
13 ジョルダン・ブラウワーの定理

補題 13.1 (ウリゾーン・ティーツェの補題). 閉集合A ⊂ Rmと連続写像 f : A → Rnについ

て、任意の x ∈ Aに対して F (x) = f(x)を満たす連続写像 F : Rm → Rnが存在する。

証明. 二点 x, y ∈ Rmの距離を d(x, y) = ‖x − y‖と表しておき、点 x ∈ Rmから集合Aへの

距離を次のように定義する。

d(x, A) = inf{y ∈ A | d(x, y)}

任意の p ∈ Rm ! Aに対して、次のように定義された開集合 Up ⊂ Rm ! Aを考えてみる。

Up = {x ∈ R
m | d(p, x) < 1

2d(p, A)}

開集合Rm ! Aの開被覆となるので、１の分解より、定理 8.1の性質 (i)–(iii)を満たす滑らか

な写像φp : Rm !A → Rが存在する。今、任意の p ∈ Rm !Aについて、d(p, a(p)) < 2d(p, A)

を満たす点 a(p) ∈ Aを選び、次のように定義された写像 F : Rm → Rnを考えてみる。

F (x) =









f(x) (x ∈ A)

∑

p∈Rm!A φp(x)f(a(p)) (x ∈ Rm ! A)

この写像は、写像 f を拡張するうまく定義された写像であり、Rm ! AとAの内部上連続写

像であることが分かる。よって、F もAの境界上連続であることを示せばよい...

補題 13.2. 閉集合A ⊂ RmとB ⊂ Rn、同相 f : A → Bに対して、次の性質を満たす同相

F : R
m × R

n → R
m × R

n

が存在する。「任意の x ∈ Aに対して、F (x, 0) = (0, f(x))」

証明. 補題 13.1より、連続写像 f : A → Rnを拡張する連続写像g1 : Rm → Rnが存在する。こ

のとき、F1(x, y) = (x, y+g1(x))で定義された写像F1 : Rm×Rn → Rm×Rnは、同相であり、

逆写像は、F−1
1 (x, y) = (x, y−g1(x))で与えられた写像であることが分かる。同様に、連続写像

f−1 : B → Rmを拡張する連続写像 g2 : Rn → Rmが与えられたとき、F2(x, y) = (x+g2(y), y)

で定義された写像F2 : Rm×Rn → Rm ×Rnは、同相であることが分かる。よって、合成写像

F = F−1
2 ◦ F1 : R

m × R
n → R

m × R
n
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も同相であることが分かる。今、任意の x ∈ Aに対して、

F (x, 0) = F−1
2 (F1(x, 0)) = F−1

2 (x, 0 + g1(x)) = F−1
2 (x, f(x))

= (x − g2(f(x)), f(x)) = (x − f−1(f(x)), f(x)) = (0, f(x))

であることが得る。

系 13.3. 閉集合A, B ⊂ Rnと同相 f : A → Bに対して、次の性質を満たす同相

F : R
n × R

n → R
n × R

n

が存在する。「任意の x ∈ Aに対して、F (x, 0) = (f(x), 0))」

証明. 補題 13.2より、任意の x ∈ Aに対して、G(x, 0) = (0, f(x))を満たす同相

G : R
n × R

n → R
n × R

n

が存在する。これに、T : Rn × Rn → Rn × Rnを T (x, y) = (y, x)と定めると、合成写像

F = T ◦ G : R
n × R

n → R
n × R

n

は、任意の x ∈ Aに対して、F (x, 0) = (f(x), 0)を満たす同相であることが分かる。

注 13.4. 閉集合A, B ⊂ Rnは同相であるとき、系 13.3より、開集合 (Rn × Rn) ! (A × {0})

と (Rn ×Rn) ! (B × {0})も同相である。しかし、必ずしも開集合Rn ! AとRn ! Bは同相

ではない。例として、アレキサンダーの角Σ ⊂ R3と球面 S2 ⊂ R3は同相なのに、R3 ! Σと

R3 ! S2は同相ではない。

定理 13.5. 同相の閉集合A, B ⊂ Rnにつして、任意の p ! 0に対して、

dimR Hp(Rn
! A) = dimR Hp(Rn

! B)

である。

証明. まず、A, B ⊂ Rnは真部分集合であることを仮定する。同相 f : A → Bが与えられた

とき、系 13.3より、その同相を拡張する同相

F : R
n × R

n → R
n × R

n
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が選ぶことができる。この同相について、制限された写像

F |(Rn×Rn)!(A×{0}) : (Rn × R
n) ! (A × {0}) → (Rn × R

n) ! (B × {0})

も同相であることが分かる。今、p > 0のとき、次の図式を考えてみる。

Hp(Rn ! A)
(σ∗)n

!! Hp+n((Rn × Rn) ! (A × {0}))

Hp(Rn ! B)
(σ∗)n

!! Hp+n((Rn × Rn) ! (B × {0}))

(F |(Rn×Rn)!(A×{0}))
∗

""

ここで、反複サスペンション準同型 (σ∗)nは、命題 11.8より、同型であり、系 11.6より、乗

直の写像も同型であることが分かる。よって、Hp(Rn ! A)とHp(Rn ! B)が同型であるこ

とが得る。

同様に、p = 0のとき、次の図式を考えてみる。

0 !! R · 1Rn!A
!! H0(Rn ! A)

