

Limits and Colimits

By a *diagram* in a category \mathcal{C} , we mean a functor

$$\mathcal{X}: I \rightarrow \mathcal{C}$$

from a small category I to \mathcal{C} . Here a *small* category is a category whose class of objects form a set. The category of sets, for example, is not small because the class of all sets does not form a set. We say that I is the *index category* of \mathcal{X} and that \mathcal{X} is an *I -diagram*.

DEFINITION. Let \mathcal{X} be an I -diagram in \mathcal{C} . The *colimit* of \mathcal{X} is an object

$$\operatorname{colim}_I \mathcal{X}$$

of \mathcal{C} that satisfies the following properties (i)–(ii):

(i) For every object i in I , there is a morphism in \mathcal{C}

$$j_i: \mathcal{X}(i) \rightarrow \operatorname{colim}_I \mathcal{X},$$

and for every morphism $\varphi: i \rightarrow i'$ in I , $j_i = j_{i'} \circ \mathcal{X}(\varphi)$.

(ii) Given an object Y of \mathcal{C} and, for every object i of I , a morphism in \mathcal{C}

$$f_i: \mathcal{X}(i) \rightarrow Y$$

such that, for every morphism $\varphi: i \rightarrow i'$ in I , $f_i = f_{i'} \circ \mathcal{X}(\varphi)$, there exists a *unique* morphism in \mathcal{C}

$$f: \operatorname{colim}_I \mathcal{X} \rightarrow Y$$

such that, for all objects i in I , $f_i = f \circ j_i$.

We note that the colimit is well-defined up to canonical isomorphism. Indeed, if both $\operatorname{colim}_I \mathcal{X}$ and $\operatorname{colim}'_I \mathcal{X}$ satisfy (i) and (ii), then the unique morphisms

$$j': \operatorname{colim}_I \mathcal{X} \rightarrow \operatorname{colim}'_I \mathcal{X}$$

and

$$j: \operatorname{colim}'_I \mathcal{X} \rightarrow \operatorname{colim}_I \mathcal{X}$$

are each others inverses.

DEFINITION. Let \mathcal{X} be an I -diagram in \mathcal{C} . The *limit* of \mathcal{X} is an object

$$\lim_I \mathcal{X}$$

of \mathcal{C} that satisfies the following properties (i)–(ii):

(i) For every object i in I , there is a morphism in \mathcal{C}

$$p_i: \lim_I \mathcal{X} \rightarrow \mathcal{X}(i),$$

and for every morphism $\varphi: i \rightarrow i'$ in I , $p_{i'} = \mathcal{X}(\varphi) \circ p_i$.

(ii) Given an object Z of \mathcal{C} and, for every object i of I , a morphism in \mathcal{C}

$$g_i: Z \rightarrow \mathcal{X}(i)$$

such that, for every morphism $\varphi: i \rightarrow i'$ in I , $g_{i'} = \mathcal{X}(\varphi) \circ g_i$, there exists a *unique* morphism in \mathcal{C}

$$g: Z \rightarrow \lim_I \mathcal{X}$$

such that, for all objects i in I , $g_i = p_i \circ g$.

The limit is well-defined up to canonical isomorphism. In the litterature, the colimit is also called the *direct limit* and the *inductive limit* and the limit is called the *inverse limit* and the *projective limit*. It is also common to write $\varinjlim_I \mathcal{X}$ for the colimit and $\varprojlim_I \mathcal{X}$ for the limit.

EXAMPLE. Suppose that I has a terminal object ∞ . Then, for every I -diagram \mathcal{X} , the object $\mathcal{X}(\infty)$ satisfies the conditions (i) and (ii), and hence,

$$\operatorname{colim}_I \mathcal{X} = \mathcal{X}(\infty).$$

Similarly, if I has an initial object 0 , then, for every I -diagram X , the object $X(0)$ satisfies the condition (i) and (ii). Hence, in this case,

$$\lim_I \mathcal{X} = \mathcal{X}(0).$$