
4 微分形式

開集合 U ⊂ Rnをおいておく。

定義 4.1. 非負整数pについて、U上p次微分形式というのは、滑らかな写像ω : U → Altp(Rn)

のものである。U 上 p次微分形式のなすベクトル空間はΩp(U)と書かれる。

すなわち、U 上 p次微分形式のなすベクトル空間は、

Ωp(U) = C∞(U, Altp(Rn))

と定義される。

注 4.2. p = 0のとき、「ω #→ ω(1)」で定義された同型Alt0(Rn)
∼
−→ Rは、標準同型

Ω0(U)
∼
−→ C∞(U, R)

を誘導する。これから、Ω0(U)とC∞(U, R)を識別しない。

定理 3.3を想起し、次の補題が成り立つ。

補題 4.3. 微分形式のなすベクトル空間 Ωp(U)（p ! 0）と次のように定義された線形写像

η : R → Ω0(U)と双線形写像 µp,q : Ωp(U) × Ωq(U) → Ωp+q(U)を合わせてものは、R上次数

つき可換代数である。

η(λ)(x)(λ2) = λ1λ2, µp,q(ω1, ω2)(x) = ω1(x) ∧ ω2(x)

ここで、右辺の「∧」は、交代代数Alt∗(Rn)の外積である。

注 4.4. (1) 次数つき可換代数 Ω∗(U)の積も外積と呼ばれ、ω1 ∧ ω2のように書かれる。よっ

て、この積の定義より、

(ω1 ∧ ω2)(x) = ω1(x) ∧ ω2(x)

である。

(2) 外積 µ0,p : Ω0(U) × Ωp(U) → Ωp(U)に対して、ベクトル空間Ωp(U)は、Ω0(U)-加群とな

ることである。

(3) 任意の空集合でない開集合 U ⊂ Rnに対して、Ωp(U)（0 " p " n）は、無限次元ベクト

ル空間であり、Ωp(U)（p > n）は、ゼロベクトル空間である。

18



ベクトル空間 V, W に関して、線形写像 f : V → W のなす集合

Hom(V, W ) = {f : V → W | f は線形写像 }

は、次のようにベクトル空間となる。

(f + g)(v) = f(v) + g(v)

(λf)(v) = λf(v)

特に、ベクトル空間Hom(V, R)は、ベクトル空間 V の反対空間である。滑らかな写像

ω : U → Altp(Rn)

に関して、導関数と呼ばれるのは、次のように定義された滑らかな写像

Dω : U → Hom(Rn, Altp(Rn))

のものである。

Dω(x)(v) = Dxω(v) =
d

dt
ω(x + tv)|t=0

注 4.5. ユークリッド空間Rnの標準基底 {e1, . . . , en}とベクトル空間Altp(Rn)の定理 3.5よ

り誘導された基底 {e∗i1 ∧ · · · ∧ e∗ip | 1 " i1 < · · · < ip " n}をおいておく。この基底に対して、

ω(x) =
∑

1!i1<···<ip!n

ωi1,...,ip(x)e∗i1 ∧ · · · ∧ e∗ip

と表すことができる。ここで、ωi1,...,ip : U → Rは U 上滑らかな実数値の関数である。なお、

線形写像Dxω : Rn → Altp(Rn)の定義より、

Dxω(ej) =
∑

1!i1<···<ip!n

∂ωi1,...,ip

∂xj

(x)e∗i1 ∧ · · · ∧ e∗ip

であることが分かる。すなわち、線形写像Dxωは、
(

n
p

)

× n行列
(

∂ωi1,...,ip

∂xj

(x)

)

と対応することとなる。

定義 4.6. 次のように定義された線形写像 d : Ωp(U) → Ωp+1(U)は、外微分とよばれる。

(dω)(x)(v1, . . . , vp+1) =
p+1
∑

i=1

(−1)i−1Dxω(vi)(v1, . . . , vi−1, vi+1, . . . , vp+1)

19



注 4.7. 定義 4.6に関して、p + 1重線形形式 dω = dω(x)は交代式であることを証明するこ

とが必要である。なお、vj = vj+1のとき、Dxω(vi)は交代式より、

(dω)(x)(v1, . . . , vp+1) =
p+1
∑

i=1

(−1)i−1Dxω(vi)(v1, . . . , vi−1, vi+1, . . . , vp+1)

