
5 ド・ラームコホモロジー

定義 5.1. 開集合U ⊂ Rnと非負整数 pに対して、ド・ラームコホモロジー群Hp(U)は、次

のように定義された商ベクトル空間のものである。

Hp(U) = ker(d : Ωp(U) → Ωp+1(U))
/

im(d : Ωp−1(U) → Ωp(U))

注 5.2. (1) ω ∈ ker(d : Ωp(U) → Ωp+1(U))と ω ∈ im(d : Ωp−1(U) → Ωp(U)は、それぞれ U

上閉微分形式と U 上完全微分形式と呼ばれる。特に、ド・ラームコホモロジー群Hp(U)が

ゼロであることと、任意の U 上閉微分形式が完全微分形式であることは同値である。

(2) 閉微分形式 ωで与えられたコホモロジー類は、次のようにも書かれる。

[ω] = ω + im(d : Ωp−1(U) → Ωp(U)) ∈ Hp(U)

(3) ベクトル空間Hp(U)（p ! 0）と次のように定義された線形写像 η : R → H0(U)、双線形

写像µp,q : Hp(U)×Hq(U) → Hp+q(U)（p, q ! 0）は、R上次数つき可換代数である。ここで、

η(λ) ∈ H0(U) ⊂ Ω0(U)は、定値写像 η(λ)(x) = λと定義される。それで、コホモロジー類

[ω1] ∈ Hp(U)と [ω2] ∈ Hq(U)に対して、次の計算より、コホモロジー類 [ω1 ∧ω2] ∈ Hp+q(U)

がうまく定義された。

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)pω1 ∧ dω2 = 0

(ω1 + dτ1) ∧ (ω2 + dτ2) = ω1 ∧ ω2 + ω1 ∧ dτ2 + dτ1 ∧ ω2 + dτ1 ∧ dτ2

= ω1 ∧ ω2 + d
(

(−1)pω1 ∧ τ2 + τ1 ∧ ω2 + τ1 ∧ dτ2

)

なお、µp,q([ω1], [ω2])は、コホモロジー類 [ω1 ∧ ω2]と定義される。

定義 5.3. 開集合U1 ⊂ RmとU2 ⊂ Rn、滑らかな写像 φ : U1 → U2に対して、線形写像

Ωp(φ) : Ωp(U2) → Ωp(U1), Ωp(φ)(ω)(x) = Altp(Dxφ) ◦ ω(φ(x))

は、φで誘導された写像と呼ばれ、Ωp(φ)または φ∗と書かれる。

線形写像Altp(Dxφ)の定義を想起し、定義 5.3も次のように表すことができる。

Ωp(φ)(ω)(x)(v1, . . . , vp) = ω(φ(x))((Dxφ)(v1), . . . , (Dxφ)(vp))
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補題 5.4. 誘導された写像は、次の性質を満たす。

(i) Ωp(ψ ◦ φ) = Ωp(φ) ◦ Ωp(ψ)

(ii) Ωp(idU) = idΩp(U)

証明. 性質 (i)を次のように示すことができる。

(Ωp(φ) ◦ Ωp(ψ))(ω)(x) = Altp(Dxφ) ◦ Ωp(ψ)(ω)(φ(x))

= Altp(Dxφ) ◦ Altp(Dφ(x)ψ) ◦ ω(ψ(φ(x))

= Altp(Dφ(x)ψ ◦ Dxφ) ◦ ω(ψ(φ(x))

= Altp(Dx(ψ ◦ φ)) ◦ ω((ψ ◦ φ)(x))

= Ωp(ψ ◦ φ)(ω)(x)

ここで、第１番と第２番、第５番方程式は、定義 5.3で成り立ち、第３番方程式は、Altp(−)

が反変関手であることで成り立ち、第４番方程式は、連鎖律の公式で成り立つ。性質 (ii)は、

直ちに定義 5.3から成り立つ。

系 5.5. 微分同相写像 φ : U1 → U2で誘導された線形写像

Ωp(φ) : Ωp(U2) → Ωp(U1)

は、同型である。

証明. 滑らかな写像 φ : U1 → U2が微分同相写像であることと、次の性質を満たす滑らかな

写像 ψ : U2 → U1が存在することは同値である。

ψ ◦ φ = idU1

φ ◦ ψ = idU2

補題 5.4を使い、次の方程式が成り立つ。

Ωp(φ) ◦ Ωp(ψ) = Ωp(ψ ◦ φ) = Ωp(idU1) = idΩp(U1)

