
3 交代代数（続き）

交代式の構想を説明するために次の定義が便利である。

定義 3.1. 体R上次数つき可換代数A∗とは、実ベクトル空間Ap（p ! 0）と次の性質 (i)–(iii)

を満たす線形写像 η : R → A0と双線形写像 µp,q : Ap × Aq → Ap+q（p, q ! 0）を合わせての

もである。

(i) 「単位」任意の p ! 0と a ∈ Ap、λ ∈ Rに対して、

µ0,p(η(λ), a) = λa = µp,0(a, η(λ))

である。

(ii) 「結合律」任意の p, q, r ! 0と a1 ∈ Ap、 a2 ∈ Aq、 a3 ∈ Arに対して、

µp,q+r(a1, µq,r(a2, a3)) = µp+q,r(µp,q(a1, a2), a3)

である。

(iii) 「反可換律」任意の p, q ! 0と a1 ∈ Ap、a2 ∈ Aqに対して、

µq,p(a2, a1) = (−1)pqµp,q(a1a2)

である。

定義 3.2. 実ベクトル空間 V について、ベクトル空間Altp(V )（p ! 0）と次のように定義さ

れた線形写像 η : R → Alt0(V )と双線形写像µp,q : Altp(V )×Altq(V ) → Altp+q(V )（p, q ! 0）

を合わせてものは、V で生成された交代代数と呼ばれ、Alt∗(V )と書かれる。

η(λ1)(λ2) = λ1λ2, µp,q(ω1, ω2) = ω1 ∧ ω2

定理 3.3. 実ベクトル空間 V に対して、交代代数Alt∗(V )はR上次数つき可換代数である。

証明. 外積は結合律を満たすことを示すために、次の性質を満たす置換 σ ∈ Sp,q,rのなす部

分集合 Sp,q,r ⊂ Sp+q+rを考えてみる。

「σ(1) < · · · < σ(p) かつ σ(p + 1) < · · · < σ(p + q) かつ σ(p + q + 1) < · · · < σ(p + q + r)」
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それに、次のように定義された部分集合 S ′

p,q,r, S
′′

p,q,r ⊂ Sp,q,rもおいておく。

S ′

p,q,r = {σ ∈ Sp,q,r | (∀i " p) : σ(i) = i}

S ′′

p,q,r = {σ ∈ Sp,q,r | (∀i ! p + q + 1): σ(i) = i}

この部分集合について、次の全単射が成り立つ。

Sp,q+r × S ′

p,q,r
∼
−→ Sp,q,r, (σ, τ) (→ στ

Sp+q,r × S ′′

p,q,r
∼
−→ Sp,q,r, (σ, τ) (→ στ

最初の全単射を使い、

(ω1 ∧ (ω2 ∧ ω3)) (v1, . . . , vp+q+r)

=
∑

σ∈Sp,q+r

sgn(σ)ω1(vσ(1), . . . , vσ(p)) · (ω2 ∧ ω3)(vσ(p+1), . . . , vσ(p+q+r))

=
∑

σ∈Sp,q+r

sgn(σ)ω1(vσ(1), . . . , vσ(p)) ·
( ∑

τ∈S′
p,q,r

sgn(τ)

ω2(vστ(p+1), . . . , vστ(p+q)) · ω3(vστ(p+q+1), . . . , vστ(p+q+r))
)

=
∑

µ∈Sp,q,r

sgn(µ)ω1(vµ(1), . . . , vµ(p))ω2(vµ(p+1), . . . , vµ(p+q))ω3(vµ(p+q+1), . . . , vµ(p+q+r))

であることが分かる。同様に、最後の方程式を使い、

((ω1 ∧ ω2) ∧ ω3)) (v1, . . . , vp+q+r)

=
∑

µ∈Sp,q,r

sgn(µ)ω1(vµ(1), . . . , vµ(p))ω2(vµ(p+1), . . . , vµ(p+q))ω3(vµ(p+q+1), . . . , vµ(p+q+r))