= (−1)j−1Dxω(vj)(v1, . . . , vj−1, vj+1, vj+2, . . . , vp+1)

+ (−1)jDxω(vj+1)(v1, . . . , vj−1, vj, vj+2, . . . , vp+1)

= 0

であることが分かる。

射影写像 xi : U → R（1 " i " n）とその外微分 dxi : U → Alt1(Rn)をおいておく。

補題 4.8. 滑らかな写像 f : U → Rに対して、

df =
∂f

∂x1
∧ dx1 + · · ·+

∂f

∂xn

∧ dxn

である。

証明. 定義 4.6と連鎖律の公式より、f ∈ Ω0(U)と v = (v1, . . . , vn) ∈ Rnに対して、

df(x)(v) =
d

dt
f(x + tv)|t=0 =

∂f

∂x1
(x)v1 + · · ·+

∂f

∂xn

(x)vn

であることが分かる。特に、f = xiのとき、

dxi(x)(v) = vi

なので、任意の x ∈ U と v ∈ Rnに対して、

df(x)(v) =
∂f

∂x1
(x)dx1(x)(v) + · · · +

∂f

∂xn

(x)dxn(x)(v)

こととなるが分かる。外積の定義と比べると補題が成り立つ。

補題 4.9. 滑らかな写像 f : U → Rと自然数 1 " i1 < · · · < ip " nに関して、

d(f ∧ dxi1 ∧ · · · ∧ dxip) = df ∧ dxi1 ∧ · · · ∧ dxip

である。
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証明. 連鎖律の公式と定義 4.6より、任意の x ∈ U と v ∈ Rnにたいして、

Dx(f ∧ dxi1 ∧ · · · ∧ dxip)(v) = df(x)(v)(dxi1 ∧ · · · ∧ dxip)(x)

であることが分かる。それを使い、定義 4.6と定義 2.9は

d(f ∧ dxi1 ∧ · · · ∧ dxip)(x)(v1, . . . , vp+1)

=
p+1
∑

i=1

(−1)i−1df(x)(vi)(dxi1 ∧ · · · ∧ dxip)(x)(v1, . . . , vi−1, vi+1, . . . , vp+1)

=
(

df ∧ (dxi1 ∧ · · · ∧ dxip)
)

(x)(v1, . . . , vp+1)

であることを示す。

補題 4.10. 任意の p ! 0に対して、合成写像

d ◦ d : Ωp(U) → Ωp+2(U)

は、ゼロ写像と等しいである。

証明. 定理 3.5より、任意の f ∈ Ω0(U)と 1 " i1 < . . . ip " nに対して、

d(d(f ∧ dxi1 ∧ · · · ∧ dxip)) = 0

であることを示せばよい。補体 4.9と 4.8より、

d(f ∧ dxi1 ∧ · · · ∧ dxip) = df ∧ dxi1 ∧ · · · ∧ dxip

=
n

∑

i=1

∂f

∂xi

∧ dxi ∧ dxi1 ∧ · · · ∧ dxip

であることが分かる。同様に、

d(d(f ∧ dxi1 ∧ · · · ∧ dxip)) =
∑

1!i,j!n

∂2f

∂xi∂xj

∧ dxi ∧ dxj ∧ dxi1 ∧ · · · ∧ dxip

こととなるが分かる。なお、dxi ∧ dxj = −dxj ∧ dxiを使うと、この方程式も次のように表

される。
∑

1!i<j!n

(
∂2f

∂xi∂xj

−
∂2f

∂xj∂xi

)

∧ dxi ∧ dxj ∧ dxi1 ∧ · · · ∧ dxip

よって、d ◦ d = 0が成り立つ。
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補題 4.11. 任意の ω1 ∈ Ωp(U)と ω2 ∈ Ωq(U)に対して、次の方程式が成り立つ。

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)pω1 ∧ dω2

証明. まず、p = q = 0のとき、ω1 = f と ω2 = gは滑らかな関数だり、補題 4.8より、

d(ω1 ∧ ω2) = d(fg) =
∂(fg)