Ωp(ψ) ◦ Ωp(φ) = Ωp(φ ◦ ψ) = Ωp(idU2) = idΩp(U2)

すなわち、Ωp(φ)は同型である。
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例 5.6. 開集合U1 ⊂ Rmと U2 ⊂ Rn、滑らかな写像 φ = (φ1, . . . , φn) : U1 → U2において、滑

らかな写像 φi : U1 → R（1 " i " n）は、ベクトル空間 Ω0(U1)の元である。それに対して、

次の公式を示す。

Ω1(φ)(dxi) = dφi

定義 5.3より、点 x ∈ U1とベクトル v = (v1, . . . , vm) ∈ Rmに対して、

Ω1(φ)(dxi)(x)(v) = dxi(φ(x))((Dxφ)(v)) = e∗i
(

n
∑

k=1

(
m

∑

l=1

∂φk

∂xl

(x)vl

)

ek

)

=
m

∑

l=1

∂φi

∂xl

(x)vl =
m

∑

l=1

∂φi

∂xl

(x)e∗l (v) = dφi(x)(v)

定理 5.7. 開集合 U1 ∈ Rmと U2 ⊂ Rn、滑らかな写像 φ : U1 → U2に対して、誘導された写

像は次の性質 (i)–(iii)をみたす。

(i) 任意の ω ∈ Ωp(U2)と τ ∈ Ωq(U2)に対して、

Ωp+q(φ)(ω ∧ τ) = Ωp(φ)(ω) ∧ Ωq(φ)(τ)

である。

(ii) 任意の f ∈ Ω0(U2)に対して、

Ω0(φ)(f) = f ◦ φ

である。

(iii) 任意の ω ∈ Ωp(U2)に対して、

d(Ωp(φ)(ω)) = Ωp+1(φ)(dω)

である。

それで、性質 (i)–(iii)を満たす線形写像L : Ω∗(U2) → Ω∗(U1)には、必ず L = Ω∗(φ)である。
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証明. まず、点 x ∈ U2とベクトル v1, . . . , vp+q ∈ Rmに対して、

Ωp+q(φ)(ω ∧ τ)(x)(v1, . . . , vp+q)

= (ω ∧ τ)(φ(x))((Dxφ)(v1), . . . , (Dxφ)(vp+q))

=
∑

σ∈Sp,q

sgn(σ)
(

ω(φ(x))((Dxφ)(vσ(1)), . . . , (Dxφ)(vσ(p)))

τ(φ(x))((Dxφ)(vσ(p+1)), . . . , τ(φ(x))((Dxφ)(vσ(p+q)))
)

=
∑

σ∈Sp,q

sgn(σ)Ωp(φ)(ω)(x)(vσ(1), . . . , vσ(p))Ω
q(φ)(τ)(x)(vσ(p+1), . . . , vσ(p+q))

= (Ωp(φ)(ω) ∧ Ωq(φ)(τ))(x)(v1, . . . , vp+q)

である。これで、性質 (i)が成り立つ。性質 (ii)は、直ちに定義 5.3から成り立つ。最後に、

性質 (iii)を示す。まず、p = 0のときを考えてみる。f ∈ Ω0(U2)に対して、

Ω1(φ)(df) = Ω1(φ)
(

n
∑

k=1

∂f

∂xk

∧ dxk

)

=
n

∑

k=1

Ω0(φ)(
∂f

∂xk

) ∧ Ω1(φ)(dxk)

=
n

∑

k=1

(
∂f

∂xk

◦ φ) ∧ dφk =
n

∑

k=1

(
∂f

∂xk

◦ φ) ∧
(

m
∑

l=1

∂φk

∂xl

∧ dxl

)

=
m

∑

l=1

( n
∑

k=1

(
∂f

∂xk

◦ φ) ·
∂φk

∂xl

)

∧ dxl =
m

∑

l=1

∂(f ◦ φ)

∂xl

∧ dxl

= d(f ◦ φ) = d(Ω0(φ)(f))

