
2 交代代数

定義 2.1. 実ベクトル空間 V と非負の整数 kに関して、次の性質 (1)–(3)を満たす写像

ω : V × · · · × V
︸ ︷︷ ︸

k

→ R

は、k重交代式と呼ばれる。

(1) 任意の 1 ! i ! kと v1, . . . , vi, v′

i, . . . , vk ∈ V に対して、

ω(v1, . . . , vi + v′

i, . . . , vk) = ω(v1, . . . , vi, . . . , vk) + ω(v1, . . . , v
′

i, . . . , vk)

(2) 任意の 1 ! i ! kと v1, . . . , vk ∈ V , λ ∈ Rに対して、

ω(v1, . . . , λvi, . . . , vk) = λω(v1, . . . , vi, . . . , vk)

(3) 任意の 1 ! i < j ! kと v1, . . . , vk ∈ V に対して、

vi = vj ⇒ ω(v1, . . . , vi, . . . , vj , . . . , vk) = 0

ベクトル空間 V 上の k重交代式のなすベクトル空間は、Altk(V )と書かれる。そのベクトル

空間のベクトル和とスカラー積は次のように定義された。

(ω + ω′)(v1, . . . , vk) = ω(v1, . . . , vk) + ω′(v1, . . . , vk) (ω, ω′ ∈ Altk(V ))

(λω)(v1, . . . , vk) = λω(v1, . . . , vk) (ω ∈ Altk(V ), λ ∈ R)

注 2.2. 定義 2.1の性質 (1)と (2)を満たす写像

ω : V × · · · × V
︸ ︷︷ ︸

k

→ R

は、ベクトル空間 V 上の k重線形形式と呼ばれる。

例 2.3. ゼロ個の直積 V 0は、ベクトル空間Rと定義された。よって、

Alt0(V ) = {ω : R → R | ωは線形写像である }

の１次元ベクトル空間と等しいである。
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補題 2.4. k > dim(V )ならばAltk(V ) = 0。

証明. ベクトル空間 V は無限次元の場合には、補題は自明なので、V は有限次元であること

を仮定し、基底 {e1, . . . , en} ⊂ V と整数 k > nをおいておく。選んだ基底に対して、任意の

ベクトル v1, . . . , vk ∈ V は、一意に次のような線形結合と書くことができる。

v1 = a1,1e1 + · · · + a1,nen

...

vk = ak,1e1 + · · ·+ ak,nen

よって、k重交代式 ωに関して、定義 2.1の性質 (1)と (2)より、

ω(v1, . . . , vk) = ω(a1,1e1 + · · ·+ a1,nen, . . . , ak,1e1 + · · ·+ ak,nen)

=
∑

1!h1,...,hk!n

a1,h1 . . . ak,hk
ω(eh1, . . . , ehk

)

と分かることができる。なお、k > nならば、任意の 1 ! h1, . . . , hk ! nに対して、必ず

hi = hjを満たす 1 ! i < j ! nが存在するので、ω(eh1, . . . , ehk
) = 0。よって、

ω(v1, . . . , vk) = 0

ことが分かることができる。

次に、対称群 Skと符号と呼ばれる準同型 sgn : Sk → {±1}を復習する。対称群 Skは、集合

{1, 2, . . . , k}の置換のなす群と定義される。特に、２つの元 1 ! i < j ! kを入れ替える置換

は、互換と呼ばれ、(i, j)と書かれる。任意の置換は、互換の積として表される。すなわち、

対称群は互換で生成されている。符号と呼ばれる準同型は、任意の互換を−1へ移す一意の

準同型 sgn: Sk → {±1}と定義された。

補題 2.5. 交代式 ω ∈ Altk(V )と置換 σ ∈ Skに対して、

ω(vσ(1), . . . , vσ(k)) = sgn(σ)ω(v1, . . . , vk).

証明. 帰納法を使い、次の命題を示す。「n個の互換の積として表せる置換 σ ∈ Skと任意の

交代式 ω ∈ Altk(V )、ベクトル v1, . . . , vk ∈ V に対して、

ω(vσ(1), . . . , vσ(k)) = sgn(σ)ω(v1, . . . , vk)
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である」

先ず、n = 0のとき、σ = 1なので命題は自明なので、n − 1のときを正しいと仮定し、nの

ときを示せばよい。置換 σを互換 (i, j)と n − 1の互換の積として表せる置換 τ の積

σ = (i, j)τ

と表しておく。帰納法の仮定より、任意の ω ∈ Altk(V )と v1, . . . , vk ∈ V に対して、

ω(vτ(1), . . . , vτ(k)) = sgn(τ)ω(v1, . . . , vk)

である。特に、左辺で定義された多重線形形式

ωτ(v1, . . . , vk) = ω(vτ(1), . . . , vτ(k))

も交代式であることが分かる。それに、

ω(vσ(1), . . . , vσ(k)) = ωτ(v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vk)

と表せる。なお、定義 2.1の性質 (3)より、

ωτ (v1, . . . , vi−1, vi + vj, vi+1, . . . , vj−1, vi + vj , vj+1, . . . , vk) = 0

ことが分かる。それに、定義 2.1の性質 (2)より、左辺は次のように表される。

ωτ(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vi, vj+1, . . . , vk)

+ ωτ(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vj , vj+1, . . . , vk)

+ ωτ(v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vk)

+ ωτ(v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vj, vj+1, . . . , vk)

ここで、定義 2.1の性質 (3)より、第１項と第４項はゼロなので、

ωτ(v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vk)

= −ωτ (v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vj , vj+1, vk)

であることが分かる。よって、

ω(vσ(1), . . . , vσ(k)) = ωτ(v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vk)

= −ωτ (v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vj, vj+1, . . . , vk)

= − sgn(τ)ω(v1, . . . , vk)

= sgn(σ)ω(v1, . . . , vk)

であることが分かる。帰納法より、任意の非負整数 nに対して、命題は正しい。
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例 2.6. 有限次元のベクトル空間V とその基底 {e1, . . . , en}に関して、次のように定義される

n重交代式 ω ∈ Altn(V )が成り立つ。n個のベクトル

v1 = a1,1e1 + · · · + a1,nen

...

vn = an,1e1 + · · ·+ an,nen

に対して、

ω(v1, . . . , vn) = det








a1,1 . . . a1,n

...
. . .

