
6 ポアンカレの補題

補題 6.1. 次の性質 (i)–(iii)を満たす滑らかな関数 ψ : R → Rが存在する。

(i) 任意の実数 tに対して、0 ! ψ(t) ! 1である。

(ii) 任意の実数 t ! 0に対して、ψ(t) = 0である。

(iii) 任意の実数 t " 1に対して、ψ(t) = 1である。

証明. 次のように定義された関数 f : R → Rは滑らかな関数であることを示す。

f(t) =








0 (t ! 0)

exp(−1/t) (t " 0)

それに、次のように定義された関数 ψも滑らかな関数で、性質 (i)–(iii)を満たす。

ψ(t) =
f(t)

f(t) + f(1 − t)

関数 f は滑らかな関数であることを示すために、任意の n " 0に対して、

lim
t→0+

f (n)(t)

t
= 0

であることを示せばよい。帰納法を使い、多項式 pn(X)（n " 0）を次のように定義する。

p0(X) = 1

pn(X) = −X2(pn−1(X) + p′n−1(X)) (n " 1)

なお、関数 f の高階微分について、帰納法を使い、次の方程式が成り立つ。

f (n)(t) = pn(1/t) exp(−1/t) (t > 0, n " 0)

それで、任意の k " 0に対して、

lim
t→0+

(

(1/t)k exp(−1/t)
)

= lim
x→∞

xk

exp(x)
= 0

なので、補題が成り立つ。
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補題 6.2. 滑らかな関数 ψ : R → Rに対して、φ : Rn × R → Rnを「φ(x, t) = ψ(t)x」で定

義された滑らかな写像をおいておく。そのとき、誘導された写像 φ∗ : Ωp(Rn) → Ωp(Rn ×R)

は、次の公式で与えられる。

φ∗(dxi) = ψ′(t)xi ∧ dt + ψ(t) ∧ dxi (1 ! i ! n)

証明. 例 5.6より、φ∗(dxi) = dφi であることが分かる。ここで、φi(x, t) = ψ(t)xiなので、補

題 4.8より、補題が成り立つ。

次に、定理 1.5の一般化を証明する。まず、定理 3.5より、開集合 U ⊂ Rnに対して、任意

の微分形式 ω ∈ Ωp(U)は、次のように一意に表すことができる。

ω =
∑

I

fI ∧ dxI (6.3)

ここで、添え字 Iを「1 ! i1 < · · · < ip ! n」を満たす整数のp組 (i1, . . . , ip)とし、fI ∈ Ω0(U)

とし、dxI は微分形式 dxi1 ∧ · · · ∧ dxip ∈ Ωp(U)と定義されたものとする。

定理 6.4 (ポアンカレの補題). 星形の開集合 U ⊂ Rnに対して、

Hp(U) =









R (p = 0)

0 (p > 0)

証明. 開集合 U は原点 0 ∈ Rnによって星形集合であることを仮定し、次の微分方程式を満

たす線形写像

sp : Ωp(U) → Ωp−1(U) (p " 1) (6.5)

を定義する。
ηε + s1d = id (p = 0)

dsp + sp+1d = id (p > 0)

ここで、idはベクトル空間 Ωp(U)の恒道写像であり、ε : Ω0(U) → Rは、「ε(ω) = ω(0)」で

定義された線形写像である。写像 spが定義された、定理は次のように成り立つ。任意の閉微

分形式 ω ∈ Ω0(U)に対して、

ω = id(ω) = (ηε + s1d)(ω) = η(ω(0))
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であることが分かる。よって、写像 η : R → H0(U)は同型である。同様に、任意の閉微分形

式 ω ∈ Ωp(U)（p > 0）に対して、

ω = id(ω) = (dsp + sp+1d)(ω) = dsp(ω)

なので、コホモロジー類 [ω]はゼロであることが分かる。よって、Hp(U)はゼロである。

線形写像 spを定義するために、まず線形写像

ŝp : Ωp(U × R) → Ωp−1(U) (p " 1)

を定義する。以上 (6.3)のように、τ ∈ Ωp(U × R)は、次のように一意に表すことができる。

τ =
∑

I

fI(x, t) ∧ dxI +
∑

J

gJ(x, t) ∧ dt ∧ dxJ

ここで、添え字 Iと J をそれぞれの「1 ! i1 < · · · < ip ! n」と「1 ! j1 < · · · < jp−1 ! n」

を満たす整数の組 (i1, . . . , ip)と (j1, . . . , jp−1)とし、fI , gJ ∈ Ω0(U × R)とする。それに関し

て、写像 ŝp : Ωp(U × R) → Ωp−1(U)は、次の公式で定義される。

ŝp(τ) =
∑

J

(∫ 1

0

gJ(x, t)dt
)

∧ dxJ

そのとき、

dŝp(τ) =
n

∑

i=1

∑

J

(∫ 1

0

∂gJ(x, t)

∂xi

dt
)

∧ dxi ∧ dxJ

ŝp+1d(τ) =
∑

I

(∫ 1

0

∂fI(x, t)

∂t
dt

)

∧ dxI −
n

∑

i=1

∑

J

(∫ 1

0

∂gJ(x, t)