∂x1
dx1 + · · ·+

∂(fg)

∂xn

dxn

=
( ∂f

∂x1
g + f

∂g

∂x1

)

dx1 + · · ·+
( ∂f

∂xn

g + f
∂g

∂xn

)

dxn

=
( ∂f

∂x1
dx1 + · · · +

∂f

∂xn

dxn

)

g + f
( ∂g

∂x1
dx1 + · · ·+

∂g

∂xn

dxn

)

= dω1 ∧ ω2 + ω1 ∧ dω2

となることが分かる。一般的に、交代式 ω1 と ω2 は、それぞれの f ∧ dxi1 ∧ · · · ∧ dxip と

g ∧ dxj1 ∧ · · · ∧ dxjq とすればよい。そのとき、

ω1 ∧ ω2 = fg ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

なので、補題 4.9より、

d(ω1 ∧ ω2) = d(fg) ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

= (df ∧ g + f ∧ dg) ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

= df ∧ g ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

+ f ∧ dg ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

= df ∧ dxi1 ∧ · · · ∧ dxip ∧ g ∧ dxj1 ∧ · · · ∧ dxjq

+ (−1)pf ∧ dxi1 ∧ · · · ∧ dxip ∧ dg ∧ dxj1 ∧ · · · ∧ dxjq

= dω1 ∧ ω2 + (−1)pω1 ∧ dω2

であることが分かる。

定義 4.12. 体 R上微分次数つき可換代数 (A∗, d)とは、次数つき可換代数 A∗ と次の性質

(i)–(ii)を満たすR-線形写像 d : Ap → Ap+1（p ! 0）を合わせてものである。

(i) 「微分」任意の p ! 0に対して、合成写像 d◦d : Ap → Ap+2はゼロ写像と等しいである。

(ii) 「ライブニッツの公式」任意の p, q ! 0と a1 ∈ Ap、a2 ∈ Aqに対して、

d(a1 · a2) = (da1) · a2 + (−1)pa1 · (da2)

である。
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定義 4.13. 開集合 U ⊂ Rnについて、微分形式のなす次数つき可換代数 Ω∗(U)と外微分で

定義されたR-線形写像 d : Ωp(U) → Ωp+1(U)（p ! 0）を合わせてものは、Uのド・ラーム複

体と呼ばれ、(Ω∗(U), d)またはΩ∗(U)と書かれる。

補題 4.10と 4.11より、次の定理が成り立つ。

定理 4.14. 開集合U ⊂ Rnに対して、ド・ラーム複体 (Ω∗(U), d)は、R上微分次数つき可換

代数である。

例 4.15. 開集合 U ⊂ R3に関して、定理 4.14を用い、ド・ラーム複体

Ω0(U) d
!! Ω1(U) d

!! Ω2(U) d
!! Ω3(U)

を計算する。まず、f ∈ Ω0(U)に対して、

df =
∂f

∂x1
∧ dx1 +

∂f

∂x2
∧ dx2 +

∂f

∂x3
∧ dx3

である。つづいて、任意の ω ∈ Ω1(U)は、次のように表すことができる。

ω = f1 ∧ dx1 + f2 ∧ dx2 + f3 ∧ dx3

微分の性質を用い、次の式が成り立つ。

dω =

(
∂f3

∂x2
−

∂f2

∂x3

)

∧ dx2 ∧ dx3 −

(
∂f1

∂x3
−

∂f3

∂x1

)

∧ dx1 ∧ dx3

+

(
∂f2

∂x1
−

∂f1

∂x2

)

∧ dx1 ∧ dx2

最後に、任意の ω ∈ Ω2(U)は、次のように表すことができる。

ω = g1 ∧ dx2 ∧ dx3 − g2 ∧ dx1 ∧ dx3 + g3 ∧ dx1 ∧ dx2

このとき、同様に次の式が成り立つ。

dω =

(
∂g1

∂x1
+

∂g2

∂x2
+

∂g3

∂x3

)

∧ dx1 ∧ dx2 ∧ dx3

すなわち、勾配と回転、発散の式が成り立つ。
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