...

an,1 . . . an,n








と定義される。行列式の性質より、このような定義された写像ωは、定義 2.1の性質 (1)–(3)

を満たすことになる。

定義 2.7. 非負整数 nと方程式 p + q = nを満たす非負整数 pと qに関して、次の性質を満た

す置換 σ ∈ Snは、(p, q)シャッフルと呼ばれる。

「σ(1) < · · · < σ(p) かつ σ(p + 1) < · · · < σ(p + q)」

(p, q)シャッフルのなす集合は Sp,qと書かれる。

補題 2.8. 実ベクトル空間V と非負整数 kに関して、次の性質を満たすk重線形形式ωは、交

代式である。「任意のv1, . . . , vk ∈ V と1 ! i < kに対して、vi = vi+1ならばω(v1, . . . , vk) = 0」

証明. ωは線形形式なので、方程式

ω(v1, . . . , vi−1, vi + vi+1, vi + vi+1, vi+2, . . . , vk) = 0

を使うと、次のほう方程式が成り立つ。

ω(v1, . . . , vi−1, vi+1, vi, vi+2, . . . , vk) = −ω(v1, . . . , vi−1, vi, vi+1, vi+2, . . . , vk)

なお、対称群 Skは、互換 (i, i + 1)（1 ! i < k）で生成されているので、任意の置換 σ ∈ Sk

に対して、ω(vσ(1), . . . , vσ(k)) = sgn(k)ω(v1, . . . , vk)であることが分かる。これを使い、ωは

交代式であることが分かれる。
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定義 2.9. 交代式 ω1 ∈ Altp(V )と ω2 ∈ Altq(V )に対して、次のように定義された (p + q)重

線形形式は、ω1と ω2の外積と呼ばれ、ω1 ∧ ω2と書かれる。

(ω1 ∧ ω2)(v1, . . . , vp+q) =
∑

σ∈Sp,q

sgn(σ)ω1(vσ(1), . . . , vσ(p)) · ω2(vσ(p+1), . . . , vσ(p+q))

ここで、p = 0または q = 0のとき、ω1(vσ(1), . . . , vσ(p))または ω2(vσ(p+1), . . . , vσ(p+q))は、そ

れぞれ ω1(1)または ω2(1)と定義される。

補題 2.10. 任意の交代式 ω1 ∈ Altp(V )と ω2 ∈ Altq(V )に対して、多重線形形式 ω1 ∧ ω2も

交代式である。すなわち、ω1 ∧ ω2 ∈ Altp+q(V )。

証明. 補題 2.8より、「(∃1 ! i < p + q) : vi = vi+1ならば、(ω1 ∧ ω2)(v1, . . . , vp+q) = 0であ

る」を証明すればよい。そのために、集合Sp,qを次のように定義された部分集合S(0)
p,q と S(1)

p,q ,

S(2)
p,q に分解する。

S(1)
p,q = {σ ∈ Sp,q | σ−1(i) ! p かつ σ−1(i + 1) " p + 1}

S(2)
p,q = {σ ∈ Sp,q | σ−1(i) " p + 1 かつ σ−1(i + 1) ! p}

S(0)
p,q = Sp,q ! (S(1)

p,q ∪ S(2)
p,q )

なお、σ ∈ S(0)
p,q のときには、ω1(vσ(1), . . . , vσ(p)) = 0であるかω2(vσ(p+1), . . . , vσ(p+q)) = 0であ

る。よって、

(ω1 ∧ ω2)(v1, . . . , vp+q) =
∑

σ∈S
(1)
p,q

sgn(σ)ω1(vσ(1), . . . , vσ(p)) · ω2(vσ(p+1), . . . , vσ(p+q))

+
∑

σ∈S
(2)
p,q

sgn(σ)ω1(vσ(1), . . . , vσ(p)) · ω2(vσ(p+1), . . . , vσ(p+q))

であることが分かる。それに、互換 τ = (i, i + 1)において、写像 σ *→ τσは、S(1)
p,q から S(2)

p,q

への全単射を誘導し、sgn(τσ) = − sgn(σ)であるので、以上の方程式も次のように表すこと

ができる。

(ω1 ∧ ω2)(v1, . . . , vp+q) =
∑

σ∈S
(1)
p,q

sgn(σ)ω1(vσ(1), . . . , vσ(p)) · ω2(vσ(p+1), . . . , vσ(p+q))

−
∑

σ∈S
(1)
p,q

sgn(σ)ω1(vτσ(1), . . . , vτσ(p)) · ω2(vτσ(p+1), . . . , vτσ(p+q))
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しかし、vi = vi+1より、任意の σ ∈ S(1)
p,q に対して、

(vσ(1), . . . , vσ(p), vσ(p+1), . . . , vσ(p+q)) = (vτσ(1), . . . , vτσ(p), vτσ(p+1), . . . , vτσ(p+q))

なので、(ω1 ∧ ω2)(v1, . . . , vp+q) = 0であることが分かる。

11