∂xi

dt
)

∧ dxi ∧ dxJ

よって、任意の p " 1に対して、次の方程式が成り立つ。

(dŝp + ŝp+1d)(τ) =
∑

I

(∫ 1

0

∂fI(x, t)

∂t
dt

)

∧ dxI

=
∑

I

fI(x, 1) ∧ dxI −
∑

I

fI(x, 0) ∧ dxI

(6.6)

なお、開集合Uは原点 0によって星形なので、次のように定義された滑らかな写像はうまく

定義された滑らかな写像である。

φ : U × R → U φ(x, t) = ψ(t)x
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ここで、ψ : R → Rは、補題 6.1で定義された関数である。それを使い、線形写像 (6.5)は、

sp(ω) = ŝp(φ
∗(ω))

と定義される。ここで、微分形式 ω ∈ Ωp(U)を、

ω =
∑

I

hI(x) ∧ dxI

と表すと、補題 6.2と定理 5.7より、微分形式 τ = φ∗(ω)は、次のように表される。

τ =
∑

I

hI(ψ(t)x) ∧ (ψ′(t)xi1 ∧ dt + ψ(t) ∧ dxi1) ∧ · · · ∧ (ψ′(t)xip ∧ dt + ψ(t) ∧ dxip)

=
∑

I

hI(ψ(t)x)ψ(t)p ∧ dxI

+
∑

I

p
∑

r=1

(−1)r−1hI(ψ(t)x)ψ(t)p−1ψ′(t) ∧ dt ∧ dxi1 ∧ · · · ∧ dxir−1 ∧ dxir+1 ∧ · · · ∧ dxip

よって、方程式 (6.6)より、任意の p " 1に対して、

(dsp + sp+1d)(ω) = dŝp(φ
∗(ω)) + ŝp+1(φ

∗(dω)) = (dŝp + ŝp+1d)(φ∗(ω))

=
∑

I

hI(ψ(1)x)ψ(1)p ∧ dxI −
∑

I

hI(ψ(0)x)ψ(0)p ∧ dxI

=
∑

I

hI(x) ∧ dxI = ω

よって、任意の p " 1に対して、

dsp + sp+1d = id

であることが分かる。

同様に、任意の f ∈ Ω0(U × R)に対して、

ŝ1df =

∫ 1

0

∂f(x, y)

∂t
dt = f(x, 1) − f(x, 0)

なので、任意の h ∈ Ω0(U)に対して、

s1dh = ŝ1d(h ◦ φ) = h(ψ(1)x) − h(ψ(0)x) = h(x) − h(0)

であることが分かる。よって、方程式

ηε + s1d = id

が成り立つ。
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定義 6.7. (i) ベクトル空間と準同型からなる系列

· · · !! Ai−1 di−1
!! Ai di

!! Ai+1 di+1
!! Ai+2 !! · · ·

は、すべての iに対して di ◦ di−1 = 0を満たすとき、コチェイン複体または反対チェイン複

体と呼ばれ、(Ai, di)またはA∗と書かれる。

(ii)コチェイン複体 (Ai, di)において、すべての iに対して ker(di) = im(di−1)を満たすとき

これは完全のコチェイン複体または完全系列と呼ばれる。

注 6.8. 任意の開集合 U ⊂ Rnに対して、ド・ラース複体と線形形式写像 ηを合わせて系列

0 !! R
η

!! Ω0(U) d
!! Ω1(U) d

!! · · · d
!! Ωn(U) !! 0

はコチェイン複体となる。ポアンカレの補題 6.4より、開集合 U ⊂ Rnが星形のとき、これ

は完全系列である。

定義 6.9. コチェイン複体A∗とB∗において、チェイン写像ϕ : A∗ → B∗というのは、次の

図式が可換になる線形写像 ϕi : Ai → Biを合わせてものである。

· · · !! Ai−1 di−1
!!

ϕi−1

""

Ai di
!!

ϕi

""

Ai+1 di+1
!!

ϕi+1

""

Ai+2 !!

ϕi+2

""

· · ·

· · · !! Bi−1 di−1
!! Bi di

!! Bi+1 di+1
!! Bi+2 !! · · ·

例 6.10. 開集合 U ⊂ R3に対して、例 4.15より、次のように定義された写像 ϕiを合わせて

のは、チェイン写像となる。

0 !! Ω0(U) d
!!

ϕ0

""

Ω1(U) d
!!

ϕ1

""

Ω2(U) d
!!

ϕ2

""

Ω3(U) !!

ϕ3

""

0

0 !! C∞(U, R)
grad

!! C∞(U, R3) rot
!! C∞(U, R3) div

!! C∞(U, R) !! 0

ここで、ϕ0は恒道写像と定義され、それぞれ

ϕ1(f1 ∧ dx1 + f2 ∧ dx2 + f3 ∧ dx3) = (f1, f2, f3)

ϕ2(g1 ∧ dx2 ∧ dx3 − g2 ∧ dx1 ∧ dx3 + g3 ∧ dx1 ∧ dx2) = (g1, g2, g3)

ϕ3(h ∧ dx1 ∧ dx2 ∧ dx3) = h

と定義される。
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