であることも分かる。これを比べると外積は結合律を満たすことがわかる。

最後に、外積は反可換律を満たすことを示す。そのために、次のように定義された置換τ ∈ Sp+q

をおいておく。

τ(i) =









p + i (1 " i " q)

i − q (q + 1 " i " p + q)

置換 τの符号は sgn(τ) = (−1)pqであり、写像σ (→ στは、Sp,qからSq,pへの全単射を誘導し、

ω2(vστ(1), . . . , vστ(q)) = ω2(vσ(p+1), . . . , vσ(p+q))

ω1(vστ(q+1), . . . , vστ(p+q)) = ω1(vσ(1), . . . , vσ(p))
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である。よって、

(ω2 ∧ ω1)(v1, . . . , vp+q) =
∑

σ∈Sq,p

sgn(σ)ω2(vσ(1), . . . , vσ(q)) · ω1(vσ(q+1), . . . , vσ(p+q))

=
∑

σ∈Sp,q

sgn(στ)ω2(vστ(1), . . . , vστ(q)) · ω1(vστ(q+1), . . . , vστ(p+q))

= (−1)pq
∑

σ∈Sp,q

sgn(σ)ω1(vσ(1), . . . , vσ(p)) · ω2(vσ(p+1), . . . , vσ(p+q))

= (−1)pq(ω1 ∧ ω2)(v1, . . . , vp+q)

であることが分かる。すなわち、外積は反可換律を満たす。

交代代数Alt∗(V )の構想を理解するために、次の補題を証明する。

補題 3.4. 実ベクトル空間V について、任意の非負整数 p ! 0と交代式ω1, . . . , ωp ∈ Alt1(V )、

ベクトル v1, . . . , vp ∈ V に対して、

(ω1 ∧ · · · ∧ ωp)(v1, . . . , vp) = det








ω1(v1) . . . ω1(vp)
.

.

.

.

.

.

.

.

.

ωp(v1) . . . ωp(vp)








である。

証明. 補題を帰納法で示す。まず、p = 1のとき、ω1(v1) = det(ω1(v1))は正しいので、p− 1

のときを正しいと仮定し、pのときを示せばよい。なお、

(ω1 ∧ (ω2 ∧ · · · ∧ ωp))(v1, . . . , vp)

=
p

∑

j=1

(−1)j+1ω1(vj)(ω2 ∧ · · · ∧ ωp)(v1, . . . , vj−1, vj+1, . . . , vp)

=
p

∑

j=1

(−1)j+1ω1(vj) det








ω2(v1) . . . ω2(vj−1) ω2(vj+1) . . . ω2(vp)
...

...
...

...

ωp(v1) . . . ωp(vj−1) ωp(vj+1) . . . ωp(vp)








= det








ω1(v1) . . . ω1(vp)
...

. . .
...

ωp(v1) . . . ωp(vp)







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となる。ここで、最初の方程式は外積の定義より成り立ち、次の方程式は帰納法の仮定より

成り立ち、最後の方程式は行列式の性質より成り立つ。よって、pのときも正しいであるこ

とを示した。帰納法より、補題が成り立つ。

有限次元実ベクトル空間 V の基底 {e1, . . . , en}について、実ベブトル空間Alt1(V )の双対基

底と呼ばれるのは、次のように定義された基底 {e∗1, . . . , e
∗

n}である。

e∗i (ej) =









1 (i = j)

0 (i )= j)

定理 3.5. 有限次元の実ベクトル空間 V とその基底 {e1, . . . , en}について、任意の非負整数

pに対して、次の部分集合は、実ベクトル空間Altp(V )の基底となることである。

{e∗σ(1) ∧ · · · ∧ e∗σ(p) | σ ∈ Sp,n−p}

特に、dim Altp(V ) =
(

n
p

)

となることである。

証明. まず、補題 3.4より、次の方程式が成り立つ。

(e∗i1 ∧ · · · ∧ e∗ip)(ej1, . . . , ejp) =









sgn(σ) ({i1, . . . , ip} = {j1, . . . , jp})