(σ∗)n

!! Hn((Rn × Rn) ! (A × {0})) !! 0

0 !! R · 1Rn!B
!! H0(Rn ! B)

(σ∗)n

!! Hn((Rn × Rn) ! (B × {0}))

(F |(Rn×Rn)!(A×{0}))
∗

""

!! 0

ここで、命題 11.8より、列が短完全系列であり、系 11.6より、乗直の写像は、同型である

ことが分かる。よって、H0(Rn ! A)とH0(Rn ! B)は同型であることが分かる。

最後に、A = RnとB = Rnは同値であることを示せばよい。命題 11.8と系 11.6より、次の

図式では、すべての写像は同型であることが分かる。

0 !! R · 1 !! H0((Rn × R) ! (A × {0}))
(σ∗)n−1

!! Hn−1((Rn × Rn) ! (A × {0})) !! 0

0 !! R · 1 !! H0((Rn × R) ! (B × {0}))
(σ∗)n−1

!! Hn−1((Rn × Rn) ! (B × {0}))

(F |(Rn×Rn)!(A×{0}))
∗

""

!! 0

よって、(Rn ×R) ! (A× {0})が連結であることと (Rn ×R) ! (B × {0})が連結であること

は、同値である。さらに、(Rn × R) ! (A × {0})と (Rn × R) ! (B × {0})が連結であること

とそれぞれAとBが真部分集合であることは、同値である。よって、A = RnとB = Rnは

同値であることが分かる。これで、定理が得る。

一般的に、開集合U ⊂ Rnに対して、dimR H0(U)とUの連結成分の数は等しいである。よっ

て、次の系が成り立つ。
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系 13.6. 閉集合A, B ⊂ Rnに対して、開集合Rn ! AとRn ! Bの連結成分の数は等しいで

ある。

定理 13.7 (ジョルダン・ブラウワーの定理). 球面Sn−1と同相である部分集合Σ ⊂ Rn（n ! 2）

に対して、次の性質が成り立つ。

(i) 開集合Rn ! Σは二つの互いに素な連結成分U1とU2からなり、二つの連結成分の一方

U1は有界で、他方 U2は非有界である。

(ii) Σは両成分 U1と U2の共通の境界である。

連結成分U1と U2は、それぞれΣの内部と外部と呼ばれた。

証明. まず、Σ = Sn−1のとき、開集合Rn !Sn−1は次の二つの互いに素な連結成分からなる。
◦
Dn = {x ∈ R

n | ‖x‖ < 1}

W = {x ∈ R
n | ‖x‖ > 1}

よって、系 13.6より、一般的に、開集合Rn ! Σも二つの互いに素な連結成分U1とU2から

なることが分かる。ここで、Σはコンパクトなので、ハウスドルフ空間Rnの閉集合である

ことが分かる。今、r = max{‖x‖ | x ∈ Σ}をおいておく。部分集合 rW ⊂ Rn ! Σは連結な

ので、一つの連結成分の部分集合となることが分かる。よって、rW を含む連結成分U2は非

有界であることが分かる。それに、rW を含まない連結成分 U1は、開球体 r
◦
Dnの部分集合

なので、有界であることが分かる。これで、性質 (i)が成り立つ。

次に、部分集合U1, U2 ⊂ Rnは開集合なので、それらの境界は必ずRn ! (U1 ∪ U2) = Σの部

分集合であることが分かる。よって、性質 (ii)を示すために、任意の点 p ∈ Σに対して、pは

両成分 U1と U2の境界点であることを示せばよい。すなわち、点 p ∈ Σが与えられたとき、

任意の開近傍 p ∈ V ⊂ Rnに対して、V ∩ U1 *= ∅と V ∩ U2 *= ∅であることを示せばよい。

定理の仮定より、Σと Sn−1は同相であるので、閉集合A = Σ ! (Σ∩ V ) ⊂ Σも球面 Sn−1の

閉集合B ⊂ Sn−1と同相であることが分かる。明らかに、Rn ! Bは連結なので、系 13.6よ

り、Rn ! Aも連結であることが分かる。ユークリッド空間の開集合なので、Rn ! Aは道連

結であることが分かる。よって、二つの点 p1 ∈ U1と p2 ∈ U2が選ばれたとき、γ(0) = p1と

γ(1) = p2を満たす連続曲線 γ : [0, 1] → Rn !Aが存在することが分かる。性質 (i)より、逆像

γ−1(Σ) ⊂ [0, 1]
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は、空集合でない閉集合なので、最小値と最大値が存在し、次の不等式を満たす。

0 < a = min γ−1(Σ) < b = max γ−1(Σ) < 1

よって、γ(a), γ(b) ∈ Σ∩ V は、それぞれ γ([0, a))と γ((b, 1])の境界点なので、次の性質を満

たす t1 ∈ [0, a)と t2 ∈ (b, 1]が存在することが分かる。「γ(t1) ∈ U1 ∩ V かつ γ(t2) ∈ U2 ∩ V」

これで、pは両成分 U1と U2の境界点であることが得る。
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