

Cofibrantly generated model categories

DEFINITION. Let \mathcal{C} be a category such that all small colimits exist, and let

$$I = \{U \rightarrow V\}$$

be a class of maps in \mathcal{C} .

(i) An object X of \mathcal{C} is *small relative to I* if for every sequence

$$Y_1 \xrightarrow{f_1} Y_2 \xrightarrow{f_2} Y_3 \xrightarrow{f_3} \dots$$

of maps in I , the canonical map

$$\operatorname{colim}_i \operatorname{Hom}_{\mathcal{C}}(X, Y_i) \rightarrow \operatorname{Hom}_{\mathcal{C}}(X, \operatorname{colim}_i Y_i)$$

is a bijection.

(ii) A map p is an *I-injective* if it has the right lifting property with respect to all maps in I .

(iii) A map i is an *I-cofibration* if it has the left lifting property with respect to all *I-injective* maps.

(iv) A map $f: A \rightarrow B$ is an *I-cellular* map if there exists a sequence of maps

$$A = B_0 \xrightarrow{i_0} B_1 \xrightarrow{i_1} B_2 \rightarrow \dots$$

together with push-out squares

$$\begin{array}{ccc} \coprod_{\alpha} U_{\alpha} & \longrightarrow & B_{m-1} \\ \downarrow & & \downarrow i_{m-1} \\ \coprod_{\alpha} V_{\alpha} & \longrightarrow & B_m \end{array}$$

and maps $j_m: B_m \rightarrow B$ such that $j_0 = f$ and $j_m i_{m-1} = j_{m-1}$ and such that the induced map

$$j: \operatorname{colim}_m B_m \rightarrow B$$

is an isomorphism.

LEMMA. (i) A retract of an *I-injective* map is an *I-injective* map.

(ii) A retract of an *I-cofibration* is an *I-cofibration*.

(iii) Every *I-cellular* map is an *I-cofibration*.

PROPOSITION (Small object argument). Let \mathcal{C} be a category in which all small colimits exist. Let I be a set of maps in \mathcal{C} and assume that the domains of the maps in I are small relative to the class of *I-cellular* maps. Then every map f in \mathcal{C} can be factored as $f = pi$, where i is an *I-cellular* map, and where p is an *I-injective*.

COROLLARY. Let \mathcal{C} and I be as above. Then every *I-cofibration* is a retract of an *I-cellular* map.

We say that a map is a *trivial fibration*, if it is both a fibration and a weak equivalence, and that a map is a *trivial cofibration*, if it is both a cofibration and a weak equivalence.

DEFINITION. A model category \mathcal{C} is *cofibrantly generated* if there exists two sets of maps I and J such that the following (i)–(iv) hold.

- (i) The domains of the maps in I are small relative to the I -cellular maps.
- (ii) The domains of the maps in J are small relative to the J -cellular maps.
- (iii) The fibrations are the J -injective maps.
- (iv) The trivial fibrations are the I -injective maps.

We say that I is a set of *generating cofibrations* and that J is a set of *generating trivial cofibrations*.

PROPOSITION. Let \mathcal{C} be a cofibrantly generated model category, let I be a set of generating cofibrations, and let J be a set of generating trivial cofibrations. Then the cofibrations are the I -cofibrations and the trivial cofibrations are the J -cofibrations.

THEOREM. Let \mathcal{C} be a category in which all small limits and colimits exist, and let \mathcal{W} be a class of maps in \mathcal{C} that is closed under retracts and satisfies the “two out of three” axiom (M2). Let I and J be two sets of maps in \mathcal{C} and assume that the following (i)–(iv) holds.

- (i) The domains of the maps in I are small relative to the class of I -cellular maps. The domains of J are small relative to the class of J -cellular maps.
- (ii) Every J -cofibration is both an I -cofibration and an element of \mathcal{W} .
- (iii) Every I -injective is both a J -injective and an element of \mathcal{W} .
- (iv) One of the following two conditions (a)–(b) hold:
 - (a) A map that is both an I -cofibration and an element of \mathcal{W} is a J -cofibration.
 - (b) A map that is both a J -injective and an element of \mathcal{W} is an I -injective.

Then \mathcal{C} has a cofibrantly generated model structure, where \mathcal{W} is the class of weak equivalences, where I is a set of generating cofibrations, and where J is a set of generating trivial cofibrations.