

Algebraic Topology: Problem Set 2

Due: Tuesday, May 29.

DEFINITION. An *adjunction* from a category \mathcal{C} to a category \mathcal{D} is a triple (F, G, a) that consists of two functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ and a natural bijection

$$a = a_{(X,Y)}: \text{Hom}_{\mathcal{D}}(F(X), Y) \xrightarrow{\sim} \text{Hom}_{\mathcal{C}}(X, G(Y)).$$

The functor F is said to be a *left adjoint* of the functor G , and the functor G is said to be a *right adjoint* of the functor F .

We emphasize that the bijection a must be *natural*. This means that we require the map $a = a_{(X,Y)}$ to be a natural transformation between the two functors

$$\begin{aligned} (X, Y) &\mapsto \text{Hom}_{\mathcal{D}}(F(X), Y) \\ (X, Y) &\mapsto \text{Hom}_{\mathcal{C}}(X, G(Y)) \end{aligned}$$

from the category $\mathcal{C}^{\text{op}} \times \mathcal{D}$ to the category of sets. This, in turn, means that for every map $\varphi: X \rightarrow X'$ in \mathcal{C} , and for every map $\psi: Y \rightarrow Y'$ in \mathcal{D} , the diagram

$$\begin{array}{ccc} \text{Hom}_{\mathcal{D}}(F(X'), Y) & \xrightarrow{a_{(X',Y)}} & \text{Hom}_{\mathcal{C}}(X', G(Y)) \\ \downarrow F(\varphi)^* & & \downarrow \varphi^* \\ \text{Hom}_{\mathcal{D}}(F(X), Y) & \xrightarrow{a_{(X,Y)}} & \text{Hom}_{\mathcal{C}}(X, G(Y)) \\ \downarrow \psi_* & & \downarrow G(\psi)_* \\ \text{Hom}_{\mathcal{D}}(F(X), Y') & \xrightarrow{a_{(X,Y')}} & \text{Hom}_{\mathcal{C}}(X, G(Y')) \end{array}$$

must commute.

EXAMPLE. (i) Let \mathcal{C} be the category of sets and maps, and let \mathcal{D} be the category of abelian groups. Then we have the adjunction (F, G, a) from \mathcal{C} to \mathcal{D} , where $F(X)$ is the free abelian group generated by the set X , and where $G(Y)$ is the underlying set of the abelian group Y . The bijection

$$a = a_{(X,Y)}: \text{Hom}_{\mathcal{D}}(F(X), Y) \xrightarrow{\sim} \text{Hom}_{\mathcal{C}}(X, G(Y))$$

takes the group homomorphism $f: F(X) \rightarrow Y$ to the set map $a(f): X \rightarrow G(Y)$ defined by $a(f)(x) = f(x)$. It is a bijection because the group homomorphism f is uniquely determined by its value on the basis X of $F(X)$.

(ii) Let $f: A \rightarrow B$ be a ring homomorphism, let \mathcal{C} be the category of left A -modules and A -linear homomorphisms, and let \mathcal{D} be the category of left B -modules and B -linear homomorphisms. We define an adjunction (F, G, a) from \mathcal{C} to \mathcal{D} as follows. If X is a left A -module, we define $F(X)$ to be the left B -module $B \otimes_A X$, and if Y is a left B -module, we define $G(Y)$ to be the left B -module Y considered as a left A -module via the map f , that is, we define $a \cdot y$ to be $f(a)y$. The bijection

$$a = a_{(X,Y)}: \text{Hom}_{\mathcal{D}}(F(X), Y) \xrightarrow{\sim} \text{Hom}_{\mathcal{C}}(X, G(Y))$$

takes the B -linear map $g: F(X) \rightarrow Y$ to the A -linear map $a(g): X \rightarrow G(Y)$ defined by $a(g)(x) = g(1 \otimes x)$. It is a bijection because g is uniquely determined by $a(g)$ by the formula $g(b \otimes x) = b \cdot g(1 \otimes x) = b \cdot a(g)(x)$.

(iii) Let \mathcal{C} be a category, and let I be a small category. This means that the class of objects in I is a set. The category \mathcal{C}^I of I -diagrams in \mathcal{C} is defined as follows. The objects are all functors $\mathcal{X}: I \rightarrow \mathcal{C}$, and the set $\text{Hom}_{\mathcal{C}^I}(\mathcal{X}, \mathcal{Y})$ of morphisms from an I -diagram \mathcal{X} to an I -diagram \mathcal{Y} is the set of all natural transformations from the functor \mathcal{X} to the functor \mathcal{Y} . The *diagonal functor*

$$\Delta: \mathcal{C} \rightarrow \mathcal{C}^I$$

is defined by $\Delta(X)(i) = X$ and $\Delta(\varphi)(i) = \varphi$. Suppose that the colimit of every I -diagram in \mathcal{C} exists. Then we can define an adjunction

$$a: \text{Hom}_{\mathcal{C}}(\text{colim}_I \mathcal{X}, Y) \rightarrow \text{Hom}_{\mathcal{C}^I}(\mathcal{X}, \Delta(Y)),$$

where the map a takes the map $g: \text{colim}_I \mathcal{X} \rightarrow Y$ to the natural transformation $a(g): \mathcal{X} \rightarrow \Delta(Y)$, where $a(g)_i: \mathcal{X}(i) \rightarrow \Delta(Y)(i) = Y$ is the composite map

$$\mathcal{X}(i) \xrightarrow{j_i} \text{colim}_I \mathcal{X} \xrightarrow{a} Y.$$

In fact, the definition of the colimit of I -diagrams in \mathcal{C} is equivalent to the definition of a left adjoint of the diagonal functor Δ . Similarly, the definition of the limit of I -diagrams in \mathcal{C} is equivalent to the definition of a right adjoint of the diagonal functor Δ .

PROBLEM 1. Consider the categories and functors

$$\begin{array}{ccccc} \mathcal{A} & \xrightleftharpoons[F]{F'} & \mathcal{B} & & \\ K' \uparrow & H & & G' \uparrow & G \\ \mathcal{C} & \xrightleftharpoons[K]{K'} & \mathcal{D} & & \end{array}$$

and assume that F (resp. G , resp. H , resp. K) is left adjoint to F' (resp. G' , resp. H' , resp. K'). Prove the following proposition:

(i) A natural transformation

$$\varphi_A: (G \circ F)(A) \rightarrow (K \circ H)(A)$$

determines and is determined by a natural transformation

$$\varphi'_D: (F' \circ G')(D) \rightarrow (H' \circ K')(D).$$

(ii) The natural transformation

$$\varphi_A: (G \circ F)(A) \rightarrow (K \circ H)(A)$$

is an isomorphism if and only if the corresponding natural transformation

$$\varphi'_D: (F' \circ G')(D) \rightarrow (H' \circ K')(D)$$

is an isomorphism.

The proposition of Problem 1 is extremely useful. For example, the following problem would be very tedious to solve directly.

PROBLEM 2. Let $f: A \rightarrow B$ be a ring homomorphism, and let I be a small category. Prove that, for every I -diagram of left A -modules \mathcal{X} , the canonical map

$$\varphi_{\mathcal{X}}: B \otimes_A \operatorname{colim}_I \mathcal{X} \rightarrow \operatorname{colim}_I (B \otimes_A \mathcal{X})$$

is an isomorphism. (Hint: Use Problem 1.)