となることが分かる。ここで、第１番と第４番、第７番方程式は補題 4.8より成り立ち、第

２番法定式は性質 (i)より成り立ち、第３番と第８番方程式は性質 (ii)と例 5.6より成り立

ち、第６番方程式は連鎖律の公式より成り立つ。一般的に、

ω = f ∧ dxi1 ∧ · · · ∧ dxip
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のときを考えばよい。このとき、

Ωp+1(φ)(dω) = Ωp+1(φ)(df ∧ dxi1 ∧ · · · ∧ dxip)

= Ω1(φ)(df) ∧ Ω1(φ)(dxi1) ∧ · · · ∧ Ω1(φ)(dxip)

= d(Ω0(φ)(f)) ∧ d(Ω0(φ)(xi1)) ∧ · · · ∧ d(Ω0(φ)(xip))

= d
(

Ω0(φ)(f) ∧ d(Ω0(φ)(xi1)) ∧ · · · ∧ d(Ω0(φ)(xip))
)

= d
(

Ω0(φ)(f) ∧ Ω1(φ)(dxi1) ∧ · · · ∧ Ω1(φ)(dxip)
)

= d
(

Ωp(φ)(f ∧ dxi1 ∧ · · · ∧ dxip)
)

= d
(

Ωp(φ)(ω)
)

であることが分かる。ここで、第１番と第４番方程式は定理 4.14より成り立ち、第２番と

第６番方程式は性質 (i)より成り立ち、第３番と第５番方程式は性質 (iii)の p = 0のときよ

り成り立つ。これで、性質 (iii)が成り立つ。

注 5.8. 定理 5.7の性質 (i)–(iii)も次のように書かれる。

(i) 任意の ω ∈ Ωp(U2)と τ ∈ Ωq(U2)に対して、φ∗(ω ∧ τ) = φ∗(ω) ∧ φ∗(τ) である。

(ii) 任意の f ∈ Ω0(U2)に対して、φ∗(f) = f ◦ φ である。

(iii) 任意の ω ∈ Ωp(U2)に対して、d(φ∗(ω)) = φ∗(dω) である。

定義 5.9. 開集合U1 ⊂ RmとU2 ∈ Rn、滑らかな写像 φ : U1 → U2に対して、線形写像

Hp(φ) : Hp(U2) → Hp(U1), Hp([ω]) = [Ωp(φ)(ω)]

は、φで誘導された写像と呼ばれ、Hp(φ)または φ∗と書かれる。

注 5.10. 任意の閉微分形式 ω ∈ Ωp(U2)と微分形式 τ ∈ Ωp−1(U2)に対して、定理 5.7より、

次の方程式が成り立つ。

d(Ωp(φ)(ω)) = Ωp+1(dω) = Ωp+1(0) = 0

Ωp(φ)(ω + dτ) = Ωp(φ)(ω) + d(Ωp+1(τ))

よって、誘導された写像Hp(φ)は、うまく定義されたことが分かる。

補題 5.4と定理 5.7より、次の定理が成り立つ。
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定理 5.11. (i) 任意の開集合 U1 ⊂ Rkと U2 ⊂ Rm、U3 ⊂ Rn、滑らかな写像 φ : U1 → U2

と ψ : U2 → U3に対して、

Hp(ψ ◦ φ) = Hp(φ) ◦ Hp(ψ)

である。

(ii) 任意の開集合 U ⊂ Rkに対して、

Hp(idU) = idHp(U)

である。

(iii) 任意の開集合 U1 ⊂ Rkと U2 ⊂ Rn、滑らかな写像 φ : U1 → U2に対して、図式

R
η

!! H0(U2)

H0(φ)
""

Hp(U2) × Hq(U2)
µp,q

!!

Hp(φ)×Hq(φ)
""

Hp+q(U2)

Hp+q(φ)
""

R
η

!! H0(U1) Hp(U1) × Hq(U1)
µp,q

!! Hp+q(U1)

が可換になる。

注 5.12. 定理 5.11で、性質 (i)–(ii)は、Hp(−)が反変関手であることを示し、性質 (iii)は、

H∗(φ)が体R上次数つき代数の準同型であることを示す。よって、性質 (i)–(iii)を合わせて

ことは、ド・ラームコホモロジーが、次のような反変関手であることを示す。






ユークリッド空間の開集合

滑らか写像













体R上次数つき可換代数

その準同型







!! !!

H∗(−)
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