text{id} + \text{id}: A \amalg A \rightarrow A$ is called the *fold map*. Dually, a *product* of two objects A and B in a category \mathcal{C} is an object $A \times B$ together with two maps $\text{pr}_1: A \times B \rightarrow A$ and $\text{pr}_2: A \times B \rightarrow B$ such that, for every pair of maps $f: C \rightarrow A$ and $g: C \rightarrow B$, there exists a *unique* map

$$(f, g): C \rightarrow A \times B$$

such that $f = \text{pr}_1 \circ (f, g)$ and $g = \text{pr}_2 \circ (f, g)$. If both $A \times B$ and $A \times' B$ are products of A and B , then the maps $(\text{pr}_1, \text{pr}_2): A \times B \rightarrow A \times' B$ and $(\text{pr}'_1, \text{pr}'_2): A \times' B \rightarrow A \times B$ are isomorphisms and each others inverses. The map $\Delta = (\text{id}, \text{id}): A \rightarrow A \times A$ is called the *diagonal map*.

Definition Let \mathcal{C} be a model category, and let $f: A \rightarrow B$ and $g: A \rightarrow B$ be two maps. A *cylinder object* for A is a commutative diagram

$$\begin{array}{ccc} & \text{Cyl}(A) & \\ d^0 + d^1 \nearrow & & \searrow \sigma \sim \\ A \amalg A & \xrightarrow{\nabla} & A, \end{array}$$

and a *left homotopy* from f to g is a commutative diagram

$$\begin{array}{ccc} & \text{Cyl}(A) & \\ d^0 + d^1 \nearrow & & \searrow h \\ A \amalg A & \xrightarrow{f+g} & B. \end{array}$$

If a left homotopy from f to g exists, we say that f and g are *left homotopic* and write $f \sim^\ell g$. Dually, a *path object* for B is a commutative diagram

$$\begin{array}{ccc} & \text{Path}(B) & \\ s \nearrow \sim & & \searrow (d_0, d_1) \\ B & \xrightarrow{\Delta} & B \times B, \end{array}$$

and a *right homotopy* from f to g is a commutative diagram

$$\begin{array}{ccc}
 & \text{Path}(B) & \\
 & \nearrow k \quad \searrow (d_0, d_1) & \\
 A & \xrightarrow{(f, g)} & B \times B.
 \end{array}$$

If a right homotopy from f to g exists, we say that f and g are *right homotopic* and write $f \sim^r g$. If both a left and a right homotopy from f to g exist, we say that f and g are homotopic and write $f \sim g$.

The homotopy relations \sim^ℓ , \sim^r , and \sim are relations on the set $\text{Hom}_{\mathcal{C}}(A, B)$ of maps from A to B in \mathcal{C} . But, in general, they are not equivalence relations. We write $\text{Hom}_{\mathcal{C}}(A, B)/\sim^\ell$, $\text{Hom}_{\mathcal{C}}(A, B)/\sim^r$, and $\text{Hom}_{\mathcal{C}}(A, B)/\sim$ for the sets of equivalence classes for the equivalence relations on the set $\text{Hom}_{\mathcal{C}}(A, B)$ generated by the relations \sim^ℓ , \sim^r , and \sim , respectively.