

Algebraic Topology: Problem Set 1

Due: Tuesday, May 10.

DEFINITION. Let \mathcal{C} be a category.

- (i) The *push-out* of two maps $f: A \rightarrow B$ and $g: A \rightarrow C$ in \mathcal{C} is an object $B \sqcup_A C$ and two maps $g': B \rightarrow B \sqcup_A C$ and $f': C \rightarrow B \sqcup_A C$ such that $g' \circ f = f' \circ g$ and such that, for every pair of maps $h: B \rightarrow D$ and $k: C \rightarrow D$ with $h \circ f = k \circ g$, there exists a *unique* map $h+k: B \sqcup_A C \rightarrow D$ such that $(h+k) \circ g' = h$ and $(h+k) \circ f' = k$.
- (ii) The map $f': C \rightarrow B \sqcup_A C$ is called the *co-base change* of the map $f: A \rightarrow B$ along the map $g: A \rightarrow C$. The map $g': B \rightarrow B \sqcup_A C$ is called the *co-base change* of the map $g: A \rightarrow C$ along the map $f: A \rightarrow B$.
- (iii) The *pull-back* of two maps $f: B \rightarrow A$ and $g: C \rightarrow A$ in \mathcal{C} is an object $B \times_A C$ and two maps $g': B \times_A C \rightarrow B$ and $f': B \times_A C \rightarrow C$ such that $f \circ g' = g \circ f'$ and such that, for every pair of maps $h: D \rightarrow B$ and $k: D \rightarrow C$ with $f \circ h = g \circ k$, there exists a *unique* map $(h, k): D \rightarrow B \times_A C$ such that $g' \circ (h, k) = h$ and $f' \circ (h, k) = k$.
- (iv) The map $f': B \times_A C \rightarrow C$ is called the *base change* of the map $f: B \rightarrow A$ along the map $g: C \rightarrow A$. The map $g': B \times_A C \rightarrow B$ is called the *base change* of the map $g: C \rightarrow A$ along the map $f: B \rightarrow A$.

PROBLEM 1. Suppose that both

$$\begin{array}{ccc} A & \xrightarrow{f} & B \\ \downarrow g & & \downarrow g' \\ C & \xrightarrow{f'} & B \sqcup_A C \end{array} \quad \begin{array}{ccc} A & \xrightarrow{f} & B \\ \downarrow g & & \downarrow g'' \\ C & \xrightarrow{f''} & B \sqcup'_A C \end{array}$$

are push-outs of the two maps $f: A \rightarrow B$ and $g: A \rightarrow C$. Show that the maps

$$\begin{aligned} f'' + g'': B \sqcup_A C &\rightarrow B \sqcup'_A C \\ f' + g': B \sqcup'_A C &\rightarrow B \sqcup_A C \end{aligned}$$

are inverse isomorphisms.

PROBLEM 2. Suppose that \mathcal{C} is a model category.

- (i) Let $i: A \rightarrow B$ be a cofibration, and let $g: A \rightarrow C$ be any map. Show that the co-base change $i': C \rightarrow B \sqcup_A C$ is a cofibration.
- (ii) Let $i: A \xrightarrow{\sim} B$ be a trivial cofibration, and let $g: A \rightarrow C$ be any map. Show that the co-base change $i': C \rightarrow B \sqcup_A C$ is a trivial cofibration.
- (iii) Let $p: X \rightarrow Y$ be a fibration, and let $g: Z \rightarrow Y$ be any map. Show that the base change $p': X \times_Y Z \rightarrow Z$ is a fibration.
- (iv) Let $p: X \xrightarrow{\sim} Y$ be a trivial fibration, and let $g: Z \rightarrow Y$ be any map. Show that the base change $p': X \times_Y Z \rightarrow Z$ is a trivial fibration.

REMARK. It is *not* true, in general, that the co-base change of a weak equivalence is a weak equivalence or that the base change of a weak equivalence is a weak equivalence.