0 ({i1, . . . , ip} )= {j1, . . . , jp})

ここで、σ ∈ Spは「σ(ik) = jk（1 " k " p）」で定義された置換である。よって、補題 2.5

より、任意の交代式 ω ∈ Altp(V )にたいして、

ω =
∑

σ∈Sp,n−p

ω(eσ(1), . . . , eσ(p))e
∗

σ(1) ∧ · · · ∧ e∗σ(p)

であることが分かれる。すなわち、任意の ω ∈ Altp(V )が {e∗σ(1), . . . , e
∗

σ(p) | σ ∈ Sp,n−p}の線

形結合となることである。それで、

∑

σ∈Sp,n−p

λσe
∗

σ(1) ∧ · · · ∧ e∗σ(p) = 0 (λσ ∈ R)

ならば、任意の τ ∈ Sp,n−pに対して、

λτ =
( ∑

σ∈Sp,n−p

λσe
∗

σ(1) ∧ · · · ∧ e∗σ(p)

)

(eτ(1), . . . , eτ(p)) = 0(eτ(1), . . . , eτ(p)) = 0

である。すなわち、{e∗σ(1) ∧ · · · ∧ e∗σ(p) | σ ∈ Sp,n−p}も線形同値である。
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線形写像 f : V → W に関して、線形写像

Altp(f) : Altp(W ) → Altp(V ), Altp(f)(ω)(v1, . . . , vp) = ω(f(v1), . . . , f(vp))

は、f で誘導された写像と呼ばれ、Altp(f)または f ∗と書かれる。誘導された写像に対して、

次の性質 (i)–(ii)は示しやすいである。

(i) Altp(g ◦ f) = Altp(f) ◦ Altp(g)

(ii) Altp(idV ) = idAltp(V )

すなわち、Altp(−)は反変関手である。この性質を使うことがよくある。例として、次の補

題を示す。

補題 3.6. 任意の同型 f : V → W に対して、誘導写像 f ∗ : Altp(W ) → Altp(V )も同型にな

ることである。

証明. 線形写像 f : V → W は同型であるとは、次の性質を満たす線形写像 g : W → V が存

在することである。
f ◦ g = idV

g ◦ f = idW

よって、誘導写像に対して、次の方程式が成り立つ。

Altp(f ◦ g) = Altp(idV )

Altp(g ◦ f) = Altp(idW )

なお、関手の性質 (i)–(ii)を用い、この方程式を次のように表すことができる。

Altp(g) ◦ Altp(f) = idAltp(V )

Altp(f) ◦ Altp(g) = idAltp(W )

よって、誘導写像Altp(f)は同型であることが分かれる。

命題 3.7. 有限次元 nのベクトル空間 V と線形写像 f : V → V に対して、

Altn(f)(ω) = det(f)ω

である。
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証明. ベクトル空間 V の基底 {e1, . . . , en}をおいておく。定理 3.5は、ベクトル空間Altn(V )

は１次元で、交代式 e∗1 ∧ · · · ∧ e∗nは基底であることを示す。よって、

Altn(f)(e∗1 ∧ · · · ∧ e∗n)(e1, . . . , en) = det(f)

を示せばよい。ここで、誘導写像の定義より、

Altn(f)(e∗1 ∧ · · · ∧ e∗n)(e1, . . . , en) = (e∗1 ∧ · · · ∧ e∗n)(f(e1), . . . , f(en))

である。それに、補題 3.4より、

(e∗1 ∧ · · · ∧ e∗n)(f(e1), . . . , f(en)) = det








e∗1(f(e1)) . . . e∗1(f(en))
...

. . .
...

e∗n(f(e1)) . . . e∗n(f(en))








であることが分かる。最後に、次の方程式より、右辺はdet(f)と等しいであることが分かる。

f(e1) = e∗1(f(e1))e1 + · · ·+ e∗n(f(en))en

...

f(en) = e∗1(f(en))e1 + · · · + e∗n(f(en))en

これで、補題が成り立つ。

17


